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The failure to calculate the vacuum energy is a central problem in theoretical physics. Presumably the
problem arises from the insistent use of effective field theory reasoning in a context that is well beyond its
intended scope. If one follows this path, then one is led inevitably to statistical or anthropic reasoning for
observations. It appears that a more palatable resolution of the vacuum energy problem requires some form
of UV/IR feedback. In this paper we take the point of view that such feedback can be thought of as arising
by defining a notion of quantum space-time. We reformulate the regularized computation of vacuum energy
in such a way that it can be interpreted in terms of a sum over elementary phase space volumes, that
we identify with a ground state degeneracy. This observation yields a precise notion of UV/IR feedback,
while leaving a scale unfixed. Here we argue that holography can be thought to provide a key piece
of information: we show that equating this microscopic ground state degeneracy with macroscopic
gravitational entropy yields a prediction for the vacuum energy that can easily be consistent with
observations. Essentially, the smallness of the vacuum energy is tied to the large size of the Universe. We
discuss how within this scenario notions of effective field theory can go so wrong.

DOI: 10.1103/PhysRevD.107.126016

The success of the standard models of particle physics
and of cosmology are unquestionable. And yet, vexing
problems remain, often associated with apparent hierar-
chies of scales. In the absence of gravity in our description,
effective field theory (EFT) methods are expected to apply
and in fact are foundational in the way that we think of
quantum field theoretic physics [1]. In recent years how-
ever, it has become increasingly clear that the nature of the
vacuum in gauge theories and gravity is much richer than
previously thought [2,3] (see also [4,5]). In addition, it is
without a doubt that holography and related quantum
information theoretic ideas are important ingredients in
our understanding of gravity and are expected to play a

central role in a quantum theory [6]. It is natural to ask if
each of these concepts are important for the central
gravitational hierarchy problem, that of the vacuum energy
density, and if they complicate the application of EFT
methods [7,8].
There are many extant reviews on the vacuum energy

density problem [9–13]. The basic prediction (of effective
field theory) is that this scales as the fourth power of a
momentum space cutoff. This prediction differs exponen-
tially from the observed value unless that cutoff is signifi-
cantly smaller than expected. It is also notable that
perturbative string theory seemingly ameliorates the prob-
lem through its ultraviolet finiteness (certainly a non-EFT
property) and yet offers no solution as an arbitrary cutoff is
simply replaced by the string mass scale, as pointed out by
Polchinski long ago [14,15]. Much effort has gone into
explaining away the problem by anthropic or statistical
reasoning but to most these ideas [10,13], if they could
be convincingly implemented, would be disappointing.
Clearly, a resolution of the problem within traditional
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EFT is impossible. As mentioned briefly by Polchinski in
his review [13] and by others, the vacuum energy density
problem seems to point to some feedback mechanism
between the ultraviolet (UV) and infrared (IR). An imple-
mentation of this mechanism, as far as we are aware, has
never been offered.
In this paper, we will introduce such a mechanism. In a

few words, using just prime principles of quantum theory,
we will introduce a way to enumerate the vacua of a
microscopic theory. Essentially this constitutes a novel
regulator for observables (such as the vacuum energy
density) that directly address vacua and it can in particular
be employed to calculate a regulated value of the vacuum
energy density. This calculation involves an undetermined
length scale; this scale can be fixed by equating the
microscopic count of vacua with the macroscopic value
of gravitational entropy. Remarkably, using this informa-
tion for the regulated vacuum energy density yields a
prediction that is consistent with observation. Heuristically
one can say that the holographic bound on entropy
precludes the size of momentum space (and thus effectively
its cutoff) being as large as EFT assumes. These ideas
originate in the realization that the trace involved in the
computation of the vacuum energy can be understood in
terms of phase space geometry. The vacua referred to above
correspond to elementary quantum areas in phase space. A
prime principle of quantum theory is the basis independ-
ence of a trace; in the present context, a judicious choice of
basis (called a modular basis in [16,17]) makes direct
contact with minimal phase space areas. Remarkably, this
quantum area constraint translates to a link between UVand
IR scales.
The standard calculation of the vacuum energy density

proceeds by computing the circle amplitude. This can be
thought of directly in Feynman diagram terms but since the
diagram has no external legs and involves no interactions at
one loop, is equally well expressible using the worldline
formalism, yielding1

ZS1 ¼
Z

∞

0

dτ
2τ

TreiĤτ; ð1Þ

where in this expression Ĥ is the Hamiltonian constraint
and τ the intrinsic length of the worldline. As a trace, we
expect the value of ZS1 to be basis independent. A choice
of basis is equivalent to a choice of polarization of phase
space. In particle theory, it is natural to choose the
momentum basis, and we would write2

ZS1 ¼
Z

∞

0

dτ
2τ

Z
d4p
ð2πÞ4 hpμjeiĤðp̂Þτjpμi; ð2Þ

¼ δð4Þð0Þ
Z

∞

0

dτ
2τ

Z
d4p
ð2πÞ4 e

iHðpÞτ: ð3Þ

We see that this choice of basis yields a singular result. The
standard way to deal with this is well known: one interprets
the momentum space δ function as the space-time volume,

ZS1 ¼
Z

∞

0

dτ
2τ

Z
d4qd4p
ð2πℏÞ4 e

iHðpÞτ: ð4Þ

We note that this casts the trace as an integration over the
classical phase space. The usual treatment is to take the
space-time volume Vq ¼

R
d4q as fixed but finite and treat

the momentum and τ integrals separately (which require
further regularization). It should be emphasized that this
step explicitly uses a standard but singular polarization
of phase space: the Schrödinger polarization in which the
fundamental phase space cell is collapsed onto a line [17].
Integrating over the modular parameter τ reduces the

trace to a sum over on-shell particle states and gives the
familiar result
Z

∞

0

dτ
2τ

Vq

Z
d4p

ð2πℏÞ4 e
iHðpÞτ → Vq

Z
d3p

ð2πℏÞ3
1

2
ωp⃗; ð5Þ

where we have taken HðpÞ ¼ 1
2
ðp2

μ þm2Þ and ℏωp⃗ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
. Recall that the one-loop vacuum amplitude

is related to the circle amplitude by exponentiation,
Zvac ¼ expðZS1Þ ¼ he−iĤT=ℏi, yielding

ZS1 ¼ ρVq=ℏ; ð6Þ
where ρ is the vacuum energy density [14].
As usual, this integral is UV divergent, and implement-

ing a simple cutoff yields a scaling as the cutoff to the
fourth power [8]. We emphasize here that in this compu-
tation, there is an implicit assumption of a unique spatially
translation-invariant ground state, with the momentum p⃗
thought of as a label on the physical particle states that
propagate in a fixed space. This is a possible interpretation
once the τ integration has been done, reducing the trace to a
sum over on-shell particle states. If we had several species
of particles, we would continue with this interpretation,
simply summing over the species.
In perturbative string theory [14,15], the integral over p

comes from the zero modes of the string in flat space-time;
in the limit of a long thin string, the torus amplitude has a
traditional interpretation as an (infinite) sum over particle
states, again with pμ interpreted as the momentum of each
off-shell particle state. In string theory, the τ integral is also
replaced by an integral over the moduli of the torus, which
can be thought of as a complexification of τ.
Having reviewed the standard approach to the vacuum

energy problem, let us return to the formula (4). In the
analogous calculation in string theory, one leaves the
integral over moduli to the end. It is convenient to do

1See for example Sec. 7.3 of [14], pages 216–222.
2By δð4Þð0Þ, we mean the limit limq→0δ

ð4ÞðqÞ of a delta
function in momentum space.
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the same here in the field theory computation, focusing on
the integral

ZðτÞ ¼
Z

d4qd4p
ð2πℏÞ4 e

−p2
μτ=2 ¼ Tre−p̂

2
μτ=2; ð7Þ

where we have Wick rotated to Euclidean signature and
similarly redefined τ, and

ZS1 ¼
Z

∞

0

dτ
2τ

e−m
2τZðτÞ: ð8Þ

By doing so, we are free to regard this trace directly,
without an assumed interpretation in terms of particle states
—it is simply a trace in (four copies of) the Heisenberg
group Hilbert space. In what follows, we will make use of
the expectation that the volume in phase space is related to a
count of the number of degrees of freedom (that is, an
entropy), and indeed we will suggest that the vacuum
energy is bounded by this count.
To proceed, note that we may write

ZðτÞ ¼
Y4
j¼1

�
1

2πℏ

Z
∞

−∞
dqj

Z
∞

−∞
dpje

−p2
j τ=2

�
; ð9Þ

¼
�
λε

2πℏ

X
k;k̃∈Z

Z
1

0

dx
Z

1

0

dx̃ e−ðx̃þkÞ2ε2τ=2
�
4

: ð10Þ

Here we have split the integral over phase space into a sum
over integrals in a finite cell, via p → εx̃, q → λx. The
dimensionful scales λ, ε are arbitrary here. While the
manipulations done above are trivial rearrangements of
the integral, the result on the second line has an inter-
pretation of having done the trace in another basis, a so-
called modular polarization [17–19], which is unitarily
equivalent (via Zak transform) to the momentum basis. One
refers to ðx; x̃Þ ∈ ½0; 1�2 as a modular cell [17]. The sums
over k; k̃ can then be interpreted as counting such modular
cells. In fact it is possible to carry out the quantization
procedure directly in the modular polarization [17], and one
finds that there is one state per cell, characterized by a
function possessing one zero per modular cell. Rewriting
ZðτÞ in the form (10) suggests that the modular cell should
be interpreted as the fundamental minimal area cell in phase
space. That is, we identify

λε ¼ 2πℏ; ð11Þ
which we refer to as the quantum area constraint. Whereas
the area of the modular cell is fixed by this quantum
constraint, its shape is not.3 One might expect the shape to
be determined contextually.

Now of course ZðτÞ is divergent and so we must
introduce a regulator to deal with it further. Here, we will
simply restrict the sums over k; k̃ to a finite range, and write

ZðτÞm:r: ≔
�XNq−1

k¼0

XNp−1

k̃¼0

Z
1

0

dxdx̃ e−ðx̃þkÞ2ε2τ=2
�
4

ð12Þ

where Np and Nq are finite integers. We refer to this as a
modular regularization, but we note that given λ, ε, thenNq

and Np determine the total spatial and momentum size of
the regulated phase space

L ≔ Nqλ; M ≔ Npε: ð13Þ

From this point of view, we have not done anything
nonstandard and have merely cut off the size of both space
and momentum. However, given the interpretation of the
modular cell as a minimal area cell in phase space, and
assigning one quantum degree of freedom to each cell, we
can associate Nq, Np with the total number of degrees of
freedom

N ¼ ðNqNpÞ4 ð14Þ

in four space-time dimensions. This allows us to rewrite
ðλ; ε; Nq; NpÞ in terms of ðL;N; λ;ℏÞ. We note in particular
that combining (14) with (11) and (13), we obtain

LM
2πℏ

¼ N1=4: ð15Þ

This result is unusual: we interpret it to mean that if we
regard N as fixed, then the cutoffs on space and momentum
are not separately arbitrary but are inversely related. This
clearly can be interpreted as a UV/IR mixing phenomenon.
In EFT, there is no such relation, because there is no notion
of finite N.
Let us expand on this point. As we have seen above, the

vacuum partition function ZS1 for a particle scales as the
product of the volume of spacetime and the volume of
momentum space, i.e., as the covariant phase space
volume. It is natural to associate this volume with the
counting of a number of states. In the classical particle
picture, there is one state for each value of the position in
spacetime and each value of 4-momentum. Naively, the
number of states is, therefore, infinite. Both UV and IR
regulators are needed to make the phase space volume
finite, where it becomes the product of two factors, Vq and
Vp ∼M4. In quantum theory, there is a bound on howmany
states we can put in a given finite size phase space, since ℏ
sets the scale for a minimal phase space volume. Therefore,
the finite phase space volume corresponds to a finite
number of quantum states. That is, with an IR and UV
regulator in place, the phase space is compact and the

3More generally one could consider an arbitrary tiling of phase
space, with local values of λ, ε. In this paper, we make a
simplifying choice of homogeneity.
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Hilbert space is finite dimensional [20]. Here N is the
dimension of the Hilbert space.
Returning to the regulated circle amplitude (12), we then

find the corresponding regulated energy density from (6),

ρðτÞm:r: ¼ ℏ

�
εNp

2πℏ
1

Nq

XNq−1

k¼0

Z
1

0

dx̃ e−ðx̃þkÞ2ε2τ=2
�
4

: ð16Þ

We note that all states that make an appreciable contribu-
tion are such that the argument of the exponential in (16) is
small. The τ integration is not expected to change the
scaling, and so we arrive at an upper bound on the vacuum
energy density

ρm:r: ≲ ℏ

�
εNp

2πℏ

�
4

¼ ℏ

�
M
2πℏ

�
4

: ð17Þ

This result is no surprise, as M is the total size of regulated
momentum space; if it is identified as a large mass scale
such as mP, then the usual conundrum pertains.
On the other hand, given the quantum area constraint, the

bound on the energy density can be rewritten as

ρm:r: ≲ ℏ
N
Vq

; ð18Þ

where Vq ≃ L4. As far as we are aware, this formula is new.
We note that it relates the vacuum energy density times
space-time volume, ρVq, to N. Given the form of this
relation, if we interpretN as a count of microscopic degrees
of freedom, it is natural to say that N should be interpreted
as an entropy, in which case the bound on the vacuum
energy density resembles an “equation of state,” ρV ∼ S.
Indeed, in what follows we will equate this entropy with a
macroscopic notion of gravitational entropy. This makes a
direct connection between the microscopic calculation of
the vacuum energy density and (quantum) gravitational
physics and as we will see yields a bound on the
vacuum energy density that is remarkably consistent with
observations.
We reiterate that if we were to identify λ with the

Planck length lP ¼ ffiffiffiffiffiffiffiffiffiffi
ℏGN

p
, and correspondingly ε ∼mP ¼ffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=GN

p
, then this bound corresponds to the usual EFT

result ρ ∼m4
P. However, there is nothing in this construc-

tion that forces us to take λ ∼ lP; λ and ε are constrained
only by the quantum phase space area constraint λε ¼ 2πℏ.
In ordinary quantum mechanics similarly, the shape of a
phase space cell is determined contextually by some
experimental setup. For example, in the context of a
double slit experiment the length scale λ is the distance
between the slits [16]. Often in quantum gravity discus-
sions, some notion of minimal volumes or areas in space-
time is introduced. All such notions are ad hoc, while here

we are introducing minimal volumes in phase space which
have a natural interpretation in quantum theory.
Nevertheless, it is well known that in gravity there is a

concept of entropy which scales as area rather than the
volume of a spatial subregion [21,22]. Furthermore in any
theory of quantum gravity, it is commonly suggested that
this should be thought of as entanglement entropy [6].
Below, we will argue that the missing ingredient in EFT is
this nonextensivity of entropy. We suggest that the holo-
graphic bound on entropy can be thought of as providing a
contextual scale that determines the shape of elementary
phase space cells.
To do so, we will identify N with the gravitational

entropy

Sgrav ¼ l−2
P Area ∼ ðl=lPÞ2; ð19Þ

where l is some characteristic length scale. This identi-
fication can also be phrased in terms of a Bekenstein bound
[23–26], but here we will need only a simple implementa-
tion: we are interested in a space-time with a positive
vacuum energy density, in other words, an asymptotically
de Sitter space-time with its cosmological horizon [22]. In
this case the Bekenstein bound gives the entropy Sgrav of
the cosmological horizon in four space-time dimensions.
Thus we identify the length scale L with the size of the

whole observable Universe l, the cosmological horizon,
l≡ L ¼ Nqλ. Equating Sgrav. with N, Eq. (18) gives

N ∼ l2=l2
P; ð20Þ

which gives us a bound on energy density given by

ρ≲ ℏ

�
lP

l

�
2

l−4
P ¼ ℏ

l2l2
P

ð21Þ

or equivalently (by looking at the Einstein-Hilbert action on
shell), a value for the cosmological constant

Λc:c: ≲ 8πGNρ ∼
1

l2
: ð22Þ

Note that this result does not depend on the characteristic
UV scale represented by lP, but it only depends on the
characteristic IR scale l. This result is also technically
natural, because the value of the cosmological constant
goes to zero as the IR size increases to infinity. The factor
ðlP=lÞ2 provides the needed hierarchy between the
observed energy density and the naive prediction of EFT.
This result is vastly smaller than the naive effective

field theory computation. What has happened? We inter-
pret this result to imply that the holographic bound on
entropy implies a corresponding bound on the vacuum
energy density. Apparently, the naive effective field theory
reasoning overestimates the available phase space by a
large amount, assuming implicitly that entropy is extensive.
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This can be stated in terms of an effective momentum space
size which is set by εNp. Note that whereas Nq is very
large, being associated with the size of the cosmological
horizon, Np is unconstrained and for simplicity can be
taken to be order one. Thus the effective momentum space
size is set approximately by M ∼ ε and given the above
result, we see that

M ∼ ℏl−1
P ðlP=lÞ1=2 ¼

ℏffiffiffiffiffiffiffiffi
llP

p : ð23Þ

Interestingly, this is a macroscopic scale. It implies that the
typical phase space cell is much wider in the space direction
and much thinner in the momentum direction than one
would guess by identifying them with the Planck scales.
One might regard the gravitational entropy as providing a
context for setting these scales. Indeed, if we had an actual
theory of quantum geometry to which we could couple a
quantum field theory, we should expect that this matching
of entropies would be automatic.
To complete the discussion, let us provide some realistic

numbers. The Hubble scale of the visible Universe is
l ∼ 1027m, the Planck length is lP ∼ 10−35m, and thus
N ∼ l2=l2

P ∼ 10124. This formula summarizes our main
point, which is that the size of the Universe is simply
proportional to the number of degrees of freedom in the
Universe and that the Universe is large because it contains a
lot of degrees of freedom. Indeed if the Universe containsN
degrees of freedom then the fluctuations scale as 1=

ffiffiffiffi
N

p
,

and the stability of the Universe condition that the
fluctuations are relatively small translates to the condition
that N is large [27]. The observed vacuum energy density
[28,29] is ½10−3 eV�4, and this value is indeed 10124 smaller
than the naive EFT estimate corresponding to the Planckian
vacuum energy density ½1019 GeV�4. The above geome-
tric mean of the Hubble scale and the Planck length is
λ ∼ ðllPÞ1=2 ∼ 10−4m, which corresponds to the observed
vacuum energy scale of M ∼ 10−3 eV.
In this paper we have introduced the concept of modular

regularization (12). In a quantum theory, the trace that yields
the vacuum energy density will be basis-independent;
any two choices of basis are unitarily related (for example,
the momentum polarization and the modular polarization
are related by Zak transform [17]). In EFT though, we are
tied to a preferred basis, having assumed a fixed classical
space-time. Regulating and performing the trace in terms of
a modular polarization might then be interpreted as intro-
ducing a quantum notion of space-time geometry. The
reader may find it confusing that we have identified the
modular cells with ground states, as in EFT the ground state

is unique. This is not inconsistent though: if the momentum
polarization is thought of as a singular limit in which the
modular cell is squashed, ε → 0 and λ → ∞, then the
information about multiple cells is simply lost in the limit.
Thus by interpreting the trace as a phase space integral in a
modular polarization, we introduce a regulator that retains
the short-distance quantum structure of the phase space. On
the other hand, most EFT calculations (such as of corre-
lation functions) are unaffected by such considerations,
where information about the vacuum energy simply factors
out. But for computations that do directly address vacua,
EFT simply has no mechanism to access a ground state
degeneracy. In standard treatments where we have classical
space-time geometry, one would attempt to calculate an
entropy by referring to a quantum field theory Hilbert
space; it would be interesting to connect our notion of
ground state degeneracy with a regularization of such a
calculation.
In this short paper, we have chosen to present the

concepts in the most straightforward terms. There however
is no obstruction to implementing them in string theory or
other quantum gravitational contexts [30]. For example, we
can implement the same construction in the vacuum energy
computation in perturbative string theory [14,15]. It seems
possible that this can be interpreted in terms of duality-
covariant constructions of string theory [17,19,31–35]. In
such a formulation, a four-dimensional space-time emerges
through a process of extensification [17], with compact
directions remaining of Planckian size and not affecting the
vacuum energy.
Predicting a suitably small vacuum energy is only part of

the cosmological constant problem. It is well known that
there is another aspect, the coincidence problem [10].Having
tied the vacuum energy density to the size of the cosmo-
logical horizon, this problemmay be resolved as well. It will
also be interesting to consider if other hierarchy problems
might be treated by similar methods; in the context of string
theory, we note that there is a relation between the cosmo-
logical constant and the gauge hierarchy problem [36].
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