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We give an explicit gauge invariant, off-shell, and local double copy construction of gravity from Yang-
Mills theory to quartic order. To this end we use the framework of homotopy algebras, and we identify a
rich new algebraic structure associated with color-stripped Yang-Mills theory. This algebra, which is a
generalization of a Batalin-Vilkovisky algebra, is the underlying structure necessary for double copy. We
give a self-contained introduction into these algebras by illustrating them for Chern-Simons theory in three
dimensions. We then construct N ¼ 0 supergravity in the form of double field theory in terms of the
algebraic Yang-Mills building blocks to quartic order in interactions. As applications of the same universal
formula, we rederive the four-graviton scattering amplitude and compute a chiral form of the Courant
algebroid gauge structure of double field theory.
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I. INTRODUCTION

Double copy is a powerful technique to compute gravity
scattering amplitudes from gauge theory amplitudes.
Originally discovered in string theory [1], the first double
copy construction in field theory, proposed by Bern,
Carrasco, and Johansson (BCJ) [2], relates Yang-Mills
theory to Einstein-Hilbert gravity coupled to an antisym-
metric tensor (B-field) and a scalar (dilaton). This gravity
theory is commonly referred to as N ¼ 0 supergravity and,
in view of double copy, is most efficiently formulated as a
double field theory [3–11].
The double copy program relies on a feature of gauge

theory known as “color-kinematics duality” [2,12]. This
refers to the at first “experimental” observation that the
kinematic numerators of Yang-Mills theory can be brought
to a form where they obey the same relations as the color
factors built from structure constants. Since for the color
factors these relations follow from the Jacobi identities of
the color Lie algebra, this observation suggests that there is
a hidden “kinematic” Lie algebra. Despite partial progress
[13–17], this kinematic Lie algebra has remained elusive.
Nevertheless, color-kinematics duality has been proved for
tree-level amplitudes by various indirect methods [18–21].

Moreover, double copy has been tested and applied with
great success for loop-level amplitudes [22–24] and, more
recently, for classical solutions [25–31] including the two-
body problem relevant for black hole inspiral [32–36].
Double copy thus promises a profound new outlook on
classical and quantum gravity, but we are still lacking the
kind of first-principle understanding that would be neces-
sary in order to delineate the exact scope of double copy.
It is therefore highly desirable to have an off-shell

derivation of color-kinematics duality and double copy
starting from a fundamental formulation of the gauge theory,
such as its Lagrangian (see [37–39] for Lagrangian double
copy constructions). In this paper we present an explicit
double copy construction, up to and including quartic
couplings, for Yang-Mills theory in D-dimensional
Minkowski spacetime and recover double field theory
(DFT) to this order. Importantly, our double copy procedure
is manifestly off-shell, gauge invariant, and local. In par-
ticular, locality is important in order to eventually prove loop-
level color-kinematics duality, while gauge invariance is
desirable for treating classical solutions in a manner that
avoids arbitrary gauge choices.
To this end we build on our previous work using the

homotopy algebra formulation of general gauge field
theories [40,41] in order to double copy Yang-Mills theory
to cubic order [42], which here we generalize to quartic
order. The transition to quartic order is indeed a critical test
of any double copy construction, as for instance the algebra
of gauge transformations and its Jacobi identity become
first visible to this order. Following previous important
work by Reiterer [15], we identify a vast hidden algebraic
structure associated with the kinematics of Yang-Mills
theory and use it to construct gauge invariant gravity
(in the form of double field theory) to quartic order.
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This kinematic algebra is a homotopy generalization of a
Batalin-Vilkovisky (BV) algebra, which was proposed by
Reiterer as the algebra explaining color-kinematics duality
for Yang-Mills theory (at least in four dimensions in the
Euclidean signature).1 We have every reason to believe that
eventually this double copy construction of gravity from
Yang-Mills theory will be extendable to all orders.
Accomplishing this program will amount to a complete
first-principle understanding of double copy.
The algebraic structures to be discussed in this paper

must appear rather arcane to the general theoretical physi-
cist (they certainly did so to the present authors not too long
ago), but we will give a completely self-contained intro-
duction. In particular, one can illustrate all essential ingre-
dients in the much simpler context of three-dimensional
Chern-Simons theory, for which at least part of the
kinematic Lie algebra was recently identified by Ben-
Shahar and Johansson in [17]. Remarkably, Chern-
Simons theory shows precisely the same structure as
Yang-Mills theory, with the one exception that for the
latter the algebraic structures are generically “up to homo-
topy,” a notion that we will explain shortly.
In the remainder of the Introduction we briefly sketch the

main technical ingredients needed for our double copy
construction, and we describe how to push it beyond cubic
order. In the framework of homotopy algebras one encodes
a Lagrangian field theory in terms of a cyclic L∞ algebra
(also called strongly homotopy Lie algebras [44]), for
which the action for fields ψ reads [41]

S ¼ 1

2
hψ ; B1ðψÞi þ

1

3!
hψ ; B2ðψ ;ψÞi þ

1

4!
hψ ; B3ðψ ;ψ ;ψÞi

þ � � � : ð1:1Þ

Here B1, B2, B3, etc., are multilinear maps of fields (and
gauge parameters and other data defining a field theory),
while h; i denotes an inner product. The L∞ maps are
subject to quadratic generalized Jacobi identities, and the
inner product obeys suitable cyclicity conditions, which
together ensure gauge invariance and general consistency
conditions of the field theory. It must be emphasized that,
for concrete theories, the L∞ maps B1, B2, etc., are just
local expressions of fields so that (1.1) reproduces the
familiar actions of field theory. The point is simply that the
above provides an algebraic formulation of the consistency
conditions of gauge field theories in terms of L∞ alge-
bras [41].
Given this algebraic perspective one can give a perfectly

meaningful interpretation of “color-stripping” the action of
Yang-Mills theory. By writing out the color indices in the
L∞ maps of Yang-Mills theory, the latter can be written as

SYM ¼ 1

2
hAa;m1ðAaÞi þ 1

6
fabchAa;m2ðAb; AcÞi

þ 1

12
fabefcdehAa;m3ðAb; Ac; AdÞi; ð1:2Þ

where fabc are the structure constants of the color Lie
algebra. This gives rise to linear, bilinear, and trilinear maps
m1, m2, and m3, respectively, which define an algebra of
their own without any color structure. We have thus split
the vector space of fields into a tensor product K ⊗ g,
where g denotes the color Lie algebra, while K is the space
of “kinematic” Yang-Mills structures. These maps satisfy
relations such as m2

1 ¼ 0, which together with the Jacobi
identity for fabc imply gauge invariance of the action. More
precisely, m1, m2, and m3 define on K a graded commu-
tative algebra up to homotopy, called C∞ algebra for short
[45]. This means in particular that m2 defines a graded
commutative product that is associative up to corrections
governed by m1 and m3. We note that three-dimensional
Chern-Simons theory takes the same form (1.2) except that
in this case m3 vanishes, while m1, which involves □ for
Yang-Mills theory, reduces to the de Rham differential.
Consequently, the C∞ algebra of Chern-Simons theory is
just the associative algebra of differential forms.
The Yang-Mills action we will use is of the standard

textbook form, except that it features one auxiliary scalar in
order to isolate a kinetic term involving the d’Alembert
operator □ in a gauge invariant manner. This has the
important consequence that there is a second nilpotent
operator b, of opposite degree to m1, that acts in a purely
algebraic manner and satisfies

m1bþ bm1 ¼ □: ð1:3Þ

This second “differential” does not, however, act as a
derivation on the product m2. Rather, the failure of b to do
so defines a new structure. Setting

b2 ¼ bm2 −m2b; ð1:4Þ

with a notation to be made precise below, one obtains a
bracket b2 that fails to obey the Jacobi identity, and hence to
define a Lie algebra, by certain controlled maps. A new
source of failure originates from (1.3) and denotes terms of
the structural form A∂μB∂μC. An algebraic structure encod-
ing these so-called □-failures was proposed by Reiterer
[15], and following his terminology we refer to it as a BV□

∞
algebra. This indeed appears to be the structure extending
color-kinematics duality and enabling double copy beyond
scattering amplitudes. In particular, we will show that a
compatibility condition between the bracket b2 and the
product m2, which is part of the BV□

∞ axioms, reduces to
the iconic relation ns þ nt þ nu ¼ 0 for the kinematic
numerators of the four-point Yang-Mills amplitude.

1Specifically, Reiterer employs a first-order formulation of
Yang-Mills theory that requires self-dual two-forms and is hence
specific to four dimensions; see also Costello [43].
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A BV□
∞ algebra is present purely on the kinematic vector

space K of Yang-Mills theory, as we will prove by
computing the explicit maps up to and including trilinear
maps. (Unfortunately, we are not aware of a compact
definition of BV□

∞ algebras with maps carrying an arbitrary
number of inputs.) Based on this we can double copy by
introducing a second copy K̄, whose corresponding maps
are denoted by a bar, and taking the tensor product K ⊗ K̄.
This space consists of functions of a doubled set of
coordinates, say x associated with K and x̄ associated with
K̄. Restricting to the subspace that is annihilated by
b− ≔ 1

2
ðb ⊗ 1 − 1 ⊗ b̄Þ, and restricting to functions that

are “strongly constrained” in the sense of DFT, so that
□ ¼ □ acting on any functions and products of functions,
one can determine an L∞ structure, and hence a consistent
classical field theory, in the form of DFT. In this the
□–failures on the Yang-Mills side translate to “failures by
□ −□” on the gravity side, but here they are eliminated by
the “section constraints” of DFT, giving rise to a genuine
L∞ algebra. Specifically, the L∞ maps B1, B2, B3, etc.,
defining the DFT action in the form (1.1), are defined from
the Yang-Mills ingredients as follows: The differential is
given by B1 ¼ m1 þ m̄1, while the two-bracket can be
written as

B2 ¼
1

4
ðm2 ⊗ b̄2 − b2 ⊗ m̄2Þ: ð1:5Þ

Note that for the special case that m2 defines a strictly
commutative associative algebra and that b2 defines a Lie
algebra, each term here takes the form of a familiar tensor
product of a commutative times a Lie algebra, giving a new
Lie algebra. Since m2 and b2 are not strict, the above B2

does not define a genuine Lie algebra, but it defines an L∞
algebra whose B3 can be expressed in terms of the Yang-
Mills ingredients, giving a result of the schematic form
B3 ∝ b3 ⊗ m̄2m̄2 þm2m2 ⊗ b̄3 þ � � �. We give the explicit
algebraic formula for B3 in Eq. (4.30) below, which is one
of the core technical results of this paper. This formula for
B3 encodes not only the quartic interactions but all data
relevant for the quartic theory, such as the three-bracket of
the higher gauge algebra of DFT. We test and apply this
formula, first, by computing the three-bracket of the
Courant-type gauge algebra of DFT in a chiral basis
and, second, by rederiving the four-graviton scattering
amplitude in terms of squares of Yang-Mills amplitudes.
The rest of this paper is organized as follows. In Sec. II

we take the opportunity to introduce the “strict version” of
these algebraic structures by reviewing the Chern-Simons
theory and its recently identified kinematic Lie algebra
[17]. We then turn in Sec. III to genuine Yang-Mills theory
and identify the BV□

∞ algebra on its kinematic vector space
K, displaying and proving its defining relations up to and
including trilinear maps. These results are used in Sec. IV

to double copy Yang-Mills theory by rederiving B2 and
computing the new B3. Furthermore, we test our algebraic
formula for B3 by computing the four-graviton amplitude
and the three-bracket of the gauge algebra. In Sec. V
we close with brief conclusions and an outlook, while in
Appendix Awe collect all maps of the BV□

∞ algebra, and in
Appendix B we give a self-contained summary of BV∞
algebras [46] without □–failures.

II. CHERN-SIMONS THEORY
AS A BV ALGEBRA

In this section we review three-dimensional Chern-
Simons theory and its kinematic Lie algebra, which was
recently uncovered by Ben-Shahar and Johansson [17], as a
way of introducing the strict versions of the algebraic
structures to be employed below for Yang-Mills theory. In
this we only assume familiarity with differential forms.

A. Chern-Simons theory

Differential forms form a vector space that in three
dimensions is given by Ω• ¼ ⨁3

p¼0Ωp, where Ωp is the
space of p-forms. (Here one permits the sum of differential
forms of different degrees, but usually it is understood that
we consider homogeneous elements of a fixed degree.)
One says that Ω• carries an integer grading given by the
form degree, and further that it is a chain complex: a
sequence of vector spaces connected by a map d (the
differential) acting as

0 ⟶ Ω0 ⟶
d

Ω1 ⟶
d

Ω2 ⟶
d

Ω3 ⟶ 0;

ð2:1Þ

where d2 ¼ 0. For differential forms, d is the de
Rham differential acting in the familiar fashion via
d ¼ dxμ∂μ; e.g., for a one-form u ¼ uνdxν we have
du ¼ ∂μuνdxμ ∧ dxν. The chain complex (2.1) is known
as the de Rham complex (in three dimensions).
The de Rham differential is a linear map, but importantly

the de Rham complex also carries a nonlinear algebraic
structure given by the wedge product ∧. It is defined in the
familiar fashion, e.g., on one-forms u1;2 ¼ u1;2μdxμ as
u1 ∧ u2 ¼ u1μu2νdxμ ∧ dxν. The wedge product is asso-
ciative, obeys a Leibniz rule with respect to d, and is graded
symmetric. In order to display these relations in an abstract
form that makes the generalization to homotopy versions
below more transparent, we now set for arbitrary u; v ∈ Ω•

m1ðuÞ ≔ du; m2ðu; vÞ ≔ u ∧ v: ð2:2Þ

Denoting the degree of a (homogeneous) element u by juj,
i.e., for u ∈ Ωp we have juj ¼ p, the above maps obey
jm1ðuÞj ¼ juj þ 1 and jm2ðu; vÞj ¼ juj þ jvj. We then say
that the intrinsic degrees of m1 and m2 are jm1j ¼ 1 and
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jm2j ¼ 0, respectively. The product is graded symmetric or
graded commutative in the sense that

m2ðu1; u2Þ ¼ ð−1Þu1u2m2ðu2; u1Þ; ð2:3Þ

where in exponents we use the shorthand notation
ð−1Þu1u2 ≡ ð−1Þju1jju2j. This relation expresses the (anti)
commutativity of the wedge product. Similarly, the nilpo-
tency of d, the Leibniz rule between d and ∧, and the
associativity ðu ∧ vÞ ∧ w ¼ u ∧ ðv ∧ wÞ now read

m2
1 ¼ 0;

m1ðm2ðu; vÞÞ −m2ðm1ðuÞ; vÞ − ð−1Þum2ðu;m1ðvÞÞ ¼ 0;

m2ðm2ðu; vÞ; wÞ −m2ðu;m2ðv; wÞÞ ¼ 0:

ð2:4Þ

In general, a chain complex with differential m1 equipped
with a graded commutative and associative map m2

satisfying (2.3) and (2.4) is called a differential graded
commutative algebra (dgca), which is a special case (the
strict version) of a C∞ algebra.
We next turn to the Chern-Simons theory and introduce

the Lie algebra g of its “color” gauge group. We denote the
structure constants by fabc, which obey the Jacobi identity
f½abdfc�de ¼ 0, and the generators by ta. One then defines a
new chain complex X• ¼ ⨁3

i¼0X
i, where

Xi ≔ Ωi ⊗ g: ð2:5Þ

By this we just mean that the differential forms are
promoted to forms taking values in the Lie algebra g.
For instance, for a g-valued one-form we write

A ¼ Aμ
adxμ ⊗ ta ¼ Aata ∈ X1; ð2:6Þ

with the understanding that Aa is a one-form. The differ-
ential m1 ¼ d extends to a differential on X• that we also
call d and that acts as dA ¼ dðAaÞ ⊗ ta and of course still
obeys d2 ¼ 0. Similarly, the “two-product” m2 of the dgca
extends to a “two-bracket” defined by

½A1; A2� ≔ m2ðAb
1; A

c
2Þfbca ⊗ ta; ð2:7Þ

which due to the structure constants is now graded
antisymmetric,

½A1; A2� ¼ ð−1ÞA1A2þ1½A2; A1�: ð2:8Þ

Thanks to the dgc structure on Ω• and the Lie algebra
structure of g, the above complex inherits the structure of a
differential graded Lie algebra (dgLa), which is a special
case (the strict version) of an L∞ algebra. This means that d
and ½·; ·� obey

d2 ¼ 0;

d½A1; A2� − ½dA1; A2� − ð−1ÞA1 ½A1; dA2� ¼ 0;

½½A1; A2�; A3� þ ð−1ÞA1ðA2þA3Þ½½A2; A3�; A1� þ ð−1ÞA3ðA1þA2Þ½½A3; A1�; A2� ¼ 0; ð2:9Þ

the last relation being the graded Jacobi identity.
Given a dgLa (or in fact an L∞ algebra) one can define a

(classical) field theory, which has an action provided there
is an inner product or pairing h·; ·i∶ Xi ⊗ X3−i → R for
i ¼ 0, 1, 2, 3, obeying the “cyclicity conditions” that

hA1; ½A2; A3�i and hA1; dA2i ð2:10Þ

are completely graded antisymmetric. This implies, in
particular, that if A1, A2, A3 are all of degree one the
trilinear object h½A1; A2�; A3i is totally symmetric under
permutations of 123. For the above dgLa an inner product
exists whenever the Lie algebra g carries an invariant
quadratic form κab, because for A ∈ Xi, B ∈ X3−i we can
integrate the three-form A ∧ B over the three-manifold
underlying the de Rham complex:

hA;Bi ≔ κab

Z
Aa ∧ Bb: ð2:11Þ

Cyclicity follows by discarding total derivatives and using
that κab is invariant, which in turn implies that fabc ≔
κadfdbc is totally antisymmetric.
We can now write the Chern-Simons action for a

g-valued one-form A ∈ X1 just in terms of the above
structures:

S ¼ 1

2
hA; dAi þ 1

3!
hA; ½A; A�i: ð2:12Þ

Using the axioms (2.9) of a dgLa, together with cyclicity,
one quickly verifies that this theory is gauge invariant, with
gauge transformations and field equations, respectively,
given by

δA ¼ dλþ ½A; λ�; FðAÞ ≔ dAþ 1

2
½A; A� ¼ 0; ð2:13Þ

where λ ∈ X0 is the gauge parameter. Since F ∈ X2 defines
the field equations, we can think of X2 as the “space of field
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equations” or, in line with the BV formalism, as the space
of antifields. Furthermore, since the expression of the
Bianchi or Noether identity dF þ ½A;F� ¼ 0 is a three-
form we can view X3 as the “space of Noether identities.”
This algebraic interpretation extends to arbitrary gauge
field theories, possibly with further spaces encoding gauge-
for-gauge symmetries, etc., and generally with a genuine
L∞ algebra instead of a dgLa.
Returning to the dgca that defined the dgLa as the tensor

product with the color Lie algebra g via (2.7), one may say
that the algebra of differential forms is the “kinematic
algebra” of Chern-Simons theory in the sense that this is
what is left after “stripping off color.” It must be empha-
sized, however, that this is not the “kinematic Lie algebra”
of amplitudes. In the remainder of this section we will
uncover the latter, following and generalizing [17].

B. BV algebra and kinematic Lie algebra

The additional structure needed to identify the kinematic
Lie algebra only reveals itself once we give up the mani-
fest topological invariance of Chern-Simons theory by
introducing a fiducial metric gμν, as indeed is necessary
whenever one performs quantization and gauge fixing.
Given such a metric, which we assume to be of Lorentzian
signature ð−;þ;þÞ, one has the Hodge duality operation
⋆∶ Ωp → Ω3−p, in terms of which one can define the
adjoint d† to the de Rham differential. Defining the inner
product on p-forms u1; u2 ∈ Ωp:

ðu1; u2Þ ≔
Z

u1 ∧ ⋆u2; ð2:14Þ

one demands, for a (p − 1)-form u and a p-form v, that

ðdu; vÞ ¼ ðu; d†vÞ: ð2:15Þ

From this definition it follows that d† decreases the form
degree by one and is also nilpotent: ðd†Þ2 ¼ 0. Thus, the de
Rham complex carries now a second “differential,” whose
degree is opposite to that of d. Using ⋆2 ¼ −1 one finds the
explicit expression d†u ¼ ð−1Þu⋆d⋆u for any form u. In
line with the notation of later sections we also denote

b ≔ −d†; ð2:16Þ

because this obeys the same relations as the “b-ghost” in
string field theory. In particular, this operator of intrinsic
degree jbj ¼ −1 obeys b2 ¼ 0 and anticommutes with d
into the d’Alembert operator:

fd; bg ¼ −dd† − d†d ¼ □: ð2:17Þ

Given the second differential b ¼ −d† we can ask
whether it acts as a derivation, i.e., whether it obeys
a Leibniz rule with respect to m2 (the wedge product).

This turns out not to be the case. Rather, the failure of b to
act as a derivation defines an interesting new structure:
Setting

b2ðu1; u2Þ ≔ ð−1Þu1ðbm2ðu1; u2Þ −m2ðbu1; u2Þ
− ð−1Þu1m2ðu1; bu2ÞÞ; ð2:18Þ

one obtains a degree −1 graded antisymmetric bracket with
respect to a degree shifted by one,

b2ðu1; u2Þ ¼ −ð−1Þðu1þ1Þðu2þ1Þb2ðu2; u1Þ; ð2:19Þ

that furthermore obeys a graded Jacobi identity and Leibniz
rule. More precisely, with the same degree-one shift we
have a Leibniz rule of the form

bðb2ðu1; u2ÞÞ ¼ b2ðbu1; u2Þ þ ð−1Þu1þ1b2ðu1; bu2Þ;
ð2:20Þ

which follows quickly just using the definition (2.18) and
b2 ¼ 0. Moreover, we have the graded Jacobi identity

b2ðb2ðu1; u2Þ; u3Þ þ ð−1Þðu1þ1Þðu2þu3Þb2ðb2ðu2; u3Þ; u1Þ
þ ð−1Þðu3þ1Þðu1þu2Þb2ðb2ðu3; u1Þ; u2Þ ¼ 0; ð2:21Þ

and a compatibility condition between m2 and b2:

b2ðu1; m2ðu2; u3ÞÞ ¼ m2ðb2ðu1; u2Þ; u3Þ
þ ð−1Þðu1þ1Þu2m2ðu2; b2ðu1; u3ÞÞ:

ð2:22Þ

These two relations are quite nontrivial and have to be
verified by explicit computations using the wedge product
∧ and d†.
The above is an example of a Batalin-Vilkovisky algebra

(or BValgebra for short): This is a graded vector space with
a degree- (−1) differential b obeying b2 ¼ 0 (a chain
complex) equipped with a graded commutative and asso-
ciative product m2, and a differential graded Lie algebra
structure with differential b and Lie bracket b2 satisfying
the compatibility condition (2.22) between m2 and b2.
[Upon ignoring the differential, a BV algebra is known as
Gerstenhaber algebra, which is a generalization of the
Poisson algebra of functions on phase space. Here the
product is just the ordinary product of functions and the Lie
bracket is the Poisson bracket, which indeed satisfies the
compatibility condition (Poisson identity).]
This definition, as well as the explicit check of the two

relations (2.21) and (2.22), can be simplified by noting that
in a BV algebra the differential is of “second order.” To
explain this notion for our special case note that while d† is
defined in terms of a first-order differential operator it does
not act via the Leibniz rule on the wedge product, as noted
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above, and in this sense is of higher order. It is actually of
second order in that it acts like the Laplacian on a product
of functions.2 One can then define a BValgebra as a graded
commutative associative algebra equipped with a differ-
ential of second order. The graded Lie bracket is then a
derived notion, defined as in (2.20) as the failure of the
differential to obey the Leibniz rule with respect to the
graded commutative product. Both the Jacobi identity and
the compatibility condition are consequences of the differ-
ential being second order.
After this abstract discussion let us return to the example

at hand, which actually has the following simple geometric
interpretation. Given the metric we can identify differential
forms with polyvectors (completely antisymmetric contra-
variant tensors) by raising indices. The inner product (2.14)
on forms then gives rise to the natural pairing between a
p-form and a rank-p polyvector. This pairing does not
depend on the full metric but only on the volume form,
whose corresponding density we denote by ρ ¼ ffiffiffiffiffijgjp

. With
(2.15) it then follows that d† is transported to the covariant
divergence on polyvectors, which we denote by Δ, and
which indeed decreases the rank by one. On a rank-p
polyvector uμ1…μp we have

ðΔuÞμ1���μp−1 ≔ ρ−1∂νðρuνμ1���μp−1Þ: ð2:24Þ
This is a differential in that Δ2 ¼ 0 but it does not act via
the Leibniz rule on the wedge product of polyvectors.
Rather, the failure defines the so-called Schouten-Nijenhuis
bracket on polyvectors, which for vector fields reduces to
the familiar Lie bracket generating infinitesimal diffeo-
morphisms. Indeed, setting

½u1; u2� ≔ ð−1Þu1ðΔðu1 ∧ u2Þ − Δu1 ∧ u2

− ð−1Þu1u1 ∧ Δu2Þ; ð2:25Þ

and specializing to vector fields u1 and u2 one finds

½u1; u2�μ ¼ −ðρ−1∂νðρ2u½ν1 uμ�2 Þ − ρ−1∂νðρuν1Þuμ2
þ uμ1ρ

−1
∂νðρuν2ÞÞ

¼ uν2∂νu
μ
1 − uν1∂νu

μ
2; ð2:26Þ

which is the diffeomorphism covariant Lie bracket of
vector fields (in which the volume factors have canceled).

This bracket, and the Schouten–Nijenhuis bracket more
generally, of course satisfy the Jacobi identity. Moreover,
the compatibility condition (2.22) has a simple geometric
interpretation: it means that the wedge product of poly-
vectors is covariant under infinitesimal diffeomorphisms.
Thus, the polyvectors equipped with the wedge product and
the second-order differential Δ form a BV algebra.
As an aside, let us note that in this picture of polyvectors

there is a particularly intuitive way to understand that Δ is
of second order and hence defines a BValgebra. Following
[47] we start by viewing the de Rham complex as functions
of even coordinates xμ and odd anticommuting coordinates
θμ playing the role of dxμ. The expansion of a function
fðx; θÞ reads

fðx; θÞ ¼
X
p

1

p!
fμ1…μpðxÞθμ1 � � � θμp ; ð2:27Þ

and thus this space of functions is equivalent to the de
Rham complex of differential forms. Moreover, the point-
wise product f · g of functions encodes the wedge product
of differential forms. The de Rham differential is now
realized as

d ¼ θμ
∂

∂xμ
; ð2:28Þ

and thus, taking the form of a vector field, acts as a
derivation on the product. Turning then to the chain
complex of polyvector fields, these can be realized as
functions of xμ and new odd variables ϑμ,

Fðx;ϑÞ ¼
X
p

1

p!
Fμ1���μpðxÞϑμ1 � � � ϑμp ; ð2:29Þ

for which the pointwise product yields the wedge product
of polyvectors. The differential given by the above diver-
gence operator Δ is then realized, say for trivial volume
measure ρ ¼ 1, as

Δ ¼ ∂
2

∂xμ∂ϑμ
: ð2:30Þ

This makes it manifest that Δ is of second order with
respect to the wedge product of polyvectors and hence,
in the isomorphic space of differential forms, that d† is
second order.
After this aside, we finally turn to the kinematic Lie

algebra of Chern-Simons theory, which has recently been
identified by Ben-Shahar and Johansson [17] and turns out
to be a small subalgebra of the above BV algebra. To see
this we specialize to the fields of Chern-Simons theory and
impose the condition

bA ¼ 0; ð2:31Þ

2More precisely, d† being of second order means

d†ðuvwÞ ¼ −ðd†uÞvw − ð−1Þuuðd†vÞw − ð−1Þuþvuvd†w

þ d†ðuvÞwþ ð−1Þuud†ðvwÞ þ ð−1Þðuþ1Þvvd†ðuwÞ;
ð2:23Þ

where we left the wedge product implicit. The second order
character of d† is clear in the equivalent space of polyvectors; see
(2.30) below.
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which means that the divergence of the corresponding
vector field vanishes. This is just a standard gauge fixing
condition (as one needs to impose for any quantum
computations). The Lie bracket is closed on divergence-
free vector fields for which it is known as the algebra of
volume preserving diffeomorphisms, which was identified
in [17] as the kinematic Lie algebra of Chern-Simons
theory. The operator b is perfectly suited to impose a gauge
fixing condition, but we see here that there is a rich
algebraic structure whether one imposes bA ¼ 0 or not.
We close this section by pointing out that there is actually

more structure than a BV algebra, because the de Rham
differential d plays no role in the latter. A BV algebra
equipped with a second differential (of opposite degree to
the first) that acts as a derivation on the product is known as
a differential graded BValgebra provided both differentials
anticommute. Here, however, they anticommute to the
d’Alembert operator □; see (2.17). Following Reiterer
we will refer to such a structure as a BV□ algebra.3

While for the considerations in [17] all this extra structure
was not needed, this changes for genuine Yang-Mills
theory in arbitrary dimensions. At least in its known local
formulations, in order to double copy Yang-Mills theory
the full BV□ algebra in its homotopy version, denoted
BV□

∞ in the following, is needed.

III. COLOR-STRIPPED YANG-MILLS
THEORY AND BV□

∞

Pure Yang-Mills theory can be described, as any classical
field theory, by an L∞ algebra [41,45]. Since all fields and
parameters take values in the Lie algebra g of the color
gauge group, this L∞ algebra is given by the tensor product
K ⊗ g, whereK is the color-stripped space containing local
fields and parameters with no color degrees of freedom. It
was shown in [45] that K is endowed with a C∞ algebra
structure. In this section we will show thatK carries a much
larger algebraic structure, named BV□

∞ algebra in [15], up
to three arguments. This algebra is a vast generalization of
the BV algebra associated with Chern-Simons theory [17]
and is the backbone for constructing double field theory to
quartic order via double copy.

A. The C∞ algebra of Yang-Mills

We employ a formulation of Yang-Mills with an aux-
iliary scalar field φ, which only enters in the free theory:

S ¼
Z

dDx

�
1

2
Aμ
a□Aa

μ −
1

2
φaφ

a þ φa∂
μAa

μ

− fabc∂μAa
νAμbAνc −

1

4
feabfecdAa

μAb
νAμcAνd

�
: ð3:1Þ

The cubic and quartic vertices are the standard ones, and
integrating out φ one recovers the usual Yang-Mills action.
This form of the action was derived in [42] from a worldline
theory, which shares some general features with open string
field theory and is used to construct double field theory to
cubic order.
The C∞ algebra of Yang-Mills is the graded vector space

K ¼ ⨁3
i¼0Ki, endowed with a nilpotent differential4 m1 of

degree þ1, together with bilinear and trilinear products m2

of degree zero and m3 of degree −1. The spaces of (color-
stripped) gauge parameters λ, fields A ¼ ðAμ;φÞ, field
equations E ¼ ðEμ; EÞ, and Noether identities N are
organized in the chain complex ðK; m1Þ as follows:

K0 ⟶
m1 K1 ⟶

m1 K2 ⟶
m1 K3

Kð0Þ∶ λ Aμ E

Kð1Þ∶ φ Eμ N

; ð3:2Þ

which shows that K can also be decomposed as the direct
sum of two isomorphic spaces:

K¼Kð0Þ ⊕Kð1Þ; ðλ;Aμ;EÞ ∈Kð0Þ; ðφ;Eμ;N Þ ∈Kð1Þ:

ð3:3Þ
This decomposition, discussed in more detail in [42],
defines an inner product on K as a degree −3 pairing
between Kð0Þ and Kð1Þ given by

hA; Ei ≔
Z

dDxðAμEμ þ φEÞ; hλ;N i ≔
Z

dDxðλN Þ:

ð3:4Þ
Upon tensoring with g, the action (3.1) can be written as

S ¼ 1

2
hAa; m1ðAaÞi þ

1

6
fabchAa; m2ðAb;AcÞi

þ 1

4
feabfecdhAa; m3hðAb;AcjAdÞi ð3:5Þ

in terms of the C∞ inner product, which we will use in the
next section to express the four-gluon amplitude.
The differential m1 encodes the free dynamics in

terms of linear field equations m1ðAÞ ¼ 0, linearized
gauge transformations δA ¼ m1ðλÞ, and Noether identities
m1ðm1ðAÞÞ ¼ 0, and is explicitly realized as

m1ðλÞ ¼
�
∂μλ

□λ

�
∈ K1;

m1

�
Aμ

φ

�
¼

�
∂ · A − φ

□Aμ − ∂μφ

�
∈ K2;

m1

�
E

Eμ

�
¼ □E − ∂

μEμ ∈ K3; ð3:6Þ

3It was also noted in [48] that the BV□ algebra of Reiterer is
present in Chern-Simons theory.

4In our previous paper [42] this was also denoted by Q, as it is
the Becchi-Rouet-Stora-Tyutin operator of a suitable worldline
theory.
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andm1ðN Þ≡ 0 by degree. The productsm2 andm3, evaluated on fields, correspond to the color-stripped cubic and quartic
vertices, respectively:

mμ
2ðA1; A2Þ ¼ ∂ · A1A

μ
2 þ 2A1 · ∂A

μ
2 þ ∂

μA1 · A2 − ð1 ↔ 2Þ;
mμ

3ðA1; A2; A3Þ ¼ A1 · A2A
μ
3 þ A3 · A2A

μ
1 − 2A1 · A3A

μ
2; ð3:7Þ

where we use the shorthand notation Ai · Aj ¼ Aμ
i Ajμ and A · ∂ ¼ Aμ

∂μ. Notice that both belong to K2, which is the space of
equations of motion. The nonvanishing products between arguments other than fields are given in Appendix A. They
encode, for instance, the nonlinear part of the gauge transformations and the gauge algebra. For a detailed discussion of the
C∞ algebra of Yang-Mills we refer to [42]. In the following we will use u1; u2;… to denote generic elements of the vector
space K.
The symmetry property of C∞ products mn is determined by requiring that they vanish on shuffles. With our degree

conventions this reads

m2ðu1; u2Þ − ð−Þu1u2m2ðu2; u1Þ ¼ 0;

m3ðu1; u2; u3Þ − ð−Þu1u2m3ðu2; u1; u3Þ þ ð−Þu1ðu2þu3Þm3ðu2; u3; u1Þ ¼ 0; ð3:8Þ
which for m2 is the same as being graded symmetric. The nontrivial C∞ relations amount to nilpotency of m1, the Leibniz
property of m1 with respect to m2 (m1 is a derivation for m2), and associativity of m2 up to homotopy:

m2
1ðuÞ ¼ 0;

m1ðm2ðu1; u2ÞÞ ¼ m2ðm1ðu1Þ; u2Þ þ ð−Þu1m2ðu1; m1ðu2ÞÞ;
m2ðm2ðu1; u2Þ; u3Þ −m2ðu1; m2ðu2; u3ÞÞ ¼ m1ðm3ðu1; u2; u3ÞÞ þm3ðm1ðu1Þ; u2; u3Þ

þ ð−Þu1m3ðu1; m1ðu2Þ; u3Þ þ ð−Þu1þu2m3ðu1; u2; m1ðu3ÞÞ: ð3:9Þ
Nilpotency of the differential ensures gauge invariance of the linearized theory, while the Leibniz and associativity relations
encode consistency of the color-stripped cubic and quartic interactions, respectively. For our purposes, it will be useful to
redefine the m3 product as

m3hðu1; u2ju3Þ ≔
1

3
ðm3ðu1; u2; u3Þ þ ð−Þu1u2m3ðu2; u1; u3ÞÞ;

m3ðu1; u2; u3Þ ¼ m3hðu1; u2ju3Þ − ð−Þu1ðu2þu3Þm3hðu2; u3ju1Þ: ð3:10Þ

Let us emphasize that m3h contains precisely the same
information as m3, and the latter can indeed be recon-
structed from the former. The redefined product m3h is a
graded hook in the labels, meaning that it is graded
symmetric in the first two inputs (which we highlight by
the vertical bar) and vanishes upon total graded symmet-
rization. Evaluated on Yang-Mills fields it reads

mμ
3hðA1;A2jA3Þ ¼ Aμ

1A2 · A3 − Aμ
2A1 · A3: ð3:11Þ

1. The b operator

It turns out that the C∞ algebra structure of Yang-Mills is
not enough to construct a gravitational theory on the
doubled space K ⊗ K̄. The main additional ingredient is
a second nilpotent differential of degree −1, which we
denote by b. In this formulation of Yang-Mills, the b
operator is the b-ghost of the underlying worldline theory
and acts as a local operator without spacetime derivatives:

b

�
Aμ

φ

�
¼ φ ∈ K0; b

�
E

Eμ

�
¼

�
Eμ

0

�
∈ K1;

bN ¼
�
N

0

�
∈ K2; ð3:12Þ

with bλ≡ 0 by degree counting. This can be visualized on
the complex (3.2) as

ð3:13Þ

with b mapping from Kð1Þ to Kð0Þ ¼ kerðbÞ. More gen-
erally, the defining properties of b are nilpotency and the
commutation relation with the differential m1:
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b2 ¼ 0; m1bþ bm1 ¼ □: ð3:14Þ

The latter defines a generalized Hodge decomposition of
the wave operator □ ¼ ∂

μ
∂μ, which has degree zero and

commutes with bothm1 and b. In this respect b can provide
both a gauge fixing condition, as bA ¼ 0, and the propa-
gator, as b

□
acting on the space of equations (or sources).

We will now show that it is the interplay of the b
differential with theC∞ algebra to give rise to a much richer
algebraic structure on K. The b operator, in fact, is a
generalization of a BV Laplacian. In a standard BValgebra,
the odd Laplacian is a nilpotent second-order differential,
and its failure to be a derivation of the product defines the
BVantibracket. In the present case, one can similarly define
a degree −1 bracket b2 on K by the failure of b to be a
derivation of the C∞ product m2:

b2ðu1; u2Þ ≔ bm2ðu1; u2Þ −m2ðbu1; u2Þ
− ð−Þu1m2ðu1; bu2Þ: ð3:15Þ

Here we changed sign conventions from the previous
section [see Eq. (2.18)] to make b2 graded symmetric:
b2ðu1; u2Þ ¼ ð−Þu1u2b2ðu2; u1Þ, which is more conven-
tional for graded Lie brackets and L∞ algebras. In an
ordinary BV algebra, the second-order nature of the
Laplacian is reflected by the compatibility of the anti-
bracket with the product. Conversely, we can define b to be
second order with respect to m2 if the bracket b2 is
compatible with m2, i.e. if the graded Poisson identity

b2ðv;m2ðu1; u2ÞÞ −m2ðb2ðv; u1Þ; u2Þ
− ð−Þu1u2m2ðb2ðv; u2Þ; u1Þ ¼ 0 ð3:16Þ

holds. This is the case for Chern-Simons theory, as we have
reviewed in the previous section, but not for Yang-Mills, at
least in any standard formulation. In fact, the two main
departure points compared to the Chern-Simons case are

(i) b is not second order with respect to m2,
(ii) m2 is not associative.

Both these generalizations add layers of complexity to the
resulting structure, ultimately leading to the concept of
BV□

∞ [15]. In Appendix B we describe how a BV algebra
can be generalized by relaxing its axioms step by step and
ignoring the □ operator, in order to convey the logic in a
simpler setup. Before proceeding further, we will introduce
a more streamlined notation for dealing with relations of
maps and operators in K.

B. Intrinsic input-free formulation

In order to simplify our construction, it will be useful to
formulate all the algebraic relations as input-free equations
between maps. We shall start by defining the commutator
between an operator O∶K → K and a bilinear map M as
the bilinear map ½O;M� acting as

½O;M�ðu1; u2Þ ≔ OMðu1; u2Þ − ð−ÞjOjjMj½MðOu1; u2Þ
þ ð−Þu1jOjMðu1;Ou2Þ�: ð3:17Þ

Similarly, the commutator with a trilinear map T is the
trilinear map ½O; T � given by

½O; T �ðu1; u2; u3Þ ≔ OT ðu1; u2; u3Þ
− ð−ÞjOjjT j½T ðOu1; u2; u3Þ
þ ð−ÞjOju1T ðu1;Ou2; u3Þ
þ ð−ÞjOjðu1þu2ÞT ðu1; u2;Ou3Þ�:

ð3:18Þ
With these definitions one can show that multiple commu-
tators obey

½O1; ½O2;M�� − ð−ÞjO1jjO2j½O2; ½O1;M�� ¼ ½½O1;O2�;M�;
ð3:19Þ

where we used the standard graded commutator of oper-
ators

½O1;O2�ðuÞ ≔ O1ðO2uÞ − ð−ÞjO1jjO2jO2ðO1uÞ; ð3:20Þ

the same holding for the nested commutator ½O1; ½O2; T ��
with a trilinear map. Next, we introduce the composition of
two bilinear mapsM1 andM2 as the trilinear mapM1M2

defined by the nesting from the left:

M1M2ðu1; u2; u3Þ ≔ M1ðM2ðu1; u2Þ; u3Þ: ð3:21Þ

This is sufficient for our purposes, due to the graded
symmetry of all bilinear maps involved. One can then prove
that the commutator with an operator O distributes accord-
ing to

½O;M1M2� ¼ ½O;M1�M2 þ ð−ÞjOjjMjM1½O;M2�:
ð3:22Þ

It is important to notice that the left-hand side above is the
commutator of O with the trilinear map M1M2, while the
right-hand side is given by the composition of the bilinear
maps Mi and ½O;Mj�. In order to deal with cyclic sums,
we introduce a degree zero operator Δ, which performs
cyclic permutations of three inputs:

Δðu1; u2; u3Þ ≔ ð−Þu1ðu2þu3Þðu2; u3; u1Þ: ð3:23Þ

Its repeated action yields Δ2ðu1; u2; u3Þ ¼ ð−Þu3ðu1þu2Þ ×
ðu3; u1; u2Þ and Δ3 ¼ 1. One can then define the cyclic
invariant projector π by

π ≔
1

3
ð1þ Δþ Δ2Þ; π2 ¼ π; πΔ ¼ π; ð3:24Þ
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which decomposes the three-input space along the orthogo-
nal subspaces generated by π and 1 − π. Since every
trilinear map T to be considered in the following is graded
symmetric in the first two entries,5 the projections by π and
1 − π coincide with the projections onto the totally graded
symmetric and graded hook parts T s and T h, respectively:

T ¼ T s þ T h; T s ≔ T π; T h ≔ T ð1 − πÞ: ð3:25Þ

With a graded hook we refer to the representation
that vanishes upon total graded symmetrization, so that
T hπ ¼ 0. The projection by π (or the action of Δ)
commutes with any operator O, in the sense that

½O; T �Δ ¼ ½O;T Δ�; ð3:26Þ

as it can be checked directly from the definitions (3.18)
and (3.23).
Among the operators O∶K → K, the wave operator □

plays an important role in that it is responsible for the more
exotic deformations of the algebraic relations. According to
the definition (3.17), its commutator with a bilinear mapM
is given by

½□;M�ðu1; u2Þ ¼ 2Mð∂μu1; ∂μu2Þ: ð3:27Þ

In order to treat the possible actions of □ on three
arguments, we shall further define

dsðu1; u2; u3Þ ≔ 2ð∂μu1; ∂μu2; u3Þ;
dtðu1; u2; u3Þ ≔ 2ðu1; ∂μu2; ∂μu3Þ; dt ¼ Δ2dsΔ;

duðu1; u2; u3Þ ≔ 2ð∂μu1; u2; ∂μu3Þ; du ¼ ΔdsΔ2;

d□ ≔ ds þ dt þ du; ð3:28Þ

borrowing from the standard notation for Mandelstam
invariants. With these definitions, one can see that com-
mutators with □ can be expressed as

½□; T � ¼ T d□; M1½□;M2� ¼ M1M2ds;

½□;M1�M2 ¼ M1M2ðdt þ duÞ; ð3:29Þ

for bilinear maps M1, M2 and trilinear map T . From
(3.28) it is easy to derive that d□ is cyclic invariant:
d□Δ ¼ Δd□, and that

d□π ¼ πd□ ¼ 3πdsπ; ð3:30Þ

which will be important in the following. Last, since
both m1 and b commute with □, one can see that they

also commute with ds (and thus with d□), in the sense
that

½m1; T �ds ¼ ½m1; T ds�; ½b; T �ds ¼ ½b; T ds�: ð3:31Þ

C. Constructing BV□
∞

We are now in the position to construct the BV□
∞ algebra

associated with Yang-Mills theory, starting from its C∞
algebra and b operator. Using the input-free notation, we
can express the C∞ relations (3.9) as equations for maps:

m2
1 ¼ 0; jm1j ¼ þ1;

½m1; m2� ¼ 0; jm2j ¼ 0;

m2m2ð1 − πÞ ¼ ½m1; m3h�; jm3hj ¼ −1; ð3:32Þ

with the symmetry property of the three-product stated as
m3hπ ¼ 0. Similarly, the b operator and two-bracket (3.15)
are given by

b2 ¼ 0; ½m1; b� ¼ □; jbj ¼ −1;

b2 ≔ ½b;m2�; jb2j ¼ −1: ð3:33Þ

If b commuted with the differential m1, the latter would be
a derivation of the bracket b2, since ½m1; m2� ¼ 0 would
imply ½m1; b2� ¼ 0. In a field theory (including Chern-
Simons), however, the □ generates further deformations
of the algebraic structures. From the definition of b2 it
follows that

½m1; b2� ¼ ½□; m2�;
with ½□; m2�ðu1; u2Þ ¼ 2m2ð∂μu1; ∂μu2Þ; ð3:34Þ

that is, m1 is a derivation of the bracket up to □.
Let us turn now to the Poisson compatibility between

b2 and m2. We have already mentioned that (3.16)
does not hold in Yang-Mills or, which is the same, that
b is not second order. We shall thus parametrize the
failure of b to be second order by a degree −1 map k3,
defined by

k3ðu1; u2ju3Þ ≔ b2ðm2ðu1; u2Þ; u3Þ
− ð−Þu1ðu2þu3Þm2ðb2ðu2; u3Þ; u1Þ
− ð−Þu3ðu1þu2Þm2ðb2ðu3; u1Þ; u2Þ; ð3:35Þ

where we rearranged the expression in (3.16) to have a
uniform nesting from the left. Notice that k3ðu1; u2ju3Þ
is graded symmetric in the first two inputs. Its input-free
definition is given by

k3 ≔ b2m2 −m2b2ðΔþ Δ2Þ; jk3j ¼ −1: ð3:36Þ
5This is the case because it can only be determined by the

left nesting M1M2 of two graded symmetric bilinear maps or
by m3h.
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Using b2m2 þm2b2 ¼ ½b;m2m2�, one can rewrite k3 in a
more useful form:

k3 ¼ ½b;m2m2� − 3m2b2π; ð3:37Þ

which shows that the hook projection k3ð1 − πÞ is b-
exact and that ½b; k3� is totally graded symmetric, which
will be important in the following.
The natural relaxation of the compatibility (3.16) would

be to hold up to homotopy. In terms of the failure k3, this
would amount to k3 ¼ ½m1; θ3� for some θ3 of degree −2.
Due to the □ obstruction and the lack of associativity,
however, one expects a deformation. To determine this, we
shall compute the m1 commutator of k3. Using the form
(3.37) one obtains

½m1; k3� ¼ ½m1; ½b;m2m2�� − 3½m1; m2b2�π
¼ ½□; m2m2� − 3m2½□; m2�π ¼ m2m2ðd□ − 3dsπÞ
¼ m2m2ð1 − πÞðd□ − 3dsπÞ
¼ ½m1; m3h�ðd□ − 3dsπÞ
¼ ½m1; m3hðd□ − 3dsπÞ�; ð3:38Þ

where we used homotopy associativity and (3.30), (3.31).
This shows that k3 −m3hðd□ − 3dsπÞ, rather than k3, ought
to be m1-exact. For Yang-Mills theory we computed
explicitly k3, using (3.12) for b and (A4) for m2, and
proved that this is the case, namely that

½b;m2m2� − 3m2b2π ¼ ½m1; θ3� þm3hðd□ − 3dsπÞ;
ð3:39Þ

with a local expression for the map θ3, which we give in
Appendix A. This is the deformed Poisson compatibility of
the BV□

∞ algebra, which will play a central role in construct-
ing double field theory at quartic order. The Poisson homo-
topy map θ3 is not completely independent. Its graded hook
part θ3h ¼ θ3ð1 − πÞ is determined by the C∞ product m3h:

θ3h þ ½b;m3h� ¼ 0; ð3:40Þ

which can be checked explicitly from the expressions (A10)
and (A11) for θ3, while in general one can only prove that the
left-hand side of (3.40) is m1 closed upon projecting (3.39)
with 1 − π. The symmetric projection of (3.39), on the other
hand, yields

k3s ¼ ½b;m2m2π� − 3m2b2π ¼ ½m1; θ3s� − 3m3hdsπ;

ð3:41Þ

upon using ½d□; π� ¼ 0 and m3hπ ¼ 0. One can use this to
probe the Jacobi relation of the bracketb2, since by taking ab
commutator of k3s one obtains

½b; k3s� ¼ −3½b;m2b2�π ¼ −3b2b2π ¼ −jacb2 ; ð3:42Þ

where the Jacobiator Jacb2 is defined by the graded cyclic
sum

Jacb2ðu1; u2; u3Þ ≔ 3b2b2πðu1; u2; u3Þ
¼ b2ðb2ðu1; u2Þ; u3Þ þ ð−Þu1ðu2þu3Þb2ðb2ðu2; u3Þ; u1Þ
þ ð−Þu3ðu1þu2Þb2ðb2ðu3; u1Þ; u2Þ: ð3:43Þ

In a standardL∞ algebra, the two-bracketb2 obeys the Jacobi
identity up to homotopy. In this case we expect a further
deformation due to□ obstructions. To show this, we use the
Poisson relation (3.41) to rewrite ½b; k3s� as follows:

½b; k3s� ¼ ½b; ½m1; θ3s�� − 3½b;m3h�dsπ
¼ −½m1; ½b; θ3s�� þ ½□; θ3s� − 3½b;m3h�dsπ
¼ −½m1; ½b; θ3s�� þ θ3sd□ þ 3θ3hdsπ

¼ −½m1; ½b; θ3s�� þ θ3ðπd□ þ 3ð1 − πÞdsπÞ
¼ −½m1; ½b; θ3s�� þ 3θ3dsπ; ð3:44Þ

upon using (3.30) for the □ deformations and (3.40). We
have thus shown that the bracket b2 obeys the Jacobi identity
up to homotopy and a □ deformation, with a degree −3
graded symmetric three-bracket b3 which is completely
determined by the symmetric part of θ3:

jacb2 þ ½m1; b3� þ 3θ3dsπ ¼ 0;

b3 þ ½b; θ3s� ¼ 0: ð3:45Þ

As an example, the three-bracket b3 acting on fields is a
gauge parameter given by

b3ðA1;A2;A3Þ ¼½123� − 6A1 · ∂A2 · A3 ∈ K0: ð3:46Þ

It is noteworthy that this coincides with themap denoted h123
by Mafra and Schlotterer [20], where it plays the role of a
composite gauge parameter.
This concludes the hierarchy of algebraic relations of the

BV□
∞ algebra up to three arguments, which we summarize

here for convenience:

GAUGE INVARIANT DOUBLE COPY OF YANG-MILLS THEORY: … PHYS. REV. D 107, 126015 (2023)

126015-11



m2
1 ¼ 0; b2 ¼ 0; ½m1; b� ¼ □; differentials and central obstruction;

½m1; m2� ¼ 0; m2m2ð1 − πÞ ¼ ½m1; m3h�; C∞ structure;

b2 ¼ ½b;m2�; ½m1; b2� ¼ ½□; m2�; two-bracket and deformed Leibniz;

b2m2 −m2b2ðΔþ Δ2Þ ¼ ½m1; θ3� þm3hðd□ − 3dsπÞ; deformed homotopy Poisson;

3b2b2π þ ½m1; b3� þ 3θ3dsπ ¼ 0; deformed homotopy Jacobi;

θ3h þ ½b;m3h� ¼ 0; b3 þ ½b; θ3s� ¼ 0; compatibility of homotopies:

ð3:47Þ

The C∞ products mn have standard degrees jmnj ¼ 2 − n,
while the brackets bn of the deformed L∞ structure have
unconventional degrees jbnj ¼ 3 − 2n. On the degree-
shifted space K½2� one would have jbnj ¼ þ1, but we will
keep K as in (3.2) instead. In the next section we will show
that the BV□

∞ structure of Yang-Mills theory allows us to
construct the L∞ algebra of N ¼ 0 supergravity up to its
three brackets, which encode the whole quartic theory.

IV. DOUBLE COPY

In this section we will briefly review how the L∞
algebra V of double field theory, and hence of N ¼ 0

supergravity, is encoded in the tensor product space K ⊗
K̄ [42]. We will revisit the differential and two-bracket on
V in terms of Yang-Mills building blocks, before turning
to the main result of the paper, which is the explicit
construction of the three-bracket of double field theory
from Yang-Mills.

A. B2 and B3

In [42] it was shown that the L∞ algebra V of double
field theory is a subspace of K ⊗ K̄, where K and K̄ are
two copies of the Yang-Mills kinematic spaces, endowed
with their respective C∞ and BV□

∞ structures. In particular,
elements of K ⊗ K̄ are local fields on a doubled spacetime
with coordinates ðxμ; x̄μ̄Þ, which is a defining feature of
DFT. The graded vector space V is defined by

V ¼ fΨ ∈ K ⊗ K̄jb−Ψ ¼ 0; ð□ −□ÞΨ ¼ 0g; ð4:1Þ

where b� are linear combinations of the b operators of the
two copies,

b� ≔
1

2
ðb� b̄Þ; ðb�Þ2 ¼ 0; bþb− þ b−bþ ¼ 0;

ð4:2Þ

and □ ¼ ∂
μ
∂μ and □ ¼ ∂

μ̄
∂μ̄ are the d’Alembertians

constructed with two copies of the Minkowski metric
ημν and ημ̄ ν̄. The constraints (4.1) originate from level
matching in closed string theory and, in the form (4.1),
define the so-called weakly constrained DFT. In the
following we will rather consider a stronger constraint,

namely □≡□ as operators. Acting on products of fields,
this implies that

∂
μf∂μg ¼ ∂

μ̄f∂μ̄g; ð4:3Þ

for any local functions fðx; x̄Þ and gðx; x̄Þ. Double field
theory subject to (4.3) is known as strongly constrained
DFT, which is essentially equivalent toN ¼ 0 supergravity.
The standard supergravity solution of (4.3) is to set
∂μ ¼ ∂μ̄, which amounts to identifying the coordinates xμ

and x̄μ̄. From now on we will thus work with the smaller
subspace

Vstrong ¼ fΨ ∈ K ⊗ K̄jb−Ψ ¼ 0;□≡□g: ð4:4Þ

It should be emphasized that the constraint b−Ψ ¼ 0

removes half of the states from K ⊗ K̄, but leaves
otherwise unconstrained fields on V or Vstrong, since the
b-operator (3.12) does not contain spacetime derivatives.
Thanks to the decomposition (3.3) of K and K̄, one can
explicitly characterize the space kerðb−Þ as

kerðb−Þ ¼ ðKð0Þ ⊗ K̄ð0ÞÞ ⊕ b−ðKð1Þ ⊗ K̄ð1ÞÞ; ð4:5Þ

which allows one to construct the components of V, as was
discussed in detail in [42]. As an example, the gauge
parameter of DFT consists of the multiplet Λ ¼ ðλμ; λ̄μ̄; ηÞ,
where6

λμ ¼ Aμ ⊗ λ̄; λ̄μ̄ ¼ λ ⊗ Āμ̄; η ¼ b−ðφ ⊗ φ̄Þ: ð4:6Þ

The emerging field content coincides with the original one
introduced by Hull and Zwiebach in [4]: the tensor
fluctuation eμν̄ ¼ Aμ ⊗ Āν̄ contains the graviton and the
B-field. It is accompanied by two scalars e and ē, encoding
the dilaton and a pure gauge degree of freedom, and two
vector auxiliaries fμ and f̄μ̄.
In the following we will assume that the tensor product

of the space of functions of coordinates x and the space of
functions of coordinates x̄ can be identified with the space
of functions of ðx; x̄Þ. Strictly speaking this is only true for

6The λμ gauge parameter has an opposite sign compared to the
conventions of [4].
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suitable function spaces, but we will see that the resulting
local expressions are valid in general. We denote arbitrary
elements of Vstrong as

Ψðx; x̄Þ ¼ uðxÞ ⊗ ūðx̄Þ; u ∈ K; ū ∈ K̄; ð4:7Þ

leaving linear combinations implicit. The action of oper-
ators O∶K → K and Ō∶K̄ → K̄ is extended to K ⊗ K̄ by

Oðu ⊗ ūÞ ≔ ðOuÞ ⊗ ū;

Ōðu ⊗ ūÞ ≔ ð−ÞjOjuu ⊗ ðŌ ūÞ: ð4:8Þ

This gives the proper definition of b� ¼ 1
2
ðb� b̄Þ and

applies to spacetime derivatives as well, e.g. ∂μ̄λν ¼
Aν ⊗ ∂μ̄λ̄. Similarly, products of bilinear and trilinear maps
of K and K̄ act as

ðM ⊗ M̄ÞðΨ1;Ψ2Þ ¼ ðM ⊗ M̄Þðu1 ⊗ ū1; u2 ⊗ ū2Þ
¼ ð−Þu2ū1þjM̄jðu1þu2ÞMðu1; u2Þ ⊗ M̄ðū1; ū2Þ;

ðT ⊗ T̄ ÞðΨ1;Ψ2;Ψ3Þ ¼ ðT ⊗ T̄ Þðu1 ⊗ ū1; u2 ⊗ ū2; u3 ⊗ ū3Þ
¼ ð−Þu2ū1þu3ðū1þū2ÞþjT̄ jðu1þu2þu3ÞT ðu1; u2; u3Þ ⊗ T̄ ðū1; ū2; ū3Þ: ð4:9Þ

Last, operators of K commute with operators and maps of K̄ and vice versa:

½O;M ⊗ M̄�ðΨ1;Ψ2Þ ¼ ð½O;M� ⊗ M̄ÞðΨ1;Ψ2Þ;
½Ō;M ⊗ M̄�ðΨ1;Ψ2Þ ¼ ð−ÞjŌjjMjðM ⊗ ½Ō;M̄�ÞðΨ1;Ψ2Þ;

½O1; Ō2� ¼ 0; ð4:10Þ

with analogous relations for the tensor product of trilinear maps. Notice that this is consistent with the identification□ ¼ □,
in that

½□;M ⊗ M̄�ðΨ1;Ψ2Þ ¼ ð½□;M� ⊗ M̄ÞðΨ1;Ψ2Þ ¼ 2ðM ⊗ M̄Þð∂μΨ1; ∂μΨ2Þ
¼ 2ðM ⊗ M̄Þð∂̄μ̄Ψ1; ∂̄μ̄Ψ2Þ ¼ ðM ⊗ ½□̄;M̄�ÞðΨ1;Ψ2Þ
¼ ½□̄;M ⊗ M̄�ðΨ1;Ψ2Þ: ð4:11Þ

This allows us to extend the input-free notation of the
previous section to the tensor productK ⊗ K̄. We will now
show how the BV□

∞ structures of K and K̄ induce an L∞
structure on Vstrong up to its three-brackets.

1. Differential and two-bracket

We denote the L∞ brackets on Vstrong by Bn. Given the
differentialsm1 and m̄1 of the two copies of Yang-Mills, the
DFT differential is the sum

B1 ¼ m1 þ m̄1; B2
1 ¼ 0: ð4:12Þ

The single copy commutators (3.14) ½m1; b� ¼ □ and
½m̄1; b̄� ¼ □ imply that B1 commutes with b− on Vstrong,
while bþ provides the Hodge decomposition:

½B1; b−� ¼ 0; ½B1; bþ� ¼ □; ð4:13Þ

thanks to the identification□≡□. This also proves that B1

is well-defined as an operator B1∶ Vstrong → Vstrong, since it
preserves kerðb−Þ.

The two-bracket of DFT was constructed in [42] as

B2 ¼ −
1

2
b−m2 ⊗ m̄2: ð4:14Þ

This form of B2 makes manifest that its image is in the
kernel of b−, since ðb−Þ2 ¼ 0, but somewhat obscures its
algebraic nature. Since B2 acts on two elements of kerðb−Þ,
the b− operator in front is the same as a b− commutator,
which allows one to express B2 in an equivalent form:

B2 ¼ −
1

2
½b−; m2 ⊗ m̄2� ¼ −

1

4
½b − b̄; m2 ⊗ m̄2�

¼ −
1

4
ð½b;m2� ⊗ m̄2 −m2 ⊗ ½b̄; m̄2�Þ

¼ −
1

4
ðb2 ⊗ m̄2 −m2 ⊗ b̄2Þ: ð4:15Þ

This representation of B2 makes it more transparent that the
double copy procedure substitutes the color Lie algebra g of
Yang-Mills with another algebraic structure of Lie type.
Consistency of the cubic theory requires that B1 acts as a
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derivation of B2, which in this language is expressed as
½B1; B2� ¼ 0. This is straightforward to prove by using the
deformed Leibniz rule ½m1; b2� ¼ ½□; m2�, the C∞ relation
½m1; m2� ¼ 0, and the strong constraint

½B1; B2� ¼ −
1

4
½m1 þ m̄1; b2 ⊗ m̄2 −m2 ⊗ b̄2�

¼ −
1

4
ð½m1; b2� ⊗ m̄2 −m2 ⊗ ½m̄1; b̄2�Þ

¼ −
1

4
½□ − □̄; m2 ⊗ m̄2� ¼ 0: ð4:16Þ

2. Construction of the three-bracket

Let us now turn to the three-bracket of DFT. Given the
L∞ structure to cubic order, which amounts to B1 and B2

obeying B2
1 ¼ 0 and ½B1; B2� ¼ 0, the next quadratic

relation is the homotopy Jacobi identity obeyed by B2,
which defines the three-bracket:

B2ðB2ðΨ1;Ψ2Þ;Ψ3Þ þ ð−1ÞΨ1ðΨ2þΨ3ÞB2ðB2ðΨ2;Ψ3Þ;Ψ1Þ
þ ð−1ÞΨ3ðΨ1þΨ2ÞB2ðB2ðΨ3;Ψ1Þ;Ψ2Þ
þ ½B1; B3�ðΨ1;Ψ2;Ψ3Þ ¼ 0: ð4:17Þ

The strategy to construct B3 is to compute the Jacobiator of
B2 in terms of the single copy maps m2 and b2. The BV□

∞
relations (3.47) of the two copies will then allow us to prove
that JacB2

is a ðm1 þ m̄1Þ commutator, thus identifying B3.
In order to proceed, let us rewrite the homotopy Jacobi

relation (4.17) using the input-free notation introduced in
the previous section:

JacB2
þ ½B1; B3� ¼ 0; ð4:18Þ

where we defined the Jacobiator JacB2
as

JacB2
≔ B2B2C; ð4:19Þ

in terms of the cyclic operator on K ⊗ K̄, defined as

C ¼ ð1 ⊗ 1þ Δ ⊗ Δ̄þ Δ2 ⊗ Δ̄2Þ: ð4:20Þ

The cyclic operator C obeys the following relations with the
single copy projectors π and π̄:

π ⊗ 1C ¼ π ⊗ π̄C ¼ 3π ⊗ π̄;

1 ⊗ π̄C ¼ π ⊗ π̄C ¼ 3π ⊗ π̄;

ð1 ⊗ 1 − π ⊗ 1ÞC ¼ ð1 ⊗ 1 − 1 ⊗ π̄ÞC
¼ ð1 ⊗ 1 − π ⊗ 1Þð1 ⊗ 1 − 1 ⊗ π̄ÞC:

ð4:21Þ

These relations can be proven straightforwardly by using
the fact that πΔ ¼ π.
The Jacobiator can be written in terms of the single copy

brackets as

JacB2
¼ 1

8
b−m2 ⊗ m̄2fb2 ⊗ m̄2 −m2 ⊗ b̄2gC

¼ 1

8
b−fm2b2 ⊗ m̄2m̄2 −m2m2 ⊗ m̄2b̄2gC: ð4:22Þ

Notice that we used two equivalent versions of the two-
bracket; namely, we wrote the outermost two-bracket in a
different but equivalent way to the innermost one. This
makes the computation more economical. The next step
is to use the resolution of the identity to split the maps
into symmetric and hook components. The decomposition
leads to

JacB2
¼ 1

8
b−f3m2b2π ⊗ m̄2m̄2π̄ − 3m2m2π ⊗ m̄2b̄2π̄g

þ 1

8
b−fm2b2ð1 − πÞ ⊗ m̄2m̄2ð1 − π̄Þ

−m2m2ð1 − πÞ ⊗ m̄2b̄2ð1 − π̄ÞgC; ð4:23Þ

where we used the properties shown in (4.21). One can use
the symmetric projection (3.41) of the homotopy Poisson
relation in the first line and the homotopy associativity
relation in the second to obtain

JacB2
¼ 1

8
b−f−½m1;θ3s�⊗ m̄2m̄2π̄þm2m2π ⊗ ¯½m̄1; θ̄3s�g

þ 1

8
b−fm2b2ð1− πÞ⊗ ½m̄1; m̄3h�

− ½m1;m3h�⊗ m̄2b̄2ð1− π̄ÞgC

þ 1

8
b−f3m3hdsπ ⊗ m̄2m̄2π − 3m2m2π ⊗ m̄3hd̄s̄π̄g;

ð4:24Þ

where the terms involving ½b;m2m2� in the homotopy
Poisson relation (3.39) vanish due to the b− constraint.
From the above Jacobiator it is not immediate how to

extract a DFT differential B1 ¼ m1 þ m̄1. This makes it
difficult to read off the explicit form of B3 in terms of
the single copy maps. However, in order to extract a
differential, we can insert zeros in the guise of Leibniz
relations as

0 ¼ 1

8
b−f½m1; m2m2π� ⊗ θ̄3s − θ3s ⊗ ½m̄1; m̄2m̄2�g

þ 1

8
b−fm3h ⊗ ½m̄1; m̄2b̄2� − ½m1; m2b2� ⊗ m̄3hgC

þ 1

8
b−fm2m2ds ⊗ m̄3h −m3h ⊗ m̄2m̄2d̄s̄gC: ð4:25Þ
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The first line is zero due to the Leibniz relation of the
homotopy associative algebra, whereas the second and third
lines are zero by virtue of the Leibniz rule modulo box of the
bracket b2. Notice, very importantly, that the terms added as

the Leibniz rule modulo box of b2 are not projected, so they
contain both their symmetric and hook components. This is
particularly relevant for the terms in the last line. Adding the
above zero to the Jacobiator leads to

JacB2
¼ 1

8
b−f½m1 þ m̄1; m2m2π ⊗ θ̄3s� − ½m1 þ m̄1; θ3s ⊗ m̄2m̄2π̄�g

−
1

8
b−f½m1 þ m̄1; m2b2ð1 − πÞ ⊗ m̄3h� þ ½m1 þ m̄1; m3h ⊗ m̄2b̄2ð1 − π̄Þ�gC

þ 1

8
b−f3m3hdsπ ⊗ m̄2m̄2π̄ −m3h ⊗ m̄2m̄2d̄s̄C

þm2m2ds ⊗ m̄3hC − 3m2m2π ⊗ m̄3hd̄s̄π̄g; ð4:26Þ

where to arrive at the terms in the second line we used the last relation in Eq. (4.21) in order to project some of the terms
involving them2b2 structure using the fact thatm3h contains a (1 − π) projector. Even though it is straightforward to extract
the DFT differential from the first two lines, it is not obvious how to do so in the last two lines of the Jacobiator. To this end,
one has to use the strong constraint, in the form ds ¼ d̄s̄. Let us deal explicitly with the last line:

m2m2ds ⊗ m̄3hC − 3m2m2π ⊗ m̄3hd̄s̄π̄ ¼ fm2m2 ⊗ m̄3hd̄s̄ −m2m2π ⊗ m̄3hd̄s̄gC
¼ m2m2ð1 − πÞ ⊗ m̄3hd̄s̄C

¼ ½m1; m3h� ⊗ m̄3hd̄s̄C: ð4:27Þ

In the first equality we used the first relation in Eq. (4.21), and to obtain the final line we used the homotopy associativity
relation. Repeating the same procedure for the other term in the Jacobiator we obtain

JacB2
¼ 1

8
b−f½m1 þ m̄1; m2m2π ⊗ θ̄3s� − ½m1 þ m̄1; θ3s ⊗ m̄2m̄2π̄�g

−
1

8
b−f½m1 þ m̄1; m2b2ð1 − πÞ ⊗ m̄3h� þ ½m1 þ m̄1; m3h ⊗ m̄2b̄2ð1 − π̄Þ�gC

þ 1

8
b−f½m1 þ m̄1; m3h ⊗ m̄3hd̄s̄�gC: ð4:28Þ

From this form of the Jacobiator it is possible to read off the B3, which is given by

B3 ¼ −
1

8
b−fθ3s ⊗ m̄2m̄2π̄ −m2m2π ⊗ θ̄3s þ ½m2b2ð1 − πÞ ⊗ m̄3h þm3h ⊗ m̄2b̄2ð1 − π̄Þ�C −m3h ⊗ m̄3hd̄s̄Cg: ð4:29Þ

The above expression can be made simpler by noticing that given that θ3s and θ̄3s, andm3h and m̄3h, are projected onto their
symmetric and hook parts, respectively, one can drop the explicit projectors of the maps that multiply them in the tensor
product. This yields

B3 ¼ −
1

8
b−

�
1

3
θ3s ⊗ m̄2m̄2 −

1

3
m2m2 ⊗ θ̄3s þm2b2 ⊗ m̄3h þm3h ⊗ m̄2b̄2 −m3h ⊗ m̄3hd̄s̄

�
C; ð4:30Þ

where we factored out the cyclic operator C at the cost of a prefactor of 1
3
in the first two terms. Similar to the two-bracket B2,

there is an alternative but equivalent formulation of B3, which reads

B3 ¼
1

16

�
1

3
b3 ⊗ m̄2m̄2 þ

1

3
θ3s ⊗ b̄2m̄2 þ

1

3
θ3s ⊗ m̄2b̄2 þ

1

3
m2m2 ⊗ b̄3 þ

1

3
b2m2 ⊗ θ̄3s þ

1

3
m2b2 ⊗ θ̄3s

þm2b2 ⊗ θ̄3h − b2b2 ⊗ m̄3h þ θ3h ⊗ m̄2b̄2 −m3h ⊗ b̄2b̄2 − θ3h ⊗ m̄3hd̄s̄ −m3h ⊗ θ̄3hd̄s̄

�
C: ð4:31Þ

This map determines gauge invariant gravity in the form of double field theory up to quartic order in the action.
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B. Four-graviton amplitude

Scattering amplitudes can be formulated in the language
of homotopy algebras. In this subsection we review how to
express the four-point tree-level Yang-Mills scattering
amplitude using algebraic building blocks. Subsequently,
as a consistency check and explicit example, we compare
the four-point graviton amplitude written in terms of the
DFT brackets with the four-point amplitude obtained by
means of the BCJ double copy.
Before looking at the amplitudes it will be convenient to

discuss on-shell and gauge fixing conditions from an
algebraic perspective. These are implemented by imposing
that the fields obey

m1ðAÞ ¼ 0; bA ¼ 0: ð4:32Þ

These equations express that A is on-shell and subject to
the gauge condition bA ¼ φ ¼ 0, which is equivalent to

□Aμ ¼ 0; ∂ · A ¼ 0: ð4:33Þ

In scattering amplitudes we consider all the external fields
to obey the above conditions. Thus, the gauge field can be
expressed as a free wave solution

AμðxÞ ¼ ϵμðxÞ ⊗ t; ϵμðxÞ ¼ ϵμðpÞeip·x; ð4:34Þ

where t is an element of the color Lie algebra, ϵμðpÞ is the
polarization vector, and ϵμðxÞ is the color-stripped gluon
field. When computing amplitudes we assign to each
external particle a label i, a Lie algebra element ti, and
a polarization vector ϵiμðpiÞ that only depends on the
momentum of said particle. The gauge fixing and on-shell
conditions imply, in momentum space, that the polarization
vectors and particle momenta are subject to

pi · ϵi ¼ 0; p2
i ¼ 0: ð4:35Þ

Let us now turn to the four-point tree-level Yang-Mills
amplitude. In terms of the algebraic maps the amplitude can
be written as

Að4Þ
Tree ¼ −g2YMhϵ4; fm2ðhm2ðϵ1; ϵ2Þ; ϵ3Þ

−m3hðϵ1; ϵ2jϵ3ÞgiYMTrðt4½½t1; t2�; t3�Þ þ cyclic;

ð4:36Þ

where we have reinstated the Yang-Mills coupling constant,
the bracket ½·; ·� is the Lie bracket of the color Lie algebra,
the inner product h·; ·iYM is the inner product defined in
Eq. (3.4), and we take the cyclic sum of the labels (123),
while keeping the label 4 fixed. The map m2 is the
kinematic part of the cubic vertex of Yang-Mills, whereas
m3h is the kinematic part of the quartic vertex, and we
emphasize that they take the plane waves ϵμi ðxÞ in (4.34) as

inputs. The propagator h is given by h ¼ − b
sij
, where sij are

the kinematic invariants7 defined as sij ¼ ðpi þ pjÞ2, and
the particles i and j are the inputs of the two-bracket on
which h acts. It should be noted that since we are working
in momentum space, the inner product generates momen-
tum-conserving delta functions, i.e.

hϵi; JjiYM ¼ δðDÞðpi þ pjÞϵiμðpiÞJμj ðpjÞ; ð4:37Þ

where Jμ denotes a current, built from external particles
data, belonging to the space K2 of field equations.
In the following we will not write the delta functions
explicitly.
In the double copy literature Yang-Mills scattering

amplitudes are usually expressed in terms of so-called
kinematic numerators nsij, which depend on polarization
vectors and momenta, and color factors, which are color
traces of generators of the gauge group. Explicitly, the four-
gluon amplitude can be written as

Að4Þ
Tree ¼ g2YM

�
nscs
s

þ ntct
t

þ nucu
u

�
: ð4:38Þ

Comparing Eqs. (4.38) and (4.36), it is possible to read off
the algebraic form of the kinematic numerators and the
color factors

ns ≔ hϵ4;nsiYM;
cs ≔ Trðt4½½t1; t2�; t3�Þ; ð4:39Þ

where we have defined the current as

nμ
s ≔ mμ

2ðb2ðϵ1; ϵ2Þ; ϵ3Þ þ smμ
3hðϵ1; ϵ2jϵ3Þ ∈ K2: ð4:40Þ

The expressions for the other channels can be found by
relabeling the particles. Note that here bm2 equals
b2 ¼ ½b;m2�, since the inputs are annihilated by b due to
gauge fixing.
If one uses the explicit expressions for the kinematic

maps in the definition of nμ
sij , one does not recover the

kinematic numerators in the standard form. The numerators
written in terms of the currents nμ

sij are related to the
numerators in the standard form by momentum conserva-
tion. In order to check this, let us use the expressions for the
kinematic brackets. First, let us write the b2 as

bμ2ðϵ1;ϵ2Þ ¼ iϵμ12e
iðp1þp2Þ·x

¼ if2ϵ1 ·p2ϵ
μ
2 þpμ

1ϵ1 · ϵ2 − ð1↔ 2Þgeiðp1þp2Þ·x:

ð4:41Þ

7In our conventions, for massless particles we use
s12 ¼ s ¼ 2p1 · p2, s23 ¼ t ¼ 2p2 · p3, s13 ¼ u ¼ 2p1 · p3.
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Notice that the output of b2 belongs to the space of fields. Thus, the kinematic numerator of the s-channel in this form is

ns ¼ ϵ12μf2ϵ3 · ðp1 þ p2Þϵμ4 − 2pμ
3ϵ3 · ϵ4 þ ϵμ3ϵ4 · ðp1 þ p2 − p3Þg

þ sðϵ1 · ϵ4ϵ2 · ϵ3 − ϵ2 · ϵ4ϵ1 · ϵ3Þ
¼ −f2ϵ1 · p2ϵ

μ
2 þ pμ

1ϵ1 · ϵ2 − ð1 ↔ 2Þgf2ϵ3 · p4ϵ4μ þ p3μϵ3 · ϵ4 − ð3 ↔ 4Þg
þ sðϵ1 · ϵ4ϵ2 · ϵ3 − ϵ2 · ϵ4ϵ1 · ϵ3Þ; ð4:42Þ

where to arrive at the last equality we used momentum
conservation and wrote explicitly the value of ϵμ12. The
expression in the last equality is the most commonly used
for the kinematic numerators. However, in order to inves-
tigate their algebraic nature, it turns out to be more
convenient to think of them in terms of the currents nμ

sij ,
as we will see later in this section.
Let us now turn to gravity. We will consider a four-point

tree-level DFT amplitude. In analogy to Yang-Mills theory
we impose the gauge and on-shell conditions bþΨ ¼ 0 and
B1ðΨÞ ¼ 0. We will only take tensors as external particles,
which, in combination with the fact that we are dealing with
tree-level amplitudes, allows us to discard any possible
scalar contributions to the process. For this reason we only
consider as external states plane wave solutions given by

eμν̄ðx; x̄Þ ¼ ϵμðxÞ ⊗ ϵ̄ν̄ðx̄Þ ¼ εμν̄ðp; p̄Þeiðp·xþp̄·x̄Þ; ð4:43Þ

where the polarization tensor εμν̄ of the ith external particle
is given by the product of polarization vectors of single
copy elements

εiμν̄ðpi; p̄iÞ ¼ ϵiμðpiÞϵiν̄ðp̄iÞ: ð4:44Þ

The two copies of the polarization vectors and momenta
obey the gauge fixing and on-shell conditions (4.35), in
addition to the strong constraint sij ≡ s̄ij.
The four-point tree-level amplitude for the tensor sector

of DFT is given by

Mð4Þ
Tree ¼ −2κ2he4; ½B2ðhB2ðe1; e2Þ; e3Þ þ cyclic�

− B3ðe1; e2; e3ÞiDFT; ð4:45Þ

where κ is the gravitational coupling constant, the propa-
gator is h ¼ − bþ

sij
, and the inner product will be defined

explicitly below. In order to relate this amplitude to Yang-
Mills, it will be helpful to explicitly illustrate how to use the
B3 in terms of the single copy maps. To this end, we shall
consider as inputs only polarization tensors of the form
shown in Eq. (4.44). Moreover, we will use the simpler
version of B3 displayed in Eq. (4.30). This leads to

B3ðe1; e2; e3Þ ¼
1

8
b−

�
1

3
θ3s ⊗ m̄2m̄2 −

1

3
m2m2 ⊗ θ̄3s

þm2b2 ⊗ m̄3h þm3h ⊗ m̄2b̄2

−m3h ⊗ m̄3hd̄s̄

�
Cðϵ1; ϵ2; ϵ3Þ

⊗ ðϵ̄1; ϵ̄2; ϵ̄3Þ: ð4:46Þ
Notice that we have picked a global minus sign coming
from the transition

ðϵ1 ⊗ ϵ̄1; ϵ2 ⊗ ϵ̄2; ϵ3 ⊗ ϵ̄3Þ → −ðϵ1; ϵ2; ϵ3Þ ⊗ ðϵ̄1; ϵ̄2; ϵ̄3Þ;
ð4:47Þ

because the elements ϵiðxÞ have odd degrees. Not all the
terms in B3 contribute to a tree-level scattering amplitude
with external tensor particles. To see this, let us take a
closer look at the first term in Eq. (4.46). Omitting the
prefactor we have

b−θ3s ⊗ m̄2m̄2Cðϵ1; ϵ2; ϵ3Þ ⊗ ðϵ̄1; ϵ̄2; ϵ̄3Þ
¼ b−θ3sðϵ1; ϵ2; ϵ3Þ ⊗ m̄2ðm̄2ðϵ̄1; ϵ̄2Þ; ϵ̄3Þ þ cyclic;

ð4:48Þ
with cyclic denoting the sum over simultaneous cyclic
permutations of both barred and unbarred particle labels.
Upon looking at the component expressions of the maps
involved in the above tensor product [see Eqs. (A4) and
(A10)], it is possible to see that these are scalar quantities
that belong to the space of scalar field equations, or
currents. For this reason the terms containing θ3s and
θ̄3s do not contribute to the amplitude of interest and thus
can be ignored. The contributing terms are then

−
1

8
b−fm2ðb2ðϵ1; ϵ2Þ; ϵ3Þ ⊗ m̄3hðϵ̄1; ϵ̄2; ϵ̄3Þ

þm3hðϵ1; ϵ2; ϵ3Þ ⊗ m̄2ðb̄2ðϵ̄1; ϵ̄2Þ; ϵ̄3Þ
þ sm3hðϵ1; ϵ2; ϵ3Þ ⊗ m̄3hðϵ̄1; ϵ̄2; ϵ̄3Þ þ cyclicg; ð4:49Þ

where all terms picked a sign due to the three polari-
zation vectors passing through maps of odd degrees
(b2; b̄2; m3h; m̄3h), and the last term picked an extra minus
sign coming from the fact that in momentum space dsij
translates into −sij. Thus, the four-point amplitude can be
written in terms of the kinematic maps of Yang-Mills as

GAUGE INVARIANT DOUBLE COPY OF YANG-MILLS THEORY: … PHYS. REV. D 107, 126015 (2023)

126015-17



Mð4Þ
Tree ¼ −

κ2

4

	
ϵ4 ⊗ ϵ̄4;

1

s
b−½m2ðb2ðϵ1; ϵ2Þ; ϵ3Þ ⊗ m̄2ðb̄2ðϵ̄1; ϵ̄2Þ; ϵ̄3Þ

þ sm2ðb2ðϵ1; ϵ2Þ; ϵ3Þ ⊗ m̄3hðϵ̄1; ϵ̄2; ϵ̄3Þ þ sm3hðϵ1; ϵ2; ϵ3Þ ⊗ m̄2ðb̄2ðϵ̄1; ϵ̄2Þ; ϵ̄3Þ

þ s2m3hðϵ1; ϵ2; ϵ3Þ ⊗ m̄3hðϵ̄1; ϵ̄2; ϵ̄3Þ� þ cyclic



DFT

; ð4:50Þ

where for the exchange contribution we used

B2bþB2 ¼ −
1

8
b−m2b2 ⊗ m̄2b̄2 ð4:51Þ

and the strong constraint sij ≡ s̄ij.
Let us now make contact with the BCJ double copy of

amplitudes. To this end, we examine the factorization
property of the DFT inner product, which, for tensors, is
defined as

hεi;J jiDFT ¼ εiμν̄ðpi; p̄iÞJ μν̄
j ðpj; p̄jÞ; ð4:52Þ

where we omitted the double momentum-conserving delta
function. The currents belong to the space of field equations
of DFT and hence can be expressed as J μν̄

i ¼ −b−Jμi ⊗ J̄ν̄i .
For this reason, it is possible to factorize the DFT inner
product as

−hϵi ⊗ ϵ̄i; b−Jj ⊗ J̄jiDFT ¼ hϵi; JjiYMhϵ̄i; J̄jiYM: ð4:53Þ

Using this relation between the inner products, it is possible
to see that the DFT amplitude can be written as

Mð4Þ
Tree ¼

κ2

4

�hϵ4;nsiYMhϵ̄4; n̄siYM
s

�
þ cyclic

¼ κ2

4

�
nsn̄s
s

þ ntn̄t
t

þ nun̄u
u

�
: ð4:54Þ

This amplitude agrees with the expectation from the BCJ
double copy because, as it is straightforward to notice,
this amplitude can be obtained by exchanging color and
kinematics à la BCJ, namely exchanging csij → n̄sij and
gYM → κ

2
in the Yang-Mills amplitude (4.38). Moreover, if

we solve the strong constraint by setting pμ ¼ p̄μ̄, one
recovers the four-point amplitude of N ¼ 0 supergravity.
The BCJ double copy requires the kinematic numerators

to obey the so-called kinematic Jacobi identity. This
relation guarantees gauge invariance of the gravity ampli-
tude and thus ensures its consistency. Now we argue that
this relation follows in a straightforward manner from the
homotopy Poisson relation. Let us recall the homotopy
Poisson relation in an input-free form:

½b;m2m2� − 3m2b2π − ½m1; θ3� −m3hðd□ − 3dsπÞ ¼ 0:

ð4:55Þ

Since we want to relate this equation to the kinematic
numerators, all the inputs that we will consider are
polarization vectors obeying the gauge and on-shell con-
ditions. Additionally, in order to recover the kinematic
numerators from this equation, it is necessary to take the
inner product of the Poisson relation with a polarization
vector ϵ4μ. Doing so the first term vanishes because all the
polarization vectors are annihilated by b. The third and
fourth terms vanish because all the polarization vectors are
on-shell, and hence are annihilated by m1 and □. Notice
that the second term in combination with the last term is the
cyclic sum of the currents nμ

sij . Thus, upon taking the inner
product with a polarization vector ϵ4 we obtain

ns þ nt þ nu ¼ 0: ð4:56Þ

C. Three-bracket of the gauge algebra

As an additional and independent concrete example,
let us examine the gauge algebra of DFT. In the following it
is assumed that no gauge fixing condition is imposed. In
[42] we found the two-bracket of two DFT gauge param-
eters and learned how the kinematic structure of Yang-Mills
is a fundamental building block of the gauge algebra of
DFT. The two-bracket between two gauge parameters is
given by

B2ðΛ1;Λ2Þ ¼

0
B@

λμ12

λ̄μ̄12
η12

1
CA; ð4:57Þ

where the components are

λμ12 ¼ −
1

4
ðλ1 • λ2Þμ −

1

4
∂ν̄ðλμ1λ̄ν̄2Þ þ

1

4
∂ν̄ðλμ2λ̄ν̄1Þ;

λ̄μ̄12 ¼
1

4
ðλ̄1 • λ̄2Þμ̄ þ

1

4
∂νðλ̄μ̄1λν2Þ −

1

4
∂νðλ̄μ̄2λν1Þ;

η12 ¼ −
1

2
∂μ∂ν̄ðλμ1λ̄ν̄2 − λμ2λ̄

ν̄
1Þ; ð4:58Þ

where the product • is defined as

ðv • wÞμ ¼ vν∂νwμ þ ð∂μvν − ∂
νvμÞwν þ ð∂νvνÞwμ

− ðv ↔ wÞ: ð4:59Þ
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Let us now look at the three-bracket. It is worth
mentioning that the general three-bracket derived earlier
cannot take as an input an η with any other two gauge
parameters. The reason is that η can be written as
η ¼ b−ðφ ⊗ φ̄Þ. Since the auxiliary field φ cannot be
the input of m2 nor m3, η can only be taken as an input
in the terms of B3 that have either a θ3s or a θ̄3s. The two
vector gauge parameters can be expressed in terms of Yang-
Mills elements as λμ ¼ Aμ ⊗ λ̄ and λ̄μ̄ ¼ λ ⊗ Āμ̄. Hence,
the only possibility of η being an input of B3 with two other
gauge parameters is if there exists a θ3s that takes as inputs
φ with either λ or Aμ. However, no such θ3 exists (see
Appendix A). This rules out the appearance of η in the
three-bracket of three gauge parameters, and thus we can
only take the vector components as inputs.
Consider now one gauge parameter λμ and two λ̄μ̄ as

inputs. Such an arrangement of inputs is also impossible
because the θ3s and thus θ̄3s with two fields and one gauge
parameter, and one field and two gauge parameters vanish.
Similar arguments follow for two λμ and one λ̄μ̄. For this
reason, the only viable option is to consider as inputs three
vector parameters of the same chirality. Notice that with
three λμ as inputs the only nonvanishing contributions are
the terms containing θ3s and θ̄3s. This follows because m3

with three Yang-Mills gauge parameters vanishes, and b2
with two Yang-Mills gauge parameters is zero because of

degree reasons. Thus, explicitly, the B3 acting on three DFT
parameters is given by

B3ðΛ1;Λ2;Λ3Þ

¼ −
1

8
b−fθ3sðA1; A2; A3Þ ⊗ m̄2m̄2π̄ðλ̄1; λ̄2; λ̄3Þg

þ 1

8
b−fm2m2πðλ1; λ2; λ3Þ ⊗ θ̄3sðĀ1; Ā2; Ā3Þg: ð4:60Þ

The two single copy maps are in components

θ3sðA1; A2; A3Þ ¼½123�6A1 · ∂A2 · A3 ∈ K1;

m̄2m̄2π̄ðλ̄1; λ̄2; λ̄3Þ ¼ λ̄1λ̄2λ̄3 ∈ K̄0; ð4:61Þ

where the [123] signifies implicit antisymmetrization
over the labels with strength one. The action of b− in
the definition of B3 is determined by the action of b and b̄
on the single copy maps. They act as

bθ3sðA1; A2; A3Þ ¼½123�6A1 · ∂A2 · A3 ∈ K0;

b̄m̄2m̄2π̄ðλ̄1; λ̄2; λ̄3Þ ¼ 0: ð4:62Þ

Following the same arguments for the other term one
obtains

B3ðΛ1;Λ2;Λ3Þ ¼½123� −
3

8
fA1 · ∂A2 · A3 ⊗ λ̄1λ̄2λ̄3 þ λ1λ2λ3 ⊗ Ā1 · ∂Ā2 · Ā3g

¼½123� − 3

8
fðA1μ ⊗ λ̄1Þ∂μðAρ

2 ⊗ λ̄2ÞðA3ρ ⊗ λ̄3Þ þ ðλ1 ⊗ Ā1μ̄Þ∂μ̄ðλ2 ⊗ Āρ̄
2Þðλ3 ⊗ Ā3ρ̄Þg

¼½123� − 3

8
fλ1 · ∂λ2 · λ3 þ λ̄1 · ∂λ̄2 · λ̄3g ∈ K0 ⊗ K̄0; ð4:63Þ

which in Vstrong is the space of gauge-for-gauge parameters. The gauge algebra of double field theory is an L∞ algebra, and
hence the two-brackets should satisfy the homotopy Jacobi relation

B2ðB2ðΛ1;Λ2Þ;Λ3Þ þ B2ðB2ðΛ2;Λ3Þ;Λ1Þ þ B2ðB2ðΛ3;Λ1Þ;Λ2Þ þ ½B1; B3�ðΛ1;Λ2;Λ3Þ ¼ 0: ð4:64Þ

In order to check the consistency of our result for the three-
bracket with three gauge parameters, we verified the above
identity by using the component form of the two-brackets
(4.58) and three-brackets (4.63). In its standard formu-
lation, the gauge algebra of DFT is a particular type of L∞
algebra associated with the Courant algebroid [5,49]. The
three-bracket derived in this paper is not the same found in
the standard formulation of DFT. However, in [42] we
found that the gauge transformations obtained by using the
two-bracket (4.15) agree with the ones of [4] upon a field-
dependent parameter redefinition. This guarantees that the
three-bracket found here from (4.30) is equivalent to the
standard one up to an L∞ morphism.

V. CONCLUSIONS AND OUTLOOK

In this paper we have generalized a recent off-shell
double copy construction of gravity (in the form of double
field theory) from Yang-Mills theory [39,42] by giving a
gauge invariant and local prescription up to and including
quartic order. To this end we used the homotopy algebra
formulation of gauge field theories, starting from the L∞
algebra of Yang-Mills theory in a particular formulation
inspired by string field theory, and stripping off color in
order to arrive at a C∞ algebra on the Yang-Mills kinematic
vector space K. This structure was used recently in order to
define gravity via double copy to cubic order, but as
reported here the transition to quartic order requires a
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much larger algebra to be present just in Yang-Mills theory
proper. We find that an algebra proposed by Reiterer in
[15], and called BV□

∞, is also realized in our formulation of
the Yang-Mills theory. More precisely, we prove this up to
and including trilinear maps, as needed to quartic order in
field theory, and we compute the corresponding three-
brackets of double field theory purely from these algebraic
structures of the Yang-Mills theory.
The most important outstanding problem, and the miss-

ing step toward a construction of full-fledged gravity from
the Yang-Mills theory, is to display the BV□

∞ algebra on K,
and the associated L∞ algebra on K ⊗ K̄, to all orders. In
practice this step will require a much deeper understanding
of why these structures are present in the Yang-Mills
theory, which to this order we have verified by explicit
brute-force computations. It would therefore be highly
desirable to arrive at some sort of “derived” construction,
where this algebra is obtained from something much
simpler. It is striking that an algebra as complex as gravity
itself appears to be present already in pure Yang-Mills
theory. Perhaps we can learn a lot more about classical and
quantum gravity by just studying the Yang-Mills theory
more closely.
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APPENDIX A: EXPLICIT MAPS
OF YANG-MILLS THEORY

In this appendix we collect the relevant maps of the BV□
∞

algebra of Yang-Mills. We start by recalling the compo-
nents of the graded vector space K:

ðA1Þ

together with the action of the differential m1:

m1ðλÞ ¼
�
∂μλ

□λ

�
∈ K1; m1

�
Aμ

φ

�
¼

�
∂ · A − φ

□Aμ − ∂μφ

�
∈ K2; m1

�
E

Eμ

�
¼ □E − ∂

μEμ ∈ K3; ðA2Þ

and of the b operator:

b

�
Aμ

φ

�
¼ φ ∈ K0; b

�
E

Eμ

�
¼

�
Eμ

0

�
∈ K1; bN ¼

�
N

0

�
∈ K2; ðA3Þ

from which one can easily verify that m1bþ bm1 ¼ □. We now recall from [42] the explicit form of the nonvanishing C∞
two-products m2:

m2ðλ1; λ2Þ ¼ λ1λ2 ∈ K0; m2ðA; λÞ ¼
�

Aμλ

∂νðAνλÞ

�
∈ K1;

m2ðA1;A2Þ ¼
�

0

mμ
2ðA1; A2Þ

�
∈ K2; m2ðλ; EÞ ¼

�
0

λðEμ − ∂
μEÞ

�
∈ K2;

m2ðA; EÞ ¼ Aμð∂μE − EμÞ ∈ K3; m2ðλ;N Þ ¼ λN ∈ K3; ðA4Þ

where mμ
2ðA1; A2Þ, encoding the color-stripped cubic vertex, is given by

mμ
2ðA1; A2Þ¼½12�2∂ · A1A

μ
2 þ 4A1 · ∂A

μ
2 þ 2∂μA1 · A2; ðA5Þ

with [12] denoting implicit antisymmetrization with strength one. The only nonvanishing three productm3 is between three
fields:
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m3ðA1;A2;A3Þ ¼
�

0

mμ
3ðA1; A2; A3Þ

�
∈ K2;

mμ
3ðA1; A2; A3Þ ¼ A1 · A2A

μ
3 þ A3 · A2A

μ
1 − 2A1 · A3A

μ
2; ðA6Þ

and corresponds to the color-stripped quartic vertex. We do not give the explicit form of the two-brackets b2, since they can
be straightforwardly computed by taking a b commutator of m2:

b2ðu1; u2Þ ¼ bm2ðu1; u2Þ −m2ðbu1; u2Þ − ð−Þu1u2m2ðu1; bu2Þ: ðA7Þ

By direct computation of the failure of the compatibility condition,

k3ðu1; u2ju3Þ ¼ b2ðm2ðu1; u2Þ; u3Þ − ð−Þu1ðu2þu3Þm2ðb2ðu2; u3Þ; u1Þ − ð−Þu3ðu1þu2Þm2ðb2ðu3; u1Þ; u2Þ; ðA8Þ

we proved the deformed homotopy Poisson relation (3.39). Here we give all the nonvanishing Poisson homotopy maps θ3.
The following ones are purely graded symmetric:

θ3ðE; λ1; λ2Þ ¼ λ1λ2E ∈ K0;

θ3ðN ; λ1; λ2Þ ¼ −
�

0

λ1λ2N

�
∈ K1;

θ3ðE;A; λÞ ¼
�

AμλE

AνEνλþ Aν
∂νλEþ φλE

�
∈ K1;

θ3ðλ; E1; E2Þ ¼
�

λE1E2

λðEμ
1E2 þ Eμ

2E1Þ

�
∈ K2;

θ3ðλ; E;N Þ ¼ λEN ∈ K3;

θ3ðA; E1; E2Þ ¼ φE1E2 þ 2Aμ
∂μðE1E2Þ − AμðEμ

1E2 þ Eμ
2E1Þ ∈ K3: ðA9Þ

The last two θ3 maps have both a graded symmetric and a hook part, which we give explicitly:

θ3ðA1;A2jA3Þ ¼ θ3sðA1;A2;A3Þ þ θ3hðA1;A2jA3Þ ∈ K1; where

θ3sðA1;A2;A3Þ ¼½123�6
�

0

A1 · ∂A2 · A3

�
; θ3hðA1;A2jA3Þ¼½12� − 2

�
Aμ
1A2 · A3

0

�
; ðA10Þ

and

θ3ðA1;A2jEÞ ¼ θ3sðA1;A2; EÞ þ θ3hðA1;A2jEÞ ∈ K2;

θ3ðE;A1jA2Þ ¼ θ3sðA1;A2; EÞ þ θ3hðE;A1jA2Þ ∈ K2; where

θ3sðE;A1;A2Þ ¼½12� 2
�

0

Aμ
2A

ν
1ðEν þ ∂νEÞ þ Eð2A1 · ∂A

μ
2 þ ∂

μA1 · A2Þ þ Aμ
2φ1E

�
;

θ3hðA1;A2jEÞ ¼½12� − 2

�
0

Aμ
1A2 · E

�
; θ3hðE;A1jA2Þ ¼

�
0

Aμ
1A2 · E − EμA1 · A2

�
: ðA11Þ

We do not give the three-brackets b3, since they can be
computed directly from b3 ¼ −½b; θ3s�.

APPENDIX B: FROM BV TO BV∞ ALGEBRAS

1. dgBV algebra

Here we will review the structure of BV∞ up to three
inputs. For an all order description, see [46]. As with other

types of homotopy algebras, this structure arises naturally
when introducing a differential compatible with the BV
structure. In the paper, we encounter a further generaliza-
tion of BV∞ algebras, called BV□

∞ algebras.
A BValgebra has an associative and graded commutative

product m2 together with an operator b that is second order
with respect to that product. The operator b induces a Lie
bracket b2 defined by
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b2ðu1; u2Þ ¼ ð−Þu1 ½b;m2�ðu1; u2Þ ≔ ð−Þu1bm2ðu1; u2Þ − ð−Þu1m2ðbu1; u2Þ −m2ðu1; bu2Þ: ðB1Þ

Here we used the sign convention commonly used in BV algebras. For the generalization used in the main text, it will be
more convenient to change the sign convention. We make the redefinition b2ðu1; u2Þ ↦ ð−Þu1b2ðu1; u2Þ, so that b2
becomes graded symmetric, i.e.

b2ðu1; u2Þ ¼ ð−Þu1u2b2ðu2; u1Þ: ðB2Þ

Since b is second order, we have that b2ðu1;−Þ is a derivation of m2 from the left. This means that

b2ðu1; m2ðu2; u3ÞÞ ¼ m2ðb2ðu1; u2Þ; u3Þ þ ð−Þu2ðu1þ1Þm2ðu2; b2ðu1; u3ÞÞ: ðB3Þ

We note that this is equivalent to

b2ðm2ðu1; u2Þ; u3Þ ¼ ð−Þu1m2ðu1; b2ðu2; u3ÞÞ þ ð−Þu2u3m2ðb2ðu1; u3Þ; u2Þ: ðB4Þ

From b2 ¼ 0, it then further follows that

½b; b2�ðu1; u2Þ ≔ bb2ðu1; u2Þ þ ð−Þu1b2ðbu1; u2Þ þ ð−Þu1b2ðu1; bu2Þ ¼ 0; ðB5Þ

i.e. b is a derivation of b2. We can use this on (B3) to find that

b2ðb2ðu1; u2Þ; u3Þ þ ð−Þu2u3b2ðb2ðu1; u3Þ; u2Þ þ ð−Þu1ðu2þu3Þb2ðb2ðu2; u3Þ; u1Þ ¼ 0: ðB6Þ

Equations (B2) and (B6) tell us that b2 defines a graded
Lie algebra. Together with m2 we have a Gerstenhaber
algebra. The condition that b is second order is a graded
version of the Poisson relation. However, a BValgebra has
more structure than a Gerstenhaber algebra, because in the
BV case, the bracket b2 comes from a second-order
operator, in our case b.
A BV algebra becomes a dgBV algebra once we

introduce another differential m1 and demand that it
commutes with both b and m2 (i.e. it is a derivation with
respect tom2). It follows that it is also a derivation of b2. In
this sense, a dgBValgebra combines the concept of a dgLie
algebra with that of a dg commutative algebra. ðm1; b2Þ
form a dgLie algebra, while ðm1; m2Þ form a dg commu-
tative algebra. The compatibility of m2 with b2 then relates
these two structures.

2. Homotopy BV algebra

a. Associative product

Wewill now relax the condition that b is of second order.
As with other homotopy algebras such as L∞ and C∞
algebras, we do not want to give up this condition
completely. We want it to hold up to homotopy. This
means that the conditions (B3) are relaxed to

½m1; θ3�ðu1; u2; u3Þ ¼ b2ðm2ðu1; u2Þ; u3Þ
− ð−Þu1m2ðu1; b2ðu2; u3ÞÞ
− ð−Þu2u3m2ðb2ðu1; u3Þ; u2Þ: ðB7Þ

We have that ½m1; θ3� is graded symmetric in the first two
entries, i.e.

½m1; θ3�ðu1; u2; u3Þ ¼ ð−Þu1u2 ½m1; θ3�ðu2; u1; u3Þ: ðB8Þ

Using the associativity of m2, it also follows that it is
graded symmetric in the last two entries, i.e.

½m1; θ3�ðu1; u2; u3Þ ¼ ð−Þu2u3 ½m1; θ3�ðu1; u3; u2Þ: ðB9Þ

We demand that θ3 has the same symmetry properties.
Recall that we used the b commutator ½b;−� to prove that

b2 satisfies the graded Jacobi identity. The same can be
done here, but now we find

0 ¼ ½m1; ½b; θ3��ðu1; u2ju3Þ − b2ðb2ðu1; u2Þ; u3Þ
− ð−Þu1ðu2þu3Þb2ðb2ðu2; u3Þ; u1Þ
− ð−Þu2u3b2ðb2ðu1; u3Þ; u2Þ: ðB10Þ

This relation tells us that b2 satisfies the Jacobi identity
up to the homotopy b3ðu1; u2; u3Þ ≔ −½b; θ3�ðu1; u2; u3Þ.
Therefore, assuming second order of b only up to homo-
topy, the algebra naturally contains an L∞ algebra, at least
up to the three-brackets. Note that we could also say thatm2

and b2 satisfy the Poisson identity up to homotopy.

b. Associativity up to homotopy

We just saw that relaxing the second-order condition on
b naturally leads to an L∞ algebra, instead of merely a
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dgLie algebra. This suggests that we could also relax the
associativity condition on m2, so that it only holds up to
homotopy. Explicitly,

m2ðm2ðu1; u2Þ; u3Þ −m2ðu1; m2ðu2; u3ÞÞ
¼ ½m1; m3�ðu1; u2; u3Þ: ðB11Þ

On the right-hand side, we introduced a three-product m3.
We need to demand that it vanishes on signed shuffles, by
which we mean that

m3ðu1; u2; u3Þ − ð−Þu1u2m3ðu2; u1; u3Þ
þ ð−Þu1ðu2þu3Þm3ðu2; u3; u1Þ ¼ 0: ðB12Þ

This is necessary, since the left-hand side of (B11) satisfies
this identity.
As we noted before, in order for θ3 to be symmetric in

the last two entries, associativity of m2 is necessary. Since
this symmetry is no longer guaranteed, we now write
θ3ðu1; u2ju3Þ instead of θ3ðu1; u2; u3Þ. The failure for it to
be symmetric in u2 and u3 is given by

½m1; θ3�ðu1; u2ju3Þ − ð−Þu2u3 ½m1; θ3�ðu1; u3ju2Þ
¼ ½b;m2ðm2 ⊗ 1Þ�ðu1; u2; u3Þ − ð−Þu2u3þu1þu2 ½b;m2ðm2 ⊗ 1Þ�ðu1; u3; u2Þ
¼ ð−Þu1u2 ½b; ½m1; m3��ðu2; u1; u3Þ ¼ −ð−Þu1u2 ½m1; ½b;m3��ðu2; u1; u3Þ: ðB13Þ

In the last step we used that m1 commutes with b. Note that both sides are m1-exact. Therefore, it makes sense to
demand that

½b;m3�ðu1; u2; u3Þ ¼ −θ3ðu1; u2ju3Þ þ ð−Þu1ðu2þu3Þþu1þu3θ3ðu2; u3ju1Þ: ðB14Þ

As a cross-check, one can show that the right-hand side vanishes on signed shuffles, so this is consistent with the left-hand
side containing m3. This identity connects the m3 of the C∞ structure to the homotopy of the Poisson identity.
We just saw that the nonsymmetric part of θ3 is a b commutator. Therefore, when defining b3ðu1; u2; u3Þ ¼

−½b; θ3�ðu1; u2ju3Þ, this part drops out. We can still define b3 as in (B10) and find that it has the correct symmetry properties.
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