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We holographically calculate the partition functions of certain types of isotropic sectors of the CFTs dual
to Bruhat-Tits trees and p-adic Bañados-Teitelboim-Zanelli (BTZ) black holes. Along the way, we propose
new spectral decompositions of the Laplacian operator other than the plane-wave basis on these two types
of background, with both analytical and numerical evidence. We extract the density of states and hence
entropy from the BTZ partition function via the inverse Laplace transform. Then the one-loop Witten
diagram is computed in the p-adic BTZ black hole background, yielding constraints on the heavy-heavy-
light averaged three-point coefficient of its boundary p-adic CFT. Finally, for general p-adic CFTs
(not necessarily holographic), we analyze the representation theory of their global conformal group
PGLð2;QpÞ, and discuss the suitability of different representations as Hilbert spaces of p-adic CFT.
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I. INTRODUCTION

Explorations have emerged in the last three decades
between the interplay of algebraic number theory and string
theory. Once one defines the p-adic norm, a well-known
phenomenon appears in string scattering amplitudes from
adelic products. We can construct the real Veneziano

amplitude Að∞Þ
4 ðs; t; uÞ for four tachyons scattering in the

open bosonic string theory at tree-level from the product
over all prime numbers of the p-adic Veneziano amplitudes
AðpÞðs; t; uÞ [1,2]1

Að∞Þ
4 ðs; t; uÞ ¼

�Y
p

AðpÞ
4 ðs; t; uÞ

�
−1

¼ Γ∞ð−s− 1ÞΓ∞ð−t− 1ÞΓ∞ð−u− 1Þ; ð1:1Þ

where Γ∞ðxÞ is the real Euler gamma function, s, t, u are the
Mandelstam variables and the p-adic Veneziano amplitude
is defined as

AðpÞ
4 ðs; t; uÞ ¼ Γpð−s − 1ÞΓpð−t − 1ÞΓpð−u − 1Þ: ð1:2Þ

Here ΓpðxÞ is the p-adic Gamma function ΓpðxÞ ¼
ζpðxÞ=ζpð1 − xÞ; ζpðxÞ ¼ 1=ð1 − p−xÞ and the p → ∞
limit reduces to the standard real case Q∞ ¼ R. An
interpretation of the p-adic string is given by [5], where
the open string world sheet is replaced by a Bruhat-Tits tree
(defined in Sec. II B there) and its boundary as the p-adic
numbers.
Recently inspired by this perspective, Gubser et al. [6]

and Heydeman et al. [7] proposed a non-Archimedean
version of a toy model for the Euclidean AdS=CFT
correspondence [8]. In the simplest topology, the usual
continuous bulk is replaced by an infinite, symmetric, and
homogeneous (i.e., no preferred central vertex) tree of
uniform valency pþ 1. This tree, known as the Bruhat-Tits
tree (or Bethe lattice), is expressed as the left coset space

Tp ≡ PGLð2;QpÞ=PGLð2;ZpÞ; ð1:3Þ

where PGLð2;QpÞ is the p-adic global conformal group,2

whose maximal compact open subgroup is PGLð2;ZpÞ.
The definition (1.3) is reminiscent of the hyperbolic
3-space H3 ≃ SLð2;CÞ=SUð2Þ with boundary P1ðCÞ,
describing Euclidean asymptotic AdS3. Additionally, for
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1For higher-point scattering amplitudes, see [3,4] for recent
discussions.

2It is a totally disconnected locally compact (TDLC) group,
with respect to the Qp topology as explained in Section 10.5
in [9], but not compact. Its subgroup PSLð2;QpÞ is neither
compact nor open.
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the unramified finite Galois extension Qpn of Qp, the tree
Tpn has valency pn þ 1 and boundary ∂Tpn ¼ P1ðQpnÞ.
Using unramified extensions, we are not limited to just
one-dimensional boundaries, but we can think of
Euclidean AdSnþ1 analogous to Tpn .
With this specific discretization of the bulk, one can put

physical degrees of freedom on its vertices. The simplest
case is to introduce scalars. Furthermore, the tree as well
as its dual graph can be identified with tensor networks
in order to study bulk reconstruction, quantum error-
correction codes [7,10] and holographic renormalization
group flow [11].
One can study more general fields, such as spins, on the

trees. The first realization of spins in p-adic AdS=CFT was
introduced by Gubser et al. [12,13] with results on the bulk
dual to nonscalar operators and dynamical gauge fields. In
particular, they computed the holographic two-point cor-
relator of an operatorOψ dual to a spin state jψi. One of the
main conclusions was that the fermionic two-point corre-
lator is of similar form to the scalar two-point correlator up
to normalization and a nontrivial sign character resembling
the operators’ statistics.
There are other exotic and interesting applications in the

context of the p-adics. An example is to understand higher-
order versions of the Klebanov-Tarnopolsky model for both
the real and the p-adic cases. Recently in [14], the authors
analyzed the situation for q propagators at each interaction
vertex to calculate four-point correlators. In addition, [14]
provided nice comparisons with matrix field theory regard-
ing the propagators’ symmetry group.
There have been more recent uses of p-adics including:

the Berkovich space to encode the renormalization group
flow of the energy spectrum of the theory of a particle-in-
a-box [15], studying local diffeomorphisms of p-adic
Bañados-Teitelboim-Zanelli (BTZ) black hole and Bruhat-
Tits tree backgrounds [16,17] and D-branes [18].
Given these progresses, the status quo of p-adic

AdS=CFT seems rather one-sided in the sense that p-adic
CFT is not well-formulated, because a Hilbert space is
absent. Melzer [19], and later Harlow et al. [20] and
Gubser-Parikh [21], have shed some light on its operator
product expansion (OPE) structure, but its partition func-
tion and local conformal algebra were not thoroughly
explored. As mentioned earlier, it is very natural to describe
global AdSn as a Bruhat-Tits tree. One well-known
phenomenon studied in 3d gravity is the BTZ black hole.
Heydeman et al. [7] formulated a p-adic BTZ black hole,
which serves as a motivation for this paper in the hope of
extracting meaningful information for p-adic CFTs. We
calculated the bulk partition function and showed it has
many key features as in [22], such as Bekenstein-Hawking
area law in 3d gravity. We hope this partition function could
initiate future works to match the boundary CFT data.
A meaningful direction to gain more insight on the

holographic p-adic CFT’s structure is to study the

constraints on the averaged three-point coefficients for
p-adic BTZ black holes as done in regular BTZ black holes
[23]. We found the averaged three-point coefficient for a
p-adic BTZ black hole in the limit of large horizon l to
obey an exponentially decaying behavior e−Δl similar to
that for regular BTZ black holes [23], where Δ is a
boundary CFT data. One would hope to recover this result
purely from the Lie algebra representation of the holo-
graphic p-adic CFT. However, we make a strong argument
against the existence of a local algebra, and therefore we
turn to group representations, where a classification theo-
rem comes in handy. We analyze each case, and propose a
way of checking which representation of p-adic CFT fits
the genus-1 bulk calculation.
The rest of this paper is organized as follows. In Sec. II,

we review mathematical and physical concepts relevant to
p-adic AdS=CFT. In Sec. III, we solve isotropic Laplace
problems on Bruhat-Tits trees and p-adic BTZ black hole
geometries via linear recurrence, and therefore obtain the
partition functions of the rotation-singlet sectors, whose
various implications are discussed. In Sec. IV, we calculate
the one-loopWitten diagram describing the 1-to-2 scattering
between two types of bulk scalars dual to light primary
fields on the boundary in the background of a p-adic BTZ
black hole, and the result imposes a constraint on potentially
precise formulations on p-adic CFTs. In Sec. V, we review
the representation theory on PGLð2;QpÞ. Furthermore, we
present an analysis on possible group representations as
Hilbert spaces for p-adic CFTs. Finally, we conclude with a
discussion of the results and future directions in Sec. VI.
The full spectrum, including all anisotropic eigenvalues, of
the Laplacian on Bruhat-Tits trees is presented in the
Appendix A, without computing the corresponding full
partition function.

II. SUMMARY OF p-ADIC BASICS

A. p-adic numbers

As mentioned in the introduction, in constructing the
p-adic AdS=CFT correspondence, the non-Archimedean
field Qp plays an important role. We briefly review
Archimedean and non-Archimedean fields before discus-
sing Qp. Let F be any field with a norm j · jF which obeys
the standard axioms3 for any x; y ∈ F [24]:
(1) jxjF ≥ 0 and is saturated when x≡ 0;
(2) jx · yjF ¼ jxjF · jyjF ;
(3) jxþ yjF ≤ jxjF þ jyjF (triangle inequality).
When F is Archimedean, its norm obeys

sup fjnjF∶ n ∈ Zg ¼ ∞; whereas when F is non-
Archimedean, its norm obeys sup fjnjF∶n ∈ Zg ¼ 1.

3Rigorously speaking, in algebraic geometry and algebraic
number theory, these axioms define the term “valuation” or
“absolute value”, differing from the “norm” in functional analysis,
whose absolute homogeneity replaces the second axiom here.
However, we still abuse the term “norm” throughout this paper.
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The major difference between Archimedean and non-
Archimedean fields is that only the latter has ultrame-
tricity [9]:

jxþ yjF ≤ sup ðjxjF ; jyjF Þ; ð2:1Þ

implying that all triangles over an non-Archimedean field
are isosceles.
Characteristic of F is defined as the least n such that

when one adds up n copies of 1 ∈ F , one obtains zero.
Naturally, Q, R, and C are fields of characteristic zero,
while the set of residue classes modulo a prime p is a field
of characteristic p [25]. We are concerned with Qp, a
characteristic zero non-Archimedean field. To obtain
degree-n unramified extensions Qpn , we adjoin Qp by a
primitive ðpn − 1Þth root of unity [25].
For any prime number p, Qp is the completion ofQ with

respect to the p-adic norm j · jp [9]. To define j · jp, we note
that any x ∈ Qpnf0g has a unique p-adic expansion

x ¼ …a3a2a1a0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
in Zp

: a−1a−2…avp|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
fractional part of x

≡ X∞
n¼vp

anpn; ð2:2Þ

where an ∈ f0; 1;…; p − 1g, and vp is the smallest integer
index such that avp ≠ 0 [2]. The p-adic norm of x is then
defined as

jxjp ¼ p−vp : ð2:3Þ

Notice that although 0 ∈ Qp has no p-adic expansion, we
naturally define j0jp ¼ 0.
One can ask do other completions of Q exist? The

answer is given by Ostrowski’s theorem [9]: the only
nontrivial norms on Q are those equivalent to the j · jp
or the ordinary norm j · j∞. In other words, Qp and R are
the only completions of Q. For unramified extensions of
Ostrowski’s theorem for Qpn, see [24,26].
Here we list the notations for subsets of Qp used in later

sections. We denote the multiplicative group of the p-adic
field by Q×

p ≡Qpnf0g, the ring of integers of Qp by
Zp ≡ fx ∈ Qp∶ jxjp ≤ 1g, and the set of units in Qp by
Up ⊂ Zp such that ∀ x ∈ Up; jxjp ¼ 1.

B. Bruhat-Tits tree

The Bruhat-Tits tree is an infinite tree structure built on
equivalence classes of the Q2

p-lattice L which are spanned
by two linearly independent vectors u; v ∈ Q2

p:

L≡ fauþ bv ∈ Q2
pja; b ∈ Zpg: ð2:4Þ

The equivalence relation between the twoQ2
p-lattices L and

L0 is defined as: L ∼ L0 if L ¼ cL0 for some c ∈ Q×
p .

Based on these definitions, a Bruhat-Tits tree is then
constructed by assigning each equivalence class of the
Q2

p-lattice to one vertex on the tree. It is straightforward to
see that by applying the PGLð2;QpÞ group actions on a
lattice equivalence class in the following fashion

M∶ l ¼ ðu; vÞ → ðMu;MvÞ; M ∈ GLð2;QpÞ; ð2:5Þ

we obtain another new equivalence class. Any subgroup
which is conjugate to PGLð2;ZpÞ will leave a lattice
equivalence class invariant, so the Bruhat-Tits tree Tp is
identified with the coset PGLð2;QpÞ=PGLð2;ZpÞ.
On the tree we also need to clarify the meaning of an

edge between two vertices. Therefore, a relation between
two lattice equivalence classes L and L0 is introduced as
described in [5] and reviewed in the Appendix of [27]: they
are called incident if pL ⊂ L0 ⊂ L, and we connect them
by an edge.
Using this incident relation to define edges on the

Bruhat-Tits tree has two advantages. First, this relation
is reflexive, so the Bruhat-Tits tree becomes unoriented,
with exactly one edge between two adjacent vertices.
Second, the action of PGLð2;QpÞ in the tree preserves
the incident relation between any two lattice classes,
leaving the number of edges between any two vertices
invariant. If we use the edge number as a natural metric in
the tree, then we see that PGLð2;QpÞ is its isometry group.
This fact is significant because, in usual AdS=CFT, the
bulk isometry group is to be identified with the boundary
conformal group. Indeed, the suitable conformal group for
the tree boundary P1ðQpÞ is the same PGLð2;QpÞ, acting
in a fractional linear fashion. Therefore, we consider the
Bruhat-Tits tree as a natural candidate for the p-adic AdS
bulk’s asymptotics.4

Apart from the formal definition, a Bruhat-Tits tree is
also visualized as Fig. 1 in the representation as follows.
From [27], we know that incidentally to any lattice class
ðu; vÞ, there are always pþ 1 other lattice classes: ðpu; vÞ
and ðuþ nv; pvÞ where n ∈ Fp takes p possible values,
indicating that the Bruhat-Tits tree is homogeneous with
valency pþ 1.
Given the valency, there is a good way to translate the

tree into p-adic numbers. Because any p-adic number has a
unique expansion (2.2), it is determined by a unique
sequence of ðanÞ, an ∈ Fp. We assign coordinates ðz; z0Þ
on the Bruhat-Tits tree, where z0 is the prime number p’s
exponent, regarded as a level in the tree, and z is a p-adic
number up to Oðz0Þ precision. Therefore, each path on the
Bruhat-Tits tree from ðz0 → ∞Þ to the boundary P1ðQpÞ
located at z0 → 0 uniquely represents a p-adic number.

4Iterative refinements on vertices of a Bruhat-Tits tree in the
context of holography is proposed in Sec. 5.3 of [6], and is later
extended in [28].
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This is graphically presented in terms of a “trunk” and
“branches” in [6].

C. An invitation to p-adic CFTs

The majority of CFTs of our interests are “one-
dimensional” ones; however, we will see that all higher-
dimensional p-adic CFTs are very similar to ordinary 2d
CFTs. We review Melzer’s axioms [19] on p-adic CFTs.
They must have operator product expansion algebras
(OPA) just like ordinary CFTs. The main difference
between ordinary and p-adic CFTs is that local derivatives
do not exist in the latter due to Qp being totally dis-
connected.5 More explicitly, this is seen by applying
Leibniz’s rule to C-valued characteristic (or indicator)
functions over Qp, all of which are locally constant [19].
Finally, to make the OPA complete, all fields are primary
(2.10):

ϕ0
aðx0Þðdx0ÞΔ ¼ ϕaðxÞðdxÞΔ; ð2:6Þ

and the following OPE must exist

ϕmðxÞϕnðyÞ ¼
X
a

Ca
mnðx; yÞϕaðyÞ ð2:7Þ

with Ca
mnðx; yÞ ∈ R.

Here Δ is the conformal dimension, dx is the Haar
measure defined on Qp, and the transformation x → x0 ∈
P1ðQpÞ is a fractional linear one:

x → x0 ¼ axþ b
cxþ d

;

�
a b

c d

�
∈ GLð2;QpÞ; ð2:8Þ

so the Haar measure and scalar field transform respectively
as:

dx → dx0 ¼
���� ad − bc
ðcxþ dÞ2

����
p
dx; ð2:9Þ

ϕaðxÞ → ϕ0
a

�
axþ b
cxþ d

�
¼
���� ad − bc
ðcxþ dÞ2

����−Δ
p

ϕaðxÞ: ð2:10Þ

Since the bulk is a Bruhat-Tits tree and the boundary
consists of p-adic numbers, evaluating correlators is more
convenient than in the ordinary case. For instance, the
general two- and three-point functions for local operators
O1;O2;O3;… with different conformal dimensions
Δ1;Δ2;Δ3;… respectively are of similar form to real
CFTs’ [6]:

hO1ðz1ÞO2ðz2Þi ¼
CO1O2

jz12j2Δ1
p

;

hO1ðz1ÞO2ðz2ÞO3ðz3Þi ¼
CO1O2O3

jz12jΔ12
p jz23jΔ23

p jz31jΔ31
p

; ð2:11Þ

up to contact terms. Here, the dependence zij ≡ zi − zj,
Δ12 ≡ Δ1 þ Δ2 − Δ3, and the dependence zi is completely
fixed by the invariance under fractional linear transfor-
mations. Ultrametricity constrains three- and four-point
functions to be exact in cross-ratios in the p-adic norm,
unlike the usual ones [6,19]. The OPE coefficients form an
associative algebra and primary operators can have arbi-
trary dimensions, but the identity operator must have
dimension 0.
Another property worth mentioning about p-adic CFTs is

that they are automatically unitary unlike their Archimedean
counterparts. However, as opposed to representations of
slð2;CÞ in the usual 2d CFTs, the p-adic global conformal
group PGLð2;QpÞ lacks a Lie algebra, leading to the
absence of a central charge or a good notion of state-
operator correspondence.6 Despite lacking both local con-
formal algebra and descendants, we discuss in Sec. V on
allowed group representations of a p-adic CFT.

D. p-adic AdS=CFT and BTZ black hole

In order to construct a p-adic version of the BTZ black
hole, we first review the ordinary BTZ black hole, a classic
black hole solution to the 3d Einstein equation [31]. A
nonrotating Euclidean BTZ black hole is described by the
following complete Riemannian metric [32]:

FIG. 1. The Bruhat-Tits tree for the 3-adic numbers.

5By totally disconnected for the p-adic numbers, we mean that
two open sets are totally disjoint. Whereas the Archimedean field
R is a connected metric space.

6Examples of ordinary 2d CFTs with c ¼ 0 include special
classes of logarithmic CFTs, see, e.g., [29,30].
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ds2 ¼ ðr2 − r2þÞdt2 þ
1

r2 − r2þ
dr2 þ r2dϕ2; ð2:12Þ

where rþ is the outer horizon radius, related to the ADM
energy and central charge of the boundary 2d CFT by [23]

rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12E
c

− 1

r
: ð2:13Þ

Similarly, a p-adic BTZ black hole can also be formulated
by solving classical equations of motion. In [33], Gubser
et al. proposed to use edge length dynamics to formulate
“gravity” (beyond linearized regime) on Bruhat-Tits trees,
and even though large diffeomorphisms were seemingly
not included there, this “gravity” does result in BTZ black
holes with nonuniform lengths, incorporating topological
changes by the 1-cycle. Their idea has been generalized to
weighted graphs [34,35].
However, to avoid technicalities above, we choose to

review the p-adic BTZ black hole constructed instead by
Schottky uniformization as proposed in [7], in which the
black hole is a quotient of the Bruhat-Tits tree (analogue of
the zero-temperature AdS3), similar to the construction of a
regular Euclidean BTZ black hole [36].
In Euclidean AdS3=CFT2 at zero temperature, the bulk is

identified with the hyperbolic space H3 and the boundary
is the sphere at infinity S2∞, on which its conformal group is
PSLð2;CÞ, same as the isometry group of H3. Schottky
uniformization provides us with a way to construct elliptic
curves of higher genus on the conformal boundary. In this
complex case, a genus-1 closed curve corresponds to T2

torus and the solid torus bulk is topologically equivalent to
the BTZ black hole. Generally for a genus-n curve,
Schottky uniformization starts by picking a discrete
PSLð2;CÞ subgroup called Schottky group Γ with n
generators fγ1;…; γng. Each γi has fixed points in S2∞,
and the genus-n curve is constructed as S2∞=Γ after
removing those fixed points. The authors in [7,10] extended
this procedure to construct the p-adic BTZ black hole,
which we will review and follow.
For a genus-1 boundary, Γ≡ qZ is generated by q ∈ C×.

Fixed points 0;∞ of the action by q need to be removed
from P1ðCÞ before taking the quotient. We define the
domain of discontinuity A ¼ P1ðCÞnf0;∞g and hence the
quotient C≡ A=qZ. Meanwhile, we also take the quotient
of the bulk H3, and the total quotient space is H3=qZ ∪ C,
which is visualized as a solid torus. We should mention that
the generator γ can be written in terms of parameter
q ¼ e2πiτ, where τ ∈ C is the torus’ moduli.
In the BTZ black hole (2.12), rþ is a solution-classifying

parameter to be realized in Schottky uniformization.
Note that the Schottky group qZ’s generator γ can be
written as [7,22]:

�
q

1
2 0

0 q−
1
2

�
∈ PSLð2;CÞ: ð2:14Þ

The Schottky parameter q is written in terms of horizon
radius q ¼ e2πrþ [7,10], so rþ ¼ 1

2π log q, proportional to
the Bekenstein-Hawking entropy.
A torus T2 is the same as a complex lattice Zþ τZ,

τ ∈ C, while in the p-adic case, this viewpoint is not true
due to p∞ → 0 forcing many lattice equivalence classes to
be 0. However, we could still select one Schottky group Γ, a
discrete subgroup of PGLð2;QpÞ to form genus-n curves
from P1ðQpÞ. The genus-one curve is the Tate uniformized
elliptic curve Eq ¼ Q×

p=qZ and genus-n curve is the
Mumford curve. We demonstrate the genus-one example
by picking Γ generated by q ∈ Q×

p, so that

Γ ¼
	�

q 0

0 1

�

: ð2:15Þ

Again we remove its fixed points, which are still f0;∞g,
from P1ðQpÞ, then the total space including bulk and
boundary is B ¼ Tp ∪ ðP1ðQpÞnf0;∞gÞ, where Tp is the
Bruhat-Tits tree from Sec. II B. The quotient B=qZ is
visualized as a graph with one regular polygon at the center.
On each vertex of the polygon, a “Bruhat-Tits” inhomo-
geneous subtree is attached as seen in Fig. 2.
This graph could also be considered as a p-adic BTZ

black hole, whose horizon area is the number of edges l of
the central polygon, with l related to the Schottky

FIG. 2. (l ¼ 4, p ¼ 3) BTZ black hole is at the center. The
dotted lines represent the Bruhat-Tits tree structure repeating
itself in a fractal fashion.
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parameter q via l ¼ logp jqjp.7 This also adds a restriction:
jqjp > 1. In Secs. III and IV, we will use the above graph as
the p-adic BTZ black hole and perform calculations on it.

III. PATH INTEGRALS FOR THE
ISOTROPIC SECTOR

In this section, we try to calculate the partition function
of the boundary p-adic CFT directly from the bulk
by resorting to the Gubser-Klebanov-Polyakov-Witten
(GKPW) dictionary. Recall for a boundary CFT local
operator O [37,38]

Zgrav½ϕi
∂
ðxÞ; ∂M�

¼
	
exp
�
−
X
i

Z
∂M

ddxϕi
∂
ðxÞOiðxÞ

�

CFT on ∂M

; ð3:1Þ

with the boundary condition on bulk scalar field ϕiðz; xÞ ¼
zd−Δϕi

∂
ðxÞ þ ðsubleadingÞ as z → 0, where z is the radial

coordinate.
When we set field values ϕi

∂
on the conformal boundary

to be zero, it is expected to calculate the CFT partition
function, see, e.g., Eq. (72) in [6].
For simplicity, we restrict to the nonextended case, i.e.,

q ¼ p1, so the bulk path integral on a Bruhat-Tits tree Tp is

Ztree ¼
Z

Dϕae−Stree½ϕa�; ð3:2Þ

where the action Stree½ϕa� is for massive scalar fields with
sources on the tree, and the subscript “a” labels vertices.
Naturally, this action is [6]

Stree½ϕa�¼
X
habi

1

2
ðϕa−ϕbÞ2þ

X
a

�
1

2
m2

pϕ
2
a−Jaϕa

�
ð3:3Þ

with a and b labeling the tree’s vertices and
P

habi refers to
summing over adjacent vertices on the tree, and Ja is a
source.
As expected, the linearized equations of motion for a

scalar field ϕa are

ð□þm2
pÞϕa ¼ Ja; ð3:4Þ

but with a modification to the regular Laplacian. The
modification is that the Laplacian here is the lattice/graph
Laplacian8 and is defined as a positive definite operator

□ϕa ≡
X
habi

ðϕa − ϕbÞ: ð3:5Þ

With this Laplacian at our disposal, the desired partition
function is easily calculable via

Zϕ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det0 ð□þm2

pÞ
q ; ð3:6Þ

where the superscript 0 means omitting zero modes, which
is absent as we will see later.
Another way to obtain the partition function is through

the use of a tensor network formulation for p-adic
AdS=CFT by [11]. The authors put a tensor network on
the Bruhat-Tits tree, similar to [7] but different from the
dual graph in [10]. Then by making analogies with
ordinary diagonal CFTs,9 their proposed “torus” partition
function is10: X

a

jqjΔa : ð3:7Þ

Here a labels all primary fields, and Δa’s correspond to
arbitrary scaling dimensions according to Melzer’s axi-
oms, and are compatible with the associative operator
product algebra. This expression seems to be encompass-
ing, but not explicit.
In the rest of this paper with our path integral approach,

we restrict to the “isotropic” sector11 of the full partition
function (3.5), and treat the anisotropic sector on another
occasion [39]. The motivations for focusing on this sector
include:

(i) First of all, the Bruhat-Tits tree enjoys translational
and rotational invariance under the global action of
PGLð2;QpÞ, in spite of the center which is chosen
artificially.

(ii) As we can see from Appendix A, the multiplicity of
anisotropic modes is overwhelmingly larger than
that of isotropic ones, so it is much less cumbersome
to deal with isotropic modes.

(iii) The above simplification can be justified by drawing
analogy between the p-adic CFT here and ordinary
2d CFTs. In the latter case, it is often rewarding
to study just the scalar or spinless sector [40,41].

7The logp denotes the ordinary logarithm with base p, not the
p-adic logarithm.

8Connection Laplacian [6] and Hodge Laplacian [7,33] are
proved to be equivalent on Bruhat-Tits tree.

9“Diagonal” means that torus partition functions are diagonal
invariants, such as Liouville theory and ðA; AÞ-series minimal
models, e.g., Ising model. Nondiagonal CFTs are the majority,
and include logarithmic CFTs, bsuð2Þ WZW models in D and E
series, and ðA;DÞ-, ðA;DÞ-, ðA; EÞ- and ðE; AÞ-series Virasoro
minimal models, where ðA4; D4Þ, i.e., the 3-state Potts model
being the simplest one.

10To be precise, it is a genus-1 Tate curve on the boundary of
the Bruhat-Tits tree.

11This means that ϕ only has a nontrivial radial profile.
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In p-adic CFT, although there is no right- or left-
movers (holomorphic or anti-holomorphic modes),
there is a precise counterpart to the spinless states
defined by L0 ¼ L̄0 in 2d CFTs, which is the singlet
part under the global rotation grounp PGLð2;QpÞ.
Furthermore, as shown in examples such as the
Narain CFT, the so-called “primary counting parti-
tion function” has a convenient spectral decompo-
sition property [42], and each sector of the full
partition function contains valuable information
about the full system.

(iv) In Sec. V we will make preliminary connections
between the forthcoming computations and the rep-
resentation theory of PGLð2;QpÞ, so as a beginning
step, it is more natural to consider the sector which
preserves the isometry of the spacetime. Anisotropic
sectors would correspond to inserting a nontrivial
PGLð2;QpÞ element into the trace (5.10).

A caveat is that our calculations are only for bulk scalar
fields and not for the real gravitational contributions to the
presumably full bulk path integral.12 In the following three
subsections, we first turn off the mass m2

p, and then turn it
back on near the end of this section.

A. Laplace problem on Bruhat-Tits trees

As promised, in this subsection and the next, we study
massless scalars, which are dual to boundary marginal
operators in the usual AdS=CFT context [7,38]. For now
we turn off the source J in (3.4); we will deal with J ≠ 0 in
Sec. IV B.
We first define a few concepts on the Bruhat-Tits tree to

be used in later sections. On this homogeneous tree, one
can arbitrarily pick the central point and assign any vertex
with “depth n,” the number of edges going outwards from
the center to that vertex, and the center has depth 0.
When we talk about scalar fields on the Bruhat-Tits tree,

we refer to a real-valued scalar function globally defined on
each vertex of the tree. The spectrum has been considered
in the literature to some extent, for example in [43], and
here we solve the problem in more different settings.
Now in the spectrum we find all isotropic modes, i.e.,

those which lack angular profiles, as follows: one starts
from the conformal boundary placed at a fictitious finite
radial cutoff, which will later be taken to infinity, with the
Dirichlet boundary condition ϕj

∂Tp
≡ ϕN ¼ 0, then p of

them connect to one inner point with value ϕN−1. This point
connects to a point further inwards with field value ϕN−2.
Following the definition of Laplacian (3.5) and denoting
the eigenvalue of the function ϕi; i ¼ 1;…; N as λ, there is
a local recursion relation around the valency-(pþ 1) vertex
for the sourceless case J ¼ 0:

pðϕN−1 − 0Þ þ ðϕN−1 − ϕN−2Þ ¼ λϕN−1; ð3:8Þ

implying ϕN−2 ¼ ðpþ 1 − λÞϕN−1. Now at the depth
n ¼ N − 1, for another point connecting to the inner point
with value ϕN−2, we suppose it has another value
ϕ̃N−1 ≠ ϕN−1. This value must satisfy the same relation
(3.8) with a fixed ϕN−2. Thus, we have ϕ̃N−1 ¼ ϕN−1.
However, this kind of argument fails to arrive at the
isotropy at smaller depths, and this is where we choose
to restrict to the isotropic sector, where field values at the
same depth n are equal, denoted as ϕn. The full spectrum
including all other anisotropic modes are presented in
Appendix A.
The recursion relation starting from n ¼ 2 for isotropic

ϕn now reads

pðϕn−1 − ϕnÞ þ ðϕn−1 − ϕn−2Þ ¼ λϕn−1; 2 ≤ n ≤ N − 1

ð3:9Þ

whose characteristic equation has two roots:

α� ¼ 1þ p − λ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ − p − 1Þ2 − 4p

p
2p

: ð3:10Þ

Field value at depth n equals the general solution to the
linear recurrence (3.9)

ϕn ¼ cþαnþ þ c−αn−; ð3:11Þ

and we solve for coefficients c� with two initial conditions
at depths 1 and 2:

ϕ1 ¼
�
1−

λ

pþ 1

�
ϕ0;

ϕ2 ¼
pþ 1− λ

p
ϕ1 −

ϕ0

p
¼
�
1−

2λ

p
þ λ2

pþ p2

�
ϕ0; ð3:12Þ

where ϕ0 at the center is not fixed. The coefficients are

c� ¼
�
1

2
� p2 − 1 − λpþ λ

2ðpþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ 1 − λÞ2 − 4p

p �
ϕ0: ð3:13Þ

Now we treat (3.11) as an degree-n polynomial equation
in λ. Numerically we see that, somewhat surprisingly, all
roots of the equations for any n and p (primes and
nonprimes alike) are real. And in particular, when n is
odd, there is one universal root λ ¼ pþ 1. Also, the
constant term in the polynomial ϕnðp; λ;ϕ0Þ is always
ϕ0, while the coefficient of the highest-degree term is
always ð−1ÞNϕ0=ðpN þ pN−1Þ. Then by applying the
Vieta’s formula to ϕN ¼ 0, the product of all roots of the
degree-N polynomial ϕNðλÞ is

12Attempts at formulating gravity on Bruhat-Tits trees include
[33], but our techniques do not apply to calculating gravitational
partition functions there.
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pN þ pN−1 ð3:14Þ

which is in fact insensitive to the exact boundary value
of ϕN .
The full spectrum of the graph Laplacian on the Bruhat-

Tits tree requires further explanation as we will only
consider a subset of the full spectrum when the eigenvec-
tors are isotropic (i.e., the field value on the vertices with
the same distance to the center share the same field value)
and omit the anistropic ones for simplicity in this section.
We refer the reader to these details in Appendix A. We are
motivated by the isotropic case due to having translational
and rotational invariance on the tree.
Since − log detð□Þ is divergent in radius ∼N, in princi-

ple we are supposed to regularize it by local counterterms.
We notice that the number of boundary points is also
pN þ pN−1, which dominates the number of points in the
bulk for large N:

ðpþ 1ÞpN − 2

p − 1
⟶
N→∞ p

p − 1
ðpN þ pN−1Þ: ð3:15Þ

Giving this observation, let us first recall that in the usual
AdS3=CFT2, there are several places where various diver-
gences appear. First, in the one-loop determinant of
□þm2 for a massive scalar on H3 [44],

1

2
VolðH3Þ

Z
dt
t
e−ðm2þ1Þt

ð4πtÞ3=2 ; ð3:16Þ

there are 1=t UV divergence and VolðH3Þ IR divergence,
both removable by local counterterms. In another context,
for the on-shell Einstein-Hilbert action with constant metric:

1

16πG

Z
d3x

ffiffiffi
g

p ðR − 2ΛÞ ¼ V
4πGl2

; ð3:17Þ

where the cosmological constant Λ ¼ −1=l2 with l being
the AdS3 radius, and V is the spacetime volume, one can

introduce a height cutoff ϵ in the upper-half space model.
Then the regularized volume becomes [45]:

VϵðrÞ ¼ πl3
�
r2

2ϵ2
−
1

2
− ln

r
ϵ

�
; ð3:18Þ

where the first boundary-area divergence can be removed by
adding a boundary term local in boundary metric, and the
second logarithmic divergence can be removed by a local
counterterm as well.
In our case, the situation is different from the usual

cases, since our boundary area appears in eS instead of the
action S. The naive speculation is that the volume (i.e.,
number of vertices) on a Bruhat-Tits tree grow exponen-
tially instead of power-law. By mimicking the removal of
boundary-area divergence in ordinary AdS3 above, we
propose the partition function:

Ztree ¼
�

p
p − 1

�
1=2

: ð3:19Þ

We then investigate the behavior of the smallest and the
largest eigenvalues of the Laplacian□ as N → ∞ at a fixed
p. We used Newton’s method to find the upper bound on λ1
and the lower bound on λN , and they seem to converge
numerically; although intermediate eigenvalues do not
converge, which is natural since the amount of them
increases as N increases. For example, see Fig. 3 when
p ¼ 5 and N ¼ 3;…; 51 for their convergence. By
Newton’s method, we obtain the lower bound ∼1.52786
after 8036 iterations, and the upper bound ∼10.4721 after
474 iterations.
Now we seek to find the eigenfunctions on Bruhat-Tits

trees. Unlike discrete Laplacians on a multidimensional
regular rectangular grid with Dirichlet boundary conditions,
the universal solutions to the second-order linear recurrence
cannot be expressed in terms of a linear combination of
Chebyshev polynomials of the first and second kinds due to
the nontrivial topology of Bruhat-Tits trees. The first

FIG. 3. Numerical bounds on the smallest and the largest eigenvalues via Mathematica’s NSolve, as the fictitious boundary cutoff N
increases up to 51. They agree with results from Newton’s method.
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expression in (3.12) contains a constant term ϕ0, so there is
no inner product over a finite real interval ½−a; a� which
makes ϕ1 and ϕ2 orthogonal to each other. Another way to
see this impossibility is that there is a linear term in λ for the
second expression in (3.12).
Numerically, we observe that the decay of the field value

is almost exponential, but faster than the asymptotically
decay ∼z−1=2 of Bessel functions of the first and second
kinds JαðzÞ and YαðzÞ. In Figure 4, we plot the real part13 of
log ðϕn=ϕ0Þ; n ¼ 1;…; 51; N ¼ 51. The large but finite
negative value is an artifact that we can only compute
for finite N; ideally we should get log 0. Notice that
although their semi-log plots look almost the same, at
least to the naked eye, if one plots their face values, they
look quite different and consistent with the approximate
(asymptotic) orthogonality.

On the other hand, within the exponentially decaying
envelope, ϕn oscillates discretely around zero as n
increases. This oscillatory behavior is shown in Fig. 5
after the exponential envelope is removed.
Numerically, for a radial cutoff at depth N, we propose

the following ansatz:

ϕn;i ¼ p−n=2 cos

�
kn

i − 1

N − 1
π þ ψ

�
ϕ0;i ; ð3:20Þ

where 1 ≤ i ≤ N labels N eigenvalues, n is the depth, and k
and ψ are to be determined. After plugging this ansatz for
ϕn;i into the recurrence relation (3.9), we obtain:

0 ¼ p1=2 sin

�
kn

i − 1

N − 1
π þ ψ

�
þ ðλi − p − 1Þ sin

�
k
ði − 1Þðn − 1Þ

N − 1
π þ ψ

�
þ p1=2 sin

�
k
ði − 1Þðn − 2Þ

N − 1
π þ ψ

�
¼ sin

�
k
ði − 1Þðn − 1Þ

N
π þ ψ

��
2p1=2 cos

�
k
i − 1

N − 1
π

�
þ ðλi − p − 1Þ

�
: ð3:21Þ

FIG. 4. Asymptotics of Re½log ðϕn=ϕ0Þ� evaluated at different eigenvalues as the cutoff N increases, with p ¼ 41.

13The field value ϕn can be negative at many different depths n.

PROBING HOLOGRAPHY IN p-ADIC CFT PHYS. REV. D 107, 126011 (2023)

126011-9



The eigenvalues are asymptotically

λi ¼ pþ 1 − 2p1=2 cos

�
k
i − 1

N − 1
π

�
: ð3:22Þ

The integer k in the frequency in (3.20) can freely vary
ab initio, but by simply plotting the spectrum fλig agaisnt i
at a fixed N, we can see that the profile is monotonically
decreasing as in Fig. 6. Hence k is fixed to be 1. The
validity of this frequency is numerically tested up to p ¼
2477 (larger p’s do not increase computational complexity
significantly). However, the phase shift ψ in (3.20) has to
be determined numerically and is conveniently unimportant
for us.
The eigenvalues (3.22) are exact only if they correspond

to ϕn;i in (3.20) at large depth n (i.e., far away from the

initial condition (3.12) at the center) and N → ∞. For
p ¼ 5, we see that the largest and the smallest eigenvalues
are asymptotically 6� 2

ffiffiffi
5

p
. These are consistent with

results from Newton’s method as well as Vieta’s formula
in the sense that the summation of the eigenvalues (3.22) is
exactly ðpþ 1ÞN. Additionally, all the eigenvalues are
confined within an interval ½−2 ffiffiffiffi

p
p

; 2
ffiffiffiffi
p

p �.14
Overall, this is a different spectral decomposition of

Laplacian on the Bruhat-Tits tree from the plane-wave basis
[5,7,43], in that eigenfunctions here may oscillate around
zero. We call it the “evanescent wave” basis. Also a key
feature of discrete Laplacian here on trees is that solutions
to the Laplace equation averaged over the circular boun-
dary P1ðQpÞ is not equal to the value at the center, as
opposed to the continuous Laplacian.
Finally, it is a trivial exercise to change the valence to

pn þ 1 in the recurrence (3.9) and repeat everything above
if one wants to study the scalar on Tpn that models AdSnþ1.

B. Laplace problem on BTZ graphs

We now turn to studying the Laplace problem for BTZ
black holes. Conceptually, to calculate the determinant
of Laplacian□, we are not able to use its heat kernel as did
in [44] for continuous AdS3, because the BTZ graph is
essentially a constant-time slice [7,10], and there is no good
notion of “time.”
Compared to the Bruhat-Tits tree, in terms of the

defining recursion relations for □, the only modifications
on the linear recurrence for the scalar field ϕ on a BTZ

FIG. 5. Oscillations of eigenvalues over the cutoff N, where red dots are data points from Mathematica’s NSolve, and blue sinusoidal
curves with phase shifts are fittings with frequencies n i−1

N−1 π for the ϕn=ϕ0 at the ith largest eigenvalue, n ¼ 1;…; N − 1, i ¼ 1;…; N.

FIG. 6. The spectrum fλig of Laplacian □ when the cutoff is
N ¼ 51, ordered from the largest to the smallest, agreeing with
(3.22) with k ¼ 1. The horizontal axis is 1 ≤ i ≤ N, not cutoff N
or depth n.

14Similarly looking bounds on eigenvalues in the context of
principal series representation of GLð2;QpÞ without boundary
conditions on a Bruhat-Tits tree were obtained in [43] (Theorem
5.4.2).
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graph are the initial conditions on ϕ1 in terms of ϕ0, as
explained below.
In particular, the key difference between a p-adic BTZ

black hole and the Bruhat-Tits tree is that the field values
on the event horizon (depth 0) could be different. Given
the horizon’s area l, the field values are denoted as
ϕ0;0;ϕ0;1;…;ϕ0;s;…;ϕ0;l−1, where a specific s labels a
horizon vertex as well as the entire subtree rooted at that
vertex, as shown in Fig. 2.
Now, as shown in Fig. 7, we travel inwards from the

boundary (at depth N) where all the fields vanish, and
denote the field value on the layer next to the boundary as
ϕN−1. Without loss of generality, we start from the subtree
rooted at vertex s on the horizon. In the following, we will
focus on the partially isotropic sector of the spectrum,
namely all field values at the same depth within the same
subtree are equal [in the same manner as discussed right
below (3.8)], but different subtrees can have nontrivial
relative overall scalings on their field values, and nothing
more.15 Intuitively, this sector of interest is somewhere in
between the full spectrum and the fully isotropic sector (all
subtrees have identical field values).
The initial condition on the boundary of the subtree s is

ϕN−2;s ¼ ðpþ 1 − λtÞϕN−1;s; t ¼ 0;…; l − 1; ð3:23Þ

where ϕN;s was a free parameter already set to be 0, and the
subscript t in eigenvalue λt of the graph Laplacian (3.5) will

be explained later below (3.33).16 Since we are dealing with
fully isotropic modes on each individual subtree, as argued
as explained right below (3.8), the linear recursion relation
toward the central horizon is exactly the same as (3.9):

ϕn−2;s þ ðλt −p− 1Þϕn−1;s þpϕn;s ¼ 0; 2 ≤ n ≤ N − 1;

ð3:24Þ

in the “reverse” order, and the field values are

ϕn;s¼cþ;tðϕN−1;sÞ ·αN−1−nþ;t þc−;tðϕN−1;sÞ ·αN−1−n
−;t ; ð3:25Þ

where both coefficients ½cþ;tðϕN−1;sÞ; c−;tðϕN−1;sÞ� and
solutions ðαþ;t; α−;tÞ to the characteristic equation of
(3.24) are pairs of Galois conjugates as before.17

Now we denote the ratio between field values on the first
layer (depth 1) and those on the horizon as k≡ ϕ1;s=ϕ0;s.
Although ϕ1;s or ϕ0;s can vary between subtrees rooted at
different horizon vertices s, the linear recurrence (3.24)
implies that k must be isotropic around the loop, i.e.,
without a subscript s, because it is determined solely by the
recursion relation for n ¼ 2. Incidentally, the overall scal-
ing between field values on subtrees rooted at s1 and s2
is ϕ0;s1=ϕ0;s2 ¼ ϕ1;s1=ϕ1;s2 .
However, k still depends on α�;t and therefore λt, so we

denote it by ktðλtÞ. We examine the recursion relation
around the event horizon:

ϕ0;sþ2 − ½ðp − 1Þð1 − ktðλtÞÞ − λt þ 2�ϕ0;sþ1 þ ϕ0;s ¼ 0;

s ¼ 0;…; l − 1; ð3:27Þ

with the periodic boundary condition18 ϕ0;0 ¼ ϕ0;l, as
shown in Fig. 8.
On the other hand, the necessary and sufficient condition

for the existence of periodicity in a second-order linear
recurrence like (3.27) is that the two solutions rþ; r− to its
quadratic characteristic equation are roots of unity (not
necessarily primitive). Suppose rþ ¼ e2πi

w
q is the qth root of

unity and r− ¼ e2πi
w0
q0 is the q0th root of unity, then their

period is lcmðq; q0Þ. In our case, the period is l, the horizon
length.

FIG. 7. Going from the boundary toward the center, with the
initial condition (3.23).

15Formally we are breaking the full rotation group Zp⋊Zl of
the BTZ graph down to its normal subgroup Zp (visually Zp⋊Zl
is the symmetry group of an l-gon whose each vertex hosts a p-gon
distinguishable from the one at another vertex, a “p-”hedreal
group). The notion of a semidirect product of Zl acting on Zp
requires that there is a group homomorphism f∶ Zp ⋊Zl → Zl
which is identity on Zl, and its kernel is Zp. This can be seen by
holding the l-gon still and arbitrarily rotating all the l numbers of
p-gons, and the latter action constitutes the kernel.

16Although t shares the same range as s, it has a different
physical meaning, and by definition it is independent of s, which
is obvious because λt is a global quantity.

17Although they will not enter the rest of our analysis, we have

α�;t ¼
ð1þ p − λtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ p − λtÞ2 − 4p

p
2

: ð3:26Þ
18We might consider antiperiodic boundary conditions for

fermions as in [12], and intuitively all l later on will be replaced
by 2l.
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The solutions to the characteristic equation of (3.27) are

r�;t ¼
1

2

n
½ðp − 1Þð1 − ktðλtÞÞ − λt þ 2�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðp − 1Þð1 − ktðλtÞÞ − λt þ 2�2 − 4

q o
; ð3:28Þ

then it is clear from Vieta’s formula that

ðp − 1Þð1 − ktðλtÞÞ − λt þ 2 ¼ þ2 cos

�
2πt
l

�
ð3:29Þ

andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − ½ðp − 1Þð1 − ktðλtÞÞ − λt þ 2�2

q
¼ þ2 sin

�
2πt
l

�
:

ð3:30Þ

If we denote the discriminant in (3.28) as δ, then we note
that it is impossible to have

þ
ffiffiffi
δ

p

2i
¼ sin

2π

q
and −

ffiffiffi
δ

p

2i
¼ sin

2π

q0
;

0 < q ≠ q0 ≤ l; l ¼ lcmðq; q0Þ > 2; ð3:31Þ

i.e., different denominators in the exponents of roots of
unity rþ and r−, because

sin
2π

q
þ sin

2π

q0
¼ 2 sin

�
qþ q0

qq0
π

�
cos

�
q0 − q
qq0

π

�
¼ 0

ð3:32Þ

indicates that ðqþ q0Þ=qq0 ¼ 0, 1 or ðq0 − qÞ=qq0 ¼
1=2; 3=2. The first equation implies that q ¼ q0 ¼ 2 and
the second equation implies that q ¼ 1; q0 ¼ 2. Hence, rþ
and r− are both lth roots of unity, and are complex
conjugates to each other.

Then we have

ktðλtÞ ¼ 1 −
1

p − 1

�
2 cos

�
2πt
l

�
þ λt − 2

�
;

t ¼ 0;…; l − 1; ð3:33Þ

with double degeneracies ktðλtÞ ¼ kl−tðλl−tÞ, and t now
labels global “oscillation” modes (for all subtrees), answer-
ing Footnote 16. To avoid overcounting, we observe that
pairs—½ktðλtÞ; λt� and ½kl−tðλl−tÞ; λl−t�—correspond to the
same mode along the horizon, because t ⇔ l − t is equiv-
alent to swapping solutions rþ;t and r−;t to (3.28), so that
after solving the initial conditions ϕ0;0 ¼ Aþ B and
ϕ0;1 ¼ Arþ;t þ Br−;t, all ϕ0;s’s are invariant under this
swapping. Then the maximum value of t should be bl=2c.
Let us take a deeper look into this ktðλtÞ, by stepping

outward away from the horizon. Starting from depth 1, we
adopt the same recursion as used in the isotropic case on the
Bruhat-Tits tree. Therefore, the recursion relation here stays
the same as (3.9) for any depth n > 2, implying that
solutions α� to the characteristic equation are the same
as (3.10). When n ¼ 2, the field value ϕn−2 in (3.9) is
replaced by ϕ0;s; s ¼ 0;…; l − 1, and ϕn−1 in (3.9)
becomes ϕ1;s ¼ ktðλtÞϕ0;s. Then, the initial condition here
gives:

c̃�;tðϕ0;sÞ ¼
�
1

2
� ðpþ 1Þðpþ 1− λtÞ− 4pcosð2πtL Þ

2ðp− 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þp− λtÞ2 − 4p

p �
ϕ0;s:

ð3:34Þ

Numerically, we observe that the coefficient of the highest
degree in λt for the polynomial ϕN;s ¼ ðc̃þ;tðϕ0;sÞ·
αNþ;t þ c̃−;tðϕ0;sÞ · αN−;tÞϕ0;s is ð−1ÞNϕ0;s=ðpN − pN−1Þ,
where αþ;t and α−;t are the same as in (3.25). Thus, the
constant term is

1

pN − pN−1

 
pN þ pN−1 þ 2

XN−2

i¼0

pi

− 2 cos

�
2πt
l

�XN−1

i¼0

pi

!
ϕ0;s: ð3:35Þ

The product of all roots is independent of index s:

pN þ pN−1 þ 2
pN−1 − 1

p − 1
− 2

pN − 1

p − 1
cos

�
2πt
l

�
: ð3:36Þ

Note that (3.36) is the product of eigenvalues for one
specific t. In order to account for all modes when
computing det□, we must multiply contributions from
all t ¼ 0;…; bl=2c, and for convenience we shift t by 1 in
the product.

FIG. 8. Going around the horizon with recursive relation (3.27).
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To multiply ⌈l=2⌉ terms of (3.36) together, we recall that roots of TnðxÞ, the Chebyshev polynomial of the first kind of
degree n, are

xk ¼ cos

�
2k − 1

2n
π

�
; k ¼ 1;…; n; ð3:37Þ

called Chebyshev nodes in interval ½−1; 1�, and hence (see, e.g., [46])

TnðxÞ ¼ 2n−1
Yn
k¼1

�
x − cos

�ð2k − 1Þπ
2n

��
: ð3:38Þ

Then it is not hard to see, using the reflection symmetry Tnð−xÞ ¼ ð−1ÞnTnðxÞ, for coprime α and β, we have

Yβ
k¼1

�
2x� 2 cos

�
2πkα
β

þ θ

��
¼ 2½TβðxÞ þ ð�1Þβð−1Þαβþα cosðβθÞ� ; ð3:39Þ

which leads us to the desired product:

Y⌈l=2⌉
t¼1

�
pN − 1

p − 1

��
2
pN−1 − 1

p − 1
þ pN−1 þ pN

��
pN − 1

p − 1
− 2 cos

�
2πt
l

��


¼

8>><>>:
�
pN−1
p−1

�l
2

h
2Tl

�
pN−1ðp2þ1Þ−2

2ðpN−1Þ
�
− 2
i1
2 l even;�

pN−1
p−1

�l
2

h
2Tl

�
pN−1ðp2þ1Þ−2

2ðpN−1Þ
�
− 2
i1
2

�
pNþ1þpN−1−2þ2ðpN−1Þ cosðπlÞ

p−1

�1
2

l odd:
ð3:40Þ

For large N, we have: 8>><>>:
ffiffiffi
2

p �
pN

p−1

�l
2

h
Tl

�
p2þ1
2p

�
− 1
i1
2 l even;ffiffiffi

2
p �

pN

p−1

�l
2

h
Tl

�
p2þ1
2p

�
− 1
i1
2

�
pN−1ðp2þ1þ2p cos ðπ=lÞÞ

p−1

�1
2

l odd:
ð3:41Þ

SinceN is really an infinite quantity, we need to fully forget
all subleading terms in (3.41). Consequently, there are no
descendants and agree with Melzer’s axioms on non-
Archimedean CFTs [19], and Chebyshev polynomials do
not serve as counterparts of the usual degeneracy-counting
function 1=ηð−1=τÞ in 2d CFTs.
Furthermore, if l and p are not small, we use the explicit

expression

TlðxÞ ¼ cosh ðlarccoshxÞ; x ≥ 1; ð3:42Þ

then we obtain8><>:
�
pNþ1

p−1

�l
2 l even;�

pNþ1

p−1

�lþ1
2

�
pþ1
p

�
l odd:

ð3:43Þ

Now we can already see that detð□Þ is divergent exponen-
tially as plN when N → ∞, which is very different from the

number of boundary points lðp − 2Þðp − 1ÞN−1, or the total
number of points in the BTZ graph lpN . So we cannot
directly obtain a finite answer using the similar argument
which leads to (3.19), and the unregularized partition
function is19

ZBTZ ¼

8><>:
�

p−1
pNþ1

�l
4 l even;�

p−1
pNþ1

�lþ1
4

�
p

pþ1

�
l odd:

ð3:44Þ

Apart from the divergence, (3.44) is very similar to the
partition function of a BTZ black hole in the usual

19Since our divergence originates from a divergent number of
eigenvalues as N → ∞, one might try zeta function regulariza-
tion. However, since eigenvalues here are complicated factors of
Chebyshev polynomials, we do not see an easy way out; we hope
to revisit this issue in the future.
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Euclidean AdS3 at leading order, as reviewed in
Appendix D.
In summary, we have to undergo three recurrences to

solve the Laplace problem for the partially isotropic sector
on a p-adic BTZ black hole:
(1) From the asymptotic boundary to the horizon,20

using recurrence (3.24)21;
(2) Go around the horizon once, using recurrence

(3.27);
(3) From the horizon to the asymptotic boundary, using

recurrence (3.9).
Since the recurrence relation (3.24) for depth n > 2 is

the same as the one in the Bruhat-Tits tree (3.9), the
asymptotic behavior of the eigenfunction and the eigen-
values stay the same as in (3.20) and (3.22), respectively.
We are still in the “evanescent wave” basis as in Sec. III A.
Unlike the full spectrum on the Bruhat-Tits tree, the full
spectrum on the BTZ graph will not be presented in

Appendix A due to its involved nature, but in principle the
same techniques there are still applicable, and we will
report on it in the near future [39].
Now we perform the non-Wick-rotated inverse Laplace

transform on the partition function (3.44) to obtain the
density of states. To this end, we need to do two radical
things:

(i) First, we strip off the divergent factor in (3.44) by
hand, since otherwise the density of states to be
obtained would be very negative numbers;

(ii) Second, we regard l as “1=β ∼ i=τ > 0” for a non-
rotating BTZ. Although in our p-adic setup, there is
no mathematically rigorous τ ∈ C, in order to do the
integral transform, we need to turn on an auxiliary
imaginary part of the inverse temperature momen-
tarily, so that β̃ ¼ β þ iβ0; β0 ∈ R.

Then going from the canonical ensemble to the micro-
canonical ensemble, we have

ρðEÞ ¼ L−1fZBTZðβ̃ÞgðEÞ ¼

8><>:
1
2πi

R βþi∞
β−i∞ dβ̃eβ̃Eðp − 1Þ1=4β̃ l even;

1
2πi

R βþi∞
β−i∞ dβ̃eβ̃Eðp − 1Þ1=4β̃þ1=4

�
p

pþ1

�
l odd:

ð3:45Þ

However, the second expression cannot be evaluated
explicitly, so we focus on the high-temperature limit as
β → 0 so that 1=4β̃ þ 1=4 ≈ 1=4β̃, and from now on we do
not treat even and odd l separately, because they only differ
by a factor p

pþ1
. Then we get

ρðEÞ ¼ lnðp − 1Þ
8 0F1

�
; 2;

E lnðp − 1Þ
4

�
þ δðEÞ; ð3:46Þ

for all primes p, where 0F1 is the confluent hypergeometric
limit function, and is related to the modified Bessel function
of the first kind as

IαðxÞ ¼
ðx=2Þα
Γðαþ 1Þ 0F1

�
; αþ 1;

x2

4

�
: ð3:47Þ

In (3.46), we have ∝ I1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E lnðp − 1Þp Þ, and it goes to zero

as E → 0. Its asymptotic behavior of 0F1 as x → ∞ is

0F1ð; α; xÞ ≈ x−ðα−1Þ=2ΓðαÞ e2
ffiffi
x

pffiffiffiffiffiffiffiffiffiffiffiffi
2π

ffiffiffi
x

pp
×

�
1 −

4ðα − 1Þ2 − 1

16
ffiffiffi
x

p þ…

�
ð3:48Þ

so in semi-classical limit, for positive energy, we discard
Dirac delta and its derivative in (3.45). When p > 3, we
have

ρðEÞ ≈ ln1=4ðp − 1Þffiffiffiffiffiffi
2π

p e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E lnðp−1Þ

p
E−3=4

�
1 −

3

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E lnðp − 1Þp þOðE−1Þ þ…

�
: ð3:49Þ

Finally and straightforwardly, the Bekenstein-Hawking-
like entropy is

S≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E lnðp− 1Þ

p
−
3

4
lnEþ 1

4
lnðlnðp− 1ÞÞ− 1

2
lnð2πÞ−…;

ð3:50Þ

where the second term is the famous logarithmic correction
terms previously discovered in [47,48]. This result is also
consistent with the “species problem” [49] because we are

20Skipping Step 1 results in a messy situation, as explained in
Appendix C.

21The sole purpose of recurrence (3.24) is to show the isotropy
of ϕn;s within the subtree s.
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calculating scalar fields all the time. One can also derive the
Cardy-like formula [50–52] via saddle point approximation
on (3.45).
The usual Bekenstein-Hawking entropy of black holes

from Cardy-like formula has 4π
ffiffiffiffiffiffi
Ek

p
as the leading term

[22], where k is proportional to the Brown-Henneaux
central charge 3l=2GN [53]. By comparing this with
(3.50), we see that our lnðp − 1Þ is like k. However, this
raises a puzzle because increasing the valency of the tree
should increase the curvature, corresponding to decreasing
k in the continuous AdS3.

22 We will discuss this near
the end.
Another stand-alone case of (3.46) is p ¼ 3, since

ln 2 < 0, and the asymptotic expansion (3.48) is only true
when j arg xj < π=2. Now 0F1 is related to the Bessel
function of the first kind as

JαðxÞ ¼
ðx=2Þα
Γðαþ 1Þ 0F1

�
; αþ 1;−

x2

4

�
; ð3:51Þ

and JαðxÞ has the following asymptotics for real x → ∞:

JαðxÞ ≈
ffiffiffiffiffi
2

πx

r
cos
�
x −

απ

2
−
π

4

�
; ð3:52Þ

so the semiclassical limit of density of states is

ρðEÞjp¼2 ≈ 2
ffiffiffi
2

p ð− ln 2Þ3=4ffiffiffi
π

p E−3=4 cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−E ln 2

p
−
3π

4

�
;

ð3:53Þ

which is a pathological result due to the oscillatory nature.
It seems that a 3-adic BTZ black hole is unstable.
The continuous integral transform (3.45) is justified

because in the high temperature regime l → ∞, the
separation between two adjacent discrete inverse temper-
atures is ∼1=l2. On the other hand, if we do not perform
coarse-graining, we need to perform the discrete inverse
Laplace transform. Superficially, the discrete inverse
Laplace transform has the same expression as the one
used in going from canonical partition function ZNðβÞ for
N particles to grand partition function Zðβ; μÞ:

Zðβ; μÞ ¼
X∞
N¼0

ðeμβÞNZNðβÞ; ð3:54Þ

but here the temperature is held fixed, and particle number is
the analogue of p-adic discrete temperature.23 Unfortunately
in our case, the Z-transform does not yield a closed form so
we stick to the continuous approximation (3.45).
Let us examine more details on the density of states. At

low energy E0, we integrate the density of states (3.46) over
the interval ½E0; E0 þ ϵ� with a small but finite ϵZ

E0þϵ

E0

dEρðEÞ ¼ lnðp − 1Þ
8 0F1

�
; 2;

E lnðp − 1Þ
4

�����E0þϵ

E0

;

ð3:55Þ

although there is no particle interpretation in ordinary 2d
CFTs (roughly because their correlators have no simple
poles), and we expect so in p-adic CFT, in the bulk we can
view the tree as a lattice, and number of vertices equals the
number of degrees of freedom (or “particles”), which is
lpN . The low-energy limit of (3.55) is

1

8 0F1

�
; 2;

lnðp − 1ÞE0

4

�
lnðp − 1Þϵ

þ 1

128 0F1

�
; 3;

lnðp − 1ÞE0

4

�
ln2ðp − 1Þϵ2 þOðϵ3Þ:

ð3:56Þ

Small-argument behavior of 0F1 is just 1, so we have:

1

8
lnðp−1Þϵþ 1

128
ln2ðp−1Þϵ2þOðϵ3Þ

<
1

16
lnðp−1Þ

X∞
i¼1

ðiþ1Þϵi ¼ ϵð2− ϵÞ
16ðϵ−1Þ2 lnðp−1Þ; ð3:57Þ

which is a constant polynomial in total number of
“particles,” hence satisfying the sparsity condition on in
[55,56] on the number of low-energy eigenstates in a
gapless 1D system with a local Hamiltonian,24 hence in
principle one is able to approximate the Hilbert subspace
near the ground state in the supposedly dual p-adic CFT.
This may be worth investigating in the future.

C. Turning on the scalar mass

Here we again turn off the source J in (3.4), and now we
have a Helmholtz-like wave equation

ð□þm2
pÞϕa ¼ 0: ð3:58Þ

22Since the Bruhat-Tits tree has no holonomy, defining a
Riemann tensor is arduous. Yau et al. [54] were able to define a
Ricci curvature κxy on graphs without a Riemann tensor, but in
terms of the edge lengths axy, from which Gubser et al. [33]
found that on-shell the tree has a constant negative Ricci
curvature κxy ¼ −2 p−1

pþ1
and the edge length fluctuations are

massless modes.

23This transform is also called a unilateral Z-transformation,
with the less common but equivalent definition where powers are
positive, same as probability generating functions.

24We thank Ning Bao for pointing out these references.
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The on-shell mass squared of a bulk scalar in (3.3) is
real25 [6,7]:

m2
p ¼ −

1

ζpðΔ − nÞζpð−ΔÞ

¼ −ðpþ 1Þ þ 2pn=2 cosh

��
Δ −

n
2

�
lnp

�
; ð3:59Þ

and invariant under Δ → n − Δ, where the p-adic or
“finite” local zeta function ζpðsÞ is defined as:

ζpðsÞ≡ 1

1 − p−s ; ð3:60Þ

which obtains its name because the real Riemann zeta
function ζ∞ðsÞ can be constructed from Euler’s adelic
product:

ζ∞ðsÞ≡
X∞
n¼1

1

ns
¼
Y
p

ζpðsÞ ¼
Y
p

1

1 − p−s : ð3:61Þ

Then the Breitenlohner-Freedman (BF) bound is
m2

BF;p ¼ −1=ζpð−n=2Þ2, with Δ ¼ n=2. For m2
p above this

bound, two possible p can satisfy (3.59):

p� ¼ 1

2

�
ð1þ pn þ 1=m2

pÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ pn þ 1=m2

pÞ2 − 4pn
q �

:

ð3:62Þ

We adopt the same convention on the solutions to (3.59) as
in [6], i.e., Δ ¼ Δþ > n=2. Then for massless scalars,
Δ ¼ n, so we are restricted to Δ ¼ 0, 1 when n ¼ 1.
Now we hope to calculate partiton function when ϕ is

massive, which amounts to calculating the determinant of
□þm2

p1. We relate the field polynomial ϕtree
N ðλÞ (ϕBTZ

n;s ðλtÞ
for BTZ black holes) resulting from the boundary condition
ϕj

∂T ≡ ϕN ¼ 0 with the “monic” (up to ð−1ÞN) character-
istic polynomial PNðλÞ ¼

Q
N
i¼1 ðλi − λÞ ¼ det ð□ − λ1Þ of

the Laplacian □. What we have calculated in the previous
two subsections are essentially PNð0Þ, the constant term of
PNðλÞ, and now we perturbatively investigate PNð−m2Þ,
i.e., the determinant det ð□þm2

p1Þ ¼
Q

N
i¼1 ðλi þm2

pÞ.
It is important that λi’s are always greater than the BF

bound mBF;pn ¼ −1=ζpð−n=2Þ2, which is mBF;p ¼
−ð ffiffiffiffi

p
p − 1Þ2 for n ¼ 1, whose absolute value is strictly

smaller than all eigenvalues for both Bruhat-Tits trees and
BTZ black holes in (3.22). Hence, we will not encounter
issues of alternating signs upon calculating the determinant
of □þm2

p1.

In principle, one could possibly use minimal polyno-
mials for Gaussian integers to study powers of Galois
conjugates. However, we will proceed in a more combi-
natorial approach.

1. On Bruhat-Tits trees

Since the polynomial ϕNðλÞ in λ always has the constant
term 1, we need to rescale it to be monic up to ð−1ÞN :

Ptree
N ðλÞ≡ϕtree

N ðλÞ=ϕtree
0

YN
i¼1

λi ¼ ðpN þpN−1Þϕtree
N ðλÞ=ϕtree

0 ;

ð3:63Þ

where Ptree
N ðλÞ is defined in (3.11), so that Ptree

N ð0Þ ¼
pN þ pN−1.
By denoting x≡ p − λþ 1, we can rewrite Ptree

N ðλÞ as

1

2ð2pÞN
Xn
k¼0

�
N
k

�
xkðx2 − 4pÞN−k−1

2

×

�
½ðx2 − 4pÞ12ð1þ ð−1ÞN−kÞ�

þ p − 1

pþ 1
x½ðð1þ ð−1ÞN−k−1Þ�



: ð3:64Þ

Repeatedly applying the binomial theorem in a nested
fashion gives us the following results:

(i) The linear term of Ptree
N ðλÞ is, since p ≠ 1:

�
−NpN−1 − 2

XN−1

i¼1

ipi−1
�
λ

¼ ðN þ 2p − Np2ÞpN − 2p
pðp − 1Þ2 λ; ð3:65Þ

which goes to −N pþ1
p−1 p

N−1λ when N is large;
(ii) The quadratic term is

XN−2

i¼0

pi

�ðiþ 1Þðiþ 2Þ
2

þðiþ 1Þðiþ 2ÞðN − i− 2Þ
�
λ2

¼ 1

2pðp− 1Þ4 ½ðN
2 −NÞpNþ3 − ðN2 þ 5N − 6ÞpNþ2

− ðN2 − 5N − 6ÞpNþ1 þðN2þNÞpN

− ð4Nþ 6Þp2þð4N − 6Þp�λ2; ð3:66Þ

which goes to N2 pþ1

2ðp−1Þ2 p
N−1λ2 when N is large.

So for small jm2
pj < 1, we have the unregularized partition

function Ztreeðm → 0Þ:
25Here n is the degree of unramified extension Qpn of Qp, so

that the Burhat-Tits tree is now Tpn.
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detðm2
p1þ□Þ ¼ Ptree

N ð−m2Þ

¼ ðpN þ pN−1Þ
�
1þ N

p − 1
m2

p þ
1

2

�
N

p − 1
m2

p

�
2

þ…

�
¼ ðpN þ pN−1Þe

Nm2
p

p−1 ; ð3:67Þ

where the regularization factor pN þ pN−1 ∝ (3.15) is now
manifest.
For completeness, we look into the large-mass limit,

where only high-degree terms in Ptree
N ðλÞ matter.

(i) The λN−1 term is −ð−1ÞNNðpþ 1ÞλN−1. So in order
to ignore the λN−2 term, we need m2 to be larger
than N;

(ii) The λN−2 term is

1

2
ð−1ÞN ½NðN − 1Þp2 þ 2ðN − 1Þ2p
þ NðN − 1Þ − 2�λN−2; ð3:68Þ

which goes to 1
2
ð−1ÞNN2ðpþ 1Þ2λN−2 when N

is large;
(iii) The coefficient of λN−3, a degree 3 polynomial in p

involves first-order linear recurrence with variable
coefficient for pi coefficients fN , such as

fN ¼ fN−1 þ NðN − 1Þ=2; ð3:69Þ

but in the end we have

−ð−1ÞN
�
NðNþ1ÞðN−4Þ

6
þ2þNðN−2ÞðN−3Þ

2
p

þ
�
NðN2−5Nþ8Þ

2
−2

�
p2þNðN−1ÞðN−2Þ

6
p3



;

ð3:70Þ

which goes to − 1
6
ð−1ÞNN3ðpþ 1Þ3λN−3 when N

is large.
Then collectively we have the unregularized partition
function:

Ztreeðm → ∞Þ ¼ ðpN þ pN−1Þm2N
p

�
1þ Nðpþ 1Þ

m2
p

þ 1

2

�
Nðpþ 1Þ

m2
p

�
2

þ 1

6

�
Nðpþ 1Þ

m2
p

�
3

þ…

�
¼ ðpN þ pN−1Þm2N

p e
Nðpþ1Þ
m2
p ; ð3:71Þ

Now we discuss the conditions on Δ when jm2
pj is small.

In order to have 0 < −m2
p ≪ 1, we write Δ ¼ 1þ ϵ where

ϵ ≪ 1. So we have

ð1 − pn−ΔÞðpΔ − 1Þ ≪ 1; ð3:72Þ

where n denotes the unramified extension Qpn , then we get

ϵ ≪
ln ½p1−n

2
ð2þ pn −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2n þ 4

p
Þ�

lnp
: ð3:73Þ

and similarly, for Δ ¼ 1 − ϵ, we need −1 ≪ −m2 < 0, and
we get

ϵ ≪
ln½p

2
ð1 − p−n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnðpn − 4Þp Þ�

lnp
ð3:74Þ

From this expression we also see that when n ¼ 1, the
smallest prime p is 5, consistent with the result from
density of states in Sec. III B.

2. On BTZ black holes

The characteristic polynomial for Laplacian on
BTZ black hole is different from Ptree

N ðλÞ. It is rescaled
from the field polynomial26 ϕBTZ

N;s ðλtÞ at the cutoff depth
N to

PBTZ
N ðλtÞ≡

Y⌈l⌉
t¼1

P̃BTZ
N;t ðλtÞ¼ðpN−pN−1Þl

Y⌈l⌉
t¼1

ϕBTZ
N;s ðλtÞ=ϕBTZ

0;s ;

ð3:75Þ

so that PBTZ
N ðλtÞ and P̃BTZ

N;t ðλtÞ are monic up to ð−1ÞNl and
ð−1ÞN , respectively, and PBTZ

N ð0Þ agrees with (3.40).
Let us first consider when the mass jm2

pj is small. The
linear term in λt in P̃BTZ

N;t ðλtÞ for one specific t is

26Here the subscript is “s” not “t”, because this polynomial
depends on the initial field value ϕ0;s on horizon, as written
above (3.35).
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�
−NpN−1 þ

�
cos

�
2πt
l

�
− 1

�XN−1

i¼1

2iðN − iÞpN−i−1
�
λt

¼ −
�
NpN−1 þ 4sin2

�
πt
l

�
NðpN þ 1Þðp − 1Þ − ðpN − 1Þðpþ 1Þ

ðp − 1Þ3
�
λt; ð3:76Þ

which goes to

−
�

NpN

ðp − 1Þ2 þ 4NpN−1 sin2
�
πt
l

��
λt ð3:77Þ

when N is large.
For small m2

p, we only calculate P̃BTZ
N;t ð−m2

pÞ up to the linear term in λt, written in shorthand:

A cos

�
2πt
l

�
þ B ð3:78Þ

where

A≡ −
2m2

pðNðp − 1ÞðpN þ 1Þ − ðpþ 1ÞpN þ pþ 1Þ
ðp − 1Þ3 −

2ðpN − 1Þ
p − 1

; ð3:79Þ

B≡m2
pNpN−1 þ 2m2ðNðp − 1ÞðpN þ 1Þ − ðpþ 1ÞpN þ pþ 1Þ

ðp − 1Þ3 þ pN−1 þ 2ðpN−1 − 1Þ
p − 1

þ pN; ð3:80Þ

then ⌈l⌉ terms multiply together to be

PBTZ
N ð−m2

pÞ ¼
( ffiffiffi

2
p ð−A=2Þl2½Tlð−B=AÞ − 1�12 l even;ffiffiffi
2

p ð−A=2Þl2½Tlð−B=AÞ − 1�12ðA cos ðπ=lÞ þ BÞ12 l odd;
ð3:81Þ

where −B=A at Oðm2
pÞ is

pNþ2 þ pN − 2p
2pðpN − 1Þ þ pN−1ðpNþ1 þ pN − 2Npþ 2N − p − 1Þ

2ðpN − 1Þ2 m2 þOðm4
pÞ⟶N→∞p2 þ 1

2p
þ pþ 1

2p
m2

p: ð3:82Þ

Because dTlðxÞ=dx ¼ lUl−1ðxÞ, where UlðxÞ is the Chebyshev polynomial of the second kind, when both l and p are not
small, we get the unregularized BTZ partition function:

ZBTZðmp → 0Þ ¼ PBTZ
N ð−m2

pÞ

≈

8><>:
�
1þ lm2

p

2p

�1
2

�
pNþ1

p−1

�l
2

�
1þ Nm2

p

ðp−1Þ2
�l

2 l even;�
1þ lm2

p

2p

�1
2

�
pNþ1

p−1

�l
2

�
1þ Nm2

p

ðp−1Þ2
�l

2

�
A cos

�
π
l

�
þ B

�
l odd;

ð3:83Þ

which recovers (3.43) when m2
p ¼ 0.

For large mass jm2
pj, we calculate the λN−1

t term in P̃BTZ
N;t ðλtÞ to be

ð−1ÞN
�
2 cos

�
2πt
l

�
− Nðpþ 1Þ

�
λN−1
t ; ð3:84Þ

and the λN−2
t term is
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ð−1ÞN
�
NðN − 1Þ

2
ðp2 þ 1Þ þ ðN − 1Þ2pþ 1 − 2ðN − 1Þ cos

�
2πt
l

��
λN−2
t ; ð3:85Þ

so we have terms with the three highest degrees added up to

P̃BTZ
N;t ð−m2

pÞ ¼ m2N
p þm2N−2

p

�
Nðpþ 1Þ − 2 cos

�
2πt
l

��
þm2N−4

p

�
NðN − 1Þ

2
ðp2 þ 1Þ þ ðN − 1Þ2pþ 1 − 2ðN − 1Þ cos

�
2πt
l

��
þ…; ð3:86Þ

and when N is large it is

C cos

�
2πt
l

�
þD; ð3:87Þ

where

C≡ −2m2N
p

�
1

m2
p
þ N
m4

p

�
; D≡m2N

p

�
1þ Nðpþ 1Þð2m2

p þ N þ NpÞ
2m4

p

�
; ð3:88Þ

then ⌈l⌉ terms multiply together to

PBTZ
N ð−m2Þ ¼

( ffiffiffi
2

p ð−C=2Þl2½Tlð−D=CÞ − 1�12 l even;ffiffiffi
2

p ð−C=2Þl2½Tlð−D=CÞ − 1�12ðC cos ðπ=lÞ þDÞ12 l odd;
ð3:89Þ

where −D=C at Oðm2
pÞ is

N
4
ðpþ 1Þ2 þ 1

4
ð1 − p2Þm2

p þOðm4
pÞ þ… ð3:90Þ

so explicitly the unregularized BTZ partition function for very large m2 is

ZBTZðmp → ∞Þ ≈

8><>:
mlN−l

p

�
1þ N

m2
p

�l
2

�
Nðpþ1Þ2

2
þ ð1−p2Þm2

p

2

�1
2 l even;

mlN−l
p

�
1þ N

m2
p

�l
2

�
Nðpþ1Þ2

2
þ ð1−p2Þm2

p

2

�1
2

�
C cos

�
π
l

�
þD

�
l odd;

ð3:91Þ

IV. ONE-LOOP WITTEN DIAGRAMS

In the work by Kraus and Maloney [23], they proposed a
duality between higher-energy states on the conformal
boundary and semiclassical gravity in AdS3 for the BTZ
black hole. They showed that a bulk Witten diagram with
two types of perturbative (i.e., not massive conical defects)
scalar fields in the bulk is equivalent to the average value of
the three-point coefficient hEjOjEi, where jEi is the high-
energy state dual to the BTZ black hole, and O is the
operator dual to one type of the light scalars. Here, the
average of the three-point coefficient is taken over all states
with energy E

hEjOjEi≡ hEjOjEi
ρðEÞ ; ð4:1Þ

where ρðEÞ is the density of states given explicitly by the
asymptotic Cardy formula [50–52]. In Sec. II, we
reviewed a way to construct a p-adic version of the
BTZ black hole as the quotient space of the Bruhat-Tits
tree by the p-adic Schottky group qZ. In this section, we
propose to use Kraus-Maloney’s technique in p-adic BTZ
configuration and calculate the analogous Witten dia-
gram.27 This calculation provides a dual interpretation for
the boundary p-adic CFT averaged three-point coefficient,
which in principle could be independently derived from a
pure CFT calculation.

27Another name for Witten diagrams in p-adic AdS are called
“subway diagrams” [6].
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A. Review on BTZ black hole calculation
by Kraus-Maloney

In this section, we provide a brief overview of Kraus and
Maloney’s results [23] on the bulk and boundary sides, as
well as list their assumptions.

1. Cardy formula for three-point coefficients in 2d CFTs

The high and low energy spectra of a CFT are related by
modular invariance, i.e.,ZðβÞ ¼ Zðð2πÞ2=βÞ. Analogously,
modular invariance can be used to refer to high- and low-
dimensional operators as “heavy” and “light,” respectively.
This can be used to obtain results on the asymptotic spectral
density weighted by OPE coefficients. Kraus and Maloney
used modular invariance in the torus one-point function to
estimate light-heavy-heavy three-point coefficients hEjOjEi
for a BTZ black hole. They proved that the averaged three-
point coefficients from the bulk in the large-horizon limit
and from the boundary in the high-temperature limit agree.
The three-point coefficients are easily found by taking

the inverse Laplace transform and using the saddle point
approximation in the high-temperature limit for a primary
operator O

hOi ¼ TrHS1
Oe−βH ¼

X
i

hijOjiie−βEi ; ð4:2Þ

where we trace over CFT states on the thermal circle and
these coefficients are constrained by modular invariance.
The asymptotic behavior of the light-heavy-heavy coef-

ficient is exponentially suppressed. The suppression
depends on the central charge c and conformal dimensions
of operators O and χ, which are light primary operators
dual to AdS3 bulk scalars ϕO and ϕχ , with energy
EO; Eχ ≪ c

12
. To compute the averaged three-point function

coefficient, the last ingredient we need is the density of
states which is given by the Cardy formula in the large E
limit [50–52]. In this limit, the final result of the averaged
three-point function coefficient is

hEjOjEi ≈ COχχr
ΔOþ e−2πΔχrþ ; ð4:3Þ

which matches precisely in the bulk calculation done in
Sec. IVA 2.

2. Witten diagram calculation in AdS3

The bulk theory has an interaction term ϕOϕ
2
χ with

coupling COχχ . The cubic vertex integrated over the entire
BTZ AdS spacetime in Fig. 9 is

hEjOjEi ¼ COχχ

Z
drdtEdϕrGbbðr;ΔχÞGb∂ðr; tE;ϕ;ΔOÞ:

ð4:4Þ

We want to match the integral (4.4) in the large rþ limit
to the CFT result (4.3) for the asymptotic three-point
coefficient. The BTZ black hole is obtained from global
AdS3 via periodic identifications (i.e., AdS3=Z under
ϕ ∼ ϕþ 2π), which allows us to perform the method of
images to obtain the BTZ black hole propagator from
global AdS3. The BTZ black hole propagator is

Gbbðr; r0Þ ¼ −
1

2π

X∞
n¼−∞

e−Δσnðr;r0Þ

1 − e−2σnðr;r0Þ
; ð4:5Þ

where σnðr; r0Þ is the geodesic distance between r and the
nth image of r0. There is an apparent UV-divergent tadpole
for the n ¼ 0 term; however, this can be easily canceled by
a local counterterm and other terms n ≠ 0 are finite. As we
will see in Sec. IV B, this type of UV divergence is absent
in the case for p-adic BTZ black holes because of the form
of the Green function, but a tadpole term remains present.
Additionally, Kraus and Maloney considered the scalar
fields to be massive: EO ≈mO ≫ 1; Eχ ≈mχ ≫ 1 such
that mO; mχ ≪ c.
In the large rþ limit, the averaged three-point

coefficient is

hEjOjEi ≈ COχχr
ΔOþ e−2πΔχrþ : ð4:6Þ

B. p-adic Witten diagram calculation

Previously, we reviewed that the p-adic BTZ black hole
is constructed as a quotient space of the Bruhat-Tits tree
and is visualized as a central polygon with a sub-Bruhat-
Tits rooted tree attached to each vertex of the polygon. The
central polygon is the horizon of the p-adic BTZ black hole
with area l ¼ −ordpðqÞ ¼ logp jqjp and q is the generator

FIG. 9. As illustrated in the Witten diagram for the regular BTZ
black hole, a light scalar field ϕO is emanated from the boundary
to the horizon and splits into a pair of light fields ϕχ that wrap
around the horizon.
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of Schottky group qZ. Considering the construction of the
p-adic BTZ black hole, we chose a new set of coordinates
ðn; hÞ to parametrize the bulk points. The labels of vertices
on the horizon, to which bulk points are attached (directly
or indirectly), are represented by n ¼ 0; 1;…; l − 1.
Whereas h ¼ 0; 1;…;∞ represents the number of edges
between the attached central vertex and that bulk point.
Under this parametrization, in order to calculate the

similar Witten diagram mentioned in [23], we replace the
original integration over AdS space with a summation over
all bulk points ðn; hÞ on the quotient space of the Bruhat-
Tits tree

hEjOjEi ≈ COχχ

X
ðn;hÞ

dðn; hÞGbbðn; h;ΔχÞGb∂ðn; h; x;ΔOÞ;

ð4:7Þ

where x ∈ Qp is the boundary coordinate of the operators
O, Δχ and ΔO are scaling dimensions of operators χ andO.
dðn; hÞ counts the number of vertices sharing the same
coordinate ðn; hÞ.
There are two different cases that we need to calculate

separately. The first case is both the bulk and boundary
points are attached to the same central vertex. The second
case is both the bulk and boundary points are attached to
different vertices. We denote the central vertex attached by
the boundary point as vertex 0, such that these two cases are
n ¼ 0 and n ≠ 0.

1. Propagators revisited in BTZ background

In Sec. II, we introduced the p-adic BTZ black hole as the
quotient space Tp=qZ, which is different from the original
Bruhat-Tits tree Tp. One obvious distinction is that the
quotient space loses some global symmetries.28 Remember
that the normal Bruhat-Tits tree has a perfect homogeneity,
and in principle, we could choose any local vertex to be a
central point. However, the p-adic BTZ background cer-
tainly has some predetermined central vertices, which has
been shown in Fig. 2 as vertices of the central polygon.
Given the global symmetry breaking, we should question

whether the theory defined on the p-adic BTZ black hole
would deviate from the normal Bruhat-Tits tree theory
defined by the action (3.3), and more importantly, whether
the propagators (i.e., Green functions as the main characters
of Witten diagram calculation shown above) would also
change. Fortunately, by observations, we find that even
though the global symmetry is broken by a topological
change, the local features of the graph are still preserved. In
other words, the valency of each vertex is still pþ 1, same

as on the Bruhat-Tits tree. Meanwhile, since the p-adic
BTZ black hole is also an undirected graph with an infinite
number of vertices, we should expect the action (3.3) to still
be valid in the BTZ black hole background. However, when
we compute the propagators, the equations of motion has
sources inserted on some vertices. The symmetry loss of
the BTZ black hole will also cause the symmetry loss to the
solutions of these equations of motions. For instance, on
the Bruhat-Tits tree, no matter where we insert the source,
due to homogeneity of the tree, the solution will be
homogeneous. However, in the BTZ black hole case, the
depth of vertices, where we insert the source, from the
horizon will indeed affect the solutions and subsequently
the solutions will be different from those on a normal
Bruhat-Tits tree.
One approach to compute the propagators in the back-

ground of an ordinary Euclidean BTZ black hole is the
method of images [23,44], which will be demonstrated in
the next subsection. Instead, we can also straightforwardly
start from the solution to the equation of motion with a
source insertion. This provides us a sanity check for the use
of method of images. In general, due to the loss of
symmetries, solving the equation of motion with sources
inserted in arbitrary vertices on the p-adic BTZ is arduous,
but we can still use the residual symmetries to evaluate a
simple case.
Suppose we use the same action (3.3) for the p-adic BTZ

background. Meanwhile, we restrict our calculations to the
case where only one current source J is coupled to the
vertex 0 on the horizon, without other source couplings.
The equation of motion is then:

ð□þm2
pÞϕi ¼

�
J i ¼ C0

0 otherwise
; ð4:8Þ

yielding the propagator:

GbbðC0; aÞ ¼
ϕa

J
; ð4:9Þ

where ϕa is the field value to an arbitrary vertex a and C0

represents the vertex 0 on the horizon.
We should mention that the solution depends on the

specified boundary condition. In order to find the same
class of solutions as those on the Bruhat-Tits tree, we
specify the boundary condition:

lim
i→∂Tp

ϕi ¼ 0: ð4:10Þ

For simplicity, we set the mass mp of the scalar field ϕi to
be 0.
In Sec. III, we demonstrated a way to solve Laplace’s

equation by using linear recursion in the scalar fields. Here,
we follow a similar technique. We denote the vertices on
the horizon as Cn where n ¼ 0;…; l − 1. Consider one
specific vertex Ci, the subtree rooted at Cn is solved by
using a recursion relation:

28Global symmetries under action by the isometry group, e.g.,
PGLð2;QpÞ in the context of Bruhat-Tits trees. When we
quotient P1ðQpÞ by the Schottky group qZ, the isometry group
is then broken to a subgroup of PGLð2;QpÞ.
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ðpþ 1Þϕh;n ¼ pϕhþ1;n þ ϕh−1;n; ð4:11Þ
where the vertices on the subtree are parametrized by h, the
depth of a vertex with respect to Ci. From Sec. III, we know
the solution to this recursion relation is

ϕh;n ¼ aþ bp−h; ð4:12Þ

where a, b are two free variables that are fixed by the
boundary conditions. We first enforce the boundary con-
dition (4.10) to set a ¼ 0, so ϕh;n ¼ ϕCn

p−h.
We also need to determine all the field values ϕCn

on the
horizon. This requires us to use the recursive equations on
the horizon for n ≠ 0:

ðpþ 1ÞϕCn
¼ ϕCn−1

þ ϕCnþ1
þ p − 1

p
ϕCn

ð4:13Þ

The equation on vertex 0 is modified by the source:

ðpþ 1ÞϕC0
¼ ϕCl−1

þ ϕC1
þ p − 1

p
ϕC0

þ J: ð4:14Þ

These linear equations can be solved either numerically
or analytically. We demonstrate a simple example where
l ¼ 3 and obtain the following solutions to (4.13):

ϕC0
¼ 1

p − 1
p

�
1þ 2

p3 − 1

�
J

ϕC1
¼ ϕC2

¼ 1

p − 1
p

p2 þ p
p3 − 1

J: ð4:15Þ

In (3.59), we gave a correspondence between the mass of a
bulk scalar field and the scaling dimension of a boundary
operator. For a massless scalar, the corresponding scaling
dimension is Δ ¼ 1. Then we rewrite the propagators
(4.15) in a convenient way

GbbðC0; C0Þ ¼
ζpð2ΔÞ
pΔ

�
1þ 2

pΔl − 1

�
GbbðC0; CnÞ ¼

ζpð2ΔÞ
pΔ

pn þ pl−n

pΔl − 1
: ð4:16Þ

In the subsequent subsections, we will see directly that
these results are consistent with the results given by method
of images in [7] for both bulk-to-bulk and bulk-to-boundary
propagators.

2. n = 0 case

For the n ¼ 0, the boundary point x and the bulk point b
are in the same subtree rooted at, without loss of generality,
the central vertex 0. The Witten diagram in Fig. 10 is what
is needed to calculate the averaged three-point coefficient.

To calculate this Witten diagram, we must determine
two main factors: the bulk-to-bulk and bulk-to-boundary
propagators. Since both fields χ and O are normal
perturbative scalar fields, we directly derive the bulk-to-
bulk propagator on the Bruhat-Tits tree by finding the
tree Laplacian’s Green function, which has a simple
form29 [6,7]

Gbbðz; z0;w;w0Þ ¼ p−Δχdðz;z0;w;w0Þ; ð4:17Þ
where the function dð·; ·Þ gives the geodesic distance.
In the previous subsection, we provided a way to compute
the Green function in p-adic BTZ background by solving
the sourced equation of motion (4.14). In general, that
approach is doable but complicated. Fortunately, the
p-adic BTZ background is realized as the quotient space
of the normal Bruhat-Tits tree, so we use the method of
images to solve the equations given the solutions in the
parent space. Following [23], we use the method of images
to derive the bulk-to-bulk propagator from vertex b to
itself. Using the ðn; hÞ parametrization as mentioned
before, we obtain

Gbbðn; hÞ ¼ p−Δχdðb;bÞ þ 2
X∞
i¼1

p−2Δχhp−iΔχ l

¼ 1þ 2p−2Δχh

pΔχ l − 1
; ð4:18Þ

where the summation is over all images of b under the
action of the Schottky group, and the index i is regarded as
the winding number around the horizon. Comparing this

FIG. 10. Witten diagram in the p-adic BTZ black hole (p ¼ 3,
l ¼ 4, n ¼ 0). Red line: the bulk-to-bulk propagator. Blue line:
the bulk-to-boundary propagator.

29Here we omit the normalization factor ζpð2ΔÞ
pΔ in [6].
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result with the solution (4.16) by setting h ¼ 0, we see
that the two results agree up to a normalization factor
ζpð2ΔÞ=pΔ we omitted in (4.17). Notice that a constant 1
appears in the bulk-to-bulk propagator. This is the tadpole
term which usually causes divergence in the normal
continuum AdS spacetime. Although it does not cause a
divergence in our case, it is still unphysical. As shown in
Figure 9, the tadpole term does not probe the black hole
geometry, because the ϕχ loop in the tadpole case shrinks
to a point instead of wrapping around the black hole
horizon. Moreover, the same tadpole contribution also
appears in the empty AdS calculation [23], which is about
the semiclassical vacuum one-point function h0jOj0i. In
order to renormalize this one-point function, we need to
cancel the tadpole term.30 Fortunately, this can be done by
adding the ordinary local counterterm

P
i ciϕi into the

action, where i is the label of bulk vertices. This counter-
term mimics the

R
d4xϕðxÞ in the continuum case. The

renormalized bulk-to-bulk propagator is

Grenorm
bb ðn; hÞ ¼ 2p−2Δχh

pΔχ l − 1
ð4:19Þ

The bulk-to-boundary propagator is derived from the
bulk-to-bulk propagator by moving one point to the boun-
dary.31 Notice that if we were to directly take this limit in
(4.17), it would vanish due to dðz; z0;w;w0Þ → ∞.
Therefore, we need to perform a regularization prescription
as provided in Sec. 3 of [6]. The bulk-to-boundary propa-
gator on the Bruhat-Tits tree is derived via [6]:

Gb∂ðz; z0; xÞ ¼ lim
δx→0

jδxj−Δp Gbbðz; z0;w;w0Þ: ð4:20Þ

Given a bulk point ðw;w0Þ, we denote any boundary
point which is reached by an oriented path ðz; z0Þ →
ðw;w0Þ as y. The supremum of jy − xjp is denoted by
δx. When we move ðw;w0Þ to the boundary point x, the
limit is taken as δx → 0. Clearly, some prescription factor
jδxj−Δp → ∞ is required so that the bulk-to-boundary
propagator does not vanish.
In [5,7], another regularization procedure is provided.

Instead of taking the asymptotic limit of the bulk-to-bulk

propagator, they regularized the geodesic distance. The
main feature there is that Zabrodin defined dregðC; xÞ ¼ 0
[5], where C is a vertex on the horizon and x is the
boundary point in the subtree rooted at C. By inspection,
we realize that these two regularization methods are
equivalent and both are consistent with the recursive
derivation in Section IV B 1. We then say that these
regularizations are anomaly-free under PGLðQpÞ.
Setting the geodesic distance of dregðC; xÞ ¼ 0 is the same
as factoring pdðC;xÞΔ out from the nonregularized bulk-to-
boundary propagator (4.19) with one point at the asymp-
totic boundary. pdðC;xÞΔ → ∞ plays the same role as jδxj−Δ.
Therefore, we freely choose one regularization approach
and use the method of images to find the bulk-to-boundary
propagator. The bulk-to-boundary propagator is given
as [7]:

Gb∂ðb; xÞ ¼ p−Δdregðb;xÞ þ 2p−Δh

pΔl − 1
: ð4:21Þ

For the n ¼ 0 case, we combine the two propagators to
obtain the averaged three-point coefficient

hEjOjEin¼0 ≈ COχχ

X
ð0;hÞ

dð0; hÞ
�
p−ΔOdregðb;xÞ þ 2p−ΔOh

pΔOl − 1

�

×
2p−2Δχh

pΔχ l − 1
; ð4:22Þ

where dð0; hÞ denotes the degeneracy of vertices with the
coordinate ð0; hÞ. Notice that there is a unique path from
the horizon vertex 0 to the boundary point x as well as a
unique intersection point between the path from the bulk
point b to the boundary point x and the path from vertex
0 to x. In order to compute the summation, we introduce
one more parameter i to represent the intersection point
between the two paths. Additionally, the parameter i will
parametrize the bulk point b. By using the parameters
ðn; h; iÞ, we rewrite the summation in terms of a nested
geometrical series:

hEjOjEin¼0 ≈ COχχ

X∞
i¼0

�
pΔOi

2p−2Δχ i

pΔχ l − 1
þ
X∞
h¼iþ1

ðp − 2Þph−i−1pΔOð2i−hÞ 2p
−2Δχh

pΔχ l − 1

�
þ COχχ

2

pΔOl − 1

2ð1þ p−1
pðpΔOþ2Δχ−1−1ÞÞ
pΔχ l − 1

¼ COχχ

� 2ð1þ p−2
pðpΔOþ2Δχ−1−1ÞÞ

ðpΔχ l − 1Þð1 − pΔO−2Δχ Þ þ
4ð1þ p−1

pðpΔOþ2Δχ−1−1ÞÞ
ðpΔOl − 1ÞðpΔχ l − 1Þ

�
: ð4:23Þ

30This does not contradict the fact that hEjOjEi ≠ 0 for E ≫ c=12 due to Hawing radiation in [23].
31This limiting process is safe here, but it would be naively wrong when one were to calculate two-point correlators, as explained in

Sec. 4 of [6].
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In order to make the geometrical series converge for the
above summations, we find inequalities between the scal-
ing dimensions of operator O and χ:

ΔO þ 2Δχ > 1; ΔO < 2Δχ : ð4:24Þ

The first inequality is automatically satisfied, as mentioned
in Sec. III, we use the convention in [6] thatΔ ¼ Δþ > 1=2.
The second inequality adds an extra constraint on the
dimension of the operator O. When ΔO is small enough,
our calculation is well defined until ΔO saturates the
inequality (4.24). Further regularization is required for this.
However, the second inequality is only related to coeffi-
cients independent of the length of the horizon l. Therefore,
it will not affect asymptotic behavior for large l.

3. n ≠ 0 case

This case is simpler than n ¼ 0. The Witten diagram is
now visualized as Fig. 11. The bulk-to-bulk propagator is
the same as (4.18), while the bulk-to-boundary propagator
is slightly different [7]. We evaluate the summations (4.7)
as follows:

hEjOjEin≠0 ≈ COχχ

Xl−1
n¼1

X
ðn;hÞ

dðn; hÞp
ΔOðl−nÞ þ pΔOn

pΔOl − 1
p−ΔOh

2p−2Δχh

pΔχ l − 1

¼ COχχ

Xl−1
n¼1

pΔOðl−nÞ þ pΔOn

pΔOl − 1

2ð1þ p−1
pðpΔOþ2Δχ−1−1ÞÞ
pΔχ l − 1

¼ 4COχχ
pΔOl − pΔO

ðpΔO − 1ÞðpΔOl − 1Þ
1þ p−1

pðpΔOþ2Δχ−1−1Þ
pΔχ l − 1

ð4:25Þ

In this case, we have no issues for divergences in the geometrical series. The only requirement ΔO þ 2Δχ > 1 has already
been shown to be satisfied in previous subsection.
After having the contributions from both n ¼ 0 and n ≠ 0 cases, we then get the full expression for the averaged three-

point coefficient:

hEjOjEi ¼ hEjOjEin¼0 þ hEjOjEin≠0

¼ 2COχχ

� 1þ p−2
pðpΔOþ2Δχ−1−1Þ

ðpΔχ l − 1Þð1 − pΔO−2Δχ Þ þ 2
1þ p−1

pðpΔOþ2Δχ−1−1Þ
ðpΔχ l − 1ÞðpΔO − 1Þ

�
¼ C0

Oχχ

1

pΔχ l − 1
⟶
l→∞

C0
Oχχp

−Δχ l ð4:26Þ

The coefficient C0
Oχχ is viewed as the three-point coef-

ficient hχjOjχi and absorbs all factors independent of the
horizon length l. In the last line, we show that as l → ∞,
the averaged three point coefficient hEjOjEi has an
asymptotic behavior with an exponential dependence on
horizon length l.

C. Physical implications

By comparing (4.6) with our average three-point coef-
ficient (4.26), we find that l is a p-adic counterpart of 2πrþ
which is the outer horizon area of a normal BTZ black hole.
If we rewrite p−Δχ l as e− lnpΔχ l, it will become reminiscent
of e−2πΔχrþ in (4.6). However, in the p-adic case, we miss a

FIG. 11. Witten diagram in the p-adic BTZ black hole (p ¼ 3,
l ¼ 4, n ≠ 0). Red line: the bulk-to-bulk propagator. Blue line:
the bulk-to-boundary propagator.
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counterpart to rΔOþ . This term can be realized as the
dominant normalization factor rΔþ in the bulk-to-boundary
propagator of a normal Euclidean BTZ black hole [23].
Physically, it can be thought as the horizon radius being
probed by the particle O entering the bulk from the
boundary. In a continuum spacetime, the horizon radius
is well defined by a Riemannian metric. In the p-adic BTZ
graph, the black hole is represented by a polygon, which
has no radius measured by the graph’s metric. Therefore,
when the particle ϕ is emanated into the p-adic BTZ
background, it cannot measure the radius of horizon as well
as unable to create a term including the horizon radius and
its scaling dimension ΔO.
In Sec. III, we provide calculations on the p-adic CFT

partition function and the density of states. However, our
knowledge is primitive on the modular transformations for
p-adic genus-1 Tate curves. If we understand the modular
transformation, we can obtain the averaged three point
coefficient entirely from the CFT side. Our averaged three-
point coefficient displays an unconventional feature com-
pared to the Euclidean BTZ case to then indicate that the
p-adic modular transformation is nontrivial. We will
explore this aspect further in future work.
On the other hand, our geometries only capture AdS

length scale effects and miss contributions coming from
“small loops” which can be nontrivial, as stressed in [28]. It
would be nice to see if the bulk calculation can be
reproduced from the p-adic CFT side.

V. p-ADIC REPRESENTATIONS

The proposed p-adic AdS=CFT correspondence provides
tools to understand some features of the boundary p-adic
CFT. However, for a general (not necessarily holographic)
CFT, the bulk/boundary duality cannot allow us to study the
theory comprehensively. In order to fully solve a general
p-adic CFT, a Hilbert space interpretation is necessary. For
example, independent of the bulk calculations in Sec. IV, if
one wants to compute the one-point function of a primary
operator O of p-adic CFT, analogous to hOiτ ¼
TrHOqL0− c

24q̄L̄0− c
24 with q≡ e2πiτ in an ordinary 2d CFT,

one would hope to have p-adic exponentials and analogues
of Virasoro generators L0 and L�1 as well as Verma
modules.
In a normal quantum field theory, its Hilbert space could

be constructed based on representations of Lie algebra g
associated to the global or internal symmetry group G. In a
p-adic CFT, the global symmetry group is PGLð2;QpÞ, so
analogous to ordinary CFTs, we should study the Lie
algebra representations of this group. Typically, a p-adic
CFT is a quantum field theory with complex-valued (or
real-valued) fields overQp, which restricts our interests to a
vector space V over C as the representation space. In [19],
Melzer showed the nonexistence of local derivatives over
Qp. Meanwhile, in the usual context of the Lie algebra, we

can always define the exponential map exp ∶g → G, while
in the p-adic case, the exponential function of p-adic
numbers does not converge nicely [25]. Moreover, it is a
totally disconnected group, its corresponding would-be Lie
algebra “pglð2;QpÞ” does not exist. The Virasoro-like
local conformal algebra never shows up.
Although we cannot find any suitable complex repre-

sentation of Lie algebra, we still hope to directly study
representations of the global conformal group PGLð2;QpÞ.
Actually, several recent papers indeed explore the power of
group representations in quantizing a theory, such as
Jackiw-Teitelboim gravity [57] and spinors on AdS2
[58], in that their Hilbert spaces can be partially32 defined
by group representations of SLð2;RÞ ×Uð1Þ=Z orgSLð2;RÞ. There are numerous types of PGLð2;QpÞ
representations, so we add some reasonable assumptions
to narrow down our search list. Since all p-adic CFTs are
unitary [19], we expect a suitable representation to also be
unitary. Notice that any unitary irreducible representations
(irreps) of PGLð2;QpÞ naturally induces a GLð2;QpÞ
unitary irreps, so that we could study unitary irreps of
GLð2;QpÞ and canonically restrict them onto the subgroup
PGLð2;QpÞ. Another advantage to study GLð2;QpÞ
comes from the classification theorem on all of its unitary
irreps. In the rest of this section, we will analyze this
theorem and evaluate the suitability of all unitary irreps as
physical Hilbert spaces over C of p-adic CFTs. Rather than
being mathematically rigorous, we provide sufficient
amount of evidence following [9].

A. Troubles with Lie algebras

The usual Iwasawa decomposition33 still holds for TDLC
(totally disconnected locally compact) groups (as intro-
duced in Footnote 2) of our interests, such as SLð2;QpÞ or
PGLð2;QpÞ. Any element of SLð2;QpÞ, the commutator
subgroup of GLð2;QpÞ, as presented in [7], can be
decomposed into a product of special conformal trans-
formation, rotation, dilatation, and translation as shown
respectively:

�
pma b

c p−ma−1ð1þ bcÞ

�
¼
�

1 0

cp−ma−1 1

��
a 0

0 a−1

�
×

�
pm 0

0 p−m

��
1 bp−ma−1

0 1

�
; ð5:1Þ

32Some Lie algebra data such as quadratic Casimir are still
required.

33For real semisimple Lie groups, it is defined via their Lie
algebras.
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where a; b; c ∈ Qp and jajp ¼ 1. The decomposition of
PGLð2;QpÞ is similar, but up to a � sign on the total
determinant.34

One might believe that the exponential map from Lie
algebras to the usual matrix group GLðn;CÞ works for
p-adic groups as well, but this is unfortunately incorrect.
Indeed, one could define a tangent space and Lie algebra
functor near the identity of SLð2;QpÞ [59], but the total
disconnectedness of the group poses a serious problem. For
z ∈ Qp, the p-adic exponential is defined as

expðzÞ≡X∞
n¼0

zn

n!
; ð5:2Þ

which diverges at the identity since the radius of con-
vergence is jzjp < p−1=ðp−1Þ.
Another fundamental reason is as follows. Having a

tangent space Te at the identity e of the group analytical
manifold PGLð2;QpÞ, it is natural to introduce a one-
parameter subgroup ϕ∶F → PGLð2;QpÞ, where F is a
number field, which is R for the usual connected Lie
groups. ϕ also defines vector fields on the group manifold.
Moreover, one can build an exponential map to recover
local features of the group via Lie algebra. Thus,

exp ∶ F → PGLð2;QpÞ; t ↦ etL; ð5:3Þ

with the Lie algebra element L ∈ Te. Consequently, we
must select the correct number field F for the parameter t.R
is ruled out due to the disconnectivity of p-adic groups. The
only remaining candidate is Qp. However, another issue
arises when we consider the representation of PGLð2;QpÞ.
With the representation space V over C, we expect for any
g ∈ PGLð2;QpÞ, its image πðgÞ ∈ GLðVÞ whose entries
are all C-valued. From the exponential map, we see that the
image can always be written as

πðgÞ ¼ etM; ð5:4Þ
whereM ¼ πðLÞ is the image of theLie algebra elementL.35

However, t and entries of M are in different number fields
with different norms, so the multiplication tM is forbidden,
and the Lie algebra representation overC cannot exist. Since
there is no well-defined Lie algebra or “infinitesimal
generators” for the dilatation operator L0, it is a little bit
dubious to discuss a “state-operator correspondence” used
in [11] and hence radial quantization.
However, we should also mention the possibility to

construct a Lie algebra representation over Qp [60,61]. In

these cases, we need to consider Hilbert spaces over Qp

though, which is inconsistent with Melzer’s axioms for
p-adic CFTs.

B. Admissible representations of GLð2;QpÞ in general

Due to the troubles on the existence of p-adic Lie
algebra, we turn our attention to group representations. The
unitarity of p-adic CFTs directs us to unitary representa-
tions, which are subspaces of the physical Hilbert spaces
as usual.
We start from the representation vector space V over C.

Let GLðVÞ be the space of all automorphisms of V, and π
be the following homomorphism

π∶ GLð2;QpÞ → GLðVÞ: ð5:5Þ

Given an inner product36 ð·; ·Þ on V, a unitary representa-
tion ðπ; VÞ of G satisfies

ðπðgÞ · v; πðgÞ · wÞ ¼ ðv; wÞ; ∀ g ∈ G; v; w ∈ V: ð5:6Þ

Clearly, this definition is relative to the inner product
prescribed on V. If V is not equipped with an inner product
that makes ðπ; VÞ unitary, one can ask if ðπ; VÞ can be made
unitary by choosing an appropriate inner product [9].
To this end, a representation ðπ; VÞ is defined as unitar-
izable if there exists37 an inner product ð·; ·Þ such that (5.6)
holds. Moreover, it is straightforward to turn a unitary
representation V into a complete metric space [62,63], and
therefore a Hilbert space; in fact, the space of unitary
admissible representations of GLð2;QpÞ is a proper sub-
space of the space of C-Hilbert representations of
GLð2;QpÞ. Notice that inner products here do not rely
on the dual (or contragredient) representation of V.
We further assume that we are dealing with irreps.

According to the admissibility theorem,38 all unitary irreps
of a p-adic reductive group such as GLð2;QpÞ [68] are
admissible, so we only consider admissible ones. This is
also empirically reasonable, because at least for real and
complex Lie groups, their irreps naturally appearing in
PDEs, geometry, number theory and physics are all
admissible [69]. The admissibility theorem was originally

34Each sign sector is similar to a connected component of the
usual Lorentz group SLð2;CÞ. For the Iwasawa decomposition of
GLð2;QpÞ, see Proposition 4.2.1 in [9].

35The Lie algebra elements are complex-valued matrices.

36Formally speaking, this is a positive-definite Hermitian form,
and is equivalent to the usual pairing between bras and kets.

37Existence of inner products is the first thing to look for in
group representations. For example, for SLð2;RÞ in JT gravity,
among four types of its unitary irreps, trivial and complementary
series representations are not considered [57] due to the lack of
inner product. All of its finite-dimensional representations are
nonunitary as well [58].

38The original Harish-Chandra’s admissibility theorem [64–67]
only works for real reductive Lie groups.
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proved in [70] and later illustrated in [71]39 (Sec. II.2.2).
These were recently improved upon to work for more
general TDLC groups [72,73] (Corollary 6.30). For a
rigorous definition of an admissible representation, we
refer the reader to these textbooks [9,71,73]. Furthermore, a
smooth irrep is admissible [9] (Theorem 6.1.11).

C. Finite-dimensional admissible representations

We start our discussion on finite-dimensional admissible
irreps. These representations appear reasonable at first sight
because they are consistent with the absence of descendants
in p-adic CFTs. This is also reasonable especially when
there are only a finite number of primaries. However, all
finite-dimensional smooth irreps ofGLð2;QpÞ are trivial in
the sense that they are one-dimensional complex vector
spaces such that the images of GLð2;QpÞ act as scalar
multiplication.
For the group SLð2;QpÞ, its linear character is 1. On the

other hand, PGLð2;QpÞ consists of group elements of
GLð2;QpÞ identified up to a scalar factor so that the linear
character ω must be constant on the determinant in order to
be consistent with this identification. Since ω is trivial, the
dilatation transformation cannot be realized in this finite-
dimensional admissible representation. Hence it is not a
desirable physical Hilbert space. However, it would be
interesting to see if an ensemble of primaries can be viewed
as a tensor product of one-dimensional representations.
One of the simplest examples is presented in Sec. 4.1

of [7], the free boson on the boundary is viewed as a scalar
representation of PGLð2;QpÞ, and conformal dimensions
of ϕ and Vladimirov derivative of ϕ are 0 and 1. However,
we hope for more. One hint may come from the recent work
on Green’s functions of Vladimirov in the context of p-adic
holography [74].

D. Infinite-dimensional admissible representations

According to the Langlands-like classification theorem
[9], there are three classes of infinite-dimensional admissible
representations for GLð2;QpÞ: supercuspidal, principal
series, and special.40 Certainly, all of them contain nonuni-
tary cases which do not fall into this classification, and those
nonunitary cases are not of physical interests, because p-adic
CFTs satisfying Melzer’s axioms are automatically unitary.
Nevertheless, we will introduce their unitarity-independent
definitions, and save unitarity-specific definitions to future
work. In order to present the classification, we need to
introduce the following object first.

Definition For an infinite-dimensional representation
ðπ; VÞ and a unipotent subgroup N ¼ fð1

0
�
1
Þj� ∈ Qpg,

consider the subspace

VN ¼ fπðnÞv − vjn ∈ N; v ∈ Vg; ð5:7Þ

then the quotient

VN ≡ V=VN ð5:8Þ

is called the Jacquet module of V. The classification of
infinite-dimensional admissible representations is com-
pletely encoded by the dimension of VN , which is at most
two [75]. When dimC VN ¼ 0, 1, 2, the representation is
supercuspidal, special or principal series, respectively [76].
Incidentally, VN also vanishes for finite-dimensional
admissible representations.
For usual 2d CFTs, states with different Virasoro levels

are orthogonal and obviously span an infinite-dimensional
representation of the Virasoro algebra. Then in p-adic
CFTs, one naively would think that different vectors in the
representation space V have different energy levels.
However, since we lack the necessary Casimir operators
and algebra structure to define physical observables and
quanta for the states, the realization of energy levels in a
group representation is still mysterious.
Below are nontechnical descriptions of the classification

of infinite-dimensional admissible representations.

1. Principal series and special representations

Principal series representations arise commonly in phys-
ics for noncompact semisimple Lie groups, and they are
also present for GLð2;QpÞ. According to Jacquet–
Langlands [77], this representation becomes reducible if
the characters obey χ1χ

−1
2 ¼ j · j�1. If χ1χ−12 ¼ j · j−1, then

the vector space Vðχ1; χ2Þ contains a 1d invariant subspace
W such that Vðχ1; χ2Þ=W is an irrep called special
representation; if χ1χ−12 ¼ j · j, then Vðχ1; χ2Þ contains a
1d admissible subspace also called special representation.

2. Supercuspidal representations

If the Jacquet module VN vanishes, then ðπ; VÞ is called a
supercuspidal representation.41 Although this one-line
definition looks innocent, they are in general notoriously
difficult to construct, and we present the simplest case via
the so-called “compact induction” in Appendix E. We will
use quite qualitative phrases in this short subsection.

39In this set of lecture notes, all adjectives “irreducible” should
be interpreted in the category of unitary representations.

40All of them enjoy so-called Kirillov models and Whittaker
models, which we will not explain or pursue for now. For an
accessible exposition on Whittaker models, see these notes [68].

41The adjective “super” stands for the p-adic version of
“cuspidal” in the finite field Fq case [78], which is presented
in Appendix E. For an equivalent definition in terms of integrals,
see Sec. 6.13 of [9]. Equivalently, any irrep of GLð2;QpÞ which
is not a subrepresentation of any representation induced from the
Borel subgroup is supercuspidal.
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However, supercuspidal representations are mathemati-
cally desirable due to its handful of nice properties. They
are the “native” representations of GLð2;QpÞ, because
other admissible representations can all be constructed
from them, by inducing a representation ρ ¼ ðρ1; ρ2Þ of a
parabolic subgroup P ¼ MN, where ρi is a supercuspidal
representation of GL1ðQpÞ. Another feature is that they
have nicer inner products than the other two infinite-
dimensional representations [75].
They are also the most well-behaved representations of

GLð2;QpÞ, i.e., that they behave much like representations
of a compact group [79]. Finally, in familiar terms for
SLð2;RÞ, supercuspidal and special representations are
analogues of SLð2;RÞ “discrete series” for GLð2;QpÞ.

E. Key signature for physical representations

In previous subsections, we enumerated all candidate
representations for the p-adic CFT Hilbert space. Although
we made cogent arguments on the nonexistence of
conformal algebra and triviality of finite-dimensional
admissible representations, there are still three classes of
infinite-dimensional irreps remaining. There is no simple
reasoning we could present to determine which one of them
is the most suitable physical representation, and the
difficulty of explicit construction of supercuspidal repre-
sentations makes the computation over it tough.
Fortunately, we find an important signature which could
show clues as to which are true physical representations.
In the Virasoro character formula for normal chiral CFT

on a torus χðqÞ ¼ TrHqL0− c
24, q is related to the modulus of

T2 torus via q ¼ e2πiτ. However in Sec. II D, we saw the
impossibility of defining a p-adic modulus τ ∈ Qp.
Moreover, the dilatation generator L0 does not exist as
discussed in Sec. VA, so the ordinary Virasoro character
apparently makes no sense in p-adic CFTs. Nevertheless,
qL0− c

24 viewed as a whole can be interpreted as the
representation of the dilatation transformation:

�
q

1
2 0

0 q−
1
2

�
; ð5:9Þ

which is exactly the same as the Schottky parameter in
(2.14). Meanwhile, a genus-1 curve over Qp was similarly
constructed via p-adic Schottky group qZ; q ∈ Q×

p .
Intuitively, we could generalize the Virasoro character to
p-adic CFTs by considering the image of the Schottky
group generator under a GLð2;QpÞ representation ðπ; VÞ,
and using the new character to write down an analogous
partition function for genus-1p-adic CFT:

Zp−adicCFT ¼ TrVπ

��
q

1
2 0

0 q−
1
2

��
; ð5:10Þ

where the trace function always exists because GLð2;QpÞ
is a TDLC group [73]. One thing worth looking at is to
define a bounded-from-below V in terms of the Jacquet
module.
In Sec. III we have explicitly calculated p-adic CFT

partition functions from bulk path integral. In principle, we
could check results there against (5.10) for all three classes
of infinite-dimensional admissible representations. This
check would yield a key signature of physical representa-
tions H, and may also demystify the connections between
GLð2;QpÞ representations and Chebyshev polynomials.
Another ambitious thought is to apply group representa-
tions to possibly classify p-adic CFTs, just like ordinary
minimal models, etc.

VI. SUMMARY AND OUTLOOK

We end with a summary of our results and several open
questions for future exploration.

A. Discussion

In this paper, we found the density of states of genus-1
p-adic BTZ black holes in the isotropic sector. Avoiding the
assumption on the existence of a state-operator correspon-
dence, we provide a new way to calculate the genus-1p-adic
BTZ black hole partitions function via linear recurrence in
scalar fields on vertices. Regarding both accounts, we have
shown several similarities to their continuum analogues, but
still realized features from Melzer’s axioms for non-
Archimedean CFTs.
Our analytical study on density of states in the high-

temperature limit suggest that scalars in BTZ background
obey a Bekenstein-Hawking-like area law and the results are
analogous to the semiclassical genus-one partition function
by Maloney and Witten [22]. However, one subtlety with
our results are that they are unstable when p ¼ 3. Possibly,
this might be explained from our semiclassical analysis
omitting gravitational contributions. Including gravitational
effects for p-adic AdS=CFT was proposed by [33] via edge
length dynamics, however, will be saved to future work.
Additionally, we calculated the averaged three-point

coefficient in a p-adic BTZ black hole background and
showed similarity with its ordinary counterpart by Kraus
and Maloney, but notion of p-adic modular transformations
remain unknown [23], so that one is unable to study the
thermal p-adic AdS. We hope this calculation could initiate
future work on n-point coefficients of p-adic CFTs on
higher-genus Mumford curves, such as heavy-heavy-heavy
three-point functions on regular genus-2 surfaces inves-
tigated in [80]. In fact, higher genus p-adic BTZ black
holes were already developed by [7] using higher rank
Schottky groups and Mumford curves.
Finally, we aim to narrow down the list of candidate

Hilbert spaces for p-adic CFTs and provide hints for
quantization. From the bulk point of view, the Hilbert space
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over C seems to be a very exotic one, due to Chebyshev
polynomials showing up in Sec. III.

B. Open questions

We provide a few open questions that would be interest-
ing to explore in future work on p-adic AdS=CFT.
We have only considered the same species of bulk scalar

fields but not the possibility of different species. Extending
our bulk techniques to an ensemble of different species of
bulk scalars ϕi would not only be interesting (due to the
existence of multiparticle states in ordinary AdS3=CFT2

[44]), but might also shed light on p-adic CFT Hilbert
space representations. A naive guess for the boundary
partition function with an ensemble of primaries χi dual to
ϕi would be similar to that of ordinary 2d CFTs, with
multiplicities Mij of highest-weight states ji; ji:

Z ¼
X
i;j

MijχiðτÞχjðτ̄Þ; ð6:1Þ

i.e., summation over primaries. While from the bulk point
of view, since different scalars in the action (3.3) decouple
from each other, the total partition function should be a
simple product of individual partition functions like (3.19)
for Bruhat-Tits trees, or (3.44) for BTZ black holes. The
absence of descendants in p-adic CFT obscures the con-
nection between the summation over primaries on boun-
dary and the product over them in bulk, which are
transparently related in ordinary AdS3=CFT2.
As we have mentioned earlier, the S-transformation on

genus-1 Tate curve is still missing, so there is no good
analog of thermal p-adic AdS. Wewould like to study these
potential p-adic modular transformation, and even p-adic
mapping class groups.
Another question is about the role of GLðn;QpÞ in

“p-adic” holography or in “higher-dimensional” p-adic
CFTs, the latter being somewhat studied in [81]. For
ordinary higher-dimensional CFTs, their fields can organize
into Virasoro representations by parabolic (generalized)
Vermamodules, as stressed in [82]; they have also been used
in ordinary affine Lie algebras [83]. Although Verma
modules are absent in complex representations of p-adic
groups, they have been constructed as representations on
p-adic vector spaces instead of Hilbert spaces [60]. Then
maybe it is worthwhile looking into the former vector
spaces.
As to the connection between calculations in Sec. III

and GLð2;QpÞ representations, unexpected coincidence
showed up: the determinant of Laplacian on Bruhat-Tits
tree (3.14) agrees with the volume of the following double
coset [9] (Theorem 8.10.19 and Chapter 9.2 therein):

GLð2;ZpÞ ·
�
pN 0

0 1

�
· GLð2;ZpÞ ð6:2Þ

with respect to a Haar measure in the context of principal
series representations of GLð2;QpÞ. We will present one
explanation for this seeming coincidence in using the graph
Laplacian on a Bruhat-Tits tree in Appendix B.
There are more ambitious questions. Since our auxiliary

cutoff N is necessary in Sec. III, it is natural to ask what will
happen to the boundary p-adic CFT when one introduce a
physical finite cutoff on the Bruhat-Tits tree? Since there is
no stress tensor defined in p-adic CFTyet [21], an analogue
of the TT̄ deformation in cut-off AdS3=CFT2 [84–90] or
NAdS2=NCFT1 [91,92] seems to be difficult.42 However,
Gubser et al. [33] calculated stress tensor-like 2- and 3-point
correlators that are reminiscent to AdS3=CFT2, but lacks a
notion of spin and the 3-point correlators unexpectedly
vanish.
Finally, beyond AdS=CFT, is it possible to formulate a

p-adic dS=CFT correspondence?43 A precursor was given
by [20] in the context of eteranal inflation with dS vacua,
but not in the context of string theory.
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APPENDIX A: THE FULL SPECTRUM OF THE
BRUHAT-TITS TREE LAPLACIAN

In this appendix, we discuss the entire spectrum of the
graph Laplacian on the Bruhat-Tits tree. Namely, aniso-
tropic eigenvectors which are absent in Sec. III are
included here.

1. λ= p+ 1 eigenvalues

In the situation when the eigenvalues λ are pþ 1, then at
depth n and vertex a, one has:

ðpþ 1 − λÞϕn ¼ ϕn−1 þ
X
a

ϕnþ1;a

⇒ ϕn−1 ¼ −
X
a

ϕnþ1;a: ðA1Þ

42See [93] for a recent proposal on the effective theory of the
Bruhat-Tits tree at a finite boundary.

43A recent proposal for a p-adic Euclidean dS2 was found
by [94].
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To count the multiplicity of this eigenvalue, we first
consider the case when the depth N is even. From
Dirichlet boundary conditions ϕN ¼ 0, the equations
of motion for ϕN−1;ϕN−3;…;ϕ1 imply that ϕN ¼
ϕN−2 ¼ … ¼ ϕ0 ¼ 0. From these boundary conditions,
we do not have to distinguish the vertices at the same even
depth since ϕN ¼ ϕN−2 ¼ … ¼ ϕ0 ¼ 0. From specifying
values of ϕN−1;a, then from (A1), all other field values are
fixed which makes the degrees of freedom determined
purely from the field values at the N − 1 level.
We cannot arbitrarily assign values to the fields to the

level N − 1 vertices because there are different subbranches
at level N − 1 connecting to the same level N − 3 vertex.
The summation of these branches must agree with each
other. As an example, if we have ϕN−2;a connecting to the
same node at N − 3 then each nodes ϕN−2;a have subnodes
ϕN−1;ab with a; b ¼ 1;…; p. In order to obtain a consistent
solution to (A1), we demand that for all a, a0 pairsX

b

ϕN−1;ab ¼
X
b0
ϕN−1;a0b0 : ðA2Þ

There are p − 1 independent constraint equations (A2) for
every N − 3 vertex and another constraint at the centerX

a

ϕ1;a ¼ 0 ðA3Þ

so the constraint equations reduce the degrees of freedom
on level N − 1. After subtracting off the number of
independent constraint equations, we obtain the multiplic-
ity for the eigenvectors with eigenvalue λ ¼ pþ 1

devenpþ1 ¼ DN−1 − ðp − 1ÞðDN−3 þDN−5 þ � � � þD1Þ − 1

¼ pN−1; ðA4Þ

where the number of vertices at level n is Dn ¼
ðpþ 1Þpn−1.

The odd N case analysis is almost exactly the same
except that ϕ0 can be nonzero and it constrains ϕ2 which
yields p independent constraint equations. We write

doddpþ1 ¼ DN−1 − ðp − 1ÞðDN−3 þDN−5 þ � � � þD2Þ − p

¼ pN−1: ðA5Þ

2. Anistropic λ ≠ p+ 1 eigenvalues

There is another type of anisotropic eigenvectors that do
not have the same eigenvalues pþ 1. We determine all
these eigenvectors and their corresponding eigenvalues.
Consider the Bruhat-Tits tree at depth N so that this type of
anisotropic eigenvectors could be divided into N − 2
classes: C0; C1; C2;…; CN−3. For each class Cn, all the
eigenvectors obey the property that all vertices on the tree
within a distance of n to the center have zero field value.
With this property, we are able to calculate the eigenvalues
associated with each individual class.
To make the above concrete, we consider the CN−3 case.

If we set the eigenvectors ϕ0 ¼ … ¼ ϕN−3 ¼ 0, then we
have the following:X

a

ϕN−2;a ¼ 0;

ðpþ 1 − λÞϕN−2;a ¼
X
b

ϕN−1;ab;

ðpþ 1þ λÞϕN−1;ab ¼ ϕN−2;a ðA6Þ

and by substituting the last equation into the second
equation in (A6), we arrive at the eigenvalues

λ ¼ pþ 1� ffiffiffiffi
p

p
: ðA7Þ

We can proceed to determine all eigenvalues for any class
Cn. Generalizing (A6) to Cn, we arrive at the following
equations:X

a1

ϕnþ1;a1 ¼ 0;

ðpþ 1 − λÞϕnþ1;a1 ¼
X
a2

ϕnþ2;a1;a2 ;

ðpþ 1 − λÞϕnþ2;a1a2 ¼ ϕnþ1;a1 þ
X
a3

ϕnþ3;a1a2a3

..

.

ðpþ 1 − λÞϕN−2;a1…aN−2−n
¼ ϕN−3;a1…aN−3−n

þ
X
aN−1−n

ϕN−1;a1…aN−1−n
;

ðpþ 1þ λÞϕN−1;a1…aN−1−n
¼ ϕN−1;a1…aN−2−n

: ðA8Þ

EBERT, SUN, and ZHANG PHYS. REV. D 107, 126011 (2023)

126011-30



If we consider the second to last equation in (A8) and
multiply by ðpþ 1 − λÞ and using the last equation to
replace ϕN−1 by ϕN−2, we find

ððpþ1−λÞ2−pÞϕN−2;a1…aN−2−n
¼ðpþ1−λÞϕN−3;a1…aN−3−n

:

ðA9Þ

We can define a ratio

cn ≡ ϕn−1;a1…an−1

ϕn;a1…an

ðA10Þ

which is independent of the ða1;…; anÞ labels. Thus from
(A8), we obtain a recursion relation for the ratios

cncn−1 ¼ cnðpþ 1 − λÞ − p ðA11Þ

and

cN−1 ¼ pþ 1 − λ ðA12Þ

so we can compute the cn recursively in terms of c0. For a
specific class Cn, the eigenvalues are obtained by solving

cnþ2ðpþ 1 − λÞ ¼ p: ðA13Þ

Therefore, the recursion relation implies that c1 ¼ … ¼
cnþ1 ¼ 0 and is consistent with the property claimed
initially. From the recursion relation, we see that the
eigenvalue λ obeys a polynomial relation. For CN−3;
CN−4, the equations are quadratic. Meanwhile, each time
when n decreases by two, the degree of equations increases
by two. We denote these degree of equations by

qn ¼ 2

�
N − 1 − n

2

�
; ðA14Þ

which also counts the number of roots or eigenvalues for
one specific Cn class. To know the multiplicity of the
eigenvalues, we need to know the number of eigenvectors
contained in class Cn.
This number can be calculated recursively. We first

calculate the multiplicity of the CN−3 class. We have

ðpþ 1þ λÞϕN−1;a1…aN−1−n
¼ ϕN−2;a1…aN−2−n

ðA15Þ

all level N − 1 connecting to the same level N − 2 vertex
will share the same field value. For a fixed eigenvalue and
field configuration at level N − 1, all other field values
are determined. Hence the only degrees of freedom come
from the field configuration at level N − 1. Since all
vertices at the same branch are the same, the total number
of degrees of freedom is DN−2 for the number of vertices at
level N − 2. For the CN−3 class, we have ϕN−3 ¼ 0, so we
have DN−3 constraint equations and the number of eigen-
vectors are

dN−3 ¼ ðDN−2 −DN−3ÞqN−3: ðA16Þ

Similarly, the degeneracy for the CN−4 class is

dN−4 ¼ ðDN−3 −DN−4ÞqN−4; ðA17Þ

and for general n

dn ¼ ðDnþ1 −DnÞqn: ðA18Þ

3. Multiplicity

We can check the total multiplicity is correct. For odd N,

XN−3

n¼0

dn ¼ 2ðpþ 1Þ
�
pN−3 − pN−4 þ pN−4 − pN−5 þ 2pN−5 − 2pN−6 þ � � � þ N − 3

2
ðp − 1Þ

�
þ 2p

�
N − 1

2

�
¼ 2ðpþ 1Þðp2 þ p4 þ � � � þ pN−3Þ − ðN − 3Þðpþ 1Þ þ ðN − 1Þp

¼ 2ðpþ 1Þ
�
pN−1 − p2

p2 − 1

�
þ 2pþ 2 − ðN − 1Þ

¼ 2

�
pN−1 − 1

p − 1

�
− ðN − 1Þ: ðA19Þ

Adding the multiplicity of the other two types of eigenvectors, we find
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D ¼ disotropic þ dpþ1 þ
XN−3

n¼0

dn

¼ 2

�
pN−1 − 1

p − 1

�
¼ pN þ pN−1 − 2

p − 1
: ðA20Þ

For even N, we arrive at a similar expression

XN−3

n¼0

dn ¼ 2ðpþ 1Þ
�
pN−3 − pN−4 þ pN−4 − pN−5 þ 2pN−5 − 2pN−6 þ � � � þ N − 2

2
ðp − 1Þ

�
þ 2p

�
N − 2

2

�
¼ 2ðpþ 1Þðpþ p3 þ � � � þ pN−3Þ − ðN − 2Þðpþ 1Þ þ ðN − 2Þp

¼ 2ðpþ 1Þ
�
pN−1 − p
p2 − 1

�
þ 2 − N

¼ 2

�
pN−1 − 1

p − 1

�
− N: ðA21Þ

Adding all multiplicities together, we obtain the expected
result

D ¼ disotropic þ dpþ1 þ
XN−3

n¼0

dn

¼ 2

�
pN−1 − 1

p − 1

�
þ pN−1

¼ pN þ pN−1 − 2

p − 1
: ðA22Þ

Therefore, we have found all eigenvalues of the Laplacian
matrix on the Bruhat-Tits tree and a classification of
different eigenvector configurations. A similar analysis
on the full spectrum of graph Laplacian on the p-adic
BTZ black hole can be performed in a parallel manner, and
we will defer it to a later treatment [39].

APPENDIX B: LAPLACIAN MATRIX
OF A MULTIGRAPH

Here we use a graph-theoretic method to obtain the
determinant of Laplacian operator on the Bruhat-Tits tree,44

which has already been calculated in Sec. III A.
Let us notice that the result (3.14) can be viewed as the

product of all nonzero eigenvalues of a directed multigraph
Laplacian e□. This multigraph G contains:

(i) N þ 1 vertices, labeled by 0;…; N;
(ii) One arrow from the ith vertex to (iþ 1)th vertex,

where i ¼ 0;…; N − 2;
(iii) p arrows from the jth vertex to the (j − 1)th vertex,

where j ¼ N;N − 1;…; 2;

(iv) pþ 1 arrows from the vertex 1 to the vertex 0.
The product of eigenvalues of e□ equals the determinant

of the adjacency matrix of G, with the (N þ 1)th row and
the (N þ 1)th column removed, because there is no arrow
going from anywhere else to the vertex N. By Kirchhoff’s
theorem, this determinant equals the number of spanning
trees starting from the vertex N, which is

p · p ·… · p|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
N−1

· ðpþ 1Þ ¼ pN þ pN−1: ðB1Þ

In fact, G can be obtained by “compressing” the
truncated Bruhat-Tits tree in Section III A onto one ray
using the rotational symmetry, if we restrict to the isotropic
sector. Therefore, a spanning tree starting from the vertexN
on G is equivalent to a path originating from the center to
the cut-off boundary of the Bruhat-Tits tree, which in turn is
equivalent to choosing a point at depth N on the tree.
Finally, all points at depth N on the Bruhat-Tits tree form

an orbit of the Iwahori subgroup of GLð2;ZpÞ, called the
Iwahori orbit. Under the Haar measure, the orbit has
volume 1, so the volume of the double coset (6.2) equals
the number of elements in the quotient of (6.2) by the right
action of Iwahori subgroup. This quotient is exactly the
Iwahori orbit representing elements�

pN 0

0 1

�
; ðB2Þ

namely, points at depth N. As we discussed on the previous
page, there are pN þ pN−1 of them.
However, for the BTZ graph, there is no good rotational

symmetry which allows for a “compression,” so a similar
analysis obtaining det e□ cannot be done.44We thank Yehao Zhou for helpful comments.
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It would also be interesting to understand this volume
purely in terms of p-adic integration using the Haar
measure, say, in Appendix A of [7].

APPENDIX C: BTZ GRAPHS REVISITED

In Sec. III B, if we do not use the periodic linear
recurrence on the horizon (3.27), without loss of generality,
we start from the initial condition at the ϕ0;s vertex:

ðp − 1Þðϕ0;s − ϕ1;sÞ þ ðϕ0;s − ϕ0;s−1Þ þ ðϕ0;s − ϕ0;sþ1Þ
¼ λϕ0;s; ðC1Þ

where ϕ1;s denotes the field value on the outward vertex
one edge away from the horizon point ð0; sÞ, and hence

ϕ1;s ¼
ðpþ 1 − λÞϕ0;s − ðϕ0;s−1 þ ϕ0;sþ1Þ

p − 1
: ðC2Þ

Similar to what we have shown in Sec. III A, all field
values ϕn;s; n > 1, away from the event horizon only
depend on their depths n and hence isotropic in each
subtree rooted at one horizon vertex ð0; sÞ. There is no
change in the linear recurrence (3.9) for all n > 2, and for
n ¼ 2 we have

ϕ2;s ¼
ðpþ 1 − λÞϕ1;s − ϕ0;s

p

¼ ½λðλ − 2p − 2Þ þ pðpþ 1Þ þ 2�ϕ0;s þ ðλ − p − 1Þðϕ0;sþ1 þ ϕ0;s−1Þ
pðp − 1Þ ; ðC3Þ

then the coefficients get uncontrollably complicated as the
depth n increases.

APPENDIX D: REVIEW ON THE ORDINARY
BTZ MODULAR PARAMETER

In ordinary Euclidean AdS3, for a genus-1 gravitational
saddle configuration, the modular parameter is τ ¼ θ þ iβ,
defined on the upper-half plane H2, where θ is the angular
potential and β is the inverse temperature, then the tree-
level partition function is [95]

Z ¼ e
πkImτ

jτj2 ; ðD1Þ

where k is the inverse 3D Newton’s constant. For a
nonrotating black hole, as in our case θ ¼ 0, so

Z ¼ e
πk
β ¼ eπkrþ : ðD2Þ

If corrected by the one-loop contribution as in [22], we
have:

Z ¼ ZðτÞZ̄ðτ̄Þ; ðD3Þ

where the holomorphic piece is

ZðτÞ ¼ qðk−1=24Þ− ð1 − q−Þ
ηð−1=τÞ ; ðD4Þ

and q− ≡ e−2πi=τ. Since the partition function of 3D pure
gravity is 1-loop exact [22], the combined result is

Ztot ¼
e
4πImτ
jτj2 ðk− 1

24
Þ

ηð− 1
τÞη̄ð− 1

τ̄Þ
�
1þ e

−4πImτ
jτj2 − 2 cos

�
2πImτ

jτj2
�
e
−2πImτ

jτj2
�
ðD5Þ

We will use the q-Pochhammer symbol specified at q
itself

ðq; qÞ∞ ≡Y∞
n¼1

ð1 − qnÞ; ðD6Þ

as well as the fact that q−q̄− ¼ e
−4πImτ

jτj2 and ηð−1=τÞ≡
q1=24− ðq−; q−Þ∞, a useful expression when q ∈ R.
Hence for a nonrotating BTZ black hole, q− ¼ q̄−, and at

large rþ ¼ 1=β, we have

e
4πkImτ

jτj2

ðq−; q−Þ∞ðq̄−; q̄−Þ∞
≈ e4kπrþ : ðD7Þ

Instead when rþ is very small, we use the asymptotics
[96]:

ðq; qÞ∞ ≈
ffiffiffiffiffiffi
2π

t

r
e

t
24
−π2

6t ; for q ¼ e−t; t → 0; ðD8Þ

so that the partition function is approximately

rþeð4k−1=6Þπrþ .

APPENDIX E: AN APPETIZER TO COMPACT
INDUCTION FOR GL2

Compact induction is among the very first constructions
of supercuspidal representations. The standard philosophy
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is to induce an irrep of the groupG from a representation of
a compact subgroup H ⊂ G. Avoiding most technicalities,
we demonstrate this for the simplest case, the symmetric
group S3, adopting the approach from [97]. We will not
define terms not shown in our main text.
It is known that for a given p, there are pðp − 1Þ=2

distinct supercuspidal representations for SLð2;QpÞ [98]
(Theorem 2.5), so the supercuspidal representation for
SLð2;Q2Þ is unique. We start from the cuspidal represen-
tation of SLð2; F2Þ ≅ S3, i.e., the character ρ with map-
pings:�
1 0

0 1

�
↓
1

;

�
0 1

1 0

�
↓
−1

;

�
1 1

0 1

�
↓
−1

;

�
1 0

1 1

�
↓
−1

;

�
1 1

1 0

�
↓
1

;

�
0 1

1 1

�
↓
1

;

ðE1Þ

and preform compact induction on S3 to obtain the super-
cuspidal representation of SLð2;Q2Þ.
We use the fact that there is a unique tamely ramified

extension Q2ðζ3;
ffiffiffi
23

p Þ=Q2 whose Galois group is exactly

S3, where ζ3 is a 3rd root of unity. Then the Langlands
parameter

ϕ∶ GalðQ2ðζ3;
ffiffiffi
2

3
p

Þ=Q2Þ → S3 ⊆ PGLð2;CÞ ðE2Þ

corresponds to two irreps of SLð2;Q2Þ given by compact
induction from

K1 ¼ SLð2;ZÞ; and K2 ¼
�
2 0

0 1

�
K1

�
1=2 0

0 1

�
¼
� � 2�
�=2 �

�
ðE3Þ

of the characters Ki → S3⟶
sgn f�1g.

More generally and abstractly, compact induction can be
performed on Zp=pZp ∼ Z=Zp ∼ Fp as well, and super-
cuspidal representations obtained are called depth-zero
[75]. With this, one can actually enumerate all super-
cuspidal representations of GLð2;QpÞ [99].
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