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In a previous article we have introduced an operator representing the three-dimensional scalar curvature
in loop quantum gravity. In this article we examine the new curvature operator in the setting of quantum-
reduced loop gravity. We derive the explicit form of the curvature operator as an operator on the Hilbert
space of the quantum-reduced model. As a simple practical example, we study the expectation values of the
operator with respect to basis states of the reduced Hilbert space.
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I. INTRODUCTION

The three-dimensional Ricci scalar is a geometrical
quantity of fundamental importance in the 3þ 1 formu-
lation of general relativity, describing the curvature of the
spatial surfaces. In addition to its role as a basic geometrical
observable, the relevance of the scalar curvature to loop
quantum gravity arises also from the fact that the Ricci
scalar can enter the definition of the dynamics of the theory
through the Lorentzian part of the Hamiltonian constraint
operator. Following the well-known construction due to
Thiemann [1], the quantization of the Lorentzian part of the
Hamiltonian in loop quantum gravity is usually based on its
expression in terms of the extrinsic curvature. However, it is
also possible to replace this relatively complicated form of
the Lorentzian term with a seemingly simpler expression,
which is essentially the three-dimensional Ricci scalar
integrated over the spatial manifold (see, e.g., [2,3]).
In a previous article [4], we have introduced a new

operator representing the scalar curvature in loop quantum
gravity. The operator is constructed within the kinematical
framework of loop quantum gravity, but its definition is
limited to the Hilbert space of states based on a fixed
cubical graph. The classical starting point of the construc-
tion is to express the Ricci scalar as a function of the
densitized triad and its gauge covariant derivatives. In
passing from the classical expression to a well-defined
quantum operator, the restriction to a cubical graph plays an
essential role, allowing one to regularize the covariant
derivatives of the triad in a relatively straightforward
manner, in terms of finite differences of parallel transported
flux variables associated to neighboring nodes of the graph.
While more work is needed to extend the definition of

the new curvature operator to the entire kinematical Hilbert

space of loop quantum gravity, which contains states based
on all possible graphs, the operator in its present form can
be applied to models which are formulated in the
kinematical setting of full loop quantum gravity using
states defined on cubical graphs. From the point of view
of the potential physical applications of the model (see
Refs. [5–8] for a selection of examples), a particularly
interesting approach of this kind is quantum-reduced loop
gravity [9–12]. Quantum-reduced loop gravity is derived
from full loop quantum gravity by implementing a kind of
quantum gauge-fixing to a gauge in which the densitized
triad is diagonal, and the Hilbert space of the model is built
entirely out of states based on cubical graphs.
In the context of quantum-reduced loop gravity, the new

curvature operator of [4] represents a definite improvement
over the operator introduced earlier in [13], where the basic
ideas of Regge calculus were used to quantize the Ricci
scalar in terms of lengths and angles. In general, operators
for quantum-reduced loop gravity can be derived from the
corresponding operators of full loop quantum gravity by
applying the operators of the full theory on states in the
Hilbert space of the quantum-reduced loop gravity and
discarding certain small terms, which generally lie outside
of the Hilbert space of the quantum-reduced model, in the
resulting expressions [14]. However, if this procedure is
applied to the curvature operator of [13], one finds that the
action of the resulting operator is trivially vanishing on the
reduced Hilbert space. In contrast, the new operator of [4]
does give rise to a nontrivial curvature operator for the
quantum-reduced model.
In this article we study the curvature operator introduced

in [4] in the framework of quantum-reduced loop gravity.
The main part of the work consists of performing the
calculations required to establish the form of the curvature
operator as an operator on the Hilbert space of the quantum-
reduced model. We also examine the action of the resulting
operator on the basis states of the reduced Hilbert space and
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its expectation values with respect to these states in order to
gain a rudimentary picture of the basic properties of the
operator. The material in the article is organized as follows.
In Sec. II be briefly recall the kinematical setting of
quantum-reduced loop gravity, i.e., the reduced Hilbert
space and the elementary operators thereon. In Sec. III we
review the definition of the curvature operator given in our
earlier article [4]. In Sec. IV, the form of the curvature
operator as an operator of quantum-reduced loop gravity is
derived by computing the action of the operator on states in
the reduced Hilbert space. In Sec. V we discuss the
computation of expectation values of the curvature operator
in reduced basis states. Finally, we summarize and discuss
our results in the concluding Sec. VI. In the two appendixes
that are included in the article, we recall a few useful facts
from the quantum theory of angular momentum, and
present some of the more technical segments of our
calculations.

II. QUANTUM-REDUCED LOOP GRAVITY

A. The reduced Hilbert space

In this article we consider the Hilbert space of quantum-
reduced loop gravity in the form originally introduced in
the literature of the model [9,10]. This Hilbert space is a
proper subspace of the kinematical Hilbert space of
loop quantum gravity. The Hilbert space of the quan-
tum-reduced model is spanned by the so-called reduced
spin network states, i.e., states characterized by the follow-
ing assumptions:

(i) The state is based on a cubical graph, denoted by Γ0,
whose edges are aligned along the coordinate
directions defined by a fixed Cartesian background
coordinate system.

(ii) Each edge of the graph carries a large spin quantum
number:

je ≫ 1 ð2:1Þ

for every edge e ∈ Γ0.
(iii) To each edge is assigned a representation matrix,

both of whose magnetic indices take the maximal or
the minimal value (i.e., þje or −je) with respect to
the direction of the edge (in the sense explained by
Eqs. (2.2) and (2.3) below).

Let us introduce the notation jjmii (where i ¼ x, y or z)
for the eigenstate of the operators J2 and Ji with eigen-
values jðjþ 1Þ and m, and

DðjÞ
mnðhÞi ¼ ihjmjDðjÞðhÞjjnii ð2:2Þ

for the matrix elements of the Wigner matrices with respect
to the basis jjmii. The reduced spin network states, which
form a basis on the Hilbert space of quantum-reduced loop
gravity, are then defined by wave functions of the form

Y
e∈Γ0

DðjeÞ
σeje σeje

ðheÞie ð2:3Þ

where each σe takes the value þ1 or −1, and each ie ¼ x, y
or z, according to whether the edge e is aligned along the
direction of the x-, y- or z-axis.
Note that the relation

DðjÞ
jj ðh−1Þ ¼ DðjÞ

−j −jðhÞ ð2:4Þ

can be used to slightly simplify the bookkeeping associated
with the basis states (2.3). If one keeps track of the
orientation of the graph on which the state (2.3) is defined,
considering different orientations of the graph to define
different, inequivalent states, one can without loss of
generality set σe ¼ þ1 for every edge of the graph.
Alternatively, one can take the graph Γ0 with an arbitrary
but fixed orientation,while allowing the parameter σe to take
the valueþ1 or−1 independently for each edge of the graph.

B. Operators in the quantum-reduced model

The form of the elementary operators in quantum-
reduced loop gravity can be derived by applying the
corresponding operators of full loop quantum gravity on
the basis states (2.3). The approximation inherent to the
quantum-reduced model then amounts to discarding certain
terms which are of lower order in the spin quantum
numbers, and which can be neglected on grounds
of the assumption (2.1), even if these terms generally do
not belong to the reduced Hilbert space introduced in the
previous section [14]. The structure of the kinematical
operators obtained in this way is remarkably simple
in comparison with the full theory, which is an important
practical advantage of the quantum-reduced model
from the point of view of performing concrete calculations.
The elementary operators typically considered in

quantum-reduced loop gravity are holonomy operators
associated to the edges of the cubical graph, and flux
operators associated to surfaces which are dual to the
background coordinate directions (i.e., surfaces Sa such
that the coordinate xa ¼ const on the surface) and are
located at the nodes of the reduced spin network graph. The

action of the holonomy operatorDðsÞ
mnðheÞi on the basis state

(2.3) can be computed using the standard Clebsch-Gordan
series of SUð2Þ. In order to express the result of the
calculation, it is convenient to introduce the notation

D
ðjÞ
mnðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
DðjÞ

mnðhÞ ð2:5Þ

for the normalized1 matrix elements of the SUð2Þ repre-
sentation matrices. Then, under the assumption that the

1In the sense of the norm defined by the Haar measure on
SUð2Þ.
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spin carried by the operator is small in comparison with the
spin carried by the state, i.e., s ≪ j, one finds

DðsÞ
mmðheÞiD ðjÞ

jj ðheÞi ¼ D
ðjþmÞ
jþm jþmðheÞi þO

�
1

j

�
ð2:6Þ

and

DðsÞ
mnðheÞiD ðjÞ

jj ðheÞi ¼ O
�

1ffiffi
j

p
�

ðm ≠ nÞ ð2:7Þ

In other words, only the diagonal matrix elements contrib-
ute to the action of the holonomy operator at leading order
in j. The leading term has essentially the structure of aUð1Þ
multiplication law, with the magnetic index (and not the

spin) of the operator DðsÞ
mmðheÞi playing the role of the Uð1Þ

quantum number. A detailed presentation of the calcula-
tions leading up to Eqs. (2.6) and (2.7) (as well as Eqs. (2.9)
and (2.12) below), including a more thorough discussion of
the discarded lower-order terms, can be found in [14].
Consider then the action of the flux operator EiðSaÞ on a

“reduced holonomy” of the form DðjÞ
jj ðheÞk. The action can

be nontrivial only in the case a ¼ k, since otherwise the
direction of the edge is parallel to the surface Sa. Assuming
for concreteness that the surface intersects the edge at its
beginning point,2 we have

EiðSkÞDðjÞ
jj ðheÞk ¼

i
2
ðDðjÞðheÞτðjÞi ÞðkÞjj ð2:8Þ

with the superscript indicating that the matrix element is
taken in the basis in which Jk is diagonal. In this basis the

diagonal generator τðjÞk has the matrix element

ðτðjÞk Þjj ¼ −ij, whereas the relevant matrix elements of

the off-diagonal generators τðjÞi (i ≠ k) are of order
ffiffi
j

p
.

Therefore we conclude that

EiðSkÞD ðjÞ
jj ðheÞk ¼

(
j
2
D

ðjÞ
jj ðheÞk ði ¼ kÞ

Oð ffiffi
j

p Þ ði ≠ kÞ
ð2:9Þ

The general structure of this result is quite similar to the
action of the holonomy operator given by Eqs. (2.6) and

(2.7), with the contribution of leading order in j again given
by the diagonal (i.e., i ¼ k) component of the operator.
The simple, approximately diagonal form of the flux

operator given by Eq. (2.9) is naturally inherited by
operators constructed out of the flux operator. An important
example of such an operator is the volume operator [15].
When restricted to a six-valent node of a cubical graph, the
Ashtekar–Lewandowski volume operator can be expressed
in terms of flux operators in the form

Vv ¼
ffiffiffiffiffiffiffiffiffi
jWvj

p
ð2:10Þ

with

Wv ¼ ϵijkEiðSxðvÞÞEjðSyðvÞÞEkðSzðvÞÞ: ð2:11Þ

Here SxðvÞ, SyðvÞ and SzðvÞ are surfaces which contain the
node v (while not containing any other nodes of the graph),
and which and are dual to the corresponding background
coordinate directions. Using Eq. (2.9) to compute the action
of the operator (2.11) on a reduced spin network state, one
finds a diagonal leading term of order j3, together with
subleading, off-diagonal terms of order j2. The separation
between the leading and subleading terms is preserved by
the operation of taking the square root in Eq. (2.10) [14].
With the spins labeled as in Fig. 1, the result of the
calculation reads

VvjΨΓ0
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8
jðjþx þ j−x Þðjþy þ j−y Þðjþz þ j−z Þj

r
jΨΓ0

i

þOð
ffiffi
j

p
Þ: ð2:12Þ

Clearly this represents a considerable simplification in
comparison with the task of computing the action of the
volume operator on a generic spin network state in full loop
quantum gravity.

C. Notation for reduced operators

The essential approximation underlying quantum-
reduced loop gravity consists of discarding the terms of
lower order in j in Eqs. (2.6), (2.7) and (2.9). This step can
be justified by the assumption (2.1), which specifies that

FIG. 1. A generic node of a reduced spin network state.

2A similar calculation holds for the case where the edge e is
intersected by the surface Sk at its endpoint. Note, however, that if
the surface intersects the edge at an interior point, the action of the
flux operator gives

EiðSkÞDðjÞ
jj ðheÞk ¼ iðDðjÞðhe1ÞτiDðjÞðhe2ÞÞðkÞjj

which involves all the matrix elements of the generator τðjÞi , and
which generally does not reduced to any simple form even for
large j.
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the states in the reduced Hilbert space carry large spins on
all of their edges. The action of the operators obtained as a
result of such a truncation preserves the reduced Hilbert
space. These operators, which are commonly known as
reduced holonomy and flux operators in the literature of the
quantum-reduced model, are therefore well-defined oper-
ators on the reduced Hilbert space.
As a preparation for the calculations performed in the

main part of this work, we will now establish a condensed
notation for the reduced holonomy and flux operators. The
components of the reduced holonomy operator, which
correspond to the diagonal matrix elements DðsÞ

mmðheiÞi of
the full holonomy operator, will be denoted by dmðeiÞ, with
the subscript i indicating the direction of the edge ei. The
action of the operator dmðeiÞ on the reduced Hilbert space
is defined by

dmðeiÞDðjÞ
jj ðheiÞi ¼ DðjþmÞ

jþm jþmðheiÞi: ð2:13Þ

In the particular case j ¼ 1, which will feature prominently
in our calculations, we denote the three possible values of
the index m by þ, 0 and −, thus introducing the notation

dþðeiÞ; d0ðeiÞ ¼ 1ðeiÞ; d−ðeiÞ ð2:14Þ

for the reduced holonomy operator in the j ¼ 1
representation.
The reduced flux operator arises from the diagonal

(i ¼ a) component of the flux operator EiðSaðvÞÞ, where
the surface SaðvÞ is dual to the xa -coordinate direction and
contains the node v of a reduced spin network state. We
denote this operator as

paðvÞ ¼ EaðSaðvÞÞ ð2:15Þ
The action of the reduced flux operator paðvÞ on a reduced
spin network state is diagonal, with the eigenvalue

paðvÞ ¼
jþa ðvÞ þ j−a ðvÞ

2
; ð2:16Þ

where each of the two edges incident on the node v and
parallel to the xa-coordinate axis contributes to the eigen-
value according to Eq. (2.9). The reduced volume operator,
which is obtained by keeping only the leading term in
Eq. (2.12), can be expressed in terms of reduced flux
operators as ffiffiffiffiffiffiffiffiffiffiffiffiffi

jwðvÞj
p

ð2:17Þ

where

wðvÞ ¼ pxðvÞpyðvÞpzðvÞ: ð2:18Þ

III. THE CURVATURE OPERATOR

In this section we summarize the operator introduced in
[4], which represents the scalar curvature of the spatial
manifold, and which is defined on the Hilbert space
of a fixed cubical graph. The operator is obtained as the
result of a construction which begins by expressing the
three-dimensional Ricci scalar as a function of the densi-
tized triad Ea

i and its gauge covariant derivatives,
DaEb

i ¼ ∂aEb
i þ ϵij

kAj
aEb

k . The integrated Ricci scalarR
d3x

ffiffiffi
q

p ð3ÞR is then regularized in terms of a cellular
decomposition of the spatial manifold into cubical cells
adapted to the chosen cubical graph.The elementaryoperators
entering the definition of the resulting curvature operator are
holonomy operators associated to the edges of the cubical
graph, and flux operators associated to the surfaces SxðvÞ,
SyðvÞ, andSzðvÞ, which are located at the nodes of the cubical
graph, and which are dual to the coordinate directions defined
by the background coordinate system, along which the edges
of the cubical graph are aligned.
On the Hilbert space of the cubical graph Γ0, the

curvature operator takes the form� dZ
d3x

ffiffiffi
q

p ð3ÞR
�

¼
X
v∈Γ0

Rv

Vv
: ð3:1Þ

The operator Rv is defined as

Rv¼−2ẼiðSaðvÞ;vÞΔabEiðSb;vÞþ2QabðvÞẼi
cðSðvÞ;vÞΔabEiðSc;vÞ−ΔaEiðSa;vÞΔbEiðSb;vÞ−

1

2
ΔaEiðSb;vÞΔbEiðSa;vÞ

þ5

2
QabðvÞΔaEiðSc;vÞΔbEi

cðvÞ−
1

2
QabðvÞQcdðvÞΔaEiðSc;vÞΔbEiðSd;vÞþ2Aab

aðvÞBcb
cðvÞ

þ2Aab
bðvÞBca

cðvÞþAab
cðvÞBba

cðvÞþ1

2
QabðvÞAca

dðvÞAdb
cðvÞ−QabðvÞBca

cðvÞBdb
dðvÞþ2ðQabðvÞBca

cðvÞ

−Aab
aðvÞ−Aba

aðvÞÞ
ΔbVðvÞ2

V2
v

þ3

2
QabðvÞΔaVðvÞ2

V2
v

ΔbVðvÞ2
V2
v

−2QabðvÞΔabVðvÞ2
V2
v

: ð3:2Þ
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where

QabðvÞ ¼ ẼiðSaðvÞ; vÞẼiðSbðvÞ; vÞ ð3:3Þ

QabðvÞ ¼ Ẽi
aðSðvÞ; vÞẼi

bðSðvÞ; vÞ ð3:4Þ

Aab
cðvÞ ¼ ẼiðSaðvÞ; vÞΔcEiðSb; vÞ ð3:5Þ

Bab
cðvÞ ¼ Ẽi

aðSðvÞ; vÞΔbEiðSc; vÞ ð3:6Þ

The various operators entering the definition of the curva-
ture operator will be introduced below. For a detailed
presentation of the construction we refer the reader to [4].

A. Inverse volume operator

The factors of volume operator in the denominator in
Eqs. (3.1) and (3.2) are to be understood in terms of the
regularized inverse volume operator V−1

v , which can be
defined as the limit

V−1
v ¼ lim

ϵ→0

Vv

V2
v þ ϵ2

; ð3:7Þ

where Vv is the volume operator restricted to the node v.
Equivalently, the operator V−1

v can be defined by specifying
its spectral decomposition as

V−1
v jλi ¼

�
λ−1jλi if λ ≠ 0

0 if λ ¼ 0
ð3:8Þ

where jλi is an eigenstate of the volume operator Vv with
eigenvalue λ. The definition extends straightforwardly to
any negative power of the volume: V−n

v ≡ ðV−1
v Þn (n > 0).

The volume operator Vv and the operator Rv defined by
Eq. (3.2) do not commute with each other, so a choice of
factor ordering has to be made on the right-hand side of
Eq. (3.1). The expression Rv=Vv should therefore be
understood as a shorthand notation for any symmetric
factor ordering of the operators Rv and V−1

v .

B. Parallel transported flux operator

The parallel transported flux operator (also known as the
gauge covariant flux operator in the literature) is a
quantization of the classical function

ẼiðS; x0Þ ¼ −2TrðτiẼðS; x0ÞÞ ð3:9Þ

where ẼðS; x0Þ is the matrix-valued variable

ẼðS; x0Þ ¼
Z
S
d2σnaðσÞhx0;xðσÞEa

i ðxðσÞÞτih−1x0;xðσÞ ð3:10Þ

and hx0;xðσÞ ≡ hpx0 ;xðσÞ
denote holonomies in the fundamen-

tal representation of SUð2Þ [i.e., hx0;xðσÞ ≡Dð1=2Þðhx0;xðσÞÞ].

These holonomies connect each point xðσÞ on the surface S
to a fixed point x0 along a family of paths px0;xðσÞ.
Assuming there is a single point of intersection, denoted
v, between an edge e and the surface S, the action of the
parallel transported flux operator on the holonomy he can
be expressed as

ẼiðS; x0ÞDðjÞðheÞ ¼ Dð1Þ
ki ðh−1x0;vÞEkðSÞDðjÞðheÞ; ð3:11Þ

where EkðSÞ denotes the standard flux operator associated
to the surface S, and the holonomy operator in the spin-1
representation has arisen from the action of the holonomies
in the fundamental representation on the generator τi
according to the identity hτih−1 ¼ Dð1Þ

ki ðkÞτk. A more
detailed presentation of the material summarized above
can be found, e.g., in Sec. III.C of [4].

C. Inverse flux operator

Using the parallel transported flux operator, we define

Ẽi
aðSðvÞ; v0Þ ¼

1

2
ϵabcϵ

ijkẼjðSbðvÞ; v0ÞẼkðScðvÞ; v0ÞW−1
v :

ð3:12Þ

Here W−1
v denotes a regularized inverse of the operator

Wv ¼ ϵijkEiðSxðvÞÞEjðSyðvÞÞEkðSzðvÞÞ; ð3:13Þ

defined in a way analogous to Eq. (3.8), namely

W−1
v jμi ¼

�
μ−1jμi if μ ≠ 0

0 if μ ¼ 0
ð3:14Þ

where jμi is an eigenstate of the operator Wv with
eigenvalue μ.
When v0 ¼ v, the operator (3.12) represents a quantiza-

tion of the inverse triad

Ei
a ¼

1

2 detE
ϵabcϵ

ijkEb
jE

c
k ð3:15Þ

at the node v—in the same, not entirely precise sense in
which the flux operator EiðSaðvÞÞ represents a quantization
of the densitized triad Ea

i ðvÞ itself.

D. Discretized derivatives

The role of the parallel transported flux operator in the
construction of the curvature operator is to provide a tool
for quantizing covariant derivatives of the densitized triad.
The operator ΔaEiðSb; vÞ, which arises from a discretiza-
tion of the covariant derivative DaEb

i at the point v, is
defined as
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ΔaEiðSb; vÞ ¼
ẼiðSbðvþa Þ; vÞ − ẼiðSbðv−a Þ; vÞ

2
: ð3:16Þ

Here vþa and v−a denote the nodes immediately following
and immediately preceding the central node v in the
direction of the xa -coordinate axis. The parallel transport
from vþa and v−a to v is taken along the edges eþa and e−a
connecting vþa and v−a to the central node v.
The operator

ΔaaEiðSb; vÞ ¼ ẼiðSbðvþa Þ; vÞ − 2ẼiðSbðvÞ; vÞ
þ ẼiðSbðv−a Þ; vÞ ð3:17Þ

represents a quantization of the “diagonal” second deriva-
tive D2

aEb
i at v. Here two of the parallel transported flux

operators are the same as in Eq. (3.16), and the action of the
operator ẼiðSbðvÞ; vÞ at the central node is identical to the
regular flux operator EiðSbðvÞÞ.
For a ≠ b, the setup and notation3 for defining the

operator ΔabEiðSb; vÞ is given in Fig. 2. The discretization
of the mixed second derivative DaDbEc

i ðvÞ is performed
using the four nodes diagonally adjacent to the central node
v in the ðxa; xbÞ -coordinate plane. Let us denote these
nodes by vσab, where the symbol

σ ¼ ðσ1; σ2Þ ¼ ðþþÞ; ðþ−Þ; ð−þÞ; ð−−Þ ð3:18Þ

labels the four quadrants of the ðxa; xbÞ -coordinate plane.
We then define the symmetrized flux operators

ẼiðScðvσabÞ; vÞsym ¼ 1

2
ðẼiðScðvσabÞ; vÞvσab→vσ

1
a →v

þ ẼiðScðvσabÞ; vÞvσab→vσ
2

b →v
Þ; ð3:19Þ

where the subscripts on the right-hand side refer to the two
natural routes along which the parallel transport from vσab to
v can be taken. The operator ΔabEiðSc; vÞ (for a ≠ b) is
now defined as

ΔabEiðSc; vÞ ¼
1

4
ðẼiðScðvþþ

ab Þ; vÞsym − ẼiðScðvþ−
ab Þ; vÞsym

− ẼiðScðv−þab Þ; vÞsym þ ẼiðScðv−−ab Þ; vÞsymÞ:
ð3:20Þ

By construction, the operator (3.20) is symmetric in a and
b. Accordingly, it represents a quantization of the sym-
metric part DðaDbÞEc

i of the mixed second derivative at v.
Equation (3.2) also features the operator ΔaEi

bðvÞ, which
corresponds to a quantization of the covariant derivative of
the inverse triad Ei

a. Making use of the operator (3.12), this
operator is defined as

ΔaEi
bðvÞ ¼

..

.
Ẽi
bðSðvþa Þ; vÞ..

.
− ..
.
Ẽi
bðSðv−a Þ; vÞ..

.

2
: ð3:21Þ

The notation with three dots indicates a particular factor
ordering of the operators, in which the holonomy operators
arising from the parallel transported flux operators in
Eq. (3.12) are ordered as the leftmost factor of the
expression, as will be specified in detail in Sec. IV C.
Finally, the discretized derivatives of the volume are

defined by the expressions

ΔaVðvÞ2 ¼
Vðvþa Þ2 − Vðv−a Þ2

2
; ð3:22Þ

ΔaaVðvÞ2 ¼ Vðvþa Þ2 − 2VðvÞ2 þ Vðv−a Þ2 ð3:23Þ

and

ΔabVðvÞ2 ¼
Vðvþþ

ab Þ2 − Vðvþ−
ab Þ2 − Vðv−þab Þ2 þ Vðv−−ab Þ2

4

ð3:24Þ

All of the operators (3.22)–(3.24) commute with the
volume operator Vv ≡ VðvÞ, so there is no ordering
ambiguity between these operators and the inverse volume
operators in Eq. (3.2).
This completes the definition of the curvature operator,

with Eqs. (3.1) and (3.2) defining the action of the operator
on any state which is based on the chosen cubical graph Γ0,

FIG. 2. Labeling of the nodes and edges involved in the
definition of the mixed components of the second derivative
operator ΔabEiðSc; vÞ.

3The pattern behind the notation for the edges entering the
definition is as follows: The edge which lies in the ðxa; xbÞ -
coordinate plane, is connected to the node vσab and oriented along
the xa -coordinate axis is denoted by eσab. Thus, e

σ
ba denotes the

edge lying in the ðxa; xbÞ-plane and connected to vσab, but oriented
in the direction of the xb-axis.
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but which may otherwise be a completely general state in
the kinematical Hilbert space of loop quantum gravity. In
what follows, we will consider the action of this operator on
reduced spin network states in the Hilbert space of
quantum-reduced loop gravity, thereby deriving the form
of the curvature operator for the quantum-reduced model.
Even though the calculations are somewhat lengthy, they
provide a practical illustration of the procedure of
extracting an operator for the quantum-reduced model
from the corresponding operator of the full theory, and
for this reason we feel that it is valuable to present these
calculations in some detail.

IV. CURVATURE OPERATOR ON THE REDUCED
HILBERT SPACE

In this section we will derive the form of the curvature
operator when it is interpreted as an operator on the Hilbert
space of quantum-reduced loop gravity. To this end, we will
consider the action of the curvature operator on the reduced
spin network states, which form a basis of the Hilbert space
of the quantum-reduced model. The reduced spin network
states are based on a cubical graph, whose edges are aligned
with the coordinate directions defined by a fixed Cartesian
background coordinate system. We assume that the ori-
entation of each edge of the graph agrees with the positive
direction of the corresponding coordinate axis, and that
each edge carries a “reduced holonomy” of the form

DðjeÞ
jeje

ðheÞie ; ð4:1Þ

where the label ie takes the value x, y or z according to the
direction of the edge e.
To obtain the curvature operator as an operator on the

reduced Hilbert space, we must evaluate the action of the

operator on states of this form and truncate the resulting
expressions at leading order in the spin quantum numbers.
As discussed in Sec. II, the leading terms will arise from the
diagonal (m ¼ n) components of the holonomy operators

DðjÞ
mnðheÞie , and from the diagonal (i ¼ a) components of

the flux operators EiðSaðvÞÞ. The terms of leading order in
j are guaranteed to belong to the reduced Hilbert space,
while the lower-order terms, which are discarded, lie
outside of this space in general. Hence the action of the
operator truncated in this way will preserve the reduced
Hilbert space, and the truncated operator will be a well-
defined operator on this space.
Let us focus on the operatorRv defined by Eq. (3.2), and

start by considering the factors of ẼiðSaðvÞ; vÞ and
Ẽi
aðSðvÞ; vÞ. The action of the parallel transported flux

operator ẼiðSaðvÞ; vÞ coincides with the standard flux
operator EiðSaðvÞÞ, and when applied on the reduced
Hilbert space, the diagonal components of this operator
form the reduced flux operator paðvÞ introduced in
Sec. II C. Moreover, a short calculation shows that the
leading terms in the action of the operator Ẽi

aðSðvÞ; vÞ on a
reduced spin network state also arise from the terms with
i ¼ a, and that these terms act as the inverse of the operator
paðvÞ. Thus, making the replacements

ẼiðSaðvÞ; vÞ → δai paðvÞ; ð4:2Þ

Ẽi
aðSðvÞ; vÞ → δia

1

paðvÞ
ð4:3Þ

in Eq. (3.2), we arrive at

Rv¼−2paðvÞΔabEaðSb;vÞþ2
paðvÞ2
pbðvÞ

ΔaaEbðSb;vÞ−ΔaEcðSa;vÞΔbEcðSb;vÞ−
1

2
ΔaEcðSb;vÞΔbEcðSa;vÞ

þ5

2
paðvÞ2ΔaEcðSb;vÞΔaEc

bðvÞ−
1

2

paðvÞ2
pbðvÞ2

ΔaEcðSb;vÞΔaEcðSb;vÞ

þ2paðvÞΔaEaðSb;vÞ
1

pcðvÞ
ΔbEcðSc;vÞþ2paðvÞΔbEaðSb;vÞ

1

pcðvÞ
ΔaEcðSc;vÞ

þpaðvÞΔcEaðSb;vÞ
1

pbðvÞ
ΔaEbðSc;vÞþ

1

2

pbðvÞ
paðvÞ2

ΔcEbðSa;vÞpcðvÞΔbEcðSa;vÞ

−
paðvÞ2
pbðvÞ

ΔaEbðSb;vÞ
1

pcðvÞ
ΔaEcðSc;vÞþ2

�
paðvÞ2
pbðvÞ

ΔaEbðSb;vÞ−pbðvÞΔbEbðSa;bÞ−paðvÞΔbEaðSb;vÞ
�
ΔaVðvÞ2
VðvÞ2

þ3

2
paðvÞ2

�
ΔaVðvÞ2
VðvÞ2

�
2

−2paðvÞ2
ΔaaVðvÞ2
VðvÞ2 : ð4:4Þ
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Here the discretized derivatives of the volume, defined by
Eqs. (3.22)–(3.24), act diagonally on reduced spin network
states. Hence the remaining nontrivial part of the calcu-
lation, to which we will now turn our attention, is to derive
the form of the operators ΔaEiðSb; vÞ, ΔabEiðSc; vÞ, and
ΔaEi

bðvÞwhen these are viewed as operators on the reduced
Hilbert space.

A. First derivatives: ΔaEiðSb; vÞ
We begin by looking at the operator

ΔaEiðSb; vÞ ¼
ẼiðSbðvþa Þ; vÞ − ẼiðSbðv−a Þ; vÞ

2
: ð4:5Þ

Let us first fix a ¼ z and consider the various possible
values of the labels b and i. Using Eq. (3.11), we find that
when acting on a reduced spin network state, each of
the parallel transported fluxes in Eq. (4.5) gives the
contribution4

ẼiðSbðv�z Þ; vÞ → Dð1Þ
bi ðh−1v;v�z Þpbðv�z Þ; ð4:6Þ

where hv;v�z denotes the holonomy along the edge ev;v�z ,
which connects the node v�a to v and is oriented from the
outer node v�a toward the central node v. In terms of the
labeling summarized in Fig. 2, we thus have

ev;vþz ¼ ðeþz Þ−1 ð4:7Þ

and

ev;v−z ¼ e−z : ð4:8Þ

The matrix elements of the holonomy in Eq. (4.6) must
now be transformed from the Cartesian basis to the basis
diagonalizing Jz, which is the component of the angular
momentum operator corresponding to the direction of the
edge ev;v�z . In the eigenbasis of Jz, the leading order
contribution will be given by the diagonal matrix elements
of the holonomy operator, while the action of the off-
diagonal matrix elements is of lower order in j. Applying
the relations

jxi ¼ −
1ffiffiffi
2

p ðjþiz − j−izÞ; ð4:9Þ

jyi ¼ iffiffiffi
2

p ðjþiz þ j−izÞ; ð4:10Þ

jzi ¼ j0iz; ð4:11Þ

which are established in Appendix A, to the matrix

elements Dð1Þ
bi ðhÞ and discarding the off-diagonal matrix

elements in the resulting expressions, we find

Dð1Þ
xx ðhÞ ¼ 1

2
ðDð1Þ

11 ðheÞz þDð1Þ
−1−1ðhÞzÞ þ off-diag: ð4:12Þ

Dð1Þ
xy ðhÞ ¼ −

i
2
ðDð1Þ

11 ðheÞz −Dð1Þ
−1−1ðhÞzÞ þ off-diag: ð4:13Þ

Dð1Þ
xz ðhÞ ¼ off-diag: ð4:14Þ

and

Dð1Þ
yx ðhÞ ¼ i

2
ðDð1Þ

11 ðhÞz −Dð1Þ
−1−1ðhÞzÞ þ off-diag: ð4:15Þ

Dð1Þ
yy ðhÞ ¼ 1

2
ðDð1Þ

11 ðhÞz þDð1Þ
−1−1ðhÞzÞ þ off-diag: ð4:16Þ

Dð1Þ
yz ðhÞ ¼ off-diag: ð4:17Þ

and finally

Dð1Þ
zx ðheÞ ¼ off-diag: ð4:18Þ

Dð1Þ
zy ðheÞ ¼ off-diag: ð4:19Þ

Dð1Þ
zz ðheÞ ¼ Dð1Þ

00 ðheÞz ð4:20Þ

When these results are used in Eq. (4.6), we must keep in
mind the orientation of the edges (4.7) and (4.8) when
identifying the diagonal matrix elements of the holonomy
with the operators d�ðeÞ introduced in Sec. II C. For the
edge ev;vþz ¼ ðeþz Þ−1 we have

Dð1Þ
11 ðh−1v;vþz Þ → dþðeþz Þ ð4:21Þ

Dð1Þ
00 ðh−1v;vþz Þ → 1ðeþz Þ ð4:22Þ

Dð1Þ
−1−1ðh−1v;vþz Þ → d−ðeþz Þ ð4:23Þ

whereas for ev;v−z ¼ e−z ,

Dð1Þ
11 ðh−1v;v−z Þ → d−ðe−z Þ ð4:24Þ

Dð1Þ
00 ðh−1v;v−z Þ → 1ðe−z Þ ð4:25Þ

Dð1Þ
−1−1ðh−1v;v−z Þ → dþðe−z Þ ð4:26Þ

4Note that, due to the presence of the holonomy operator in
Eq. (4.6), the action of the parallel transported flux operator
ẼiðSbðv�z Þ; vÞ on a reduced spin network state can be non-
vanishing even if i ≠ b, in contrast to the regular flux operator
EiðSbðv�z ÞÞ, where only the diagonal (i ¼ b) components con-
tribute at leading order in j.
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Going back to Eq. (4.5), we can now establish the form of
the operator ΔzEiðSb; vÞ as an operator on the reduced
Hilbert space. The results are as follows. For b ¼ x, we
have

ΔzExðSx; vÞ ¼
1

4
ðdþðeþz Þ þ d−ðeþz ÞÞpxðvþz Þ

−
1

4
ðdþðe−z Þ þ d−ðe−z ÞÞpxðv−z Þ ð4:27Þ

ΔzEyðSx; vÞ ¼ −
i
4
ðdþðeþz Þ − d−ðeþz ÞÞpxðvþz Þ

−
i
4
ðdþðe−z Þ − d−ðe−z ÞÞpxðv−z Þ ð4:28Þ

ΔzEzðSx; vÞ ¼ 0 ð4:29Þ

while the components with b ¼ y are given by

ΔzExðSy; vÞ ¼
i
4
ðdþðeþz Þ − d−ðe−z ÞÞpyðvþz Þ

þ i
4
ðdþðe−z Þ − d−ðe−z ÞÞpyðv−z Þ ð4:30Þ

ΔzEyðSy; vÞ ¼
1

4
ðdþðeþz Þ þ d−ðe−z ÞÞpyðvþz Þ

−
1

4
ðdþðe−z Þ þ d−ðe−z ÞÞpyðv−z Þ ð4:31Þ

ΔzEzðSy; vÞ ¼ 0 ð4:32Þ

and when b ¼ z, we have

ΔzExðSz; vÞ ¼ 0 ð4:33Þ

ΔzEyðSz; vÞ ¼ 0 ð4:34Þ

ΔzEzðSz; vÞ ¼
pzðvþz Þ − pzðv−z Þ

2
ð4:35Þ

At this point it is actually not necessary to perform any
further calculations to find the remaining components of
the operator (4.5), provided that we stick with the choice
introduced in Appendix A, where the eigenbases of Jx, Jy,
and Jz are related to each other by rotations corresponding
to cyclic permutations of the coordinate axes. Under this
choice of bases, the components of ΔaEiðSb; vÞ with a ¼ x
or a ¼ y can be deduced from Eqs. (4.27)–(4.35) simply by
making cyclic permutations of the labels x, y and z.

B. Second derivatives: ΔabEiðSc; vÞ
Let us then move on to consider the operator

ΔabEiðSc; vÞ: ð4:36Þ

The components with a ¼ b are defined by

ΔaaEiðSb; vÞ ¼ ẼiðSbðvþa Þ; vÞ − 2ẼiðSbðvÞ; vÞ
þ ẼiðSbðv−a Þ; vÞ: ð4:37Þ

Here the parallel transported flux operators associated to
the two outer nodes have already been encountered in the
operator (4.5) in the previous section, while the operator
ẼiðSbðvÞ; vÞ at the central node acts like the standard flux
operator. The form of the operator (4.37) as an operator on
the reduced Hilbert space can therefore be read off directly
from the results found in the previous section. We have

ΔzzExðSx; vÞ ¼
1

2
ðdþðeþz Þ þ d−ðeþz ÞÞpxðvþz Þ − 2pxðvÞ

þ 1

2
ðdþðe−z Þ þ d−ðe−z ÞÞpxðv−z Þ ð4:38Þ

ΔzzEyðSx; vÞ ¼ −
i
2
ðdþðeþz Þ − d−ðeþz ÞÞpxðvþz Þ

þ i
2
ðdþðe−z Þ − d−ðe−z ÞÞpxðv−z Þ ð4:39Þ

ΔzzEzðSx; vÞ ¼ 0 ð4:40Þ

and

ΔzzExðSy; vÞ ¼
i
2
ðdþðeþz Þ − d−ðe−z ÞÞpyðvþz Þ

−
i
2
ðdþðe−z Þ − d−ðe−z ÞÞpyðv−z Þ ð4:41Þ

ΔzzEyðSy; vÞ ¼
1

2
ðdþðeþz Þ þ d−ðe−z ÞÞpyðvþz Þ − 2pyðvÞ

þ 1

2
ðdþðe−z Þ þ d−ðe−z ÞÞpyðv−z Þ ð4:42Þ

ΔzzEzðSy; vÞ ¼ 0 ð4:43Þ

as well as

ΔzzExðSz; vÞ ¼ 0 ð4:44Þ

ΔzzEyðSz; vÞ ¼ 0 ð4:45Þ

ΔzzEzðSz; vÞ ¼ pzðvþz Þ − 2pzðvÞ þ pzðv−z Þ ð4:46Þ

As before, the remaining components of the operator (4.37)
can be obtained from the above equations by cyclic
permutations of the labels x, y, and z.
In the case a ≠ b, the operator (4.36) is defined by the

expression
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ΔabEiðSc; vÞ ¼
1

4
ðẼiðScðvþþ

ab Þ; vÞsym − ẼiðScðvþ−
ab Þ; vÞsym

− ẼiðScðv−þab Þ; vÞsym þ ẼiðScðv−−ab Þ; vÞsymÞ
ð4:47Þ

which refers to the four nodes diagonally adjacent to the
central node v in the ðxa; xbÞ -coordinate plane (see Fig. 2).
The symmetrized flux variable

ẼiðScðvσabÞ; vÞsym ¼ 1

2
ðẼiðScðvσabÞ; vÞvσab→vσ

1
a →v

þ ẼiðScðvσabÞ; vÞvσab→vσ
2

b →v
Þ ð4:48Þ

represents an average over the two natural ways in which
the parallel transport from vσab can be taken, and the symbol
σ ¼ þþ, þ−, −þ or −− labels the four nodes involved in
Eq. (4.47). The calculation of the action of the operator
proceeds in the same way as in the previous section. When
applied to a reduced spin network state, each parallel
transported flux operator in Eq. (4.48) produces a con-
tribution of the form

Dð1Þ
ai ðh−1vσab→v0→vÞpaðvσabÞ: ð4:49Þ

The holonomy hvσab→v0→v is now a product of two factors,
associated to two different coordinate directions, and each
of them has to be expressed in the basis appropriate to the
direction of the corresponding edge. Due to the resulting
expressions for the components of the operator (4.47) being
somewhat lengthy, the details of the calculation as well as
its results are presented in Appendix B.

C. Derivatives of the inverse flux operator

It then remains to examine the operator

ΔaEi
bðvÞ ¼

..

.
Ẽi
bðSðvþa Þ; vÞ..

.
− ..
.
Ẽi
bðSðv−a Þ; vÞ..

.

2
: ð4:50Þ

Here

Ẽi
bðSðv�a Þ; vÞ ¼

1

2
ϵbcdϵ

ijkẼjðScðv�a Þ; vÞẼkðSdðv�a Þ; vÞW−1
v�a

ð4:51Þ

and we use the notation with dots surrounding the operator
to denote a specific factor ordering, in which the holonomy
operator arising from the action of the parallel transported
flux operator on the right is ordered to the left of the
leftmost parallel transported flux. Letting the operator
ordered in this way act on a reduced spin network state,
and truncating the contributions from the flux operators at
leading order, the operator takes the form

..

.
Ẽi
bðSðv�a Þ; vÞ..

. ¼ 1

2
ϵbcdϵ

ijkDð1Þ
cj ðhe�a ÞD

ð1Þ
dk ðhe�a Þ

× pcðv�a Þpdðv�a Þ
1

wðv�a Þ
: ð4:52Þ

To complete the extraction of the leading terms in the action
of the operator, we must, as before, transform the holon-
omies in Eq. (4.52) to the basis diagonalizing the angular
momentum component Ja, and discard the off-diagonal
matrix elements after the transformation.
As an example, we display the calculation for the case

a ¼ b ¼ i ¼ z. Expanding the sums over the contracted
indices in Eq. (4.52), we obtain

..

.
Ẽz
zðSðvþz Þ; vÞ..

. ¼ ðDð1Þ
xx ðheþz ÞD

ð1Þ
yy ðheþz Þ

−Dð1Þ
xy ðheþz ÞD

ð1Þ
yx ðheþz ÞÞpxðvþz Þ

× pyðvþz Þ
1

wðvþz Þ
: ð4:53Þ

Here the combination pxðvþz Þpyðvþz Þ=wðvþz Þ reduces to
1=pzðvþz Þ. The matrix elements of the holonomies must
then be expressed in the eigenbasis of Jz, but this
calculation has already been performed in Sec. IVA.
Using Eqs. (4.12), (4.13), (4.15), and (4.16), we
see that

Dð1Þ
xx ðheþz ÞD

ð1Þ
yy ðheþz Þ −Dð1Þ

xy ðheþz ÞD
ð1Þ
yx ðheþz Þ

¼ dþðeþz Þd−ðeþz Þ ¼ 1ðeþz Þ: ð4:54Þ

Therefore the expression (4.53) becomes simply

..

.
Ẽz
zðSðvþz Þ; vÞ..

. ¼ 1

pzðvþz Þ
: ð4:55Þ

An identical calculation shows that the operator

..

.
Ẽz
zðSðv−z Þ; vÞ..

.
becomes 1=pzðv−z Þ. Hence we arrive at the

result

ΔzEz
zðvÞ ¼

1

2

�
1

pzðvþz Þ
−

1

pzðv−z Þ
�
: ð4:56Þ

The complete results for the components of the operator
(4.50) are given by

ΔzEx
xðvÞ ¼

1

4
ðdþðeþz Þ þ d−ðeþz ÞÞ

1

pxðvþz Þ
−
1

4
ðdþðe−z Þ þ d−ðe−z ÞÞ

1

pxðv−z Þ
ð4:57Þ
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ΔzE
y
xðvÞ ¼ i

4
ðdþðeþz Þ − d−ðeþz ÞÞ

1

pxðvþz Þ
þ i
4
ðdþðe−z Þ − d−ðe−z ÞÞ

1

pxðv−z Þ
ð4:58Þ

ΔzEz
xðvÞ ¼ 0 ð4:59Þ

and

ΔzEx
yðvÞ ¼ −

i
4
ðdþðeþz Þ − d−ðeþz ÞÞ

1

pyðvþz Þ

−
i
4
ðdþðe−z Þ − d−ðe−z ÞÞ

1

pyðv−z Þ
ð4:60Þ

ΔzE
y
yðvÞ ¼ 1

4
ðdþðeþz Þ þ d−ðeþz ÞÞ

1

pyðvþz Þ

−
1

4
ðdþðe−z Þ þ d−ðe−z ÞÞ

1

pyðv−z Þ
ð4:61Þ

ΔzEz
yðvÞ ¼ 0 ð4:62Þ

and

ΔzEx
zðvÞ ¼ 0 ð4:63Þ

ΔzE
y
zðvÞ ¼ 0 ð4:64Þ

ΔzEz
zðvÞ ¼

1

2

�
1

pzðvþz Þ
−

1

pzðv−z Þ
�

ð4:65Þ

together with the equations obtained from these via cyclic
permutations of x, y, and z.
This completes the derivation of the curvature operator

on the reduced Hilbert space. The operator is defined by
Eqs. (3.1) and (4.4), as well as Eqs. (4.27)–(4.35), (4.38)–
(4.46), (4.57)–(4.65), and (B19)–(B27), which give the
explicit form of the operators ΔaEiðSb; vÞ, ΔabEiðSc; vÞ,
and ΔaEi

bðvÞ appearing in Eq. (4.4).

V. EXPECTATION VALUES
IN REDUCED BASIS STATES

As a concrete example of the action of the curvature
operator on the reduced Hilbert space, we computed the
action of the operator on the reduced spin network states,
which form a basis of the reduced Hilbert space. In
particular, this enables us to study expectation values of
the curvature operator with respect to the reduced basis
states. The calculations were performed using the symbolic
computer algebra library SymPy.
When the operator Rv defined by Eq. (4.4) acts on a

reduced spin network state carrying fixed spins on all of its
edges, the result is a linear combination of the original state
together with 180 new states in which some of the spins

have been changed. While the explicit form of this state is
computable, the resulting expression is rather lengthy and
does not seem particularly instructive. To describe the
structure of the result in a qualitative manner, let us
introduce the terminology of “central edge” to denote
the six edges that are connected to the central node v,
and “outer edge” to denote the edges which connect the
other endpoint of an inner edge to one of the nodes vσab
featured in the definition of the second derivative operator
ΔabEiðSc; vÞ. The 180 basis states entering the result in
addition to the original state can then be classified into four
categories as follows:

(i) 12 states in which the spin on one central edge has
been raised or lowered by one unit;

(ii) 12 states in which the spin on one central edge has
been raised or lowered by two units;

(iii) 60 states in which the spins on two central edges
have been raised or lowered by one unit (independ-
ently of each other);

(iv) 96 states in which the spins on one central edge and
one outer edge have been raised or lowered by one
unit independently of each other, and in such a way
that the two edges whose spins have changed form a
path from the central node v to one of the nodes vσab.

When computing expectation values of the curvature
operator in reduced spin network states, we work with the
nonsymmetric operator

Rv ¼ RvV−1
v : ð5:1Þ

In general, the real part of the expectation value will then
correspond to the expectation value of the symmetrized
operator 1

2
ðRv þ R†

vÞ. However, in all the specific examples
considered below, the expectation value of the nonsym-
metric operator (5.1) already turns out to be real.
The simplest example of a reduced spin network state is

the state jΨji, in which every edge of the cubical graph is
labeled with the same spin j. The expectation value of the
operator Rv in this state is given by

hRviΨj
¼ −21

ffiffi
j

p
ð5:2Þ

(up to terms of order 1=
ffiffi
j

p
). More complicated assign-

ments of spins can also be considered—for example the
state jΨjxjyjzi, where every edge oriented in the coordinate
direction xa carries the spin ja, but the spins jx, jy and jz
may be different from each other. For such a state we find

hRviΨjxjyjz
¼ −7ðj2x þ j2y þ j2zÞffiffiffiffiffiffiffiffiffiffiffiffi

jxjyjz
p : ð5:3Þ

Note that the expectation values (5.2) and (5.3) are both
negative. An example of a state in which the operator Rv
has a positive expectation value is given by the state jΨαi,
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which is illustrated in Fig. 3. Every edge of this state carries
the spin j, except for the five edges eþy ðvþx Þ, e−y ðvþx Þ,
eþz ðvþx Þ, e−z ðvþx Þ, and eþx ðvþx Þ incident to the node vþx . To
these five edges there is assigned the spin αj, where α is a
positive constant factor. In the state jΨαi, the expectation
value of curvature is

hRviΨα
¼ fðαÞ

ffiffi
j

p
; ð5:4Þ

where

fðαÞ ¼ 3α7 þ 9α6 þ 5α5 − 45α4 − 103α3 − 71α2 − 557α − 585

32ðαþ 1Þ : ð5:5Þ

A plot of the function fðαÞ is shown in Fig. 4. The function
has a zero at a point α ¼ α0 ≃ 2.67, and the values of the
function are negative5 in the interval 0 < α < α0, while for
α > α0 the function takes positive values. Consequently,
the expectation value of the operator Rv in the state jΨαi is
positive when α > α0.
At a first sight it may seem surprising that the expect-

ation value of curvature does not vanish in a state such as
jΨji, which one would intuitively expect to describe a
homogeneous and isotropic geometry on a cubical lattice.
However, one should note that in semiclassical terms, a
reduced spin network state is sharply peaked on the
intrinsic geometry represented by the flux operators, but
is widely spread with respect to the extrinsic geometry
encoded in the holonomy operators. For an operator
involving both holonomy and flux operators, such as our
curvature operator, there is therefore no especially compel-
ling reason to insist that the expectation value of the
operator in a state like jΨji should behave strictly accord-
ing to intuitive expectations derived from the visual
appearance of the state.
On the other hand, a simple quantitative estimate of the

extent to which negative values of the curvature are favored
by the state jΨji can be obtained by considering the
uncertainty (standard deviation)

ΔΨRv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hR2

viΨ − hRvi2Ψ
q

; ð5:6Þ

which gives a rough characterization of the width of the
probability distribution around the expectation value hRviΨ.
In the state jΨji, we find

ΔΨj
Rv ¼

3
ffiffiffiffiffi
94

p

4

ffiffi
j

p
≃ 7.3

ffiffi
j

p
: ð5:7Þ

Comparing this with the magnitude of the expectation value
hRviΨj

¼ −21
ffiffi
j

p
does suggest that, in spite of the generic

arguments given above, the probability distribution of
curvature in the state jΨji is likely to be largely concen-
trated on the negative side of the spectrum.
The most satisfactory way to further clarify this issue

would be through a detailed semiclassical analysis of the
curvature operator, in which one would evaluate expect-
ation values of the operator in coherent states which are
properly peaked on both intrinsic and extrinsic geometry.
These calculations would reveal, for example, whether the
curvature operator has a vanishing expectation value (up to
corrections of order ℏ) with respect to a coherent state
peaked on a flat classical geometry. On the basis of the
simple examples presented above, it is difficult to anticipate
whether such an analysis would indicate that the operator
considered in this article is too strongly skewed toward
negative values of curvature. Since we are not able to rule
out the possibility that further work may show the answer to
this question to be in the affirmative, let us briefly discuss a
possible modified definition of the curvature operator,
which we believe would be sufficient to resolve the
potential problem.

FIG. 3. The reduced spin network state jΨαi. The spin quantum
number is j on every edge, except for the five edges colored gray;
these edges carry the spin αj, where α is a positive constant factor. FIG. 4. The function fðαÞ, which characterizes the expectation

value of curvature in the state jΨαi.

5In particular, fð1Þ ¼ −21, reproducing the earlier result (5.2).
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If we consider the different terms in the definition of the curvature operator one by one, we find that by far the largest
negative contribution to the expectation value (5.2) is given by the second term in Eq. (4.4), namely

2
paðvÞ2
pbðvÞ

ΔaaEbðSb; vÞ ¼ −8paðvÞ2 þ
paðvÞ2
pbðvÞ

ðdþðeþa Þ þ d−ðeþa ÞÞpbðvþa Þ þ
paðvÞ2
pbðvÞ

ðdþðe−a Þ þ d−ðe−a ÞÞpbðv−a Þ; ð5:8Þ

where a sum over a is implied also in the first term on the
right-hand side. The expectation value of this term (multi-
plied with V−1

v ) in the state jΨji is equal to −24
ffiffi
j

p
. Clearly

this expectation value arises entirely from the (negative-
definite) first term on the right-hand side of Eq. (5.8). The
other terms contain the operators dþðeÞ and d−ðeÞ, which
act by raising and lowering the spins on the respective
edges, and which therefore give a vanishing contribution to
the expectation value in a basis state carrying a fixed spin
on every edge.
Recall now that the operator ΔaaEiðSb; vÞ represents a

quantization of the second covariant derivative D2
aEb

i ðvÞ.
The first term on the right-hand side of Eq. (5.8) corre-
sponds to the term −2fðxÞ in the discretization

f00ðxÞ ≃ fðxþ ϵÞ − 2fðxÞ þ fðx − ϵÞ
ϵ2

ð5:9Þ

of a second derivative. This seemingly problematic term
could therefore be eliminated by choosing an alternative
discretization, which avoids using the central point x (at the
cost of having to use four total points instead of three). An
example of such a discretization is given by

f00ðxÞ ≃ fðxþ 2ϵÞ − fðxþ ϵÞ − fðx − ϵÞ þ fðx − 2ϵÞ
3ϵ2

:

ð5:10Þ

The corresponding modified definition of the operator
ΔaaEiðSb; vÞ would be

ΔaaEiðSb; vÞ ¼
1

3
ðẼiðSbðvþþ

a Þ; vÞ − ẼiðSbðvþa Þ; vÞ
− ẼiðSbðv−a Þ; vÞ þ ẼiðSbðv−−a Þ; vÞÞ;

ð5:11Þ

where vþþ
a and v−−a denote the nodes that come respectively

after vþa and before v−a in the direction of the xa -coordinate
axis. If this definition is used instead of the original
definition (3.17) in the construction of the curvature
operator, the expectation value of the operator in the state
jΨji, while not exactly vanishing, would differ from zero
by less than a single standard deviation.

VI. CONCLUSIONS

In this article we studied the scalar curvature operator
introduced in our previous article [4] in the setting of
quantum-reduced loop gravity. We derived the explicit
form of the curvature operator for quantum-reduced loop
gravity by studying the action of the operator on the basis
states which span the Hilbert space of the quantum-reduced
model. Keeping only the terms of leading order in the spin
quantum numbers in the resulting expressions, and dis-
carding terms of lower order in j (these lower-order terms
generally do not belong to the reduced Hilbert space), we
obtained an expression representing the curvature operator
as an operator on the Hilbert space of quantum-reduced
loop gravity. This operator is built out of reduced flux
operators, whose action on the reduced Hilbert space is
diagonal, and reduced holonomy operators, which act by
raising and lowering the spin quantum numbers of a
reduced spin network state in steps of 1, and which
therefore seem somewhat analogous to the raising and
lowering operators of the harmonic oscillator.
As a simple example of a calculation which can be

performed with the curvature operator in the quantum-
reduced model, we considered expectation values of
curvature in reduced spin network states. We discovered
that the expectation values of the curvature operator tend to
be rather strongly skewed toward the negative side of the
spectrum in certain examples where one would a priori not
expect either sign of the curvature to be significantly
favored. However, considering that the reduced spin net-
work states are strongly peaked with respect to flux
operators but widely spread with respect to holonomy
operators, it seems unclear whether one should expect these
states to satisfy one’s intuitive expectations regarding
operators such as the curvature operator, which are con-
structed out of both holonomy and flux operators.
At this stage we are therefore unable to offer a definite

answer to the question of whether our results indicate any
serious problem with the curvature operator. This question
should be properly resolved through a systematic semi-
classical analysis of the operator, where one would study
expectation values of the operator in coherent states having
well-defined peakedness properties with respect to both
holonomy and flux operators. In this way one could verify
whether the expectation values of the curvature operator
agree with the expected classical results in states peaked on
a given classical configuration (e.g., a flat geometry). Not
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being able to rule out the possibility of further analysis
revealing that our operator is too strongly biased toward
negative values of the curvature, we proposed a slightly
modified definition of the curvature operator, which we
believe could help to resolve the issue. In practical terms,
the modification amounts to eliminating a certain term
which gives a particularly large negative contribution to the
expectation value, and replacing it with a term having a
vanishing expectation value with respect to reduced spin
network states.
Finally, as somewhat of a side remark, our calculations

seem to offer an argument to fix the undetermined
multiplicative factor κ0 in the definition of the Ashtekar–
Lewandowski volume operator [15]. Another argument that
has been considered in the literature is based on a
consistency check between the fundamental flux operator
and a so-called alternative flux operator, whose construc-
tion makes use of the fact that the inverse triad eia can be
expressed in terms of a Poisson bracket between the
Ashtekar connection and the volume. Different versions
of the calculation, leading to different results for the factor
κ0, have been performed in [16,17], and in [18]. In our case,
the volume operator enters the definition of the operator
Ẽi
aðSðvÞ; v0Þ given by Eq. (3.12). The value of κ0 is then

determined by the requirement that the inverse flux
operator Ei

aðvÞ≡ Ẽi
aðSðvÞ; vÞ must act as the inverse of

the flux operator EiðSaðvÞÞ at leading order in j, when
these operators are applied to states in the reduced Hilbert
space. This fixes the coefficient uniquely as κ0 ¼ 1, which
is in agreement with the result originally found by Giesel
and Thiemann in [16,17].
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APPENDIX A: SUð2Þ AND ANGULAR
MOMENTUM

In this appendix we recall a number of elementary facts
from the quantum theory of angular momentum, regarding
particularly the eigenstates of the angular momentum
operator in the j ¼ 1 representation, which play an essen-
tial role in the calculations carried out in this work.

1. The angular momentum operator

The angular momentum operator is a Hermitian vector
operator whose Cartesian components satisfy the commu-
tation relation

½Ji; Jj� ¼ iϵijkJk ðA1Þ

which encodes the geometrical interpretation of the angular
momentum as a generator of rotations in three-dimensional
space. The solution of the eigenvalue problem can be

derived solely on the basis of the commutation relation.
One can simultaneously diagonalize the squared angular
momentum

J2 ¼ J2x þ J2y þ J2z ðA2Þ

together with one of the components, say Jz. The eigen-
value equations read

J2jjmi ¼ jðjþ 1Þjjmi ðA3Þ

Jzjjmi ¼ mjjmi ðA4Þ

where j is any non-negative integer or half-integer, and m
takes values from −j to j in steps of 1.
It is useful to define the raising and lowering operators

J� ¼ Jx � iJy ðA5Þ

Their action on the eigenstates is given by

J�jjmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ −mðm� 1Þ

p
jj; m� 1i ðA6Þ

Eqs. (A4)–(A6) specify the action of the angular momen-
tum operator in the basis jjmi. In particular, in the j ¼ 1
subspace, which is prominently featured in the present
work, the components of the angular momentum operator
are represented by the matrices

Jx ¼
1ffiffiffi
2

p

0B@ 0 1 0

1 0 1

0 1 0

1CA; Jy ¼
1ffiffiffi
2

p

0B@ 0 −i 0

i 0 −i
0 i 0

1CA;

Jz ¼

0B@ 1 0 0

0 0 0

0 0 −1

1CA: ðA7Þ

The operator

gðθ; n⃗Þ ¼ e−iθn⃗·J⃗ ðA8Þ

represents a rotation around the direction n⃗ by the angle θ.
The matrices representing these operators in the subspace
corresponding to the eigenvalue j, namely

DðjÞ
mnðgÞ ¼ hjmje−iθn⃗·J⃗jjni ðA9Þ

define the spin-j representation of SUð2Þ. The (anti-
Hermitian) generators of SUð2Þ in the spin-j representation
are defined as

ðτðjÞi Þmn ¼ −ihjmjJijjni ðA10Þ

They are normalized according to
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TrðτðjÞi τðjÞk Þ ¼ −
1

3
jðjþ 1Þð2jþ 1Þδik ðA11Þ

In particular, in the fundamental representation we have

TrðτiτkÞ ¼ −
1

2
δik: ðA12Þ

2. Eigenstates of Jx and Jy
Given the eigenstates jjmi diagonalizing J2 and Jz,

eigenstates of Jx and Jy can be constructed as follows. Let
gi denote the SUð2Þ element representing a rotation which
rotates the z-axis into the i-axis (where i ¼ x or y). Then
the states

jjmii ¼ DðjÞðgiÞjjmi ðA13Þ

are eigenstates of the operators J2 and Ji with the
eigenvalues jðjþ 1Þ and m. For later use, we introduce
the notation

DðjÞ
mnðgÞi ¼ ihjmjDðjÞðgÞjjnii ðA14Þ

for the matrix elements of the SUð2Þ representation
matrices with respect to the basis (A13).
The rotation matrix gi is not uniquely defined by the

requirement of having to rotate the z-axis into the i-axis.
We fix the remaining freedom by demanding that the
rotation corresponds to a cyclic permutation of the coor-
dinate axes, i.e., that the rotations gx and gy rotate the axes
ðx; y; zÞ respectively into ðy; z; xÞ and ðz; x; yÞ. Under this
choice, the eigenstates of Jx and Jy for j ¼ 1 are given by

jþix ¼ −
i
2
jþi − iffiffiffi

2
p j0i − i

2
j−i ðA15Þ

j0ix ¼ −
1ffiffiffi
2

p jþi þ 1ffiffiffi
2

p j−i ðA16Þ

j−ix ¼
i
2
jþi − iffiffiffi

2
p j0i þ i

2
j−i ðA17Þ

and

jþiy ¼
i
2
jþi − 1ffiffiffi

2
p j0i − i

2
j−i ðA18Þ

j0iy ¼
iffiffiffi
2

p jþi þ iffiffiffi
2

p j−i ðA19Þ

j−iy ¼
i
2
jþi þ 1ffiffiffi

2
p j0i − i

2
j−i ðA20Þ

where jþi, j0i and j−i are the eigenstates of Jz. The inverse
relations expressing the eigenstates of Jz in terms of those
of Jx and Jy read

jþi ¼ i
2
jþix −

1ffiffiffi
2

p j0ix −
i
2
j−ix ðA21Þ

j0i ¼ iffiffiffi
2

p jþix þ
iffiffiffi
2

p j−ix ðA22Þ

j−i ¼ i
2
jþix þ

1ffiffiffi
2

p j0ix −
i
2
j−ix ðA23Þ

and

jþi ¼ −
i
2
jþiy −

iffiffiffi
2

p j0iy −
i
2
j−iy ðA24Þ

j0i ¼ −
1ffiffiffi
2

p jþiy þ
1ffiffiffi
2

p j−iy ðA25Þ

j−i ¼ i
2
jþiy −

iffiffiffi
2

p j0iy þ
i
2
j−iy ðA26Þ

The choice to construct the eigenstates of the angular
momentum operator in this way is made with a view toward
the calculations presented in Sec. IV and Appendix B,
where some work can be saved by exploiting the fact that
equations derived using this set of eigenstates continue to
be valid when the labels x, y and z are permuted cyclically.

3. Relation between the Cartesian and spherical bases

The so-called spherical components of a vector v⃗ ∈ R3

(see, e.g., [19]) are defined by their transformation proper-
ties with respect to rotations. Under a rotation correspond-
ing to the SUð2Þ element g, the components vm

(m ¼ þ1; 0;−1) transform as

vm → DðjÞ
nmðgÞvn ðA27Þ

In terms of the Cartesian components, the spherical
components of v⃗ are given by

vþ ¼ −
1ffiffiffi
2

p ðvx þ ivyÞ ðA28Þ

v0 ¼ vz ðA29Þ

v− ¼ 1ffiffiffi
2

p ðvx − ivyÞ ðA30Þ

Conversely, we have

vx ¼ −
1ffiffiffi
2

p ðvþ − v−Þ ðA31Þ
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vy ¼
iffiffiffi
2

p ðvþ þ v−Þ ðA32Þ

vz ¼ v0 ðA33Þ

Hence we can write down the states

jxi ¼ −
1ffiffiffi
2

p ðjþiz − j−izÞ ðA34Þ

jyi ¼ iffiffiffi
2

p ðjþiz þ j−izÞ ðA35Þ

jzi ¼ j0iz ðA36Þ

From the point of view of angular momentum, these are
the m ¼ 0 eigenstates of Jx, Jy, and Jz expressed in the
eigenbasis of Jz. Expressing the same states in the
eigenbases of Jx and Jy, we obtain

jxi ¼ j0ix ðA37Þ

jyi ¼ −
1ffiffiffi
2

p ðjþix − j−ixÞ ðA38Þ

jzi ¼ iffiffiffi
2

p ðjþix þ j−ixÞ ðA39Þ

and

jxi ¼ iffiffiffi
2

p ðjþiy þ j−iyÞ ðA40Þ

jyi ¼ j0iy ðA41Þ

jzi ¼ −
1ffiffiffi
2

p ðjþiy − j−iyÞ ðA42Þ

Note that the three sets of equations above are mapped into
each other by cyclic permutations of x, y and z, reflecting
the way in which we have chosen to construct the
eigenstates of Jx, Jy and Jz in section A 2.

APPENDIX B: MIXED COMPONENTS OF THE
OPERATOR ΔabEiðSc; vÞ

In this appendix we will derive the form of the mixed
(i.e., a ≠ b) components of the discretized derivative
operator

ΔabEiðSc; vÞ ðB1Þ

when taken as an operator on the reduced Hilbert space. If
we perform the calculation using the eigenbases of Jx, Jy

and Jz introduced in Appendix A, we can again take
advantage of the symmetry under cyclic permutations to
reduce the number of components that need to be computed
explicitly. Taking into account that the operator (B1) is
symmetric in a and b by construction, we see that it suffices
to take a single fixed value of the pair of indices ab, say
a ¼ x and b ¼ y, while considering all values of i and c.
From now on we will therefore consider the operator

ΔxyEiðSa; vÞ ¼
1

4
ðẼiðSaðvþþ

xy Þ; vÞsym − ẼiðSaðvþ−
xy Þ; vÞsym

− ẼiðSaðv−þxy Þ; vÞsym þ ẼiðSaðv−−xy Þ; vÞsymÞ:
ðB2Þ

The symmetrized flux operator is defined as

ẼiðSaðvσxyÞ; vÞsym ¼ 1

2
ðẼiðSaðvσxyÞ; vÞvσxy→vσ

1
x →v

þ ẼiðSaðvσxyÞ; vÞvσxy→vσ
2

y →v
Þ ðB3Þ

where

σ ¼ ðσ1; σ2Þ ¼ ðþþÞ; ðþ−Þ; ð−þÞ; ð−−Þ ðB4Þ

and the superscripts on the parallel transported flux
operators specify the route along which the parallel trans-
port from vσxy to the central node v is taken.
The eight parallel transported flux operators entering the

definition of the operator (B2) are summarized in Table I.
When an operator of the form ẼiðSaðv00Þ; vÞv00→v0→v is
applied to a reduced spin network state, its action produces
the factor

Dð1Þ
ai ðh−1v00→v0→vÞpaðv00Þ: ðB5Þ

The holonomy hv00→v0→v is a product of two holonomies,
one of which is associated to an edge aligned in the
x-direction and the other to an edge in the y-direction. In
order to identify the terms of leading order in j in the action
of the operator, each holonomy must be transformed to
the basis corresponding to the direction of its edge with the
help of Eqs. (A37)–(A42). After this has been done, the
leading contribution will be given by the diagonal matrix
elements of the holonomy operators.
In order to organize the calculation, it is convenient to

introduce the matrix

Dð1ÞðheiÞ ¼

0BB@
Dð1Þ

xx ðheiÞi Dð1Þ
xy ðheiÞi Dð1Þ

xz ðheiÞi
Dð1Þ

yx ðheiÞi Dð1Þ
yy ðheiÞi Dð1Þ

yz ðheiÞi
Dð1Þ

zx ðheiÞi Dð1Þ
zy ðheiÞi Dð1Þ

zz ðheiÞi

1CCA; ðB6Þ
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which represents Dð1ÞðheiÞ in the Cartesian basis
fjxi; jyi; jzig, but where the matrix elements on the
right-hand side are expressed in the eigenbasis of Ji (as
indicated by the superscript i). After using Eqs. (A37)–
(A42) to evaluate the matrix elements, we discard the off-
diagonal matrix elements and identify the diagonal matrix

elementsDð1Þ
11 ðheiÞi,Dð1Þ

00 ðheiÞi andDð1Þ
−1−1ðheiÞi respectively

with the operators dþðeiÞ, 1ðeiÞ and d−ðeiÞ. To express the
results in a more compact form, we define the (symmetric)
operators

QðeÞ ¼ 1

2
ðdþðeÞ þ d−ðeÞÞ; ðB7Þ

PðeÞ ¼ i
2
ðdþðeÞ − d−ðeÞÞ: ðB8Þ

We then have

Dð1ÞðhexÞ ¼

0B@ 1ðexÞ 0 0

0 QðexÞ −PðexÞ
0 PðexÞ QðexÞ

1CA ðB9Þ

if the edge is oriented in the x-direction, and

Dð1ÞðheyÞ ¼

0B@ QðeyÞ 0 PðeyÞ
0 1ðeyÞ 0

−PðeyÞ 0 QðeyÞ

1CA ðB10Þ

for an edge oriented in the y-direction. Forming the matrix
product of (B9) and (B10) in both possible orderings, we
obtain

Dð1ÞðhexÞDð1ÞðheyÞ

¼

0B@ QðeyÞ 0 PðeyÞ
PðexÞPðeyÞ QðexÞ −PðexÞQðeyÞ
−QðexÞPðeyÞ PðexÞ QðexÞQðeyÞ

1CA ðB11Þ

and

Dð1ÞðheyÞDð1ÞðhexÞ

¼

0B@ QðeyÞ PðexÞPðeyÞ QðxÞPðyÞ
0 QðexÞ −PðexÞ

−PðeyÞ PðexÞQðeyÞ QðexÞQðeyÞ

1CA: ðB12Þ

The matrix elements entering the expression (B5) can now
be read off from Eqs. (B11) and (B12). For example, when
a ¼ x the relevant matrix elements (corresponding to
different values of i) are

Dð1Þ
xx ðhexheyÞ ¼

1

2
ðdþðeyÞ þ d−ðeyÞÞ ðB13Þ

Dð1Þ
xy ðhexheyÞ ¼ 0 ðB14Þ

Dð1Þ
xz ðhexheyÞ ¼

i
2
ðdþðeyÞ − d−ðeyÞÞ ðB15Þ

or

Dð1Þ
xx ðheyhexÞ ¼

1

2
ðdþðeyÞ þ d−ðeyÞÞ ðB16Þ

Dð1Þ
xy ðheyhexÞ ¼ −

1

4
ðdþðexÞ − d−ðexÞÞðdþðeyÞ − d−ðeyÞÞ

ðB17Þ

Dð1Þ
xz ðheyhexÞ ¼

i
4
ðdþðexÞ þ d−ðexÞÞðdþðeyÞ − d−ðeyÞÞ

ðB18Þ

depending on whether the first factor of the holonomy
hv00→v0→v is oriented along the x-axis or the y-axis. When
passing to the final form of the operator on the reduced
Hilbert space, one has to take into account the orientation of
the edges specified in Table I, using the relations
dþðe−1i Þ ¼ d−ðeiÞ and d−ðe−1i Þ ¼ dþðeiÞ whenever neces-
sary. In this way one obtains the results given by
Eqs. (B19)–(B27) below. The remaining components of
the operator ΔabEiðSc; vÞ can be derived from these
equations by considering cyclic permutations of x, y,
and z, and using the fact that the operator is symmetric
in a and b.

TABLE I. The eight parallel transported flux operators out of
which the operator ΔxyEiðSa; vÞ is constructed.

ẼiðSaðv00Þ; vÞv00→v0→v hv00→v0→v h−1v00→v0→v

ẼiðSaðvþþ
xy Þ; vÞvþþ

xy →vþx →v h−1eþx h
−1
eþþ
y

heþþ
y
heþx

ẼiðSaðvþþ
xy Þ; vÞvþþ

xy →vþy →v h−1eþy h
−1
eþþ
x

heþþ
x
heþy

ẼiðSaðvþ−
xy Þ; vÞvþ−

xy →vþx →v h−1eþx he
þ−
y

h−1eþ−
y
heþx

ẼiðSaðvþ−
xy Þ; vÞvþ−

xy →v−y→v he−y h
−1
eþ−
x

heþ−
x
h−1e−y

ẼiðSaðv−þxy Þ; vÞv−þxy →v−x→v he−x h
−1
e−þy

he−þy h−1e−x
ẼiðSaðvþ−

xy Þ; vÞv−þxy →vþy →v h−1eþy he
−þ
x

h−1e−þx heþy
ẼiðSaðv−−xy Þ; vÞv−−xy →v−x→v he−x he−−y h−1e−−y h−1e−x
ẼiðSaðv−−xy Þ; vÞv−−xy →v−y→v he−y he−−x h−1e−−x h−1e−y
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ΔxyExðSx;vÞ ¼
1

16
ðdþðeþþ

yx Þ þ d−ðeþþ
yx Þ þ dþðeþy Þ þ d−ðeþy ÞÞpxðvþþ

xy Þ

−
1

16
ðdþðeþ−

yx Þ þ d−ðeþ−
yx Þ þ dþðe−y Þ þ d−ðe−y ÞÞpxðvþ−

xy Þ

−
1

16
ðdþðe−þyx Þ þ d−ðe−þyx Þ þ dþðeþy Þ þ d−ðeþy ÞÞpxðv−þxy Þ

þ 1

16
ðdþðe−−yx Þ þ d−ðe−−yx Þ þ dþðe−y Þ þ d−ðe−y ÞÞpxðv−−xy Þ ðB19Þ

ΔxyEyðSx; vÞ ¼ −
1

32
ðdþðeþþ

yx Þ − d−ðeþþ
yx ÞÞðdþðeþx Þ − d−ðe−x ÞÞpxðvþþ

xy Þ

−
1

32
ðdþðeþ−

yx Þ − d−ðeþ−
yx ÞÞðdþðeþx Þ − d−ðeþx ÞÞpxðvþ−

xy Þ

−
1

32
ðdþðe−þyx Þ − d−ðe−þyx ÞÞðdþðe−x Þ − d−ðe−x ÞÞpxðv−þxy Þ

−
1

32
ðdþðe−−yx Þ − d−ðe−−yx ÞÞðdþðe−x Þ − d−ðe−x ÞÞpxðv−−xy Þ ðB20Þ

ΔxyEzðSx; vÞ ¼ þ i
32

½ðdþðeþþ
yx Þ − d−ðeþþ

yx ÞÞðdþðeþx Þ þ d−ðeþx ÞÞ þ 2ðdþðeþy Þ − d−ðeþy ÞÞ�pxðvþþ
xy Þ

þ i
32

½ðdþðeþ−
yx Þ − d−ðeþ−

yx ÞÞðdþðeþx Þ þ d−ðeþx ÞÞ þ 2ðdþðe−y Þ − d−ðe−y ÞÞ�pxðvþ−
xy Þ

−
i
32

½ðdþðe−þyx Þ − d−ðe−þyx ÞÞðdþðe−x Þ þ d−ðe−x ÞÞ þ 2ðdþðeþy Þ − d−ðeþy ÞÞ�pxðv−þxy Þ

−
i
32

½ðdþðe−−yx Þ − d−ðe−−yx ÞÞðdþðe−x Þ þ d−ðe−x ÞÞ þ 2ðdþðe−y Þ − d−ðe−y ÞÞ�pxðv−−xy Þ ðB21Þ

ΔxyExðSy; vÞ ¼ −
1

32
ðdþðeþþ

xy Þ − d−ðeþþ
xy ÞÞðdþðeþy Þ − d−ðeþy ÞÞpyðvþþ

xy Þ

−
1

32
ðdþðeþ−

xy Þ − d−ðeþ−
xy ÞÞðdþðe−y Þ − d−ðe−y ÞÞpyðvþ−

xy Þ

−
1

32
ðdþðe−þxy Þ − d−ðe−þxy ÞÞðdþðeþy Þ − d−ðeþy ÞÞpyðv−þxy Þ

−
1

32
ðdþðe−−xy Þ − d−ðe−−xy ÞÞðdþðe−y Þ − d−ðe−y ÞÞpyðv−−xy Þ ðB22Þ

ΔxyEyðSy; vÞ ¼
1

16
ðdþðeþþ

xy Þ þ d−ðeþþ
xy Þ þ dþðeþx Þ þ d−ðeþx ÞÞpyðvþþ

xy Þ

−
1

16
ðdþðeþ−

xy Þ þ d−ðeþ−
xy Þ þ dþðeþx Þ þ d−ðeþx ÞÞpyðvþ−

xy Þ

−
1

16
ðdþðe−þxy Þ þ d−ðe−þxy Þ þ dþðe−x Þ þ d−ðe−x ÞÞpyðv−þxy Þ

þ 1

16
ðdþðe−−xy Þ þ d−ðe−−xy Þ þ dþðe−x Þ þ d−ðe−x ÞÞpyðv−−xy Þ ðB23Þ
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ΔxyEzðSy; vÞ ¼ −
i
32

½2ðdþðeþx Þ − d−ðeþx ÞÞ þ ðdþðeþþ
xy Þ − d−ðeþþ

xy ÞÞðdþðeþy Þ þ d−ðeþy ÞÞ�pyðvþþ
xy Þ

þ i
32

½2ðdþðeþx Þ − d−ðeþx ÞÞ þ ðdþðeþ−
xy Þ − d−ðeþ−

xy ÞÞðdþðe−y Þ þ d−ðe−y ÞÞ�pyðvþ−
xy Þ

−
i
32

½2ðdþðe−x Þ − d−ðe−x ÞÞ þ ðdþðe−þxy Þ − d−ðe−þxy ÞÞðdþðeþy Þ þ d−ðeþy ÞÞ�pyðv−þxy Þ

þ i
32

½2ðdþðe−x Þ − d−ðe−x ÞÞ þ ðdþðe−−xy Þ − d−ðe−−xy ÞÞðdþðe−y Þ þ d−ðe−y ÞÞ�pyðv−−xy Þ ðB24Þ

ΔxyExðSz; vÞ ¼ −
i
32

½2ðdþðeþþ
yx Þ − d−ðeþþ

yx ÞÞ þ ðdþðeþþ
xy Þ þ d−ðeþþ

xy ÞÞðdþðeþy Þ − d−ðeþy ÞÞ�pzðvþþ
xy Þ

−
i
32

½2ðdþðeþ−
yx Þ − d−ðeþ−

yx ÞÞ þ ðdþðeþ−
xy Þ þ d−ðeþ−

xy ÞÞðdþðe−y Þ − d−ðe−y ÞÞ�pzðvþ−
xy Þ

þ i
32

½2ðdþðe−þyx Þ − d−ðe−þyx ÞÞ þ ðdþðe−þxy Þ þ d−ðe−þxy ÞÞðdþðeþy Þ − d−ðeþy ÞÞ�pzðv−þxy Þ

þ i
32

½2ðdþðe−−yx Þ − d−ðe−−yx ÞÞ þ ðdþðe−−xy Þ þ d−ðe−−xy ÞÞðdþðe−y Þ − d−ðe−y ÞÞ�pzðv−−xy Þ ðB25Þ

ΔxyEyðSz; vÞ ¼ þ i
32

½ðdþðeþþ
yx Þ þ d−ðeþþ

yx ÞÞðdþðeþx Þ − d−ðeþx ÞÞ þ 2ðdþðeþþ
xy Þ − d−ðeþþ

xy ÞÞ�pyðvþþ
xy Þ

−
i
32

½ðdþðeþ−
yx Þ þ d−ðeþ−

yx ÞÞðdþðeþx Þ − d−ðeþx ÞÞ þ 2ðdþðeþ−
xy Þ − d−ðeþ−

xy ÞÞ�pyðvþ−
xy Þ

þ i
32

½ðdþðe−þyx Þ þ d−ðe−þyx ÞÞðdþðe−x Þ − d−ðe−x ÞÞ þ 2ðdþðe−þxy Þ − d−ðe−þxy ÞÞ�pyðv−þxy Þ

−
i
32

½ðdþðe−−yx Þ þ d−ðe−−yx ÞÞðdþðe−x Þ − d−ðe−x ÞÞ þ 2ðdþðe−−xy Þ − d−ðe−−xy ÞÞ�pyðv−−xy Þ ðB26Þ

ΔxyEzðSz; vÞ ¼
1

32
ðdþðeþþ

yx Þ þ d−ðeþþ
yx ÞÞðdþðeþx Þ þ d−ðeþx ÞÞpzðvþþ

xy Þ

þ 1

32
ðdþðeþþ

xy Þ þ d−ðeþþ
xy ÞÞðdþðeþy Þ þ d−ðeþy ÞÞpzðvþþ

xy Þ

−
1

32
ðdþðeþ−

yx Þ þ d−ðeþ−
yx ÞÞðdþðeþx Þ þ d−ðeþx ÞÞpzðvþ−

xy Þ

−
1

32
ðdþðeþ−

xy Þ þ d−ðeþ−
xy ÞÞðdþðe−y Þ þ d−ðe−y ÞÞpzðvþ−

xy Þ

−
1

32
ðdþðe−þyx Þ þ d−ðe−þyx ÞÞðdþðe−x Þ þ d−ðe−x ÞÞpzðv−þxy Þ

−
1

32
ðdþðe−þxy Þ þ d−ðe−þxy ÞÞðdþðeþy Þ þ d−ðeþy ÞÞpzðv−þxy Þ

þ 1

32
ðdþðe−−yx Þ þ d−ðe−−yx ÞÞðdþðe−x Þ þ d−ðe−x ÞÞpzðv−−xy Þ

þ 1

32
ðdþðe−−xy Þ þ d−ðe−−xy ÞÞðdþðe−y Þ þ d−ðe−y ÞÞpzðv−−xy Þ ðB27Þ
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