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We provide a quantum unifying picture for black holes of all masses and their main properties covering
classical, semiclassical, Planckian, and trans-Planckian gravity domains: space-time, size, mass, vacuum
(“zero-point”) energy, temperature, partition function, density of states, and entropy. Novel results of this
paper are that black hole interiors are always quantum, trans-Planckian, and of constant curvature. This is
so for all black holes, including the most macroscopic and astrophysical ones. The black hole interior trans-
Planckian vacuum is similar to the earliest cosmological vacuum, where the classical gravity dual is the
low energy gravity vacuum—today, dark energy. There is no singularity boundary at r ¼ 0; the quantum
space-time is regular. We display the quantum Penrose diagram of the Schwarzschild-Kruskal black hole.
The complete black hole instanton (imaginary time) covers the known classical Gibbons-Hawking
instanton plus a new, central, highly dense quantum core of Planck length radius and constant curvature.
The complete partition function, entropy, temperature, decay rate, discrete levels, and density of states all
include the trans-Planckian domain. The semiclassical black hole entropy (the Bekenstein-Hawking
entropy) ð ffiffiffi

n
p Þ2 “interpolates” between the quantum point particle entropy (n) and the quantum string

entropy
ffiffiffi
n

p
, while the quantum trans-Planckian entropy is 1=ð ffiffiffi

n
p Þ2. Black hole evaporation finishes in a

pure (nonmixed) quantum state of particles, gravitons, and radiation.

DOI: 10.1103/PhysRevD.107.126018

I. INTRODUCTION AND RESULTS

Quantum theory is more complete than classical theory;
it tells us what values physical observables should have.
Planckian and trans-Planckian domains are theoretically
allowed and physically motivated in the very early stages of
the universe, as well as in the last stages of black hole
evaporation and the black hole interiors, as we show here.
Quantum eras in the far past universe are trans-Planckian,
and they determine the post-Planckian eras, e.g., inflation
and the cosmological vacuum energy up to dark energy;
see Refs. [1–4].
Using quantum theory to reach the Planck scale and

the trans-Planckian domain (instead of starting from
classical gravity by quantizing general relativity) reveals
novel results, “quantum relativity” and quantum space-time
structure [2–4]. The space-time coordinates can be pro-
moted to quantum noncommuting operators: Comparison
to the harmonic oscillator and global phase space structure
is enlightening; the hyperbolic quantum space-time struc-
ture generates a quantum light cone due to the relevant
½X; T� nonzero commutator, and a new quantum vacuum
region beyond the Planck scale emerges.
The space-time coordinates in the Planckian and trans-

Planckian domains are no longer commuting, but they obey

nonzero commutation relations: The concept of space-time
is replaced by quantum algebra. Classical space-time is
recovered when the quantum operators are the classical
space-time continuum coordinates (c-numbers) with all
commutators vanishing.
In this paper we investigate the black hole interior, its

structure and physical properties, with Planckian and trans-
Planckian physics, classical-quantum gravity duality, and
quantum space-time in this context.
One of the novel results of this paper is that quantum

physics is an inherent constituent of all black hole
interiors, from the horizon to the center, in particular,
inside the largest and most astrophysical black holes.
Thus, the results of this paper have implications for both
quantum theory and gravity, as well as for searching for
quantum gravitational signals, for e-LISA [5], for in-
stance, after the success of LIGO [6,7]. For quantum black
holes, black hole evaporation and its last stage produce
huge emissions; this is also the case for macroscopic
astrophysical black holes.
As we discuss in Sec. II, a complete quantum theory of

gravity should be a finite theory (which is more than a
renormalizable theory): The renormalization procedure
applies for the noncomplete theories in the Wilsonian
sense [8] because they are valid in a limited range of
validity, and such known theories are not complete at the
Planck scale and the trans-Planckian domain.*Norma.Sanchez@obspm.fr;https://chalonge-devega.fr/sanchez

PHYSICAL REVIEW D 107, 126018 (2023)

2470-0010=2023=107(12)=126018(17) 126018-1 © 2023 American Physical Society

https://orcid.org/0000-0002-4261-302X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.126018&domain=pdf&date_stamp=2023-06-26
https://doi.org/10.1103/PhysRevD.107.126018
https://doi.org/10.1103/PhysRevD.107.126018
https://doi.org/10.1103/PhysRevD.107.126018
https://doi.org/10.1103/PhysRevD.107.126018
https://chalonge-devega.fr/sanchez


This framework provides, in particular, the gravitational
entropy and temperature in the quantum trans-Planckian
domain, that is, the extension to this domain of Bekenstein-
Hawking entropy and Hawking temperature, which are
semiclassical gravity magnitudes. Interestingly, this
approach also applies to cosmology and allows a clarifi-
cation of the cosmic vacuum energy or cosmological
constant; see Refs. [1–3]: The quantum ðΛQÞ and classical
(Λ) cosmological vacuum energy values’ duals of each
other correspond precisely to the early and late universe
state values, respectively [1–3].
In this paper we analyze the new quantum vacuum

region inside the Planck scale hyperbolae which delimi-
tate the quantum light cone in the Schwarzschild-Kruskal
space-time. The zero-point (vacuum) quantum energy
bends the space-time and produces a constant curvature
central region. We find the quantum discrete levels of the
black hole space-time and the vacuum trans-Planckian
region. In Sec. IV we describe the global quantum space-
time structure of the Schwarzschild-Kruskal black
hole and extend the Penrose diagram [9] to the quantum
domain. In Fig. 1 we display the new quantum Penrose
diagram.
The quantum space-time structure is discretized into

quantum hyperbolic levels. For times and lengths larger
than the Planck scale, the global space-time levels are
ðXn; TnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
, n ¼ 0; 1; 2… (in Planck units), as

well as the mass levels Mn. The allowed levels cover the
whole domain from the Planck scale ðXn; TnÞ ¼ 1 (n ¼ 0)
and the quantum (low and intermediate n) levels to the
quasiclassical and classical ones, and tend asymptotically
(very large n) to a continuum classical space-time. In the
trans-Planckian domain (lengths and masses smaller than
the Planck scale), in the black hole central region, ðXn; TnÞ
are ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p Þ, with the highest n being the most

quantum, excited, and trans-Planckian ones.
The size of the black hole is gravitational length LG in

the classical-semiclassical regime; it is quantum length
LQ ¼ l2P=LG in the full quantum gravity regime. Similarly,
for the quantum mass, MQ ¼ m2

P=M, and for the quantum
surface gravity, KQ ¼ κ2P=KG. Gravitational thermal fea-
tures such as Hawking radiation are typical of the semi-
classical gravity regime. The end of evaporation is purely
quantum and nonthermal. For masses smaller than the
Planck mass, the final state is not a black hole anymore but
a composite particlelike (or stringlike) state. Moreover, the
quantum mass spectrum for all masses we found (Sec. IV
here) and the decay rates (Sec. VII) confirm this picture.
In Sec. V, we describe the imaginary time manifold

(quantum instanton): The quantum trans-Planckian central
core allows us to complete the classical gravity Gibbons-
Hawking instanton, which is cut at the horizon. The
classical black hole instanton is regular but not complete,
and the black hole quantum instanton is regular and

complete. In Fig. 2 we depict the new quantum instanton
black hole picture.
These results allow us to describe (in Sec. VI) the

complete partition function covering all (classical and
quantum) gravity regimes, as well as the trans-Planckian
entropy. We discuss the comparison between the point
particle QFT entropy (without gravity), the black hole
entropy, and quantum strings in terms of ordered and
nonordered partition numbers.
The discrete levels in the trans-Planckian central core of

the black hole extend with decreasing n from the most
quantum highly excited levels (very large n), with smaller
entropy SQn ¼ 1=ð2nþ 1Þ and higher vacuum density
ΛQn ¼ ð2nþ 1Þ, to the Planck scale level (n ¼ 0). In the
external black hole space-time, the discrete levels extend
from the Planck scale (n ¼ 0) and low n to the quasiclassical
and classical levels, tending (very large n) to a continuum
space-time. Consistently, these levels have larger gravita-
tional (Gibbons-Hawking) entropy SGn ¼ ð2nþ 1Þ; n ¼
0; 1; 2;… and lower vacuum energy ΛGn ¼ 1=ð2nþ 1Þ.
There is no singularity at the black hole origin for the

following reasons. (i) The r ¼ 0mathematical singularity is
not physical, but the result of the extrapolation of the purely
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FIG. 1. Quantum Penrose diagram of the Schwarzschild-Kruskal
black hole. The quantum hyperbolae X2 − T2 ¼ �l2P replace the
classical null horizons X ¼ �T. Their internal region is purely
quantum and trans-Planckian. The difference between the four
classical Kruskal regions (I–IV) disappears in the quantum
domain, and they become a single central region. The exterior
regions are semiclassical/classical asymptotically flat space-times.
There is no curvature singularity at r ¼ 0 or any other place. The
quantum space-time is totally regular. Regions extend regularly
without any finite boundary or curvature singularity. The central
quantum region is of constant finite curvature. Moreover, the
discrete spectrum confirms this picture: The quantum hyperbolae
ðT2 − X2Þ ¼ � ffiffiffi

2
p

, which replace the classical singularity
ðT2 − X2Þclassicalðr ¼ 0Þ ¼ �1, lie outside the allowed quantum
levels ðT2 − X2Þn ¼ ð2nþ 1Þ; n ¼ 0; 1; 2;…, and therefore, the
(r ¼ 0) hyperbolae singularities are ruled out.
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classical (nonquantum) general relativity theory is out
of its domain of physical validity. The Planck scale and
the quantum uncertainty principle in quantum gravity
preclude the extrapolation to the zero length or time,
which is precisely what is expected from quantum trans-
Planckian physics: the smoothness of the classical gravi-
tational singularities. (ii) The vacuum interior of the black
hole is a small region of high but bounded trans-
Planckian constant curvature, and therefore, it has no
singularity. There are no singularity boundaries in the

quantum space-time, not at r ¼ 0 or any other place.
The quantum Schwarzschild-Kruskal space-time is
totally regular. Moreover, the quantum hyperbolae
ðT2 − X2Þ ¼ � ffiffiffi

2
p

, which replace the classical singularity
ðT2 − X2Þclassicalðr ¼ 0Þ ¼ �1, lie outside the allowed
quantum levels ðT2 − X2Þn ¼ ð2nþ 1Þ; n ¼ 0; 1;…;
therefore, they are excluded at the quantum level: The
singularity is removed from the quantum space-time.
This paper is organized as follows: In Sec. II we discuss

why a quantum theory of gravity must be finite. In Sec. III
we describe the classical, semiclassical, and quantum
Planckian and trans-Planckian black hole regions and
regimes, their properties, and the gravitational entropy in
these three regimes. In Sec. IV we describe the quantum
global Schwarzschild-Kruskal space-time structure, its
quantum Penrose diagram, and the new results obtained
with it. Section IV deals with the black hole mass spectrum
in the whole mass range, from astrophysical black holes to
masses smaller than the Planck mass, passing through
the Planck mass (the crossing scale). Sections V and VI
describe the new imaginary time black hole instanton,
including the trans-Planckian region, the partition function,
and the trans-Planckian entropy. In Sec. VII we discuss the
implications of these results for the early and last phases of
black hole evaporation and the quantum pure (non-mixed)
decay rate. In Sec. VIII we describe the black hole interior
and its quantum (trans-Planckian) de Sitter vacuum.
Sections IX and X contain our remarks and conclusions.

II. QUANTUM THEORY OF GRAVITY
MUST BE FINITE

The construction of a complete, consistent, quantum
theory of gravitation continues to be the greatest challenge
in physics today. This is a problem of fundamental
relevance for the quantum unification of all interactions
and particle physics, theoretical physics and cosmology, the
physical origin of the universe and its earliest phases, as
well as black hole interiors, quantum origin and end of
black holes, multiverse possibilities, and several other
physical implications.
In addition, there is a possibility of “low energy”

ðE ≪ MPlanckÞ physical effects that could be experimen-
tally tested. One example is dark energy [10–13], described
as the low energy (classical, dilute, large scale) cosmo-
logical vacuum, a remanent of the high energy (quantum
trans-Planckian, highly dense, small scale) cosmological
vacuum at the origins; see Refs. [1,3].
A problem mostly discussed in connection with gravity

quantization is renormalizability of Einstein theory (or its
various generalizations) when quantized as a local quantum
field theory (QFT). A complete quantum theory at the
Planckian and trans-Planckian domains must have today’s
general relativity, quantum mechanics, and quantum field
theory as limiting cases. Physical effects combining

FIG. 2. Quantum gravitational instanton of the Schwarzschild-
Kruskal black hole (imaginary time: T ¼ iT ; t ¼ iτ). The classi-
cal null horizons corresponding to the origin X ¼ �T ¼ 0 in the
classical gravitational instanton of the Schwarzschild-Kruskal
black hole (Gibbons-Hawking instanton) are quantum mechan-
ically replaced by the circle of Planck length radius ðX2 þ T 2Þ ¼
½X; T � ¼ 1 (in Planck units). Quantum theory consistently ex-
tends the instanton manifold: Classically, the instanton is regular
but is not complete because it is cut at the horizon r ¼ 2M, while
at the quantum level, it is both regular and complete: The
quantum gravitational black hole instanton is the usual classical
instanton for radius larger than the Planck length plus a central
highly dense quantum core of Planck length radius and of high
finite curvature, which is absent classically. The difference
between the four Kruskal regions disappears in the Euclidean
manifold, and they are identified. (We just indicate their loca-
tions to remind us about hyperbolic manifold.) The imaginary
time τ in the classical instanton is periodic with period
β ¼ 2LG ¼ 1=κ, with 1=β being the intrinsic (Hawking) temper-
ature. In the complete quantum instanton, the imaginary time is
periodic, too, but with the complete LQG ¼ ðLG þ LQÞ, which
includes the quantum Planckian and trans-Planckian magni-
tudes. The complete temperature TQG, entropy SQG, and density
of states all include the trans-Planckian domain, as shown in
Secs. V and VI.
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gravitation and quantum mechanics are relevant at energies
of the order of MPlanck ¼

ffiffiffiffiffiffiffiffiffi
ℏ=G

p ¼ 1.22 1016 TeV and
beyond, namely, the trans-Planckian domain

EPlanck ≤ E < ∞; 0 < L ≤ lPlanck ¼ 10−33 cm: ð2:1Þ

Such energies were available in the Universe at times
0 < t ≤ tPlanck ¼ 5.4 × 10−44 sec.
Nevertheless, low energy (E ≪ MPlanck) physical effects

could be experimentally tested, including today’s cosmo-
logical vacuum (see Refs. [10–20]). In addition, one may
speculate about effects analogous to the presence of
magnetic monopoles in some grand unified theories
(monopoles can be detected by low energy experiments
in spite of their large mass).
A theory valid at the Planck scale and beyond—that is, in

the trans-Planckian domain E > EPlanck, L < lPlanck, nec-
essarily involving quantum gravitation—will also be valid
at any lower energy scale. One may ignore higher energy
phenomena in a low energy theory, but the opposite is not
true. In other words, a theory of quantum gravity will be a
theory of everything. This conclusion is totally independent
of whether or not string models are used. It may not
make physical sense to quantize pure gravity. A physically
sensible quantum theory cannot contain only gravitons. For
example, a theoretical prediction for the graviton-graviton
scattering at energies of the order of MPlanck must include
all particles produced in a real experiment—that is, in
practice, all existing particles in nature since gravity
couples to all matter.
From a conceptual point of view, we discuss the renor-

malizability problem of gravity. As is clear from the
preceding discussion, we have MPlanck ≤ Λ0 < ∞ for grav-
ity. There cannot be any quantum field theory of particles
beyond it. Therefore, if ultraviolet divergences appear in a
quantum theory of gravitation, there is no way to interpret
them as coming from a higher energy scale as is usually done
in QFT. In other words, no physical understanding can be
given to such ultraviolet infinities. The only logically
consistent possibility would be to find a finite theory of
quantum gravitation that is a theory of everything (TOE).
These simple arguments based on the renormalization

group lead us to the conclusion that a consistent quantum
theory of gravitation must be a finite theory and must
include all other interactions. That is, it must be a TOE
(theory of everything). In particular, we need to understand
the present desert between 1 TeV and 1016 TeV.
There is an additional dimensional argument about the

inference of a quantum theory of gravitation → TOE:
There are only three dimensional physical magnitudes in
nature (length, energy, and time) and, correspondingly,
only three dimensional constants in nature ðc; h; GÞ.
All other physical constants such as α ¼ 1=137; 04…;
Mproton=melectron; θWS;… are pure numbers, and they must
be calculable in a TOE.

The constants ðc; G; hÞ help one recognize the different
relevant scales and physical regimes. Even if a hypothetical
underlying theory of everything only required pure num-
bers (option three in Ref. [21]), physical touch, at some
level, requires the use of fundamental constants [22–25].
Here, we use three fundamental constants (with tension
being c2=G). From our study here and in Refs. [1–4],
it appears that a complete quantum theory of gravity is a
theory of pure numbers.

III. CLASSICAL, SEMICLASSICAL, AND
QUANTUM BLACK HOLES

The physical classical, semiclassical, and quantum
Planckian and trans-Planckian gravity regimes are particu-
larly important for several reasons: e.g., the different stages
of the universe and black hole evolution (origin, evaporation,
and end) and the different regions of the global complete
(Kruskal-like completion) black hole space-times.
The classical gravity regimes are those of classical space-

time with very low energies (E ≪ EPlanck and large sizes
LG ≫ lPlanck); semiclassical gravity is that of curved space-
times with QFT for matter, backreaction included, as the
cosmic inflation quasi–de Sitter stage of the universe (with
the typical energy scale being the grand unification scale
and no larger), and black hole evaporation in its early and
middle stages. The quantum gravity regime includes
Planckian and trans-Planckian energies, in the early uni-
verse stage at and before the Planck time, the last black hole
evaporation stages, the quantum space-time black hole
regions inside the event horizon, and more generally, the
quantum space-time region inside the quantum light cone.

(i) The classical or semiclassical gravity regime corre-
sponds to any of the external space-time regions
outside the black hole horizon until the asymptotic
far regions, as well as the early (semiclassical
or semiquantum) gravity phases of black hole
evaporation.

(ii) The quantum black hole regimes refer to the very
small quantum trans-Planckian interior of the black
hole, as well as to the last quantum gravity phases of
black hole evaporation.

(iii) For any black hole, the classical or semiclassical
gravity regimes and the quantum (Planckian and
trans-Planckian) gravity regimes are classical-
quantum duals of each other in the precise sense
of classical-quantum duality.

(iv) The classical or semiclassical black hole ðBHÞG
(that is, large size and mass, external black hole
regions) is clearly characterized by the set of
physical gravitational magnitudes or observables
(size, mass, classical temperature or surface gravity,
entropy) ≡ðLG;M; TG; SGÞ:

ðBHÞG ¼ ðLG;MG; TG; SGÞ: ð3:1Þ
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(v) The highly dense, very quantum, black hole regime
ðBHÞQ is characterized by the corresponding set of
quantum dual physical quantities ðLQ;MQ; TQ; SQÞ
in the precise meaning of classical-quantum duality:

ðBHÞQ ¼ ðLQ;MQ; TQ; SQÞ; ð3:2Þ

ðBHÞQ ¼ ðbhÞ2P
ðBHÞG

; ðbhÞP ¼ ðlP; mP; tP; sPÞ;

ð3:3Þ

where ðbhÞP stands for the corresponding quantities
at the fundamental constant Planck scale, the cross-
ing scale between the two main (classical and
quantum) gravity domains.

The black hole horizon separates the interior region,
which is quantum and trans-Planckian, from the external
space-time regions, which are classical and semiclassical
with energies lower than the Planck energy. The classical
ðBHÞG and quantum ðBHÞQ black hole regimes (classical or
semiclassical phases of black holes and their quantum
Planckian and trans-Planckian interiors, or their very late
phases of evaporation) satisfy Eqs. (3.1)–(3.3).
Total or complete black holes ðBHÞQG are composed of

their classical or semiclassical external regions and their
quantum interior:

ðBHÞQG ¼ BH½ðbhÞP; ðBHÞQ; ðBHÞG�: ð3:4Þ

The subscript G stands for the classical gravitation magni-
tudes or domain, Q stands for the quantum ones, and P for
their fundamental Planck scale constant values. Details are
given in Sec. IV for the black hole regions and different
regimes, and for the QG black hole properties and physical
magnitudes: surface gravity, black hole instantons, temper-
ature, partition function, density of states, entropy, and
decay rates.
The quantum black hole ðBHÞQ is generated from the

classical black hole ðBHÞG through Eqs. (3.1)–(3.4):
classical-quantum black hole duality. The complete
(classical plus quantum) black hole ðBHÞQG endows
classical-quantum black hole CPT symmetry. This includes,
in particular, the classical, quantum, and total black hole
temperatures and entropies and allows us to characterize, in a
precise way, the different classical, semiclassical, Planckian,
and trans-Planckian black hole domains.
The black hole size is the gravitational length

LG in the classical regime and the quantum length
LQ ¼ l2P=LG in the quantum dual regime (which inclu-
des the full quantum Planckian and trans-Planckian
regimes). The complete size LQG endows the symmetry
Q ←→ G∶ ðLG=lPÞ ←→ ðlP=LGÞ. The complete (QG)
(classical and quantum) variables—in particular, the length
LQGðlP; LGÞ—cover the complete black hole manifold,

including the quantum trans-Planckian interior and the
semiclassical and classical black hole exteriors. (i) For
mP < M ≤ ∞∶LQG ≃ LG; LG > LQ, which is the classi-
cal or semiclassical gravity domain. (ii) For 0 ≤ M <
mP∶ LQG ≃ LQ; LQ > LG, which is the standard elemen-
tary particle physics domain. (iii) For M ¼ mP∶LQG ¼
1 ¼ LQ ¼ LG ¼ lP, which is the Planck scale (the cross-
ing scale).
Similarly, the horizon acceleration (surface gravity)

KG ¼ c2=LG of the black hole in the classical gravity
regime becomes the quantum acceleration KQ ¼ k2P=KG in
the quantum dual gravity regime. The classical temperature
TG of the classical gravitational length or mass (in units
of κB) becomes the quantum temperature TQ (quantum size
or Compton length) in the quantum regime. Consistently,
the Gibbons-Hawking temperature is precisely the quantum
temperature TQ.
Similarly, the classical or semiclassical gravitational

area or entropy SG (Bekenstein-Hawking entropy) has a
quantum dual SQ ¼ s2P=SG in the quantum gravity
(Planckian and trans-Planckian) regime, sP ¼ πκB being
the Planck entropy:

SG ¼ sP
4

�
AG

aP

�
¼ sP

�
M
mP

�
2

; ð3:5Þ

SQ ¼ sP
4

�
aP
AG

�
¼ sP

�
mP

M

�
2

: ð3:6Þ

The total QG (classical and quantum) gravitational entropy
SQG derives from the general expression

SQG ¼ kB
AQG

4l2P

where AQG ¼ 4πL2
QG ¼ 4πðLQ þ LGÞ2 is the total area,

which is expressed asAQG ¼ AQ þ AG þ 2aP. Recall that
LQ ¼ l2P=LG and aP ¼ 4πl2P. As a consequence,

SQG ¼ 2sP þ SG þ SQ ¼ 2sP

�
1þ 1

2

�
SG
sP

þ sP
SG

��
: ð3:7Þ

The total ðQGÞ gravitational entropy is the sum of the
three components: classical (subscript G), quantum (sub-
scriptQ), and Planck (subscript P) values, corresponding to
the three gravity regimes. The term sP arises from the
duality between the quantum and classical black hole sizes
LQ and LG across the Planck scale. It reflects the complete
QG covering: the Planck scale being the bordering or
crossing scale common to the two (classical and quantum)
Q and G domains, and to the classical (exterior) and
quantum (interior) black hole regions.
The gravitational entropy SG of large (classical) astro-

physical black holes is a huge number, consistent with the

QUANTUM TRANS-PLANCKIAN PHYSICS INSIDE BLACK … PHYS. REV. D 107, 126018 (2023)

126018-5



fact that classical black holes contain a very large amount of
information. Moreover, to reach such a large entropy, the
black hole in its late collapse state should have been in a
highly energetic vacuum state SG.
The gravitational (Gibbons-Hawking [26] and

Bekenstein [27]) entropy covers classical or semiclassical
gravity but not the fully quantum gravity domain. In
this domain the relevant appropriate size of the quantum
system is the Compton or quantum length LQ and not the
gravitational size. The gravitational entropies in the two
different domains are classical-quantum gravity duals of
each other. The total gravitational entropy is the sum of the
entropies in the three main gravity regimes: classical
or semiclassical gravity, Planckian, and trans-Planckian.
The complete (QG) variables entail precisely those three
regimes and also provide the additive constant, that is, the
pure Planckian scale term (a constant). The total or
complete (QG) entropy here refers to the inclusion of
the quantum gravity entropy, which is trans-Planckian and
corresponds to the central quantum interior region of the
black hole. The imaginary time quantum gravitational
instanton treatment and the Euclidean partition function
we present here (in Secs. Vand VI) provide further support
of this entropy.
The complete (classical plus quantum) physical quan-

tities are invariant under the classical-quantum duality:
G ↔ Q. As the basis of quantum physics, the wave-
particle-gravity duality is reflected in all black hole regions
and its associated physical quantities, temperature and
entropy. The classical-quantum or wave-particle-gravity
duality between the different gravity regimes can be viewed
as a mapping between the asymptotic (in and out) states,
characterized by the sets BHQ and BHG, and thus as a
scattering-matrix description. Recall that wave-particle-
gravity duality also manifests in the different cosmological
eras and associated gravity quantities, temperature and
entropy [1–3]: Cosmological evolution goes from a very
early or precursor quantum trans-Planckian phase to a
semiclassical gravity accelerated era (de Sitter inflation)
and then to the known classical gravity eras until the
present classical de Sitter phase.

IV. QUANTUM SPACE-TIME STRUCTURE
OF BLACK HOLES

The complete QG variables show that there is an
underlying classical-quantum duality structure in the
complete analytic extension or global structure of the
Kruskal space-time: The external or visible region and
its mirror copy are the classical or semiclassical gravita-
tional domains while the internal region is a quantum
gravitational trans-Planckian scale domain. A duality
symmetry between the two external regions and between
the internal and external parts appears as a classical-
quantum duality through the Planck scale. External and
internal regions can be seen with respect to the Planck scale

hyperbolae X2 − T2 ¼ �1, which delimitate the different
black hole regions. In fact, the terms “interior” and
“exterior” lose their meaning in this region because the
classical X ¼ �T disappear at the quantum level and
become X2 − T2 ¼ �1, (in Planck units).
Quantum space-time can be described as a quantum

oscillator with its quantum algebra. From the classical-
quantum duality and quantum oscillator ðX;PÞ variables in
global phase space, the space-time coordinates are pro-
moted to quantum noncommuting operators. In classical
phase space, the mapping between the Schwarzschild
ðx�; p�Þ and Kruskal ðX;PÞ coordinates is given by

X ¼ exp ðκx�Þ cosðκp�Þ; P ¼ exp ðκx�Þ sinðκp�Þ;
ð4:1Þ

ðX2 þ P2Þ ¼ exp ð2κx�Þ ¼ 2Hosc;

ðX2 − P2Þ ¼ exp ð2κx�Þ cosð2κp�Þ: ð4:2Þ

As is known, the classical Kruskal coordinates ðX; TÞ
in terms of the Schwarzschild representation ðx�; t�Þ are
given by

X ¼ exp ðκx�Þ coshðκt�Þ; T ¼ exp ðκx�Þ sinhðκt�Þ;
ð4:3Þ

ðX2 − T2Þ ¼ exp ð2κx�Þ ¼ 2H;

ðX2 þ T2Þ ¼ exp ð2κx�Þ cosð2κt�Þ; ð4:4Þ

with the Schwarzschild star coordinate x�:

expðκx�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κr − 1

p
expðκrÞ; 2κr > 1; ð4:5Þ

with t� being the usual Schwarzschild time and κ the
dimensionless (in Planck units) gravity acceleration or
surface gravity. A similar case, but with X and T exchanged
and x� defined by expðκx�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2κr
p

expðκrÞ, holds
for 2κr < 1.
For ðX; TÞ quantum coordinates, i.e., noncommuting

operators, and similarly for ðx�; t�Þ, the transformation is
given by

X ¼ exp ðκx�Þ coshðκt�Þ; T ¼ exp ðκx�Þ sinhðκt�Þ;
ð4:6Þ

ðX2 − T2Þ ¼ exp ð2κx�Þ coshðκ½x�; t��Þ; ð4:7Þ

ðX2 þ T2Þ ¼ exp ð2κx�Þ coshð2κt�Þ; ð4:8Þ

½X; T� ¼ exp ð2κx�Þ sinhðκ½x�; t��Þ; ð4:9Þ
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where we used the usual exponential operator prod-
uct expðAÞ expðBÞ ¼ expðBÞ expðAÞ expð½A;B�Þ.
New terms appear due to the quantum commutators. At

the classical level,

½X; T� ¼ 0; ½x�; t�� ¼ 0 ðclassicallyÞ;

and the known classical Schwarzschild-Kruskal equations
are recovered.
Equations(4.6)–(4.9)describethequantumSchwarzschild-

Kruskal space-time structure and its properties. The equation
for the quantum hyperbolic “trajectories” is

ðX2 − T2Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ð4κx�Þ þ ½X; T�2

q

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2κrÞ2 exp ð4κrÞ þ ½X; T�2

q
: ð4:10Þ

The characteristic lines and the classically light-cone generat-
ing horizons X ¼ �T (at 2κr ¼ 1 or x� ¼ −∞) become

X ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ ½X; T�2

q
at 2κr ¼ 1∶ X ≠ �T; no horizons:

ð4:11Þ

Here, X ≠ �T at 2κr ¼ 1, and the null horizons are erased.
Similarly, in the interior regions, the classical hyperbolae
ðT2 − X2Þclassical ¼ �1, which describe the known past and
future classical singularity r ¼ 0 ðx� ¼ 0Þ, become

ðT2 − X2Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½X; T�2

q
¼ �

ffiffiffi
2

p

at r ¼ 0∶ ðT2 − X2Þ ≠ �1 no singularity

ðT2 − X2Þclassical ¼ �1 at r ¼ 0 classically ð4:12Þ

at the quantum level. Moreover, the quantum Kruskal light-
cone variables in hyperbolic space,

U ¼ 1ffiffiffi
2

p ðX − TÞ; V ¼ 1ffiffiffi
2

p ðX þ TÞ; ð4:13Þ

are, upon the identification P ¼ iT, the ða; aþÞ operators in
phase space: The creation and annihilation operators ða; aþÞ
are the light-cone type quantum coordinates of the phase
space ðX;PÞ:

a ¼ 1ffiffiffi
2

p ðX þ iPÞ; aþ ¼ 1ffiffiffi
2

p ðX − iPÞ: ð4:14Þ

ThetemporalvariableT in thespace-timeconfigurationðX; TÞ
is like the (imaginary) momentum in phase space ðX;PÞ. The
identification P ¼ iT yields

X¼ 1ffiffiffi
2

p ðaþþaÞ; T¼ 1ffiffiffi
2

p ðaþ−aÞ; ½a;aþ�¼1; ð4:15Þ

satisfying the algebra

2H ¼ ðX2 − T2Þ ¼ ð2aþaþ 1Þ;
ðX2 þ T2Þ ¼ ða2 þ aþ2Þ;

½2H;X� ¼ T; ½2H; T� ¼ X; ½X; T� ¼ 1; ð4:16Þ

with aþa ¼ N being the number operator.
The quantum space-time coordinates ðX; TÞ can therefore

be considered quantum oscillator coordinates ðX; T ¼ iPÞ,
including quantum space-time fluctuations with length and
mass within the Planck scale domain and quantized levels.
The quadratic form (symmetric order of operators),

2H ¼ UV þ VU ¼ X2 − T2 ¼ ð2VU þ 1Þ;
VU ¼ N ≡ number operator;

yields the quantum hyperbolic structure and the discrete
hyperbolic space-time levels:

X2
n − T2

n ¼ ð2nþ 1Þ; n ¼ 0; 1;…: ð4:17Þ

The amplitudes ðXn; TnÞ are

Xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
; Tn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
: ð4:18Þ

With the identification T ¼ −iP, the quantum coordinates
ðU;VÞ for hyperbolic space-time are precisely the (a; aþ)
operators, and as a consequence, VU is the number ope-
rator. The expectation value (2nþ 1) has a minimal non-
zero value for n ¼ 0, which is the zero-point energy or
Planck scale vacuum.

(i) The future and past regions of the quantum
Planck hyperbolae, ðT2 − X2Þn¼0 ¼ �1, all contain
totally allowed levels and behaviors. There is no
singularity boundary in the quantum space-time,
not at r ¼ 0 ¼ x� or any other place. The quantum
Schwarzschild-Kruskal space-time is totally regular.

(ii) There are no singularity boundaries at the quantum
level, not at ðT2 − X2Þð2κr ¼ 1Þ ¼ �1 nor at
ðT2 − X2Þðr ¼ 0Þ ¼ � ffiffiffi

2
p

. The quantum space-time
extends without boundary beyond the Planck hyper-
bolae ðT2 − X2Þðn ¼ 0Þ ¼ �1 towards all levels:
from the more quantum (low n) levels to the classical
(large n) ones. The black hole interior is quantum
and trans-Planckian. The internal region to the four
quantum Planck hyperbolae ðT2−X2Þðn¼0Þ¼�1
is totally quantum and within the Planck scale: This
is the quantum vacuum or zero-point energy region
of the quantum interior of the black hole.

(iii) The null horizons disappear at the quantum
level. Because of the quantum ½X; T� commutator,
quantum ðX; TÞ dispersions, and fluctuations, the
difference between the four classical Kruskal
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regions (I–IV) disappears in the trans-Planckian
domain, and they become one single central region.
This provides support for the quantum identification
at the Planck scale of the Kruskal regions, which
translates into the CPT symmetry at the quantum
level; see Refs. [1–3,28].

(iv) In terms of the local Schwarzschild variables
ðx�n�; t�n�Þ or ðxn�; tn�Þ, with x ¼ exp ðκx�Þ and
t ¼ exp ðκt�Þ, the levels are

xn� ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2κrn� − 1
p i

exp ðκrn�Þ

¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p �

ffiffiffiffiffiffi
2n

p i
; ð4:19Þ

tn� ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ þ 1=2

p i
;

xn¼0ðþÞ ¼ xn¼0ð−Þ ¼ 1∶ Planck scale; ð4:20Þ

which complete all the levels. The low n, inter-
mediate, and large n levels describe, respectively, the
quantum, semiclassical, and classical behaviors, and
their (�) branches consistently reflect the classical-
quantum duality properties, as shown explicitly for
similar branches of the mass spectrum in this
section below.

The classical singularity r ¼ 0 ¼ x� is quantum
mechanically smeared or erased, which is what is expected
in a quantum space-time description. The diagram of the
global quantum Schwarzschild-Kruskal space-time, which
we name the quantum Penrose diagram, is shown in Fig. 1.
In Eqs. (4.18) and (4.19), Xn and xn are given in Planck

units. In terms of the mass global variables X ¼ M=mP,
or the local ones x ¼ m=mP, they translate into the mass
levels

Mn ¼ mP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

p
; all n ¼ 0; 1; 2;…; ð4:21Þ

Mnn≫1 ¼ mP

� ffiffiffiffiffiffi
2n

p
þ 1

2
ffiffiffiffiffiffi
2n

p þOð1=n3=2Þ
�
; ð4:22Þ

mn� ¼
�
Mn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n −m2
P

q �
: ð4:23Þ

The condition M2
n ≥ m2

P simply corresponds to the whole
spectrum n ≥ 0:

mn� ¼ mP

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p �
ffiffiffiffiffiffi
2n

p i
: ð4:24Þ

(i) The quantum mass levels here hold for all masses
and not only for black holes. Namely, the quantum
mass levels are associated with the quantum space-
time structure. Space-time can be parametrized by
masses (“mass coordinates”), related only to length

and time, as the QG variables, on the same footing as
space and time variables.

(ii) The branch (þ) covers all macroscopic and astro-
physical black holes as well as semiclassical black
hole quantization

ffiffiffi
n

p
, up to masses nearby the

Planck mass; the branch (−) covers quantum
masses 1=

ffiffiffi
n

p
in the Planckian and trans-Planckian

domains.
(iii) The black hole mP

ffiffiffi
n

p
mass quantization is like the

string mass quantization Mn ¼ ms
ffiffiffi
n

p
, n ¼ 0; 1;…,

with the Planck mass mP instead of the fundamental
string mass ms, i.e., with G=c2 instead of the string
constant α0.

V. IMAGINARY TIME: THE NEW
TRANS-PLANCKIAN BLACK HOLE INSTANTON

In classical (nonquantum) Schwarzschild-Kruskal
space-time, taking imaginary time T ¼ iT , t ¼ iτ, trans-
forms the hyperbolic space-time structure into a circular
structure: The characteristic lines X2 þ T2 ¼ 0 collapse to
X ¼ �T ¼ 0. Therefore, the classical horizon X ¼
�Tð2κr ¼ 1Þ collapses to the origin, and in the classical
(nonquantum) black hole instanton, the black hole interior
is cut, with no horizon or curvature r ¼ 0 singularity.
Therefore, the classical black hole instanton is regular but
not complete: The interior black hole region is not covered
by the imaginary time, classical (nonquantum) black hole
manifold.
In the quantum Schwarzschild imaginary time manifold,

the quantum trans-Planckian region corresponds to the
black-hole interior (Fig. 2). Moreover, without any singu-
larity (not at r ¼ 0 or any other place), the quantum
manifold consistently and regularly covers both the exter-
nal and internal black hole regions. This is the case for both
the hyperbolic (real time) and Euclidean (imaginary time)
manifolds because of the quantum nonzero commutators
½X; T� and ½X; T �, respectively.
The complete quantum black hole instanton includes the

usual classical or semiclassical black hole instanton for a
radius larger than the Planck length, plus a new, central,
highly dense quantum core of Planck length radius and
high constant and finite curvature at r ¼ 0, corresponding
to the black-hole interior, which is absent in the non-
complete (classical) black hole instanton.
In the quantum instanton Schwarzschild-Kruskal mani-

fold, Eqs. (4.6) hold but for T ¼ iT , t� ¼ iτ�, and the same
star coordinate x�:

exp ðκx�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κr − 1

p
exp ðκrÞ; 2κr > 1 ð5:1Þ

with κ ¼ ðc2=2LGÞ ¼ κPðmP=4MÞ the gravity acceleration
or surface gravity. Another similar patch holds for 2κr < 1
but with X and T exchanged (similarly for x� and τ�)
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and with x� defined by exp ðκx�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2κr

p
exp ðκrÞ.

Therefore,

X ¼ exp ðκx�Þ cosðκτ�Þ; T ¼ exp ðκx�Þ sin ðκτ�Þ;
ð5:2Þ

ðX2 þ T 2Þ ¼ exp ð2κx�Þ cosðκ½x�; τ��Þ; ð5:3Þ

ðX2 − T 2Þ ¼ expð2κx�Þ cosð2κτ�Þ; ð5:4Þ

½X; T � ¼ expð2κx�Þ sinðκ½x�; τ��Þ; ð5:5Þ

where we used the usual exponential operator prod-
uct expðAÞ expðBÞ ¼ expðBÞ expðAÞ expð½A;B�Þ.
The Euclidean (imaginary time) quantum instanton

clearly shows the new trans-Planckian region because,
for 2κr ¼ 1, ðX2 þ T 2Þ is not zero and has a Planckian
radius. The equation for the quantum instanton “trajecto-
ries” is

ðX2 þ T 2Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ð4κx�Þ þ ½X; T �2

q

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2κrÞ2 exp ð4κrÞ þ ½X; T �

q
: ð5:6Þ

What was classically the zero radius X¼�T ¼0 at 2κr¼1
or x� ¼ −∞ is now

ðX2þT 2Þ¼ ½X;T �2 at 2κr¼1∶X≠�T ¼0; no horizons:

ð5:7Þ

We see that

X ≠ �T ≠ 0 at 2κr ¼ 1:

The classical null horizons corresponding to the origin
X ¼ �T ¼ 0 in the Euclidean signature space-time
(instanton) are quantum mechanically replaced by the
Planck circle

ðX2 þ T 2Þ ¼ ½X; T � ¼ 1:

Figure 2 clearly displays this picture. In other words,
quantum theory consistently extends the instanton mani-
fold. Classically, the instanton is cut at the horizon
r ¼ 1=ð2κÞ, while at the quantum level, it extends beyond
it; it contains the quantum region of Planck length radius lP,
which is necessarily trans-Planckian and is absent at the
classical level.
Thus, the quantum and regular imaginary time manifolds

(quantum gravitational instantons) are the usual classical or
semiclassical instantons for radius larger than the Planck
length plus a central, highly dense quantum core of Planck
length radius and of high finite curvature, which is absent
classically.

The imaginary time τ in the classical instanton is periodic
with period β ¼ 2LG ¼ 1=κG:

0 ≤ τ ≤ β ¼ 2LG ¼ 1=κG ðclassicallyÞ; ð5:8Þ
with 1=β being the intrinsic manifold semiclassical temper-
ature: the Hawking temperature

TQ ¼ tP

�
lP
2LG

�
; ð5:9Þ

where tP is the Planck temperature. In the complete or total
quantum instanton, the imaginary time is periodic as in
Eq. (5.8) but with the complete LQG, which includes the
quantum Planckian and trans-Planckian magnitudes:

0 ≤ τ ≤ β ¼ 2LQG ¼ 2ðLG þ LQÞ ¼ 1=κQG; ð5:10Þ

κQG¼ κPðlP=LQGÞ; κQ¼ κ2P=κG; κP¼c2=2lP; ð5:11Þ

κQG ¼ κG
½1þ ðκG=κPÞ2�

¼ κQ
½1þ ðκQ=κPÞ2�

: ð5:12Þ

In the classical or semiclassical gravity domain, κG ≪ κP,
which yields the usual classical surface gravity κG of massive
bodies with masses M > mP. For κQ ≪ κP, in the quantum
domain of masses M < mP (elementary particle domain),
we obtain the quantum κQ ¼ κPð4M=mPÞ. The correspond-
ing complete temperature is

TQG ¼ tPκQG=ð2πκPÞ; TQ ¼ t2P=TG; tP ¼mPc2=ð8πκBÞ;
ð5:13Þ

TQG ¼ TG

½1þ ðTG=tPÞ2�
¼ TQ

½1þ ðTQ=tPÞ2�
: ð5:14Þ

For large masses, in the astrophysical domain, TQ ≪ tP,
we obtain the quantum temperature TQ, which is the
Hawking temperature, as expected. For small masses
0 < M < mP, TG ≪ tP, we obtain the usual temperature
TG proportional to the mass, as expected in the elementary
particle domain. This is also manifest in the partition
function (Sec. VI below) and the corresponding complete
entropy. The temperature is a measure of the length (in
units of κB), TG ¼ tPðLG=lPÞ, TQ ¼ tPðLQ=lPÞ, while the
gravitational entropy is a measure of the area. In this
respect, it is interesting to notice that

SQFT ¼ sPðL=lPÞ3 ¼> n; ð5:15Þ

SG ¼ sPðL=lPÞ2 ¼ M2 ¼> ð ffiffiffi
n

p Þ2; ð5:16Þ

Sstring ¼ sPðL=lPÞ ¼ M ¼>
ffiffiffi
n

p
; ð5:17Þ

SQ ¼ sPðlP=LÞ2 ¼ M−2 ¼> 1=ð ffiffiffi
n

p Þ2: ð5:18Þ
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In pure QFTwithout gravity, the number of modes of the
fields is proportional to the volume of the system (i.e., a
box), and a short-distance external cutoff is necessary,
naturally placed at the Planck length lP, because of QFT
ultraviolet divergences. The string entropy Sstring is propor-
tional to the length. The black hole gravitational entropy is
proportional to the area (SG or SQ) and thus interpolates
between the nongravitational entropy SQFT and the string
entropy Sstring. The known Bekenstein-Hawking entropy SG
exhibits classical or semiclassical nature, i.e., L ≫ lP
(equivalently, MG ≫ mP; κG ≪ κP; TQ ≪ tP):

SG ¼ sPðTG=TQÞ ¼ ðMc2=TQÞ:

VI. PARTITION FUNCTION:
TRANS-PLANCKIAN ENTROPY

As is known, Dþ 1 dimensional quantum field theory
with imaginary periodic time 0 ≤ τ ≤ β corresponds to
classical statistical mechanics or field theory with temper-
ature 1=β, which is also used in the Euclidean path integral
of gravity (Ref. [26]),

Z ¼ Tr exp ð−βHÞ; ð6:1Þ
with H being the Euclidean Hamiltonian (the
“evolution” generator in imaginary time, with the trace
implying periodic evolution 0 ≤ τ ≤ β).
The complete (including both classical and quantum)

black hole radius and temperature are LQG and TQG and are
discussed in Sec. V. The complete (whole range) discrete
levels are discussed in Secs. IV and VI. We stress the
following about the partitions or the density of levels:

(i) The different types of discrete partitions depend on the
physical nature of quantumelements considered (point
particles, composite or extended quantum objects).

(ii) The number of partitions depends on whether one
considers ordered or unordered partitions, that is,
counting or not counting the permutations.

(iii) The degeneracy, the number of states corresponding
to the same quantum number (energy, mass, spin, or
other), depends on items (i) and (ii) above.

(iv) The ensemble of all partitions considered as a Gibbs
ensemble yields a thermodynamical partition.

Let us recall that the number PoðnÞ of ordered partitions
of an integer n into integers grows exponentially with n:

PoðnÞ ¼ 2n−1 ¼ 1

2
exp ðn ln 2Þ: ð6:2Þ

The number PnoðnÞ of nonordered partitions of n [29]
(i.e., without counting permutations), asymptotically for
large n, grows exponentially with

ffiffiffi
n

p
:

PnoðnÞ ¼
1

4
ffiffiffi
3

p
n
exp ðπ

ffiffiffiffiffiffiffiffiffiffi
2n=3

p
Þ
�
1þO

�
log n

n1=4

��
: ð6:3Þ

(i) Nonordered partitions grow more slowly than the
ordered ones. Naturally, the density of states and its
degeneracy are smaller when the permutations
are not accounted for than when including the
permutations.

(ii) The nonordered case corresponds to the density
PnoðnÞ of quantum composite elements (with inter-
nal structure, extended objects, strings, and hadronic
matter). The ordered case corresponds to point
particles or quantum point oscillators. Moreover,ffiffiffi
n

p
characterizes the mass spectra of composite or

extended oscillating objects, while n is typical of the
spectra of the punctual objects.

(iii) The existence of a limiting temperature in the
corresponding ensembles is determined by a pure
number combinatorial structure: that is, by whether
permutations are included or not, by whether par-
titions are ordered or unordered, and by whether the
elements are point particles or extended objects with
internal composite structure as hadrons, strings, or
other higher dimensional objects.

The total gravitational entropy SQG of the total or
complete (classical and quantum) black hole Euclidean
manifold is the sum of the classical, quantum, and Planck
scale entropies:

PQG ¼ eSQG; ð6:4Þ

SQG ¼ 2

�
sP þ 1

2
ðSG þ SQÞ

�
; ð6:5Þ

SG¼
κB
4

AG

l2P
; SQ¼ κB

4

AQ

l2P
; sP¼

κB
4

aP
l2P

¼πκB; ð6:6Þ

The concept of gravitational entropy is the same for any
of the gravity regimes: Area=4l2P in units of kB. For a
classical object of size LG, this is the classical area
AG ¼ 4πL2

G. For a quantum object of quantum size LQ,
this is the quantum area AQ ¼ 4πL2

Q (recall LQ ¼ l2P=LG).
For the Planck length, this is the Planck area aP, and
sP ¼ πκB is the Planck entropy:

AG¼aP

�
LG

lP

�
2

; AQ¼aP

�
lP
LG

�
2

¼ a2P
AG

; aP¼4πl2P;

ð6:7Þ

SG ¼ sP
ρQ
ρP

¼ sP

�
M
mP

�
2

; ð6:8Þ

SQ ¼ sP
ρG
ρP

¼ sP

�
mP

M

�
2

: ð6:9Þ
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The complete entropy is

SQG ¼¼ 2sP

�
1þ 1

2
ðAG þ AQÞ

�
; ð6:10Þ

and consistently, the complete partition function is

ZQG ¼ eSQG ¼ zPZQZG: ð6:11Þ

In the quantum space-time region, which classically
corresponds to the interior region, the total black hole
entropy SQG is dominated by the Planck entropy sP, the
quantum entropy SQ being extremely low (minimal). The
total entropy SQG is very high in the external (semiclassical/
classical) regions and dominated by the Bekenstein-
Hawking entropy SG, which is a classical or semiclassical
gravity entropy.
The discrete levels n ¼ 0; 1; 2;…. cover all gravity

regimes: from the quantum gravity (trans-Planckian and
Planckian) central black hole region to the semiclassical
and classical exterior black hole regions.
In the non-trans-Planckian domain, black hole space-

time levels (in Planck units) for the distances LGn, vacuum
energy ΛGn, and gravitational (Gibbons-Hawking) entropy
SGn are

LGn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

p
; ΛGn ¼ 1=ð2nþ 1Þ;

SGn ¼ ð2nþ 1Þ; n ¼ 0; 1; 2;…:: ð6:12Þ

In the trans-Planckian phase 0 < r ≤ lP, the quantum trans-
Planckian levels (Q denoting quantum) are

LQn ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

p
; ΛQn ¼ ð2nþ 1Þ;

SQn ¼ 1=ð2nþ 1Þ; n ¼ 0; 1; 2;…:: ð6:13Þ

The respective associated mass levels are

Mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

p
; MQn ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

p
: ð6:14Þ

The density of states in the classical and quantum gravity
phases is thus

dGn ¼ exp ð2nþ 1Þ ¼ expðMnÞ2;
dQn ¼ exp ½1=ð2nþ 1Þ� ¼ expðMQnÞ2; ð6:15Þ

dQGn ¼ exp ½ð2nþ 1Þ þ 1=ð2nþ 1Þ� ¼ exp ½M2
n þM2

Qn�:
ð6:16Þ

The complete ðQGÞ density of states has both the
classical or semiclassical gravity density with the known
(Bekenstein-Hawking) entropy SGn and the quantum
gravity density with the new trans-Planckian entropy SQn.
As n increases, the distances increase, SGn increases, and,

consistently, the black hole space-time classicalizes. In the
central quantum region, n decreases from the most highly
excited central trans-Planckian levels—increasing SQn,
decreasing n until n ¼ 0, and then increasing in the
semiclassical and classical space-time. As described in
Sec. V, the n levels range over all scales from the lowest
excited levels to the highest excited ones covering the
twofold dual branches, classical and quantum, and passing
through the Planck scale (n ¼ 0), or the crossing scale.

VII. EARLY AND LAST STAGES OF
BLACK HOLE EVAPORATION

Our results here—mainly the quantum mass spectrum
in Sec. IV—have implications for black hole evaporation in
its entire range. Note that ðXn; TnÞ are given in Planck
(length and time) units. In terms of the global quantum
gravity dimensionless length L ¼ LQH=lP and mass M ¼
MQH=mP, Eqs. (4.18) and (4.21) translate into the discrete
mass levels:

Ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

p
¼ Mn;

n ¼ 0; 1; 2;…: ð7:1Þ

The black hole mass and radius have discrete levels
Mn�; Ln�, from the most fundamental one (n ¼ 0), to
the semiclassical (intermediate n), to the classical ones
(large n), which yield a continuum classical space-time,
radius, and mass, as expected. This is clearly seen from the
mass levelsMn� [Eqs. (4.21) and (4.22)] (and similarly for
the radius levels):

Mðn¼0Þþ ¼ Mðn¼0Þ− ¼ MQðn¼0Þ ¼ mP;

n ¼ 0∶Planck mass; ð7:2Þ

Mnþ ¼ mP

�
2

ffiffiffiffiffiffi
2n

p
−

1

2
ffiffiffiffiffiffi
2n

p þOð1=n3=2Þ
�
;

branchðþÞ∶ masses > mP; ð7:3Þ

Mn− ¼ mP

2
ffiffiffiffiffiffi
2n

p þOð1=n3=2Þ; branchð−Þ∶ masses < mP:

ð7:4Þ

(i) Large n levels are semiclassical, tending towards
a classical continuum space-time. Low n are quantum,
the lowest mode (n ¼ 0) being the Planck scale. Two
dual (�) branches are present in the local variables
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p � ffiffiffiffiffiffi
2n

p
) reflecting the duality of the large and

small n behaviors and covering the whole spectrum: from
the largest astrophysical masses and scales in branch (þ) to
the smallest quantum masses and scales in branch (−)
passing by the Planck mass and length.
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The last stage of black hole evaporation and its quantum
decay belong to the quantum mass branch (-), with Planck
scale masses and smaller until zero mass.

(i) Black hole masses belong to both branches (þ) and
(−): Branch (þ) covers all macroscopic and astro-
physical black holes as well as the semiclassical
black hole quantization

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
until masses are

nearby the Planck mass (n ¼ 0).
(ii) The microscopic quantum black holes (with masses

near the Planck mass and smaller until zero mass,
i.e., originating as a consequence of black hole
evaporation, or from Planckian and trans-Planckian
primordial fluctuations) belong to the branch (−).

(iii) The branches (þ) and (−) cover all the black hole
masses. The black hole masses in the process of
black hole evaporation go from branches (þ) to (−).
Black hole evaporation ends in branch (−), decaying
as a pure (nonmixed) quantum state.

(iv) Black hole evaporation is thermal in its semiclassical
gravity phase (Hawking radiation), and it is non-
thermal in its last quantum stage, with a pure
(nonmixed) quantum decay rate.

(v) In its last phase (mass of the order of and smaller
than the Planck mass mP), the state is no longer a
black hole state but a pure (nonmixed) quantum
state, decaying like a quantum heavy particle. The
quantum black holes decay in discrete levels, into
elementary particle states, that is, pure (nonmixed)
quantum states with the decay rate

Γ ¼ g2m
num: factor

ð7:5Þ

where g is the (dimensionless) coupling constant, m
is the typical mass in the theory considered (the mass
of the unstable particle or object), and the numerical
factor often contains the relevant mass ratios in the
decay process.

The unifying formula, Eq. (7.5), for quantum heavy particles
[30] nicely encompasses all the particle width decays in the
standard model (muons, Higgs, etc.), as well as the decay
width of topological and nontopological solitons, cosmic
defects, and fundamental quantum strings [30].
For the last stages of quantum black holes, in terms of the

discrete mass levels, the decay levels are

Γn ¼ G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
;

which is the same
ffiffiffi
n

p
dependence as for the decay Γstring of

quantum strings.
A quantum closed string in an nth excited state decays

into lower excited states (including the dilaton, graviton,
and massless antisymmetric tensor fields) [31] with a total
width, given to the dominant order (one string loop), by
Γstring ¼ GT3

s=n0 ≈ Gl3s , which can also be written as

Γstring ¼ g2ms=n0 ¼ Gms=α0n0; ð7:6Þ

with n0 being a numerical factor, and ls, ms, and Ts being
the string length, mass, and string temperature (α0 playing
the role of G=c2). In other words, the string decay Γs has
the same structure as Eq. (7.5) with g≡ ffiffiffiffi

G
p

=α0.
A semiclassical black hole decays thermally, except in

the last evaporation phases, as a graybody at the Hawking
temperature TQ, the graybody factor being the classical
black hole absorption cross section σG, e.g., the black hole
area AG, the mass loss rate being ðdM=dtÞ ¼ −σL2

GT
4
Q ≈

1=L2
G (with σ the Stefan constant). Therefore, the semi-

classical black hole decay rate is given by

ΓBH ¼
���� d lnMdt

���� ¼ GT3
Q=n

0 ≈G=L3
G: ð7:7Þ

As evaporation proceeds, the black hole temperature
increases until it reaches the string temperature Ts ¼
ℏc=ð2πκBlsÞ, ls ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏα0=c

p
(Refs. [32–35]), undergoing

a phase transition into a quantum string or a quantum
composite state regime TG →; Ts, LG → ls. The black hole
becomes a quantum string or quantum composite state and
decays with a width

ΓBH → GT3
s ≈ G=l3s → Γstring:

The semiclassical black hole decay rate ΓBH tends to the
string decay rate Γs. The similarity between the black hole
decay and the elementary particle decay rate is achieved
for quantum black holes, when the black hole enters its
quantum gravity regime, e.g., the Planck mass at the ending
phase of evaporation.
Here, we compare with the string case because the

computations of black hole radiation in string theory
(Refs. [32–35]) explicitly support this picture. On the other
hand, without using string theory, we find that the mass
quantum discrete spectrum of black holes is similar to the
mass quantum string spectrum. A similar picture holds for a
quantum Planckian decaying state (instead of a quantum
decaying string state): a quantum state at the typical Planck
(or trans-Planckian) temperature TP, with Planck mass and
length ðmP; lPÞ instead of the string ones:

ΓBH → GT3
P ¼ G=l3P → ΓP:

There are no quantum objects at heavy masses such as
the Planck mass which would remain stable. They naturally
decay quantum mechanically in all particles, mainly
gravitons and radiation. Therefore, the remnant states of
the black holes are the last emitted particles—gravitons,
radiation, and other elementary particles—but not stable
Planck mass objects.
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Finally, let us point out that the whole process of black
hole formation and evaporation can be considered in terms
of a scattering matrix between the asymptotic states.
Black hole formation through the gravitational collapse

of a star can be described as an S-matrix evolution (SBH):

jΨBHðtÞi ¼ SBHðtÞjΨstarðt ¼ tinÞi: ð7:8Þ

It can be expressed in terms of the final star state at
t ¼ tfinal, that is, the black hole state. In general,

jΨstarðtÞi ¼ SstarðtÞjΨstarðtinÞi: ð7:9Þ

In addition, black holes evaporate and, after a long
enough time, asymptotically end in a gas of particles and
radiation, which eventually, under gravity and pressure
evolution, forms a star. In other words, the initial gravi-
tating gas state forming a star can be the final gravitating
gas state emitted by the evaporating quantum black hole (or
at least part of it):

jΨstarðtinÞi ¼ SstarðtinÞjΨQBHðtfinalÞi: ð7:10Þ

Therefore,

jΨstarðtÞi ¼ SstarðtÞSstarðtinÞjΨQBHðtfinalÞi: ð7:11Þ

It can also be expressed in terms of the initial state jΨBHðtinÞi
instead of the final state jΨQBHðtfinalÞi. Therefore,

jΨstarðtÞi ¼ SstarðtÞSBHðtÞ−1jΨBHðtÞi: ð7:12Þ

This is another example of unitarity in a complete
quantum evolution; the S-matrix in the whole process is
unitary, SSþ ¼ 1 ¼ SþS. “In nature nothing is lost, all is
transformed” [36].

VIII. BLACK HOLE INTERIOR: THE QUANTUM
TRANS-PLANCKIAN DE SITTER VACUUM

In Sec. IV, we described the quantum space-time
structure of black holes in terms of a quantum oscillator
algebra with discrete hyperbolic levels ðX2−T2Þn¼
ð2nþ1Þ; n¼0;1;2;…. The zero-point energy (n ¼ 0)
is the quantum and trans-Planckian vacuum in the central
region delimitated by the four hyperbolae X2 − T2 ¼ �1 of
the Planck scale (n ¼ 0) level. This is precisely a constant
curvature de Sitter vacuum: The de Sitter vacuum can be
described as a (inverted, i.e., with imaginary frequency)
harmonic oscillator, the oscillator constant being [1,3]

κosc ¼ H2; H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8πGΛÞ=3

p
¼ c=losc: ð8:1Þ

The oscillator length losc is the Hubble radius, the Hubble
constant H ¼ κ being the surface gravity, as the black hole
surface gravity is the inverse of (twice) the black hole

radius. The description of de Sitter space-time as an
(inverted) harmonic oscillator derives from the Einstein
equations on the one hand [1,37,38]; on the other hand,
it stems more generally from the de Sitter geometrical
description—as a hyperboloid embedded in a flat
Minkowski space-time with one more spatial dimension,

−T2 þ X2 þ X2
i þ Z2 ¼ L2

QG; ð8:2Þ

LQG ¼ ðLQ þ LGÞ ¼ lPðH=hP þ hP=HÞ; hP ¼ c=lP:

ð8:3Þ

In the anti–de Sitter case, the description is the same
but with −T2 þ X2 þ X2

i þ Z2 ¼ −L2
QG, and therefore the

anti–de Sitter background is associated with a real fre-
quency (noninverted) harmonic oscillator. In addition,
the propagation of fields and linearized perturbations in
the de Sitter vacuum all satisfy equations which are like the
inverted oscillator equations (see Refs. [39–41]) or normal
oscillators in anti–de Sitter.
In the black hole case, the physical magnitudes such as

the oscillator constant H2 and typical length ðc=loscÞ are
related to the black hole mass M:

H ¼ c=losc ¼ hP

�
mP

M

�
Λ ¼ λP

�
mP

M

�
2

;

hP ¼ c=lP; λP ¼ 3h2P=c
4: ð8:4Þ

Note that LQG ¼ ðLG þ LQÞ in Eq. (8.2) is the complete
length, allowing us to describe the classical, semiclassical,
and quantum (trans-Planckian) gravity domains. The
complete vacuum density ρQG in the quantum gravity
regime, including the classical and quantum ones
(ρG, ρQ) (ρP being the Planck density scale), is

ρQG ¼ ρG
½1þ ρG=ρP�2

¼ ρQ
½1þ ρQ=ρP�2

;

ρQGðρGÞ ¼ ρQGðρQÞ ¼ ρQGðρ2P=ρGÞ; ð8:5Þ

ρG ¼ ρPðH=hPÞ2 ¼ ρPðΛ=λPÞ; ρP ¼ 3h2P=8πG; ð8:6Þ

ρQ ¼ ρPðHQ=hPÞ2 ¼ ρPðΛQ=λPÞ ¼ ρ2P=ρG: ð8:7Þ

The QG magnitudes are complete variables covering
classical and quantum, as well as Planckian and trans-
Planckian domains. The high density ρQ and ΛQ describe
the quantum trans-Planckian vacuum. This is precisely
expressed by Eqs. (3.1) and (3.2) applied to this case:

ρG
ρP

¼
�
lP
LG

�
2

¼
�
mP

M

�
2

¼
�
SQ
sP

�
; ð8:8Þ

ρQ
ρP

¼
�
lP
Λ

�
¼

�
M
mP

�
2

¼
�
SG
sP

�
: ð8:9Þ
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The right-hand side of Eqs. (8.8) and (8.9) show the link to
the gravitational entropy: quantum gravitational SQ and
classical or semiclassical SG entropy.
Here, (Λ, ρG) describe a classical gravitational vacuum:

an empty or dilute gravitational vacuum state of large
classical sizes LG ¼ lP

ffiffiffiffiffiffiffiffiffiffiffi
λP=Λ

p ¼ lPðM=mPÞ, very small
density, and very low Λ values. Consistently, the small
value of the quantum gravitational entropy SQ is equal to
such a small Λ value.
Note that (ΛQ, ρQ) describe a quantum gravitational

vacuum, in the trans-Planckian domain of very small sub-
Planckian sizes LQ ¼ lP

ffiffiffiffiffiffiffiffiffiffiffi
Λ=λP

p ¼ lPðmP=MÞ, very high
density, and very high ΛQ values. Consistently, the high
value of the classical gravitational entropy SG is equal (in
Planck units) to such a high ΛQ value.
The external black hole region is precisely a classical

gravity dilute vacuum, which in the present universe
cannot be larger than the observed very low values of
the classical cosmic vacuum density and cosmic vacuum
energy ðΛ; ρGÞ [10–14,19,20]. The quantum duals of the
present classical universe cosmic vacuum values provide an
upper bound to the high values ðΛQ; ρQÞ in the quantum
central vacuum black hole region, as determined by
Eqs. (8.6)–(8.9).
We quantize the ðX; TÞ dimensions which are relevant

to the quantum space-time structure. The remaining
spatial transverse dimensions X⊥ are considered here as
noncommuting coordinates. This corresponds to quantizing
the two-dimensional surface ðX; TÞ relevant for the light-
cone structure. Notice that although the transverse spatial
dimensions⊥ have zero commutators, they could fluctuate.
It is enough to consider the novel features arising in the
quantum space-time structure and the quantum light cone.

IX. CONCLUDING REMARKS

This approach is a first step to globally and nonpertur-
batively cover the classical, semiclassical, and quantum
gravity domains of black holes. This framework supports
and is consistent with the idea that a quantum theory must
be finite. Here, the global QG variables and quantum
discrete space-time include the highly quantum trans-
Planckian domain and go well beyond other approaches.
The trans-Planckian domain in black holes is found in the

central interior region, and this is so for all black hole
masses, including astrophysical and macroscopical black
holes whose exterior space-times are classical and semi-
classical regions. The highly excited vacuum central region
is a constant curvature de Sitter vacuum without any
singularity. The most central quantum trans-Planckian black
hole regions have the most higher excited levels, withΛQn ¼
Mn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
(in Planck units), and the smallest quantum

gravitational entropies SQn ¼ 1=ð2nþ 1Þ.
De-excitation of the levels starts from the central

quantum trans-Planckian core of the black hole with high

n until n ¼ 0 (the Planck scale) and then enters the
semiclassical/classical gravity exterior space-time region
and becomes more and more de-excited and classical for
increasing n (the classical branch), with decreasing vacuum
energy and a continuum spectrum reaching asymptotically
flat space-time. In the process of classicalization, n
increases from the Planck level (n ¼ 0), and Xn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þp

increases; the huge and finite values of the
central black hole vacuum energy and curvature diminish
as 1=ð2nþ 1Þ and vanish asymptotically for huge n.
This is coherently accomplished by the increasing
distances Ln ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þp
, and the increasing levels

SGn ¼ ð2nþ 1Þ of the Bekenstein-Hawking entropy,
which is a classical or semiclassical gravitational entropy,
and it is always an upper bound to the other entropies.
Recall that quantum backreaction effects, gravitational

scattering near an event horizon structure, produces a
quantum shift too (the shifted horizon) [35,42–47]. This
approach consistently describes the cosmological phases
from the pre-Planckian or trans-Planckian quantum phases
to the Planck scale and then to the post-Planckian universe
(Refs. [1,3]).
The identification of space-time (IST) has been inves-

tigated in the past and recent years at the level of semi-
classical gravity [28,48–52]. In our framework, we have not
used IST, but as already pointed out in [1,2], our results
support CPT and IST in the full quantum theory. In
semiclassical gravity, the symmetric (or antisymmetric)
IST QFT provides a CPT symmetry of the theory. In the
Euclidean (imaginary time) manifold, the differences
between the four Kruskal space-time regions disappear,
and they are automatically identified. In the central trans-
Planckian region of the hyperbolic (real time) quantum
space-time, the four Kruskal regions merge into one single
region and are automatically identified.
Other approaches to the black hole interiors have been

considered recently; see, for example, Refs. [28,53,54]. In
Refs. [55,56], a regular black hole interior is described
classically with a classical space-time geometry sourced
by a maximal negative radial pressure. Interestingly (e.g., in
Ref. [53] and references therein), the black hole interior
model is also regular, with a de Sitter–like geometry. These
are effective models that could help us to disentangle the
properties of the black hole interiors through different
observational gravitational signals.
In our work, the black hole interior appears as a fully

quantum gravity region. Interestingly enough, this feature
also appears in a different approach using scaling argu-
ments in maximal entropic states, e.g., Ref. [57], which
shows the consistency of the results. In this paper, such a
feature is a direct consequence of the classical-quantum
gravity duality, which shows, in addition, that the black
hole interior is necessarily trans-Planckian. From a fully
quantum space-time description (a quantum algebra of
nonconmutative space-time instead of a space-time metric),
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we find that the interior is totally regular and of constant
curvature. Here, the black hole interior is a truly quantum
trans-Planckian vacuum, totally regular and of constant
curvature. In addition, the quantum Penrose diagram is new
and has not been considered before, as well as the quantum
completion of the Gibbons-Hawking instanton, with the
quantum trans-Planckian core at the black hole center.
These results allow us to better describe and understand
the total regularity of the quantum black hole space-time,
e.g., the nonsingularity at the center, the description of such
interior and exterior regions, and their connection to the
constant curvature vacuum describing dark energy. The
complete partition function is new and allows us to
understand the discrete spectrum of the different black
hole regions, accomplished by the complete entropy and
black hole evaporation stages.
It is not our aim here to review the black hole interior

literature. Our work here is in the context of trans-
Planckian physics, which appears necessary to describe
the black hole interiors and determine which classical
gravitational dual provides the black hole exteriors; thus,
a global unifying description of the space-time is provided,
and the same approach allows the description of the very
early cosmological phase before inflation, with its classical
gravitational dual (dark energy).

X. CONCLUSIONS

(i) Overall, a consistent quantum picture of the black
hole space-time appears from the internal central
black hole regions, which are the most quantum and
trans-Planckian, to the semiclassical and classical
external regions until the asymptotically flat far
regions from the black hole, together with their
physical magnitudes and spectrum: size, mass,
partition function, gravitational entropies, and tem-
peratures covering all mass ranges and gravity
domains—quantum (trans-Planckian) gravity and
semiclassical/classical gravity.

(ii) The quantum vacuum energy bends space-time and
produces a constant curvature background in the
central black hole region of Planck length radius lP.
We find the quantum discrete levels: length, mass
vacuum energy, gravitational entropy, and temper-
ature from the black hole central trans-Planckian
vacuum, passing through the Planck scale, to the
external semiclassical and classical exterior vacuum
regions. The gravitational entropy of the Universe
today, Stoday ¼ ð2nþ 1Þ ¼ 10122, is the absolute
upper bound to all entropies, in particular, to all
black hole entropies.

(iii) The quantum space-time structure allows a new
quantum region, which is purely quantum vacuum,
or zero-point Planckian and trans-Planckian energy
and constant curvature. This central quantum

vacuum core is a de Sitter quantum trans-Planckian
vacuum described by the relevant quantum non-
commutative coordinates and the quantum hyper-
bolic structure.

(iv) In the external black hole space-time, the discrete
levels extend from the Planck scale level (n ¼ 0) and
low n to the quasiclassical and classical levels
(intermediate and large n), tending asymptotically
(very large n) to a classical continuum space-time.
Consistently, these levels have larger gravita-
tional (Gibbons-Hawking) entropy SGn ¼ ð2nþ 1Þ;
n ¼ 0; 1; 2;…, and lower vacuum energy Λn ¼
1=ð2nþ 1Þ. In the central quantum trans-Planckian
core of the black hole, the levels extend from the
Planck scale (n ¼ 0) to lengths smaller than the
Planck scale, until the quantum highly excited trans-
Planckian levels (very large n), which are those
of smaller entropy SQn ¼ 1=ð2nþ 1Þ and higher
vacuum density ΛQn ¼ ð2nþ 1Þ.

(v) There is no singularity at the black hole origin. First,
the r ¼ 0 mathematical singularity is not physical: It
is the result of extrapolation of the purely classical
(nonquantum) general relativity theory, out of its
domain of physical validity. The Planck scale is
not merely a useful system of units but a physically
meaningful scale, the onset of quantum gravity; this
scale precludes the extrapolation until zero time or
length. This is precisely what is expected from
quantum trans-Planckian physics in gravity: the
smoothness of the classical gravitational singularities.
Second, the de Sitter vacuum, which is the vacuum
interior region of the black hole, is a smooth constant
curvature vacuum without any curvature singularity.
Third, the small and trans-Planckian vacua have a
high but bounded trans-Planckian constant curvature
and are therefore without singularity.

(vi) There are no singularity boundaries at the quantum
level at ðT2 − X2Þðr ¼ 0Þ ¼ �1 nor at ðT2 − X2Þ ¼
� ffiffiffi

2
p

. The quantum space-time extends without
boundary beyond the Planck hyperbolae ðT2 − X2Þ
ðn ¼ 0Þ ¼ �1 towards all levels. Note that
ðT2 − X2Þ ¼ � ffiffiffi

2
p

are the quantumhyperbolaewhich
replace the classical singularity: ðT2 − X2Þclassical
ðr ¼ 0Þ ¼ �1. Moreover, the quantum hyper-
bolae ðT2 − X2Þ ¼ � ffiffiffi

2
p

lie outside the allowed
quantum hyperbolic levels ðT2 − X2Þn ¼ ð2nþ 1Þ,
n ¼ 0; 1; 2;…, and therefore, they are excluded at the
quantum level: The singularity is removed from the
quantum space-time. There is no singularity boundary
in the quantum space-time, not at r ¼ 0 ¼ x�, not at
any other place. The quantum Schwarzschild-Kruskal
space-time is totally regular.

(vii) The quantum trans-Planckian core is present in
all black holes, macroscopic and astrophysical ones.
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It also appears in the imaginary time manifold
(instanton), and it allows us to complete the classical
gravity Gibbons-Hawking instanton, which is cut at
the horizon: The classical black hole instanton is
thus regular but not complete. The black hole
quantum instanton is regular and complete. The
complete partition function, temperature, and en-
tropy all reflect this feature and clearly include the
highly excited and dense trans-Planckian central
region of radius lP, as well as the discrete levels,
the density of black hole states, and the black hole
decay rate.

(viii) States with the Planck mass mP are not black holes;
they are entirely quantum gravity states, decaying in
the way heavy particles or quantum strings do—in
this case, in gravitons, other elementary particles,
and radiation. Black holes reaching the Planck mass
in the process of their evaporation undergo a phase
transition into a pure (nonmixed) quantum state
which decays in gravitons, particles, and radiation.

(ix) The results of this paper could provide insights
for research directions and new understanding in
quantum theory and gravity and for the search of

quantum gravitational signals, for e-LISA [5], for
instance, after the success of LIGO [6,7], as well
as for other quantum signals in space-time [17–20,
58–64], black holes in particular, for astrophysical
black holes and for quantum black holes, or the last
stages and remnants of black hole evaporation and
black hole explosions. One of the novel results of
this paper is that quantum physics is an inherent
constituent of all black hole interiors, from the
horizon to the center, in particular, in the largest
and astrophysical black holes. Our results also show
that the black hole interior trans-Planckian vacuum
is of the same nature as the very early cosmological
vacuum: quantum, trans-Planckian, and of constant
curvature, whose classical gravity dual is a very
dilute, very low energy gravitational vacuum (dark
energy).
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