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Scalar curvature operator for quantum-reduced loop gravity
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In a previous article we have introduced an operator representing the three-dimensional scalar curvature
in loop quantum gravity. In this article we examine the new curvature operator in the setting of quantum-
reduced loop gravity. We derive the explicit form of the curvature operator as an operator on the Hilbert
space of the quantum-reduced model. As a simple practical example, we study the expectation values of the
operator with respect to basis states of the reduced Hilbert space.
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I. INTRODUCTION

The three-dimensional Ricci scalar is a geometrical
quantity of fundamental importance in the 3 + 1 formu-
lation of general relativity, describing the curvature of the
spatial surfaces. In addition to its role as a basic geometrical
observable, the relevance of the scalar curvature to loop
quantum gravity arises also from the fact that the Ricci
scalar can enter the definition of the dynamics of the theory
through the Lorentzian part of the Hamiltonian constraint
operator. Following the well-known construction due to
Thiemann [1], the quantization of the Lorentzian part of the
Hamiltonian in loop quantum gravity is usually based on its
expression in terms of the extrinsic curvature. However, it is
also possible to replace this relatively complicated form of
the Lorentzian term with a seemingly simpler expression,
which is essentially the three-dimensional Ricci scalar
integrated over the spatial manifold (see, e.g., [2,3]).

In a previous article [4], we have introduced a new
operator representing the scalar curvature in loop quantum
gravity. The operator is constructed within the kinematical
framework of loop quantum gravity, but its definition is
limited to the Hilbert space of states based on a fixed
cubical graph. The classical starting point of the construc-
tion is to express the Ricci scalar as a function of the
densitized triad and its gauge covariant derivatives. In
passing from the classical expression to a well-defined
quantum operator, the restriction to a cubical graph plays an
essential role, allowing one to regularize the covariant
derivatives of the triad in a relatively straightforward
manner, in terms of finite differences of parallel transported
flux variables associated to neighboring nodes of the graph.

While more work is needed to extend the definition of
the new curvature operator to the entire kinematical Hilbert
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space of loop quantum gravity, which contains states based
on all possible graphs, the operator in its present form can
be applied to models which are formulated in the
kinematical setting of full loop quantum gravity using
states defined on cubical graphs. From the point of view
of the potential physical applications of the model (see
Refs. [5-8] for a selection of examples), a particularly
interesting approach of this kind is quantum-reduced loop
gravity [9-12]. Quantum-reduced loop gravity is derived
from full loop quantum gravity by implementing a kind of
quantum gauge-fixing to a gauge in which the densitized
triad is diagonal, and the Hilbert space of the model is built
entirely out of states based on cubical graphs.

In the context of quantum-reduced loop gravity, the new
curvature operator of [4] represents a definite improvement
over the operator introduced earlier in [13], where the basic
ideas of Regge calculus were used to quantize the Ricci
scalar in terms of lengths and angles. In general, operators
for quantum-reduced loop gravity can be derived from the
corresponding operators of full loop quantum gravity by
applying the operators of the full theory on states in the
Hilbert space of the quantum-reduced loop gravity and
discarding certain small terms, which generally lie outside
of the Hilbert space of the quantum-reduced model, in the
resulting expressions [14]. However, if this procedure is
applied to the curvature operator of [13], one finds that the
action of the resulting operator is trivially vanishing on the
reduced Hilbert space. In contrast, the new operator of [4]
does give rise to a nontrivial curvature operator for the
quantum-reduced model.

In this article we study the curvature operator introduced
in [4] in the framework of quantum-reduced loop gravity.
The main part of the work consists of performing the
calculations required to establish the form of the curvature
operator as an operator on the Hilbert space of the quantum-
reduced model. We also examine the action of the resulting
operator on the basis states of the reduced Hilbert space and
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its expectation values with respect to these states in order to
gain a rudimentary picture of the basic properties of the
operator. The material in the article is organized as follows.
In Sec. II be briefly recall the kinematical setting of
quantum-reduced loop gravity, i.e., the reduced Hilbert
space and the elementary operators thereon. In Sec. III we
review the definition of the curvature operator given in our
earlier article [4]. In Sec. IV, the form of the curvature
operator as an operator of quantum-reduced loop gravity is
derived by computing the action of the operator on states in
the reduced Hilbert space. In Sec. V we discuss the
computation of expectation values of the curvature operator
in reduced basis states. Finally, we summarize and discuss
our results in the concluding Sec. VI. In the two appendixes
that are included in the article, we recall a few useful facts
from the quantum theory of angular momentum, and
present some of the more technical segments of our
calculations.

II. QUANTUM-REDUCED LOOP GRAVITY
A. The reduced Hilbert space

In this article we consider the Hilbert space of quantum-
reduced loop gravity in the form originally introduced in
the literature of the model [9,10]. This Hilbert space is a
proper subspace of the kinematical Hilbert space of
loop quantum gravity. The Hilbert space of the quan-
tum-reduced model is spanned by the so-called reduced
spin network states, i.e., states characterized by the follow-
ing assumptions:

(i) The state is based on a cubical graph, denoted by I,
whose edges are aligned along the coordinate
directions defined by a fixed Cartesian background
coordinate system.

(i) Each edge of the graph carries a large spin quantum
number:

Je>1 (2.1)
for every edge e €I,

(iii) To each edge is assigned a representation matrix,
both of whose magnetic indices take the maximal or
the minimal value (i.e., +j, or —j,) with respect to
the direction of the edge (in the sense explained by
Egs. (2.2) and (2.3) below).

Let us introduce the notation |jm), (Where i = x, y or 2)
for the eigenstate of the operators J? and J; with eigen-
values j(j+ 1) and m, and

Dith(h); = ((jm| DV (k)] jm); (22)
for the matrix elements of the Wigner matrices with respect
to the basis |jm);. The reduced spin network states, which
form a basis on the Hilbert space of quantum-reduced loop
gravity, are then defined by wave functions of the form

[1pY) ... (ko). (23)

el

where each o, takes the value +1 or —1, and each i, = x, y
or z, according to whether the edge e is aligned along the
direction of the x-, y- or z-axis.
Note that the relation

DY (n"y =DY) _(n) (2.4)
can be used to slightly simplify the bookkeeping associated
with the basis states (2.3). If one keeps track of the
orientation of the graph on which the state (2.3) is defined,
considering different orientations of the graph to define
different, inequivalent states, one can without loss of
generality set o, = +1 for every edge of the graph.
Alternatively, one can take the graph I, with an arbitrary
but fixed orientation, while allowing the parameter o, to take
the value 41 or —1 independently for each edge of the graph.

B. Operators in the quantum-reduced model

The form of the elementary operators in quantum-
reduced loop gravity can be derived by applying the
corresponding operators of full loop quantum gravity on
the basis states (2.3). The approximation inherent to the
quantum-reduced model then amounts to discarding certain
terms which are of lower order in the spin quantum
numbers, and which can be neglected on grounds
of the assumption (2.1), even if these terms generally do
not belong to the reduced Hilbert space introduced in the
previous section [14]. The structure of the kinematical
operators obtained in this way is remarkably simple
in comparison with the full theory, which is an important
practical advantage of the quantum-reduced model
from the point of view of performing concrete calculations.

The elementary operators typically considered in
quantum-reduced loop gravity are holonomy operators
associated to the edges of the cubical graph, and flux
operators associated to surfaces which are dual to the
background coordinate directions (i.e., surfaces S such
that the coordinate x“ = const on the surface) and are
located at the nodes of the reduced spin network graph. The
action of the holonomy operator DE,;B, (h,); on the basis state
(2.3) can be computed using the standard Clebsch-Gordan
series of SU(2). In order to express the result of the
calculation, it is convenient to introduce the notation

D9 (h) = \/2j + 1D (h)

for the normalized' matrix elements of the SU(2) repre-
sentation matrices. Then, under the assumption that the

(2.5)

'In the sense of the norm defined by the Haar measure on
SU(2).
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spin carried by the operator is small in comparison with the
spin carried by the state, i.e., s < j, one finds

K j +m 1
D ()2 (), = DU () + 0(;) (2.6)

and

(s) WDipy —of L mn
Dmn<he>i@,,<he>,-—0( ﬁ) (m#n)  (@7)

In other words, only the diagonal matrix elements contrib-
ute to the action of the holonomy operator at leading order
in j. The leading term has essentially the structure of a U(1)
multiplication law, with the magnetic index (and not the

spin) of the operator D) (h,); playing the role of the U(1)
quantum number. A detailed presentation of the calcula-
tions leading up to Egs. (2.6) and (2.7) (as well as Egs. (2.9)
and (2.12) below), including a more thorough discussion of
the discarded lower-order terms, can be found in [14].
Consider then the action of the flux operator E;(S%) on a
“reduced holonomy” of the form D%) (h,);- The action can

be nontrivial only in the case a = k, since otherwise the
direction of the edge is parallel to the surface S¢. Assuming
for concreteness that the surface intersects the edge at its
beginning point,” we have

i

5 (DU (k)]

E/(SDY) (h,), = “

(2.8)
with the superscript indicating that the matrix element is
taken in the basis in which J;, is diagonal. In this basis the
generator V) has the element

diagonal matrix

(’L’(j)) ;j = —ij, whereas the relevant matrix elements of
the off-diagonal generators ‘L'Ej ) (i # k) are of order +/J.
Therefore we conclude that

199(h,), (i=k)
oWG)  (i#k)

The general structure of this result is quite similar to the
action of the holonomy operator given by Egs. (2.6) and

E(S92 (h,), = { (2.9)

?A similar calculation holds for the case where the edge e is
intersected by the surface Sk atits endpoint. Note, however, that if
the surface intersects the edge at an interior point, the action of the
flux operator gives

E(8Y)DY(h,), = i(DY) (h,,)t;DY)(h,,))

Ji
which involves all the matrix elements of the generator rgj ) and
which generally does not reduced to any simple form even for
large j.

FIG. 1. A generic node of a reduced spin network state.

(2.7), with the contribution of leading order in j again given
by the diagonal (i.e., i = k) component of the operator.

The simple, approximately diagonal form of the flux
operator given by Eq. (2.9) is naturally inherited by
operators constructed out of the flux operator. An important
example of such an operator is the volume operator [15].
When restricted to a six-valent node of a cubical graph, the
Ashtekar-Lewandowski volume operator can be expressed
in terms of flux operators in the form

V, =V|W,| (2.10)
with
W, = eV E;(S(v))E;(S”(v)) Ex(S*(v)). (2.11)

Here $*(v), $(v) and S%(v) are surfaces which contain the
node v (while not containing any other nodes of the graph),
and which and are dual to the corresponding background
coordinate directions. Using Eq. (2.9) to compute the action
of the operator (2.11) on a reduced spin network state, one
finds a diagonal leading term of order j°, together with
subleading, off-diagonal terms of order j%. The separation
between the leading and subleading terms is preserved by
the operation of taking the square root in Eq. (2.10) [14].
With the spins labeled as in Fig. 1, the result of the
calculation reads

Vyl¥r,) = \/% |+ 7)) Uy 475 GF +iDI¥r,)
+O0H/)).

Clearly this represents a considerable simplification in
comparison with the task of computing the action of the
volume operator on a generic spin network state in full loop
quantum gravity.

(2.12)

C. Notation for reduced operators

The essential approximation underlying quantum-
reduced loop gravity consists of discarding the terms of
lower order in j in Egs. (2.6), (2.7) and (2.9). This step can
be justified by the assumption (2.1), which specifies that
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the states in the reduced Hilbert space carry large spins on
all of their edges. The action of the operators obtained as a
result of such a truncation preserves the reduced Hilbert
space. These operators, which are commonly known as
reduced holonomy and flux operators in the literature of the
quantum-reduced model, are therefore well-defined oper-
ators on the reduced Hilbert space.

As a preparation for the calculations performed in the
main part of this work, we will now establish a condensed
notation for the reduced holonomy and flux operators. The
components of the reduced holonomy operator Wthh
correspond to the diagonal matrix elements D mm (h )i o
the full holonomy operator, will be denoted by d,,(e ,) w1th
the subscript i indicating the direction of the edge e;. The
action of the operator d,,(e;) on the reduced Hilbert space
is defined by

Djj++mmj+m (h )

(2.13)
In the particular case j = 1, which will feature prominently
in our calculations, we denote the three possible values of
the index m by +, 0 and —, thus introducing the notation

dy(e;), do(e;) = 1(e;), d_(e;) (2.14)
for the reduced holonomy operator in the j=1
representation.

The reduced flux operator arises from the diagonal
(i = a) component of the flux operator E;(S%(v)), where
the surface S“(v) is dual to the x* -coordinate direction and
contains the node » of a reduced spin network state. We
denote this operator as

E,($(v))

The action of the reduced flux operator p,(v) on a reduced
spin network state is diagonal, with the eigenvalue

pa(”) = (215)

) +ia)

5 , (2.16)

Pa(v)
|

Ry ==2E,(8(0),0) AupEi(S?,v) +2Q (v)E(S(v),

V)AL Ei(S¢,v)

where each of the two edges incident on the node v and
parallel to the x“-coordinate axis contributes to the eigen-
value according to Eq. (2.9). The reduced volume operator,
which is obtained by keeping only the leading term in
Eq. (2.12), can be expressed in terms of reduced flux
operators as

[w(v)| (2.17)

where

w(v) (2.18)

= px(v)py(v)pz(v)'

III. THE CURVATURE OPERATOR

In this section we summarize the operator introduced in
[4], which represents the scalar curvature of the spatial
manifold, and which is defined on the Hilbert space
of a fixed cubical graph. The operator is obtained as the
result of a construction which begins by expressing the
three-dimensional Ricci scalar as a function of the densi-
tized triad EY and its gauge covariant derivatives,
D,E! = 0,E? + €,;*ALEY.
[ &x,/q®)R is then regularized in terms of a cellular
decomposition of the spatial manifold into cubical cells
adapted to the chosen cubical graph. The elementary operators
entering the definition of the resulting curvature operator are
holonomy operators associated to the edges of the cubical
graph, and flux operators associated to the surfaces S*(v),
S?(v),and $¢(v), which are located at the nodes of the cubical
graph, and which are dual to the coordinate directions defined
by the background coordinate system, along which the edges
of the cubical graph are aligned.

On the Hilbert space of the cubical graph I, the
curvature operator takes the form

(f ewvaom) =55

The operator 'R, is defined as

The integrated Ricci scalar

(3.1)

1
—ALE (84 0)ALE(SP,v) —EAaEl-(S”,v)AbE,»(S“,U)

+;Quh(U)AuEi(ch 0)ALEL(v) —% Q" (1) Qoa(v) ALE;(S¢,0) AL E; (ST, v) +2A% ,(v) B, (v)

2AD (0B (1) 4 A (0B (1) 3 Qun (1) AL (0) A% (1) = QP (1) (0) By (1) +2(Q (1) By (1)
AV A V(v)?2 A,V (v)? »V(v)?
- (0) = A ) B S ) Rt WP BT sy (2] 32)
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where
Q% (v) = E;(S%(v), v)E;(S*(v), v) (3.3)
Qup(v) = E(S(v). v)E},(S(v). v) (3.4)
A% (v) = E;(S4(v), v) AE;(S”, v) (3.5)
By (v) = EL(S(v), v) ALE(S¢, v) (3.6)

The various operators entering the definition of the curva-
ture operator will be introduced below. For a detailed
presentation of the construction we refer the reader to [4].

A. Inverse volume operator

The factors of volume operator in the denominator in
Egs. (3.1) and (3.2) are to be understood in terms of the
regularized inverse volume operator V;!, which can be
defined as the limit

\%
V! =lim——*

3.7
e—0 V% + 62 ’ ( )

where V, is the volume operator restricted to the node v.
Equivalently, the operator V;! can be defined by specifying
its spectral decomposition as

ATNAY i A#0

3.8
0 ifA=0 38

VA = {

where |1) is an eigenstate of the volume operator V,, with
eigenvalue A. The definition extends straightforwardly to
any negative power of the volume: V;" = (V;1)" (n > 0).

The volume operator V,, and the operator R, defined by
Eq. (3.2) do not commute with each other, so a choice of
factor ordering has to be made on the right-hand side of
Eq. (3.1). The expression R,/V, should therefore be
understood as a shorthand notation for any symmetric
factor ordering of the operators R, and V;'.

B. Parallel transported flux operator

The parallel transported flux operator (also known as the
gauge covariant flux operator in the literature) is a
quantization of the classical function

Ei(S, X()) = —2Tr(T,»E(S, XO)) (39)

where E(S, x,) is the matrix-valued variable

E(S, x) —Adzana(a)th,x(g)E?(x(a))r,»h;oqu(a) (3.10)

and hxo.x(tr)
tal representation of SU(2) [i.e., hy, y(») = Dp(1/2) (g x(o))]-

=h Proio) denote holonomies in the fundamen-
o0-

These holonomies connect each point x(o) on the surface S
to a fixed point x, along a family of paths p, (-
Assuming there is a single point of intersection, denoted
v, between an edge e and the surface S, the action of the
parallel transported flux operator on the holonomy 4, can
be expressed as

Ei(S.x0)DY) (h,) = DV (! VEL(S)DY(h,),  (3.11)

where E;(S) denotes the standard flux operator associated
to the surface S, and the holonomy operator in the spin-1
representation has arisen from the action of the holonomies
in the fundamental representation on the generator z;

according to the identity hz;h7! :D,S)(k)rk. A more
detailed presentation of the material summarized above
can be found, e.g., in Sec. III.C of [4].

C. Inverse flux operator

Using the parallel transported flux operator, we define

EL(S(0). 1) = g eance B, (8" (), ) Ee(8°(0), o) W7,
(3.12)

Here W;! denotes a regularized inverse of the operator

W, = ERE (S (0) E(S (0) E(S(0)).  (3.13)
defined in a way analogous to Eq. (3.8), namely
-1 .f 0
with = {4 0 s
0 if u=0

where |u) is an eigenstate of the operator W, with
eigenvalue p.

When v = v, the operator (3.12) represents a quantiza-
tion of the inverse triad

= ——— €€ EVES 3.15
a 2det E abc J =k ( )
at the node v—in the same, not entirely precise sense in
which the flux operator E;(S“(v)) represents a quantization

of the densitized triad E¢(v) itself.

D. Discretized derivatives

The role of the parallel transported flux operator in the
construction of the curvature operator is to provide a tool
for quantizing covariant derivatives of the densitized triad.
The operator A, E;(S”, v), which arises from a discretiza-
tion of the covariant derivative D,E? at the point v, is
defined as

126017-5



JERZY LEWANDOWSKI and ILKKA MAKINEN

PHYS. REV. D 107, 126017 (2023)

ALE(S",v) = Ei(S(v). )

— E(S"(v5).0)

5 (3.16)

Here v, and v, denote the nodes immediately following
and immediately preceding the central node » in the
direction of the x* -coordinate axis. The parallel transport
from v} and v, to v is taken along the edges e and e
connecting v} and v} to the central node v.

The operator

(3.17)

represents a quantization of the “diagonal” second deriva-
tive D2E? at v. Here two of the parallel transported flux
operators are the same as in Eq. (3.16), and the action of the
operator E;(S”(v), v) at the central node is identical to the
regular flux operator E;(S?(v)).

For a # b, the setup and notation’ for defining the
operator A, E;(S?, v) is given in Fig. 2. The discretization
of the mixed second derivative D,D,E¢(v) is performed
using the four nodes diagonally adjacent to the central node
v in the (x% x”) -coordinate plane. Let us denote these
nodes by v9,, where the symbol

0= (0'.07) = (++4), (+=) (~4).(=-)  (3.18)

labels the four quadrants of the (x¢, x?) -coordinate plane.
We then define the symmetrized flux operators

Ei(SC(Ugb)’ U)sym - )—)vﬁl—w

(E(S°(1,).0),.,
E(S(03,). ), )

c %
1)ab—>l}b —v

+ =

(3.19)

where the subscripts on the right-hand side refer to the two
natural routes along which the parallel transport from v9, to
v can be taken. The operator A,,E;(S¢, v) (for a # b) is
now defined as

: | R, = el e
AahEi(Sc’ 7)) -7 (Ei(SL(U;;)’ v)sym - Ei(SL(/U;b )’ v)sym

- Ei(SC<U;Ij_)’ U)sym + Ei(SC(”t;b_)’ v)sym)'
(3.20)

N

The pattern behind the notation for the edges entering the
definition is as follows: The edge which lies in the (x¢,x?) -
coordinate plane, is connected to the node v¢, and oriented along
the x* -coordinate axis is denoted by e?,. Thus, ef, denotes the
edge lying in the (x*, x*)-plane and connected to v%,, but oriented
in the direction of the x*-axis.

—+ ++
€y e
+‘ == mn . 2 > ++.
Uy Uy Uzy
-+ + ++
A eyx A ey A eym
ey et
[ > . 2 > \
v, v vF
A€z A€ Al
__ Y
Cay Cay
[ == @ > L
R — +7
Uzy Uy Uzy

FIG. 2. Labeling of the nodes and edges involved in the
definition of the mixed components of the second derivative
operator A, E;(S¢, v).

By construction, the operator (3.20) is symmetric in a and
b. Accordingly, it represents a quantization of the sym-
metric part D, Dy, E; of the mixed second derivative at v.

Equation (3.2) also features the operator A& (v), which
corresponds to a quantization of the covariant derivative of
the inverse triad EY,. Making use of the operator (3.12), this
operator is defined as

ALEL(v) = £ (S(vf), v): ; £ (S(v7), v)

(3.21)

The notation with three dots indicates a particular factor
ordering of the operators, in which the holonomy operators
arising from the parallel transported flux operators in
Eq. (3.12) are ordered as the leftmost factor of the
expression, as will be specified in detail in Sec. IV C.

Finally, the discretized derivatives of the volume are
defined by the expressions

s V(i) =V(va)

AV (v) 2 ) (3.22)
A V() = V()2 =2V(0) + V(v;)>  (3.23)
and
Aoy = Ve ) = V(e ) = V(wy))* + V(v )

4
(3.24)

All of the operators (3.22)—(3.24) commute with the
volume operator V, = V(v), so there is no ordering
ambiguity between these operators and the inverse volume
operators in Eq. (3.2).

This completes the definition of the curvature operator,
with Egs. (3.1) and (3.2) defining the action of the operator
on any state which is based on the chosen cubical graph I',
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but which may otherwise be a completely general state in
the kinematical Hilbert space of loop quantum gravity. In
what follows, we will consider the action of this operator on
reduced spin network states in the Hilbert space of
quantum-reduced loop gravity, thereby deriving the form
of the curvature operator for the quantum-reduced model.
Even though the calculations are somewhat lengthy, they
provide a practical illustration of the procedure of
extracting an operator for the quantum-reduced model
from the corresponding operator of the full theory, and
for this reason we feel that it is valuable to present these
calculations in some detail.

IV. CURVATURE OPERATOR ON THE REDUCED
HILBERT SPACE

In this section we will derive the form of the curvature
operator when it is interpreted as an operator on the Hilbert
space of quantum-reduced loop gravity. To this end, we will
consider the action of the curvature operator on the reduced
spin network states, which form a basis of the Hilbert space
of the quantum-reduced model. The reduced spin network
states are based on a cubical graph, whose edges are aligned
with the coordinate directions defined by a fixed Cartesian
background coordinate system. We assume that the ori-
entation of each edge of the graph agrees with the positive
direction of the corresponding coordinate axis, and that

operator on states of this form and truncate the resulting
expressions at leading order in the spin quantum numbers.
As discussed in Sec. II, the leading terms will arise from the
diagonal (m = n) components of the holonomy operators
DS,’,},(he)ie, and from the diagonal (i = a) components of
the flux operators E;(S*(v)). The terms of leading order in
j are guaranteed to belong to the reduced Hilbert space,
while the lower-order terms, which are discarded, lie
outside of this space in general. Hence the action of the
operator truncated in this way will preserve the reduced
Hilbert space, and the truncated operator will be a well-
defined operator on this space.

Let us focus on the operator R, defined by Eq. (3.2), and
start by considering the factors of E;(S%(v),v) and
E(S(v),v). The action of the parallel transported flux
operator E;(S%(v),v) coincides with the standard flux
operator E;(S(v)), and when applied on the reduced
Hilbert space, the diagonal components of this operator
form the reduced flux operator p,(v) introduced in
Sec. II C. Moreover, a short calculation shows that the
leading terms in the action of the operator £,(S(v), v) on a
reduced spin network state also arise from the terms with
i = a, and that these terms act as the inverse of the operator
po(v). Thus, making the replacements

each edge carries a “reduced holonomy” of the form E(S%(v),v) = 8%p,(v), (4.2)
Dy (k). (@.1)
o . 1
where the label i, takes the value x, y or z according to the Eu(S(v),v) = &, () (4.3)
direction of the edge e. Pa
To obtain the curvature operator as an operator on the
reduced Hilbert space, we must evaluate the action of the  in Eq. (3.2), we arrive at
|
_ b Pa(v)® b b b a
Ry==2p,(0)A,E,(S",v)+2 ( )AME,,(S )= ALE(SY0)ALE (S, 0) —=ALE(S”,0) A E (5%, v)
Pp(V
5 1 2
+5Pa(0) BE(S,0) A5 (v) - p”E §2A (8" 0)AE(S".v)
1
+2p(V)ALEL(SP,0)——ALE (S€,0) +2p, (V)AL E, (S, v)——ALE.(S¢,v
(DA GEL(S",0) s AE(S70)+ 2Pa (D)Mo (87 0) S Au(5°0)
1
FPuDAE(S ) 8B (50,0 4 5P A B (57.0)p. (1) A (57.0)
]9;,(11) a( )
Pa(v)? oy L Pa(v)? o) AV (0)?
- ALEL(S?, ALE(S°v)+2 ALEL(SP,v) - ALEL (S D) —pa(v)ALE, (S, —
pb(”) b( )pc(v) ( ) 1]) b ) pb(v) b b( ) p (U> b ( U) V(v)2
3 5 (AV(v)*\2 5 AV (0)?
= — ] -2 . 4.4
+3pa0 (SrSE) - 2p o e (4.4)
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Here the discretized derivatives of the volume, defined by
Eqgs. (3.22)—(3.24), act diagonally on reduced spin network
states. Hence the remaining nontrivial part of the calcu-
lation, to which we will now turn our attention, is to derive
the form of the operators A E;(S?,v), A,,E:(S¢, v), and
A,Ei (v) when these are viewed as operators on the reduced
Hilbert space.

A. First derivatives: A E;(S?,v)
We begin by looking at the operator

E(S"(00). v) = Ei("(v3). v)

AE;(SP, v) =
a l( U) 2

(4.5)

Let us first fix a = z and consider the various possible
values of the labels b and i. Using Eq. (3.11), we find that
when acting on a reduced spin network state, each of
the parallel transported fluxes in Eq. (4.5) gives the
contribution”

Ei(S"(v5),v) = Dy (L )ps(vF), (46)

where h, ,+ denotes the holonomy along the edge e, -,
which connects the node v to v and is oriented from the
outer node v toward the central node v. In terms of the

labeling summarized in Fig. 2, we thus have

e, = (e)™! (4.7)
and
e, = e:. (4.8)

The matrix elements of the holonomy in Eq. (4.6) must
now be transformed from the Cartesian basis to the basis
diagonalizing J,, which is the component of the angular
momentum operator corresponding to the direction of the
edge e,,:. In the eigenbasis of J, the leading order
contribution will be given by the diagonal matrix elements
of the holonomy operator, while the action of the off-
diagonal matrix elements is of lower order in j. Applying
the relations

) = = (|4, = [-}.).

v (4.9)

“Note that, due to the presence of the holonomy operator in
Eq. (4.6), the action of the parallel transported flux operator
E;(S’(v¥),v) on a reduced spin network state can be non-
vanishing even if i # b, in contrast to the regular flux operator
E;(S”(v¥)), where only the diagonal (i = b) components con-
tribute at leading order in j.

y) = 7§(|+>z + =)o), (4.10)
z) = 10)., (4.11)

which are established in Appendix A, to the matrix

elements D;?(h) and discarding the off-diagonal matrix

elements in the resulting expressions, we find

DY (h) = % (DY (h,). + D) (h).) + off-diag.  (4.12)
DY (h) = —é (D\V(h,). = DY)_ (h).) + off-diag. (4.13)
DY (h) = off-diag. (4.14)
and
DY (h) = % (D\)(h), = D)_, (h),) + off-diag.  (4.15)
DY (n) = % (DY (h). + D) _, (h).) + off-diag.  (4.16)
DY (h) = off-diag. (4.17)
and finally
DY (h,) = off-diag. (4.18)
DY (h,) = off-diag. (4.19)
DY (h,) = Diy (h,). (4.20)

When these results are used in Eq. (4.6), we must keep in
mind the orientation of the edges (4.7) and (4.8) when
identifying the diagonal matrix elements of the holonomy
with the operators d, (e) introduced in Sec. II C. For the
edge e, ,+ = (el)™! we have

DY (h71,) > d.(eF) (4.21)
Dl (1) = 1(e?) (4.22)
DY) (h7!) = d_(e3) (4.23)
whereas for ¢, ,- = ez,
DY) (h}-) = d_(e7) (4.24)
DY (7)) = 1(e7) (4.25)
DU (h7h-) = di(e?) (4.26)
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Going back to Eq. (4.5), we can now establish the form of
the operator A E;(S”,v) as an operator on the reduced
Hilbert space. The results are as follows. For b = x, we
have

AE(5%.0) = 1 (d,(e}) + d_(eD)p.(u?)
~ D)+ d()pa(07) (427
AE,(8%0) = =5 (d.(e2) —d_(e)pu(v?)
L) —deDpT) (428)
(5, 0) =0 (4.29)
while the components with b = y are given by
AE(S, 1) = 5 (du(ed) ~ d(e))py (07)
(D) —d_(eD)p,(17)  (430)
AE(S,0) = 1 (d.(e}) + d_(e2)p, ()
~ () + ()P (7) (431)
AE(S,v) =0 (4.32)
and when b = z, we have
AE (S5, v) =0 (4.33)
LE,(S7,0) =0 (4.34)
EZ(SZ,U) :pz(vj);pz(vz_) (435)

At this point it is actually not necessary to perform any
further calculations to find the remaining components of
the operator (4.5), provided that we stick with the choice
introduced in Appendix A, where the eigenbases of J,, J,,
and J, are related to each other by rotations corresponding
to cyclic permutations of the coordinate axes. Under this
choice of bases, the components of A E;(S?, v) with a = x
or a = y can be deduced from Eqgs. (4.27)—(4.35) simply by
making cyclic permutations of the labels x, y and z.

B. Second derivatives: A, E;(S¢,v)

Let us then move on to consider the operator

AabEi(SC, U). (436)

The components with @ = b are defined by

P(v5).v) = 2E;(S*(v). v)

A Ei(SP,v) = Ei(S
+ Ei(8P(v7), v).

(4.37)

Here the parallel transported flux operators associated to
the two outer nodes have already been encountered in the
operator (4.5) in the previous section, while the operator
E;(8”(v), v) at the central node acts like the standard flux
operator. The form of the operator (4.37) as an operator on
the reduced Hilbert space can therefore be read off directly
from the results found in the previous section. We have

ALE(S',0) = 3 (d,(e3) + d(e)pu(0F) = 2p,(0)
PR () Fd(e)piT)  (438)
ALE,(8',0) = =1 (d,(eF) ~ d_(eD)pu ()
P2 (d(e) — d(e)peoD) (439)
AL E. (S v)=0 (4.40)
and
ALE(S',0) = £ (d.(eF) = d_(eD)py ()
2 (e) ~ d(e)py(07)  (441)
ALEL($',0) = 3 (d,(e3) + d_(e2)py (07) = 2p, (1)
FR((e) Hd()p i) (442)
AE.(S,v) =0 (4.43)
as well as
E(S5,0)=0 (4.44)
A E (S 0v)=0 (4.45)
BLE(S0) = p.(v}) ~2p.(0) + p.05)  (4.46)

As before, the remaining components of the operator (4.37)
can be obtained from the above equations by cyclic
permutations of the labels x, y, and z.

In the case a # b, the operator (4.36) is defined by the
expression
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1

AEi (S v) =~ (Ei(S° (v}

~E(se(

)’ U)sym - Ei(sc(v:;b_)9 v)sym

UL: ) )9ym+E(S (1} ) U)sym)
(4.47)

1

which refers to the four nodes diagonally adjacent to the
central node v in the (x“, x) -coordinate plane (see Fig. 2).
The symmetrized flux variable

| RO
(SL( o ) )sym = E(Ei(Sc(vgh)’ v)ﬁzb_wzl_,v
+E(S(g) )0 e,)  (448)
a b

b

represents an average over the two natural ways in which
the parallel transport from v, can be taken, and the symbol
6 = ++, +—, —+ or —— labels the four nodes involved in
Eq. (4.47). The calculation of the action of the operator
proceeds in the same way as in the previous section. When
applied to a reduced spin network state, each parallel
transported flux operator in Eq. (4.48) produces a con-
tribution of the form

al (hvl—>1 —w)pa(vgl?)‘ (449)

The holonomy hvcb_,vl_w is now a product of two factors,

associated to two different coordinate directions, and each
of them has to be expressed in the basis appropriate to the
direction of the corresponding edge. Due to the resulting
expressions for the components of the operator (4.47) being
somewhat lengthy, the details of the calculation as well as
its results are presented in Appendix B.

C. Derivatives of the inverse flux operator

It then remains to examine the operator

A Eh( ) gb(S(v+) ) ; EZ(S(va_)’ U) ) (450)

Here
B}(S(12). ) = g cheaE,(5°(0F), 0)E(57(u). v)W;!
(4.51)

and we use the notation with dots surrounding the operator
to denote a specific factor ordering, in which the holonomy
operator arising from the action of the parallel transported
flux operator on the right is ordered to the left of the
leftmost parallel transported flux. Letting the operator
ordered in this way act on a reduced spin network state,
and truncating the contributions from the flux operators at
leading order, the operator takes the form

v) = D< Y (hes)DG) (he2)
1
w(vE)’

&, (S(v3),
ai)l?d(vf)

X pe(v (4.52)

To complete the extraction of the leading terms in the action
of the operator, we must, as before, transform the holon-
omies in Eq. (4.52) to the basis diagonalizing the angular
momentum component J,, and discard the off-diagonal
matrix elements after the transformation.

As an example, we display the calculation for the case
a = b =i = z. Expanding the sums over the contracted
indices in Eq. (4.52), we obtain

E(S(v7).0): = (DY () DY (h,)
= DY (he:)DY (hes ) po(v7)

x py(vT)

1
T (4.53)

Here the combination p.(v})p,(vi)/w(v]) reduces to
1/p.(v}). The matrix elements of the holonomies must
then be expressed in the eigenbasis of J,, but this
calculation has already been performed in Sec. IVA.
Using Egs. (4.12), (4.13), (4.15), and (4.16), we
see that

DL (o)D) () = D) (e )DYY ()
= d. (e} )d_(ef) = 1(e}). (4.54)
Therefore the expression (4.53) becomes simply
B (S(vF).v) = — (4.55)
p(v7)

An identical calculation shows that

result

the operator

,v): becomes 1/p,(v7). Hence we arrive at the

1 1 1
A:n) =3 <pz<v;> - pz<vz>>' (4.56)

The complete results for the components of the operator
(4.50) are given by

A& (v) = 7 (dy(ef) +d_(e: ))p

4>|~

-7 L () +d. (4.57)

126017-10



SCALAR CURVATURE OPERATOR FOR QUANTUM-REDUCED ...

PHYS. REV. D 107, 126017 (2023)

AE) = () ~d(e) 7
i B N 1
F ) —d ) s (4
AE(v) = (4.59)
and
t() = (g (P d ()]
Azgy<v> - 4(d+( Z) d—( z))p)y(v;)
i 3 3 1
)~ ) s 46
AE(v) = 1(d, (eF) + d_(e1)) —
&y 4 +\*z - y(v;)
B N 1
) T () 4D
AE(v) =0 (4.62)
and
A (v) = (4.63)
AE(v) =0 (4.64)
1 1 1
a0 =3 (o) 499

together with the equations obtained from these via cyclic
permutations of x, y, and z.

This completes the derivation of the curvature operator
on the reduced Hilbert space. The operator is defined by
Egs. (3.1) and (4.4), as well as Eqgs. (4.27)—(4.35), (4.38)—
(4.46), (4.57)—(4.65), and (B19)—(B27), which give the
explicit form of the operators A, E;(S?, v), AuE;(S¢,v),
and A &} (v) appearing in Eq. (4.4).

V. EXPECTATION VALUES
IN REDUCED BASIS STATES

As a concrete example of the action of the curvature
operator on the reduced Hilbert space, we computed the
action of the operator on the reduced spin network states,
which form a basis of the reduced Hilbert space. In
particular, this enables us to study expectation values of
the curvature operator with respect to the reduced basis
states. The calculations were performed using the symbolic
computer algebra library SymPy.

When the operator R, defined by Eq. (4.4) acts on a
reduced spin network state carrying fixed spins on all of its
edges, the result is a linear combination of the original state
together with 180 new states in which some of the spins

have been changed. While the explicit form of this state is
computable, the resulting expression is rather lengthy and
does not seem particularly instructive. To describe the
structure of the result in a qualitative manner, let us
introduce the terminology of “central edge” to denote
the six edges that are connected to the central node v,
and “outer edge” to denote the edges which connect the
other endpoint of an inner edge to one of the nodes v,
featured in the definition of the second derivative operator
A, E;(S¢, v). The 180 basis states entering the result in
addition to the original state can then be classified into four
categories as follows:

(i) 12 states in which the spin on one central edge has

been raised or lowered by one unit;

(i1) 12 states in which the spin on one central edge has
been raised or lowered by two units;

(iii) 60 states in which the spins on two central edges
have been raised or lowered by one unit (independ-
ently of each other);

(iv) 96 states in which the spins on one central edge and
one outer edge have been raised or lowered by one
unit independently of each other, and in such a way
that the two edges whose spins have changed form a
path from the central node v to one of the nodes ©7,.

When computing expectation values of the curvature

operator in reduced spin network states, we work with the
nonsymmetric operator

R, =RV, (5.1)
In general, the real part of the expectation value will then
correspond to the expectation value of the symmetrized

operator 1 (R, + R}). However, in all the specific examples
considered below, the expectation value of the nonsym-
metric operator (5.1) already turns out to be real.

The simplest example of a reduced spin network state is
the state [¥;), in which every edge of the cubical graph is
labeled with the same spin j. The expectation value of the
operator R, in this state is given by

(R, = =211/ (5.2)
(up to terms of order 1/+/j). More complicated assign-
ments of spins can also be considered—for example the
state |'¥; ; ;. ), where every edge oriented in the coordinate
direction x carries the spin j,, but the spins j,, j, and j,
may be different from each other. For such a state we find

WA PP T .
O iy \V4 Jx.]y.]z

Note that the expectation values (5.2) and (5.3) are both
negative. An example of a state in which the operator R,
has a positive expectation value is given by the state |¥,),

(5.3)
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FIG. 3. The reduced spin network state |¥,,). The spin quantum
number is j on every edge, except for the five edges colored gray;
these edges carry the spin «j, where a is a positive constant factor.

which is illustrated in Fig. 3. Every edge of this state carries
the spin j, except for the five edges e (vy), e;(vy),
el (vY), ez (vy), and e (vy) incident to the node v . To
these five edges there is assigned the spin «j, where a is a
positive constant factor. In the state |¥,), the expectation
value of curvature is

|

B 3a’ 4+ 9a° + 5a° — 450" — 103a® — 71a? — 557a — 585

40
201
S
~ 0
_20<
0 1 2 3

(67

FIG. 4. The function f(a), which characterizes the expectation
value of curvature in the state |¥,).

(5.4)

where

f(a)

A plot of the function f(a) is shown in Fig. 4. The function
has a zero at a point @ = ay ~ 2.67, and the values of the
function are negative’ in the interval 0 < a < a, while for
a > a; the function takes positive values. Consequently,
the expectation value of the operator R, in the state |¥,) is
positive when a > «.

At a first sight it may seem surprising that the expect-
ation value of curvature does not vanish in a state such as
|¥;), which one would intuitively expect to describe a
homogeneous and isotropic geometry on a cubical lattice.
However, one should note that in semiclassical terms, a
reduced spin network state is sharply peaked on the
intrinsic geometry represented by the flux operators, but
is widely spread with respect to the extrinsic geometry
encoded in the holonomy operators. For an operator
involving both holonomy and flux operators, such as our
curvature operator, there is therefore no especially compel-
ling reason to insist that the expectation value of the
operator in a state like |¥';) should behave strictly accord-
ing to intuitive expectations derived from the visual
appearance of the state.

On the other hand, a simple quantitative estimate of the
extent to which negative values of the curvature are favored
by the state |¥;) can be obtained by considering the
uncertainty (standard deviation)

AyR, = <R%>‘I‘ - <Rv>2 ’ (56)

*In particular, f(1) = —21, reproducing the earlier result (5.2).

32(a+1)

(5.5)

I

which gives a rough characterization of the width of the
probability distribution around the expectation value (R, ).
In the state ['¥;), we find

Ay R, = %9_4 Vi=713V/). (5.7)

Comparing this with the magnitude of the expectation value
<Rv>\y/_ = —214/j does suggest that, in spite of the generic
arguments given above, the probability distribution of
curvature in the state |¥;) is likely to be largely concen-
trated on the negative side of the spectrum.

The most satisfactory way to further clarify this issue
would be through a detailed semiclassical analysis of the
curvature operator, in which one would evaluate expect-
ation values of the operator in coherent states which are
properly peaked on both intrinsic and extrinsic geometry.
These calculations would reveal, for example, whether the
curvature operator has a vanishing expectation value (up to
corrections of order #) with respect to a coherent state
peaked on a flat classical geometry. On the basis of the
simple examples presented above, it is difficult to anticipate
whether such an analysis would indicate that the operator
considered in this article is too strongly skewed toward
negative values of curvature. Since we are not able to rule
out the possibility that further work may show the answer to
this question to be in the affirmative, let us briefly discuss a
possible modified definition of the curvature operator,
which we believe would be sufficient to resolve the
potential problem.
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If we consider the different terms in the definition of the curvature operator one by one, we find that by far the largest
negative contribution to the expectation value (5.2) is given by the second term in Eq. (4.4), namely

2

[\S]

Pa(v) by — gy (g2 4 Pal?)
2 Pb(v> AaaEb(S ’ )_ Spa( ) + pb(”)

where a sum over a is implied also in the first term on the
right-hand side. The expectation value of this term (multi-
plied with V;!) in the state |¥;) is equal to —24,/j. Clearly
this expectation value arises entirely from the (negative-
definite) first term on the right-hand side of Eq. (5.8). The
other terms contain the operators d, (e) and d_(e), which
act by raising and lowering the spins on the respective
edges, and which therefore give a vanishing contribution to
the expectation value in a basis state carrying a fixed spin
on every edge.

Recall now that the operator A,,E;(S?, v) represents a
quantization of the second covariant derivative D2E?(v).
The first term on the right-hand side of Eq. (5.8) corre-
sponds to the term —2f(x) in the discretization

flxte) =2f(x) + flx—¢)

e?

f"(x) =

(5.9)

of a second derivative. This seemingly problematic term
could therefore be eliminated by choosing an alternative
discretization, which avoids using the central point x (at the
cost of having to use four total points instead of three). An
example of such a discretization is given by

flx+2e) = flxte) = flx—e) + f(x=2¢)

3¢?

[ (x) =

(5.10)

The corresponding modified definition of the operator
A,.E;(S%,v) would be

BaaEi($",0) = 3 (B($"(5 %), ) = E(8"(01), v)
~ E(8(7). ) + E($"(077). )
(5.11)

where vt and v;~ denote the nodes that come respectively
after v and before v in the direction of the x -coordinate
axis. If this definition is used instead of the original
definition (3.17) in the construction of the curvature
operator, the expectation value of the operator in the state
|¥;), while not exactly vanishing, would differ from zero
by less than a single standard deviation.

(di(eq) +d_(eq))ps(va) +

pa(v)?

P(v)

(di(ez) +d_(ez))pp(vz), (58)

VI. CONCLUSIONS

In this article we studied the scalar curvature operator
introduced in our previous article [4] in the setting of
quantum-reduced loop gravity. We derived the explicit
form of the curvature operator for quantum-reduced loop
gravity by studying the action of the operator on the basis
states which span the Hilbert space of the quantum-reduced
model. Keeping only the terms of leading order in the spin
quantum numbers in the resulting expressions, and dis-
carding terms of lower order in j (these lower-order terms
generally do not belong to the reduced Hilbert space), we
obtained an expression representing the curvature operator
as an operator on the Hilbert space of quantum-reduced
loop gravity. This operator is built out of reduced flux
operators, whose action on the reduced Hilbert space is
diagonal, and reduced holonomy operators, which act by
raising and lowering the spin quantum numbers of a
reduced spin network state in steps of 1, and which
therefore seem somewhat analogous to the raising and
lowering operators of the harmonic oscillator.

As a simple example of a calculation which can be
performed with the curvature operator in the quantum-
reduced model, we considered expectation values of
curvature in reduced spin network states. We discovered
that the expectation values of the curvature operator tend to
be rather strongly skewed toward the negative side of the
spectrum in certain examples where one would a priori not
expect either sign of the curvature to be significantly
favored. However, considering that the reduced spin net-
work states are strongly peaked with respect to flux
operators but widely spread with respect to holonomy
operators, it seems unclear whether one should expect these
states to satisfy one’s intuitive expectations regarding
operators such as the curvature operator, which are con-
structed out of both holonomy and flux operators.

At this stage we are therefore unable to offer a definite
answer to the question of whether our results indicate any
serious problem with the curvature operator. This question
should be properly resolved through a systematic semi-
classical analysis of the operator, where one would study
expectation values of the operator in coherent states having
well-defined peakedness properties with respect to both
holonomy and flux operators. In this way one could verify
whether the expectation values of the curvature operator
agree with the expected classical results in states peaked on
a given classical configuration (e.g., a flat geometry). Not
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being able to rule out the possibility of further analysis
revealing that our operator is too strongly biased toward
negative values of the curvature, we proposed a slightly
modified definition of the curvature operator, which we
believe could help to resolve the issue. In practical terms,
the modification amounts to eliminating a certain term
which gives a particularly large negative contribution to the
expectation value, and replacing it with a term having a
vanishing expectation value with respect to reduced spin
network states.

Finally, as somewhat of a side remark, our calculations
seem to offer an argument to fix the undetermined
multiplicative factor «k in the definition of the Ashtekar—
Lewandowski volume operator [15]. Another argument that
has been considered in the literature is based on a
consistency check between the fundamental flux operator
and a so-called alternative flux operator, whose construc-
tion makes use of the fact that the inverse triad ¢/, can be
expressed in terms of a Poisson bracket between the
Ashtekar connection and the volume. Different versions
of the calculation, leading to different results for the factor
Ko, have been performed in [16,17], and in [18]. In our case,
the volume operator enters the definition of the operator
E(S(v), ') given by Eq. (3.12). The value of k; is then
determined by the requirement that the inverse flux
operator £, (v) = &EL(S(v), v) must act as the inverse of
the flux operator E;(S%(v)) at leading order in j, when
these operators are applied to states in the reduced Hilbert
space. This fixes the coefficient uniquely as x, = 1, which
is in agreement with the result originally found by Giesel
and Thiemann in [16,17].
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APPENDIX A: SU(2) AND ANGULAR
MOMENTUM

In this appendix we recall a number of elementary facts
from the quantum theory of angular momentum, regarding
particularly the eigenstates of the angular momentum
operator in the j = 1 representation, which play an essen-
tial role in the calculations carried out in this work.

1. The angular momentum operator

The angular momentum operator is a Hermitian vector
operator whose Cartesian components satisfy the commu-
tation relation

i J)] = ie;f T, (A1)
which encodes the geometrical interpretation of the angular

momentum as a generator of rotations in three-dimensional
space. The solution of the eigenvalue problem can be

derived solely on the basis of the commutation relation.
One can simultaneously diagonalize the squared angular
momentum

SP=0+1+ T (A2)
together with one of the components, say J,. The eigen-
value equations read

J|jm) = j(j + 1)|jm) (A3)

J|jm) = ml|jm) (A4)
where j is any non-negative integer or half-integer, and m
takes values from —j to j in steps of 1.

It is useful to define the raising and lowering operators

Jo=J,xiJ, (AS)
Their action on the eigenstates is given by
Jelim) = i+ 1) =m(m £ 1)]jm+1)  (A6)

Eqgs. (A4)—(A6) specify the action of the angular momen-
tum operator in the basis |jm). In particular, in the j = 1
subspace, which is prominently featured in the present
work, the components of the angular momentum operator
are represented by the matrices

. 010 | 0 - O
Jo=—0=|1 0 1 Jy=—|1i 0 —i
X 2 ’ y 2 ’
V2 010 V2 i 0
1 0 O
J, =10 0 0 |. (A7)
0 0 -1
The operator
9(6,7) = e (A8)

represents a rotation around the direction 7 by the angle 6.
The matrices representing these operators in the subspace
corresponding to the eigenvalue j, namely

Diin(g) = (jm|e=|jn) (A9)
define the spin-j representation of SU(2). The (anti-

Hermitian) generators of SU(2) in the spin-j representation
are defined as

(@) e = =i{jm|J 3| jn) (A10)

They are normalized according to
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LiGeneit s, (@A

Tr(r(j)’l:;(j)) =3

i
In particular, in the fundamental representation we have

1
Tr(TiTk) = —Eéik. (AIZ)

2. Eigenstates of J, and J,

Given the eigenstates |jm) diagonalizing J? and J_,
eigenstates of J, and J, can be constructed as follows. Let
g; denote the SU(2) element representing a rotation which
rotates the z-axis into the i-axis (where i = x or y). Then
the states

[jm); = DU)(g;)|jm) (A13)
are eigenstates of the operators J> and J; with the

eigenvalues j(j+ 1) and m. For later use, we introduce
the notation

DY (9); = /(jm|DY)(g)jn); (A14)
for the matrix elements of the SU(2) representation
matrices with respect to the basis (A13).

The rotation matrix g; is not uniquely defined by the
requirement of having to rotate the z-axis into the i-axis.
We fix the remaining freedom by demanding that the
rotation corresponds to a cyclic permutation of the coor-
dinate axes, i.e., that the rotations g, and g, rotate the axes
(x,y, z) respectively into (y, z,x) and (z,x,y). Under this
choice, the eigenstates of J, and J, for j = 1 are given by

=5l TS0 -5 (A1)
0), = ———[4) 4+ — |- Al6
O ==l +sl) (A8
Fe=gk-Ss0gl) (A
and
i 1 i
4, =550 -5l (A1)
0), = —+) + <=1 (A19)
=2 s -2 (A20)

where |+), |0) and |—) are the eigenstates of J,. The inverse
relations expressing the eigenstates of J, in terms of those
of J, and J read

=550 -5l (a2
0) = 1)+ 51, (a22)
S =gkt -5lh (a23)
and
4= -5, -l =51, (24)
O ==l + ), (A29)
S =5k -5l 45l (a26)

The choice to construct the eigenstates of the angular
momentum operator in this way is made with a view toward
the calculations presented in Sec. IV and Appendix B,
where some work can be saved by exploiting the fact that
equations derived using this set of eigenstates continue to
be valid when the labels x, y and z are permuted cyclically.

3. Relation between the Cartesian and spherical bases

The so-called spherical components of a vector 7 € R?
(see, e.g., [19]) are defined by their transformation proper-
ties with respect to rotations. Under a rotation correspond-
ing to the SU(2) element g, the components v™
(m = +1,0,-1) transform as

v = Di(9)v, (A27)
In terms of the Cartesian components, the spherical
components of ¥ are given by

1}+ = —ﬁ(vx—i—ivy) (A28)
vy =0, (A29)
(v, ivy) (A30)
=—(v,—1iv
V2 ’
Conversely, we have
(v -0 (A31)
v, =——=(vy —v_
Vo
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v, = 7 (vy +v_) (A32)
v, = g (A33)
Hence we can write down the states
) = =5~ 1)) (A34)
) 7§(|+>z I=)2) (A35)
lz) = 10), (A36)

From the point of view of angular momentum, these are
the m = 0O eigenstates of J,, J,, and J, expressed in the
eigenbasis of J,. Expressing the same states in the
eigenbases of J, and J,, we obtain

%) = 0), (A37)
1
v (A38)
2) = \if<|+> -).) (A39)
and
¥ = (), + 1)) (A40)
v) = [0), (A41)
1
& = =5 ()~ 1)) (A42)

Note that the three sets of equations above are mapped into
each other by cyclic permutations of x, y and z, reflecting
the way in which we have chosen to construct the
eigenstates of J,, J, and J, in section A 2.

APPENDIX B: MIXED COMPONENTS OF THE
OPERATOR A, E; (S, v)

In this appendix we will derive the form of the mixed
(i.e., a # b) components of the discretized derivative
operator

ApEi(S°,v) (B1)
when taken as an operator on the reduced Hilbert space. If
we perform the calculation using the eigenbases of J,, J,

and J, introduced in Appendix A, we can again take
advantage of the symmetry under cyclic permutations to
reduce the number of components that need to be computed
explicitly. Taking into account that the operator (B1) is
symmetric in a and b by construction, we see that it suffices
to take a single fixed value of the pair of indices ab, say
a = x and b =y, while considering all values of i and c.
From now on we will therefore consider the operator

1, . -

AxyEi(Sa’ U) = Z (Ei(Sa(v;cLer)’ v)sym - Ei(Sa(U;r’_)’ U)sym
- Ei(sa(v;y ) )sym + E (Sa( ) v)sym)'
(B2)

The symmetrized flux operator is defined as

a(,o I = a(,o

(S ( ) )bym = 5 (El(S (ny)7 v)wy_,yg' S

+Ei(S(0%).0) 0 L) (B3)

where

o= (c', 6%

= (++). (+=). (=+). (=) (B4)
and the superscripts on the parallel transported flux
operators specify the route along which the parallel trans-
port from vf, to the central node v is taken.

The eight parallel transported flux operators entering the
definition of the operator (B2) are summarized in Table I.
When an operator of the form E;(S*(v"), ), is

applied to a reduced spin network state, its action produces
the factor

D (k) pa(”). (BS)
The holonomy h,_,,_, is a product of two holonomies,
one of which is associated to an edge aligned in the
x-direction and the other to an edge in the y-direction. In
order to identify the terms of leading order in j in the action
of the operator, each holonomy must be transformed to
the basis corresponding to the direction of its edge with the
help of Egs. (A37)-(A42). After this has been done, the
leading contribution will be given by the diagonal matrix
elements of the holonomy operators.

In order to organize the calculation, it is convenient to
introduce the matrix

DY (h,,);
pP(n,); |-
DY (h,);

1
DY (h,);
1
D§y) (hei)i
Dgl) (he[)i

DY (h,);
D(l)(hei) = DSV)(hei)i
Dg}f)(he)i

(B6)
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which represents D)(h,) in the Cartesian basis
{|x),|¥),]z)}, but where the matrix elements on the
right-hand side are expressed in the eigenbasis of J; (as
indicated by the superscript i). After using Eqs. (A37)—
(A42) to evaluate the matrix elements, we discard the off-
diagonal matrix elements and identify the diagonal matrix

elements D(,11> (he.)is Dé})) (h,,); and D(_ll)_1 (h,,); respectively
with the operators d, (¢;), 1(e;) and d_(e;). To express the
results in a more compact form, we define the (symmetric)

operators

0(e) = 5 (d.(e) +d_(e)) (B7)
P(e) =5 (d.(e) —d_(e)) (B8)
We then have
T(ey) 0 0
D(1)<hex) = 0 Q(ex) _P(ex) <B9)
0 Ple) Qley)
if the edge is oriented in the x-direction, and
Qey) 0 Pley)
DW(h, )= 0 T(e,) O (B10)
_P(ey) 0 Q(ey)

for an edge oriented in the y-direction. Forming the matrix
product of (B9) and (B10) in both possible orderings, we
obtain

) 0le) —Ple)ole,) | (BIN)
_Q(ex)P(ey) P(ex) Q(ex)Q(ey)
and
DW(h, )DW(h,,)
O(e,) Ple)P(ey)  Q(x)P(y)
—| o 0e)  —Pley) (B12)
_P(ey) P(ex>Q(ey) Q(ex)Q(ey)

The matrix elements entering the expression (B5) can now
be read off from Eqgs. (B11) and (B12). For example, when
a = x the relevant matrix elements (corresponding to
different values of i) are

DU (e ko) =3 (diley) +d(e)))  (BI3)

DY (h, h,) =0 (B14)
D he) =5 (dile) ~d_(e,))  (BIS)
D) = 5 (di(ey) +d(e))  (BI6)

DY (e o) = = (o ()~ d_(e)(d, (e,) ~ d_(e,))
(B17)

i

DY (he,he,) = 3 (d(er) +d_(e)(d-(e,) = d_(e,))

(B18)

depending on whether the first factor of the holonomy
hy_._, 1s oriented along the x-axis or the y-axis. When
passing to the final form of the operator on the reduced
Hilbert space, one has to take into account the orientation of
the edges specified in Table I, using the relations
d,(e;') =d_(e;) and d_(e;') = d. (e;) whenever neces-
sary. In this way one obtains the results given by
Egs. (B19)-(B27) below. The remaining components of
the operator A,,E;(S°,v) can be derived from these
equations by considering cyclic permutations of x, y,
and z, and using the fact that the operator is symmetric
in a and b.

TABLE I. The eight parallel transported flux operators out of
which the operator A, E;(S, v) is constructed.

Ei(Sa(v”)’ U)v”—»ﬂ—n hr”—w’—»v h,_)f'_w’_w
Ei(SU(05).0) st oot h! h;h heiehg:

Ei(Sa(v;(%vJﬁ)v U)v;‘.*—»v;r—»v he_‘*lh;;Jr ht’frhe;r

Ei(S“(vE7) 0) -t oy h;‘ h:- h;‘l, het

El (Sa(U}Ly_)’ v)’sz}f—w;—w ht’;h;jl‘ hf;’_ h;Tl

Ei(S*(051) )y ey hoh7l, hy-+hg)

Ei(S“(U;V_), l)),v;;r_w;_,v h;flhe# h;;l+he;’

Ei(Sa(U;y_)’ U)v;‘av;av h"; he»_-_ h;\flfh;;l

Ei(sa(v;y_)a v)p;v‘—w‘_—n; h‘*;he;_ h;:l_he_\_l
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AxyEx<sx,v>=%<d () (e ) () pl )

16 (d+(eyx ) +d_(ei) +d.(ey) +d_(ey)) pa(viy)

1 [ (65) + d(e5) + du(e) + d_(ed))pa(5)

o (e (057) +d_(e57) + o 65) + d(e7)pa(077)

Ay E,(S*v) = 312(d+(eyx) d_(e5"))(d(er) —d_(ex))pa(vyy)

! +- +- + + +-
32 (d (e ) d_ (eyx ))(d+(ex) _d—(ex ))px<vxy )

L (do(e5t) - d_(e))(ds (e5) — d_(e2))pa(v5)

32
1 _ _ _ _ _
- 3_2 (d+(eyx ) - d—<eyx ))(d+(€x) - d—(ex ))px(vxy )

= 5 [ (65) = d_(ef ) (A led) +d_ed)) +2(d, () — d_(ef

i
3

_ 3L2 [(dy(e55) —d_(e5))(dy (e5) +d_(e5)) +2(d,(ef) —d_(ef

5l

SE(S0) = = (dy(e5F) — d_(e5)(ds (eF) — d_(e])py (v55)

32
~ 55 (@ (e5) = A7) (e 65) = d (7)) (035
— 5 (A (65) = d(e5) (o (&) = d_(ef )Py (15)
— 5 (e (57) = () (A (65) = d—(e5)p (77)
BBy (8,0) = 1 (dy (e) + d_(e5) + i) + d_(e)py ()
T (€5) Fd(e) + du(ed) + d(e)py ()
1

~1¢dilen)) +d(e") +dy(ex) +d-(ex))py(viy)

g (L (e57) + d_(e57) + du(65) + d_(e2)py (057)
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dy(e5r) —d_(e5y))(d(ex) +d_(e7)) +2(d;(e5) —d_(e5))]px(v5y)
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é@(é&(@?)—d_( D)+ (dy(elyt) = d_(ehN)(d, (ef) +d_(e)]py (v
+3—i2[2(d+(ej)—d_(ej))+(d+(e;)—d_( N (dy(ey) +d_(e;)]py(viy)
- 3% 2(d. () = d_(ex)) + (d(ex") — d_(ex ) (ef) + d_(e}))]py(v))

+352(ds(ex) = d-(e0)) + (dy(e) = d-(e5))(d (e5) + d_(€5))]py (vi7)

AxyEz(Sy7 v) =-—

Axymsz,v):——[z(d (617) = d(52) + (d (e5) + d_{e5 ) (i () = d_(e)]pa(o5)
LA (e5) ~ d(ef) + (doel) + d_(e)(de(65) = d-(e)]pe(o)

+3iz[ (A (65) = d_(e5)) + (s (e57) + d_(e5)(d ) = d_ ()] p(v5)
3 R (657) = d_(e57)) + (e e57) + d_(e5)) (A (65) = d_(&))]pe(057)

BBy (57, 0) = 3 (i (65) + d-(e55) (s ) = d_(e1)) + 2(d (") = d_(ef D]y (")
—312[@( ) d_(ef)(d (eF) = d_(e})) + 2(dy (e ~ d_(e5 )Py 05)

3 (e (e7) + (65 (e (7) = d_(e7) + 2(d (e57) = d_(e ]y (v5)

: d.(eyy) +d_(e5y))(dy(ex) —d_(ex)) + 2(dy (exy) — d_(exy))lpy (Vi)

-5l

A EL(8%0) = 55 (d,(65) + d () (eF) +d(e)po(035")
a5 (65 d(e5 )@ ef) +d_(e ) pa(s)
— 55 (@, (65 + A (e2) + () peloy)
~ 55 (€5 + A7) (@ (65) +d_(e)p(v)

35 (4 65) + d_(e5))(d (e7) + ()P0

32
~ 55 (65 + d(e5)(d(ed) +d_(e ) pelry)
o (A4 (657) + d())(d(65) + d_(e)) pe(o)

1

+a5 (dile) +d-(e7)(dy(e5) +d-(e7))p-(viy)
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