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The minimal-length paradigm, a possible implication of quantum gravity at low energies, is commonly
understood as a phenomenological modification of Heisenberg’s uncertainty relation. We show that this
modification is equivalent to a cut-off in the space conjugate to the position representation, i.e. the space of
wave numbers, which does not necessarily correspond to momentum space. This result is generalized to
several dim ensions and noncommutative geometries once a suitable definition of the wave number is
provided. Furthermore, we find a direct relation between the ensuing bound in wave-number space and the
minimal-length scale. For scenarios in which the existence of the minimal length cannot be explicitly
verified, the proposed framework can be used to clarify the situation. Indeed, applying it to common
models, we find that one of them does, against all expectations, allow for arbitrary precision in position
measurements. In closing, we comment on general implications of our findings for the field. In particular,
we point out that the minimal length is purely kinematical such that, effectively, it is not influenced by the
overlying dynamics and the choice of Hamiltonian.
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I. INTRODUCTION

When regularizing in quantum field theory, it is often (if
somewhat naïvely) concluded that a finite cut-off in relativ-
istic momentum space regularizing UV-divergences implies
the existence of an underlying lattice structure. The corre-
sponding lattice spacing provides a minimal length. In the
literature on conventional minimal-length theories, on the
other hand, it is common to interpret theminimal-length scale
not as a physical length, but as a limit to the physically
attainable resolution in distance measurements [1–8].
In quantum mechanics, for example, this corresponds to a
minimum for the standard deviation of the position operator,

Δxa ≥ l; ð1Þ

with the newly introduced length scale l. This interpretation
attributes a fundamental “fuzziness” to the background
spacetime itself owing to a modification of the Heisenberg

algebra. Notwithstanding the apparent difference from the
conventional cut-off, following [9] this kind of assumption
has been used frequently to regularize integrals in phenom-
enological applications such as the brick wall model of black
hole thermodynamics [10–12]. One may thus wonder in
which way the minimal-length idea differs from a physical
cut-off in momentum space.
Before moving on, however, it is worth stressing that,

starting from the minimal length paradigm as an effective
low-energy manifestation of a complete quantum gravity
model, one ends up in several issues that demand careful
treatment. For instance, physical entities belonging to
fundamental theories (i.e., D-branes in string theory) might
probe lengths beyond the Planck scale [13,14]; bear inmind,
however, that the minimal length is not only motivated by
considerations in string theory. Furthermore, it must be said
that, although such effectivemodels are deemedmeaningful
only in the nonrelativistic regime, infrared implications of
explicit Lorentz covariance violation [15] and subtleties
concerning gauge invariance [16] could still lead to observ-
able effects.
In this paper, we show that a minimal-length scale as

given in (1) is indeed equivalent to a hard cut-off. However,
this cut-off is not bounding momentum space, but rather the
space of wave numbers which we define as being the space
conjugate to the position representation. As a matter of fact,
it is possible to explicitly relate the bound in wave-number
space to the minimal-length scale. Yet, a deformation of the
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Heisenberg algebra immediately implies a modification of
the de Broglie relation such that wave numbers and
momenta cease to be proportional to each other [5,17].
Therefore, momentum space may be unbounded while
wave-number space is not. This, it turns out, is the subtle
difference in interpretation between applying a cut-off and
deforming the Heisenberg algebra. Bear in mind, however,
that the definition of a “physical” momentum cannot be
motivated from the minimal length itself.
The interpretational difference becomes all the more

pronounced once the coordinates become noncommutative.
To cover this possibility, we generalize the concept of wave
number to deformed Heisenberg algebras which entail a
noncommutative geometry. The resulting (anisotropic)
wave-number space continues to be bounded under the
assumption of a minimal length. Similarly, the relation
between this bound and the minimal-length scale can be
generalized.
The present approach is far from being only of con-

ceptual interest. It can be used as a tool to identify deformed
Heisenberg algebras which possess a minimal localization
and those that do not—also in situations where this may not
be possible by other means. Applying this reasoning to the
most commonly used models of the field, we indeed find
one which, contrary to claims in the literature [18,19], does
not encompass a minimal-length scale.
To comply with the above purposes, the paper is

structured as follows: First, we propose the argument for
a bound in wave-number space for one spatial dimension
(or equivalently for multiple commutative dimensions) in
Sec. II. This result is then generalized to noncommutative
geometries in Sec. III. Section IV is devoted to the
application of the general framework to existing models.
In Sec. V we comment on the general implications of our
results for minimal-length models. Finally, we summarize
and discuss our findings in Sec. VI.
Throughout the work we will use natural units

ℏ ¼ c ¼ 1.

II. NO CUT-OFF, NO MINIMAL LENGTH

Let us first consider one spatial dimension, and assume
the position of the system at hand to be given by the
operator x̂. Then, we may always find a conjugate wave-
number operator k̂ such that the ordinary Heisenberg
algebra,

½x̂; k̂� ¼ i; ð2Þ

is satisfied. While k̂ is not regarded as the physical
momentum operator in conventional minimal-length theo-
ries, it is bound to exist, and can be used to construct a
representation of the underlying deformed Heisenberg
algebra.

In this section, we will show that a lower bound of
type (1) is equivalent to a bounded spectrum for k̂. This
means that the minimal-length constraint imposes a cut-off
on the conjugate wave-number space. Intuitively, one
would expect that to happen: Given a pair of observables
satisfying the Heisenberg algebra (2), if the spectrum of k̂ is
continuous and unbounded, it is a simple exercise to
construct states which violate the inequality (1).
Consider, thus, a quantum system confined to a box

of length 2B in wave-number space, i.e. specðk̂Þ ¼
fk∶k ∈ ½−B;B�g. To achieve this, we apply Dirichlet boun-
dary conditions at k ¼ �B. Clearly, we can express any state
ψ in terms of the eigenstates of x̂2 as

ψ ¼
X∞
n¼0

�
an

sin½ðnþ 1Þπk=B�ffiffiffiffi
B

p þ bn
cos ½ð2nþ 1Þπk=2B�ffiffiffiffi

B
p

�
;

ð3Þ

with the complex coefficients an, bn satisfyingP∞
n¼0ðjanj2 þ jbnj2Þ ¼ 1. Since x̂ obeys the Heisenberg

algebra with k̂, it can be represented as a derivative
with respect to k, i.e. x̂ψ ¼ i∂kψ . We thus obtain for a
generic state

Δx2 ≡ hψ jx̂2ψi − hψ jx̂ψi2 ≤ hx̂2i

¼
�

π

2B

�
2X∞
n¼0

½4janj2ð1þ nÞ2 þ jbnj2ð1þ 2nÞ2�: ð4Þ

The right-hand side of this inequality is clearly minimal if
jb0j ¼ 1 while all other coefficients vanish. Assuming a
minimal length of the kind (1), we then obtain

l2 ≤ Δx2 ≤
�

π

2B

�
2

: ð5Þ

Standard quantummechanicswould be recovered in the limit
B → ∞. However, this would violate inequality (5), i.e. it is
impossible in the presence of a minimal length. Hence, a
theory characterized by aminimal length cannot be described
in terms of an unbounded wave number.
Starting from the above premises, the argument can be

refined even more: It is possible to relate the bound B of the
wave-number spectrum to the minimal length l. To this
aim, we first notice that the above model does not yield a
preferred position. Therefore, there have to be states of
smallest possible position uncertainty for every hx̂i, all of
which produce the same value for Δx. Then, it is sufficient
to consider states satisfying hx̂i ¼ 0. Under these circum-
stances, the smallest possible position uncertainty is indeed
given by

Δx ¼ π

2B
: ð6Þ
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This quantity is bounded by the minimal length, thereby
leading to the fundamental bound in wave-number space

B ¼ π

2l
: ð7Þ

Thence, provided that there is a minimal length for the
position operator, the spectrum of the corresponding
conjugate wave-number operator is

specðk̂Þ ¼ fk∶k ∈ ½−π=2l; π=2l�g: ð8Þ

In turn, a quantum theory in which the wave-number
conjugate to the position does not have a bounded spectrum
does not have a minimal length. This result can be
straightforwardly generalized to several spatial dimensions
as long as the underlying geometry is commutative. As we
will see in the following section, noncommutative geom-
etries are slightly more involved to deal with.

III. NONCOMMUTATIVE GEOMETRY

In general, minimal-length models are not understood in
terms of conjugate variables x̂ and k̂. Instead, they are based
on a modified Heisenberg algebra expressed with the help
of a “physical” momentum P̂a, say

½x̂a; P̂b� ¼ i

�
fðP̂2Þδabþ f̄ðP̂2ÞP̂aP̂b

P̂2

�
; ½P̂a; P̂b� ¼ 0; ð9Þ

with the two functions f, f̄ constrained to reduce to 1 and 0
in the low-energy limit, that is P2 → 0, so as to guarantee
the recovery of the Heisenberg algebra. Unless these two
functions satisfy the relation [20,21]

f̄ ¼ 2ðlog fÞ0P̂2

1 − 2ðlog fÞ0P̂2
f; ð10Þ

the coordinates x̂a of the model (9) fail to commute. In this
scenario, one can verify that

½x̂a; x̂b� ∝ 2x̂½bP̂a�; ð11Þ

where the proportionality factor depends on P̂2, and is
related to the functions f and f̄ via Jacobi identities. If
coordinates are noncommutative in this way, there is
no possibility to recover the undeformed d-dimensional
Heisenberg algebra by merely choosing a new wave-
number-like variable while keeping the coordinates x̂a as
they are; clearly, if we continue to use the x̂a, the non-
commutativity cannot be forced to disappear. Nevertheless,
we can find a set of wave numbers which are conjugate to
the respective coordinates.
In order to achieve this, it is instructive to follow a

two-step procedure: Firstly, we diagonalize the deformed

Heisenberg algebra; secondly, we find a transformation
which restores the undeformed Heisenberg algebra on the
diagonal.
In that vein, we define another momentum coordinate

p̂a ¼ ḡðP̂2ÞP̂a. After some algebra, it can be shown that

½x̂a; p̂b� ¼ ifḡδab þ i½ḡ f̄þ2ðf þ f̄Þḡ0P̂2� P̂aP̂b

P̂2
: ð12Þ

Here, we choose the second term of this equation to vanish.
Accordingly, ḡ assumes the form

ḡ ¼ exp

�
−
Z

P̂2

0

f̄ðΠÞ
2Π½fðΠÞ þ f̄ðΠÞ� dΠ

�
; ð13Þ

where as usual ḡð0Þ ¼ 1, implying that the momenta p̂a

and P̂a are equal in the low-energy limit. As a result, we
obtain the diagonal deformed Heisenberg algebra

½x̂a; p̂b� ¼ iδabg ∘ P̂2ðp̂2Þ; ð14Þ

where we defined g≡ fḡ. For the sake of conciseness,
henceforth we will omit the composition with P̂2. Next,
imposing the Jacobi identities, one can check that a
diagonal algebra of this kind implies a commutator of
the coordinates given by

½x̂a; x̂b� ¼ 2g0x̂½bp̂a� ≡ θx̂½bp̂a�; ð15Þ

where we introduced the noncommutativity θðp̂2Þ ¼
2g0ðp̂2Þ. We note that, in the case of a commutative
geometry, this first step would have already led to the
Heisenberg algebra; i.e. θ ¼ g0 ¼ 0 would immediately
imply g ¼ 1. As a result, we could directly employ the
reasoning laid out above for the one-dimensional case to
conclude that the space spanned by the p̂a is to be bounded
for a minimal length to appear.
For noncommutative geometries, however, we have to

resort to a second transformation. To better convey the
reason behind this step, it is instructive to consider the one-
dimensional counterpart of the algebra (14). In this case,
the wave number is related to the momentum p̂ as [22]

k̂ ¼
Z

p̂

0

dp0

gðp02Þ : ð16Þ

In several dimensions, we can introduce the analogous
transformation

k̂a ¼
Z

p̂a

0

dp0
a

gðp02
a þP

b≠ap̂
2
bÞ
; ð17Þ

where we have explicitly separated the dependence on the
component p̂a from the other components, with b ≠ a, in
the function gðp2Þ. This transformation is particularly
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nontrivial, because it does not preserve the isotropy of the
underlying uncertainty relations: the integration is per-
formed along a specific axis in momentum space, which
introduces a preferred coordinate system. Therefore, a
rotation in wave-number space does not correspond to a
rotation of positions or momenta. This can be seen from the
Jacobian

Jab ¼
∂k̂a
∂p̂b

¼
� g−1ðp̂2Þ a ¼ b;

−p̂b

R p̂a
0

θdp0
a

g2 a ≠ b;
ð18Þ

which is nontrivial if the noncommutativity is different from
0, and cannot be expressed covariantly. Despite this, we still
have p̂ajka¼0 ¼ 0 such that Jabjka¼0 ¼ Jabjkb¼0 ¼ δab=g.
Consequently, the algebra of observables becomes

½x̂a; k̂b� ¼ igJba ¼
� i a ¼ b;

−igp̂a

R p̂b
0

θ
g2 dp

0
b a ≠ b:

ð19Þ

On the diagonal, the positions and the effective wave
numbers satisfy the one-dimensional Heisenberg algebra
(i.e. the wave numbers are conjugate to the respective
coordinates). In general, the wave-number spectrum may
be bounded to some domainDwhich, due to the anisotropic
nature of the transformation (17), may not be isotropic. We
will see some examples of this in Sec. IV. The anisotropies
crucially depend on the noncommutativity θ of the coor-
dinates and vanish for commutative backgrounds.
In light of the above, a question naturally arises: Does the

minimal length still imply a cut-off in this wave-number
space? More precisely, is the lowest eigenvalue of the
squared position in a given direction, say ðx̂dÞ2, related to
such a bound? We answer both questions in a representa-
tion-independent fashion in Appendix A. Here, we provide
a simplified argument.
First, let us make an observation: If the background

possesses nonvanishing spatial noncommutativity θ, the
coordinates satisfy the uncertainty relation

ΔxaΔxb ≥
1

2
jhθðp̂2Þp̂½ax̂b�ij: ð20Þ

To minimize the uncertainty along the direction xd, we need
to consider states with large uncertainties in all orthogonal
directions. In other words, we require Δxb → ∞ for all
b ≠ d, thus demanding that a state characterized by the
smallest uncertaintyΔxd be infinitely peaked in momentum
space in those directions. By virtue of Eq. (17), the property
of being peaked in the origin carries over to the wave
numbers. To further minimize the effect of the noncom-
mutativity, whose absolute value (at least around the origin
in momentum space) increases monotonically with p̂2, it is
to be expected that the peak should be situated in the origin
of the respective directions. Indeed, for those states

infinitely peaked in the origin, it can be shown that the
right-hand side of Eq. (20) always vanishes, i.e. they are not
affected by the coordinate noncommutativity. This way, we
can study the minimal length independently of the influ-
ence of the noncommutativity.
Furthermore, as effects of the geometry cease to play a

role, the wave function saturates the uncertainty relations
involving positions or wave numbers in the directions
normal to pd [this can also be inferred from the
Jacobian (18) being diagonal at vanishing involved wave
numbers]. Investigating the states saturating uncertainty
relations, in turn, is equivalent to investigating the under-
lying uncertainty relations themselves.
In momentum space, such a projection on the d−th axis

can be obtained by reducing the state space to wave
functions

ψ ≃ ψdðpdÞ
Yd−1
j¼1

e−
p2
j
4ϵffiffiffiffiffiffiffiffi

2πϵ4
p : ð21Þ

In the end, we will take the limit ϵ → 0, thereby imposing
that the involved Gaussians are infinitely peaked in the
origin of momentum space. In the following, we intend to
evaluate the position uncertainty in the d−th direction given
the states (21).
As every modified Heisenberg algebra can be reduced to

the diagonal type (14) by mere redefinition of momenta, we
assume it to be the starting point. As a result, we may
consider the momentum representation of the position
operator

x̂aψ ¼ igðp2Þ_∂aψ ; ð22Þ

where we introduced the momentum derivative _∂a¼∂=∂pa.
The position operator is symmetric with respect to the
integration measure ddp=g. Without loss of generality, we
consider states with vanishing expected position hxdi
(again there is no preferred position in the model).
Therefore, we can write

Δx2d ¼ −
Z
Dp

ddp
gðp2Þψ

�½gðp2Þ_∂d�2ψ

¼ −
Z
Dp

ψ�
d½gðp2Þ_∂d�2ψd

gðp2Þ
�Yd−1

j¼1

e−
p2
j
2ϵffiffiffiffiffiffiffiffi

2πϵ
p dpj

�
dpd; ð23Þ

where the domain of integration Dp depends on the choice
of the model. For vanishing ϵ, the product in brackets just
becomes a product of Dirac delta-distributions

lim
ϵ→0

Δx2d¼
Z
Dp

ψ�
d½gðp2Þ_∂d�2ψd

gðp2Þ
�Yd−1

j¼1

δðpbÞdpb

�
dpd; ð24Þ
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where we applied the definition of the Dirac delta-
distribution as an infinitely peaked Gaussian; i.e.
δðxÞ ¼ limϵ→0 e−x

2=2ϵ=
ffiffiffiffiffiffiffiffi
2πϵ

p
. Consequently, the integration

is trivial, and we may immediately project on the d-th
dimension to obtain

lim
ϵ→0

Δx2d ¼ −
Z

p̄d

−p̄d

dpd

gðp2
dÞ
ψ�
d½gðp2

dÞ_∂d�2ψd; ð25Þ

where, according to the model at hand, the effective bound
to momentum space in the d−th dimension p̄d may be finite
or infinite. At this point, redefining the integration variable
as dk̄d ¼ dpd=gðp2

dÞ ¼ dkjpb¼0 for all b ≠ d [which is
indeed just the transformation (17) for vanishing transverse
momenta], we obtain

lim
ϵ→0

Δx2d ¼ −
Z

B

−B
dkdψ�

d
∂
2ψd

∂k2d

����
pb¼0

; ð26Þ

where, similarly to the one-dimensional case, B may be
finite or infinite. The effective one-dimensional operator
x̂dψ ¼ i∂=∂kdψdjpb¼0 is clearly unmodified with respect to
the case of commuting coordinates. In short, for vanishing
spread of the wave function ψ [given in Eq. (21)] in the
transverse directions of momentum space (the limit ϵ → 0),
the position uncertainty in the longitudinal direction is not
affected by the presence of coordinate noncommutativity.
Hence, recalling the argument outlined in Sec. II, if B is

infinite the position uncertainty can be made arbitrarily
small. If it is not, the effective value of the bound can be
related to the minimal length as

B ¼ lim
p̂d→p̄d

�Yd−1
b¼1

lim
p̂b→0

�
k̂d ¼

π

2l
: ð27Þ

In a nutshell, the fact that a minimal length requires a
bounded wave-number space holds true also for non-
commutative scenarios if we define the wave numbers
by the transformation (17).
Having shown that the approach of the present paper is

valid also in several, possibly noncommutative dimensions,
we are ready to apply it to existing models in the literature
in order to check for the existence of minimal-length scales.

IV. TO BOUND OR NOT TO BOUND

Given a model in the shape (14),1 we have shown that the
domain of the wave number defined in Eq. (17) has to be
bounded for the model to have a minimal length. This is
especially the case in the limit of vanishing transverse wave

numbers as seen in Eq. (27), which is in complete
correspondence to Eq. (5).
Let us first consider the one-dimensional counterpart of

the model (14), namely

½x̂; p̂� ¼ igðp̂2Þ: ð28Þ

This algebra can be brought into a canonical form by
finding the corresponding k̂ðp̂Þ which is conjugate to the x̂,
i.e. finding Darboux-coordinates without modifying x̂. This
has already been done in all generality in Eq. (16). By
virtue of Eq. (8), whether the model at hand possesses a
minimal length depends on the image of the function k̂ðp̂Þ
being bounded for allowed values of p̂.2 Thus, we can
immediately obtain the exact value of the minimal length.
A short inspection of Eq. (16) shows that it is equivalent

to Eq. (17), say in direction d, at vanishing transverse
momenta

�Y
a≠d

lim
pa→0

�
k̂d ¼

Z
p̂d

0

dp̂0
d

gðp̂02
d Þ

: ð29Þ

Domain and image of Eqs. (29) and (16), and with them the
respective bounds (27) and (7), are clearly the same.
Therefore, it is sufficient to consider all models in one
dimension to search for the minimal length.

A. One class of common models

Typically, the majority of the models investigated in the
literature on deformed Heisenberg algebras [3,18,19,23]
belongs to one class, which is characterized by a relation of
the form

½x̂; p̂� ¼ iℏð1þ βp̂2Þα; ð30Þ

where α > 0 identifies the model at hand while β, having
units of ½l2�, provides a length scale. This length scale is
commonly associated with the minimal length. However, it
is only in the case α ¼ 1, yielding l ¼ ffiffiffi

β
p

(see Ref. [3]),
that this connection can be worked out explicitly by
applying the Robertson-Schrödinger relation [24,25].3

This is where the strength of the present approach comes
in. Given a model of the kind (30), all we have to do is find
the wave number k̂, and investigate its domain. By resorting
to Eq. (16), the wave number and momentum operators are
related by the expression [3,17]

1As shown in the previous section, every model can be cast in
this form by simple redefinition of the momentum operator.

2Some models also predict a maximal momentum p̂, i.e. a
bounded momentum space. This can be read off from the
preimage within which k̂ðp̂Þ is an invertible map, meaning that
the Jacobian [see Eq. (18)] is nondegenerate.

3While in [19] it has been claimed to have been shown for the
case α ¼ 1=2 as well, there is a flawed step between Eqs. (23)
and (24) in that reference, explaining the divergence of this
conclusion from our results below.
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k̂ðp̂Þ ¼
Z

p̂

0

dp̂0

ð1þ βp̂02Þα

¼ p̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βp2

p 2F1

�
1

2
;
3

2
− α;

3

2
;

βp̂2

1þ βp̂2

�
; ð31Þ

where 2F1 is the Gaussian hypergeometric function. To
evaluate the limit p̂ → ∞ for any positive value of α, it is
convenient to differentiate the models with α ≤ 1=2 from
the ones where α > 1=2.

(i) α ≤ 1
2
∶ For these models we find

k̂ðp̂Þ ≥
Z

p̂

0

dp̂0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βp̂02p ¼ arcsinhð ffiffiffi

β
p

p̂Þffiffiffi
β

p : ð32Þ

Both image and domain of this function are un-
bounded. In other words, p̂-space is unbounded and
k̂ diverges in the limit p̂ → ∞. Thus, these models
do not incorporate a minimal length.

(ii) α > 1=2∶ In this case, using Gauss’s summation
theorem [26], we have

lim
p→∞

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βp2

p 2F1

�
1

2
;
3

2
− α;

3

2
;

βp2

1þ βp2

�

¼
ffiffiffi
π

p
Γðα − 1

2
Þ

2
ffiffiffi
β

p
ΓðαÞ ; ð33Þ

which is finite for α > 1
2
, implying the minimal

length

l ¼
ffiffiffiffiffiffi
πβ

p
ΓðαÞ

Γðα − 1
2
Þ : ð34Þ

This function is displayed in Fig. 1. As can be
gathered from there, the minimal length decreases

for decreasing α and vanishes at the boundary
value α ¼ 1=2. Furthermore, for α ¼ 1, we obtain
l ¼ ffiffiffi

β
p

, in exact correspondence with the result
derived from the Robertson-Schrödinger relation [3].

To show how the case α ¼ 1 [3] plays out in two
dimensions, the region of allowed wave numbers is dis-
played in Fig. 2. It is clearly bounded. In particular, at
vanishing transverse wave number, i.e. on the axes, the
bound equals exactly π=2

ffiffiffi
β

p
as expected. Furthermore, it is

possible to see the anisotropy of the wave-number repre-
sentation reflected in the starlike shape of the region.
The boundary case α ¼ 1=2 is of particular interest due

to it having been the basis for one of the very foundational
works of the field [18]. We show the domain of its wave-
number space in two dimensions in Fig. 3. In contrast to the
example α ¼ 1, in Fig. 2 this region is clearly unbounded.
To support our finding of this model not possessing a
minimal length, we have explicitly constructed states which
satisfy the proposed uncertainty relation and at the same
time allow for infinite localizability in Appendix B.

B. Other models

There are a number of other common Ansätze which are
not of the kind (30). These models may even have a
bounded momentum (p̂) space but no minimal length or
vice-versa. The results for some of them are summarized in
Table I. We find that, contrary to the claim in [27] by one of
the authors of the present paper, the model g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βp̂2

p
does actually predict a minimal length. Apart from that, the
bounds reflect what was known in the literature.

FIG. 1. Value of the minimal length for the one-parameter
family of minimal-length models (30) as a function of the model
classifier α evaluated in terms of the model parameter β.

FIG. 2. Domain of the wave number k̂ for the case α ¼ 1 of the
family of models in Eq. (30) in two dimensions. The region is
bounded. In particular, on the axes the wave numbers do not
exceed the value π=2

ffiffiffi
β

p
.
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Having gathered the results on different minimal-length
models, it is time to comment on the minimal length and
how the multitude of distinct realizations of it is to be
interpreted.

V. THE ESSENCE OF THE MINIMAL LENGTH

Throughout this paper, we have aimed at distilling the
very foundation of the minimal-length idea. Nevertheless,
we have never had to refer to the dynamics of a system, i.e.
its Hamiltonian. This explicitly shows that the minimal
length is to be explained on the level of kinematics. It is a
property of the background on top of which we define a
quantum theory.

Any interpretation in terms of a “physical” momentum
(throughout the paper denoted as p̂ or p̂a) which satisfies
some modified Heisenberg algebra requires additional
structure, while the bound in wave-number space is
sufficient to fully characterize the minimal length. The
ad hoc definition of an additional momentum (which may
indeed be useful from the point of view of interpretation or
calculation) has no physical consequences. However, the
choice of Hamiltonian made in the foundational papers on
minimal-length quantum mechanics (e.g. [3]),

H ¼ p̂2

2m
þ VðxÞ; ð35Þ

and countless times in the literature since, does inherit a
degree of arbitrariness from it. Why, for example, should
we not choose the Hamiltonian

H ¼ k̂2

2m
þ VðxÞ ð36Þ

instead, as suggested in [33]? The effect of the minimal
length would still be included by the bound in wave-
number space. We thus see that all different minimal-length
models, while being kinematically equivalent, only differ in
their dynamics, and there is no physical reason to prefer one
model over the other4 (as long as both actually predict a
minimal length). In other words, the multitude of
approaches only add a layer of modification to the
Hamiltonian, which cannot be motivated by the existence
of a minimal length itself.5 In short, there is only one model
of minimal-length quantum mechanics.

VI. CONCLUDING REMARKS

While minimal-length models have been investigated for
quite some time now in the context of quantum gravity
phenomenology, a clear definition of what the minimal
length exactly entails had not been given up until now. We
have closed this gap by showing that it boils down to a cut-
off in the space of wave numbers, i.e. the conjugates to the
positions. This cut-off is quantitatively related to the
minimal length. Providing a suitable definition of wave
numbers on noncommutative backgrounds, we have gen-
eralized the relation to models including coordinate
noncommutativity.
The relation between the minimal-length scale and the

bound in wave-number space makes it possible to use the
framework introduced here to check specific deformed

FIG. 3. Domain of the wave number k̂ for the case α ¼ 1=2 of
the family of models in Eq. (30) in two dimensions. Notice that
such a model is characterized by an unbounded domain.
Specifically, when k1 ¼ 0, k2 can acquire any real value and
vice-versa.

TABLE I. Wave numbers, momentum-space bounds (if exist-
ent), and minimal lengths (if existent) for common deformed
Heisenberg algebras. The last column indicates the references
associated with the models.

gðp̂2Þ
Wave number

k̂ðp̂Þ

Maximal
momentum

(p̂)
Minimal
length References

1 − βp̂2 arctanhð ffiffiffi
β

p
p̂Þ= ffiffiffi

β
p

1=
ffiffiffi
β

p
None [28,29]

eβp̂
2

ffiffi
π

p

2
ffiffi
β

p Erfðβp̂Þ None
ffiffiffiffiffiffi
πβ

p
[30]

1
1−βp̂2 p̂

	
1 − βp̂2

3



1=

ffiffiffi
β

p
3π

ffiffiffi
β

p
=4 [31,32]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − βp̂2

p
arcsinð

ffiffi
β

p
p̂Þffiffi

β
p 1=

ffiffiffi
β

p ffiffiffi
β

p
[27]

4A similar comment has already been made in the literature; in
particular, see Refs. [34,35] and therein.

5In the context of noncommutative backgrounds—themselves
an additional assumption—Hamiltonians of the type (36) break
isotropy in accordance with Eq. (17). This may indeed be
considered a good reason to deform the Hamiltonian such that
it is of the form (35).
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Heisenberg algebras for the existence of minimal lengths.
Considering some of the most common models, we have
found that one of the original Ansätze [18], contrary to
claims in the literature, does not entail a minimal length.
A most important property of the minimal length we

have distilled in this paper consists in it being solely
kinematical: Every model with a bound in wave-number
space contains a minimal length, independently of the
Hamiltonian underlying the dynamics. Apart from that,
introducing a momentum operator p̂ ¼ p̂ðk̂Þ, while pos-
sibly making (especially perturbative) calculations more
tractable, just amounts to a change of variables. Making the
choice of Hamiltonian dependent on change of variables
inherits a degree of arbitrariness. It is not a direct effect of
the minimal length.
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APPENDIX A: REPRESENTATION-
INDEPENDENT PROOF OF EQ. (27)

Let us introduce the auxiliary operators X̂a such that

½X̂a; k̂b� ¼ iδab: ðA1Þ

Then, based on Eq. (19), the position operator can be
written as

x̂a ¼ X̂a þ
X
b≠a

gp̂a

Z
p̂b

0

θ

g2
dΠbX̂b

¼ X̂a þ g
X
b≠a

∂kb
∂pa

X̂b: ðA2Þ

We are interested in studying the operator x̂2d. For this
purpose, it is useful to compute the following commutator:

½x̂a; X̂a� ¼
�
X̂a þ g

X
b≠a

∂kb
∂pa

X̂b; X̂a

�
¼

�
g
X
b≠a

∂kb
∂pa

; X̂a

�
X̂b

¼ −i
X
b≠a

�
∂

∂ka
g
∂kb
∂pa

�
X̂b: ðA3Þ

Furthermore, since the commutation relation in Eq. (A1) is
diagonal, we can consider a state jψi which is a common
eigenstate of X̂2

d with eigenvalue λ and of k̂b with
eigenvalue k̄b, for all b ≠ d, that is

jψi ¼ jλi⊗
b≠d

jk̄bi: ðA4Þ

To further simplify the analysis below and without loss of
generality, we can choose a reference frame in which all
eigenvalues k̄b ¼ 0.6 Notice that, since such a state is an
eigenstate of k̂b and since k̂b ¼ p̂b in the limit k̄b → 0, we
have

p̂bjk̄b ¼ 0i ¼ 0: ðA5Þ

Moreover, using the definition in Eq. (17), it is easy to
show that

∂k̂b
∂p̂a

jk̄b¼0i¼δabjk̄b¼0i; ∂
2k̂b

∂p̂c∂p̂a
jk̄b¼0i¼0: ðA6Þ

However, higher order derivatives may not (and in general
do not) vanish. We then find

x̂djψi ¼
�
X̂d þ g

X
b≠d

∂kb
∂pd

X̂b

�
jψi

¼
�
X̂d þ X̂bg

X
b≠d

∂kb
∂pd

− i
X
b≠d

�
∂

∂kd
g
∂kb
∂pd

��
jψi

¼ X̂djψi; ðA7Þ

where we used the fact that

�
∂

∂ka

∂kb
∂pa

�
jψi ¼

�
∂pl

∂ka

∂
2kb

∂pa∂pl

�
jψi ¼ 0: ðA8Þ

Similarly, we obtain

x̂2djψi¼ x̂dX̂djψi¼
�
X̂2
d− i

X
b≠d

�
∂

∂kd
g
∂kb
∂pd

�
X̂b

�
jψi: ðA9Þ

Computing the expectation value of x̂2d on the state jψi then
yields

hx̂2di ¼ hX̂2
di ¼ λ: ðA10Þ

Furthermore, since we can always choose a reference
frame in which hx̂ai ¼ hX̂ai ¼ 0 and since the current
model does not present any preferred position, we find that,
for the state jψi, ðΔxÞ2 ¼ ðΔXÞ2 ¼ λ. Finally, since the
uncertainty relation between Xd and kd is Heisenberg-like,
then we can directly apply the argument used for the one-
dimensional case. We then obtain that a minimal uncer-
tainty for Xd (and therefore for xd) exists if and only if the
operator k̂d is bounded. Specifically,

6For an argument in favor of this being the most interesting
frame of reference to consider, see Sec. III.

BOSSO, PETRUZZIELLO, and WAGNER PHYS. REV. D 107, 126009 (2023)

126009-8



Δxd ¼
ffiffiffi
λ

p
¼ π

2B
; ðA11Þ

where B is the bound to wave-number space.

APPENDIX B: EXPLICIT PROOF OF INFINITE
LOCALIZABILITY FOR α= 1=2

We choose a series of states, fjσig, with σ > 0 a
parameter with units of momentum, whose normalized
wave functions are given by

ψσðpÞ ¼ hpjσi ¼ 1ffiffiffiffiffiffiffiffiffiffi
σ

ffiffiffi
π

pp e−
k2ðpÞ
2σ2 ; ðB1Þ

where kðpÞ ¼ arcsinhð
ffiffi
β

p
pÞffiffi

β
p is the wave number associated

with the model α ¼ 1=2 in Eq. (30). Then, the expectation
values of the momentum and its square result as

hp̂i ¼ 0; hp̂2i ¼ eβσ
2 − 1

2β
: ðB2Þ

Thus, the momentum uncertainty increases with σ as
expected. As for the expectation value of the position
and its square, we obtain

hx̂i ¼ 0; hx̂2i ¼ 1

2σ2
: ðB3Þ

Therefore, the uncertainty product for such states is
given by

ΔxΔp ¼
e
βσ2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðβσ2

2
Þ

q
ffiffiffiffiffi
2β

p
σ

: ðB4Þ

On the other hand, from the Robertson-Schrödinger rela-
tion one can straightforwardly check that

ΔxΔp ≥
jh½q; p�ij

2
¼ 1

2
e
βσ2

4 ¼ Ω; ðB5Þ

where Δ denotes the minimum value for the uncertainty
product compatible with the model. We observe that

ΔxΔp
Ω

¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðβσ2

2
Þ

q
ffiffiffi
β

p
σ

≥ 1 ∀ σ > 0; ðB6Þ

which means that the states described in Eq. (B1) are
compatible with the uncertainty relation implied by the
model. In other words, they are part of the physical Hilbert
space of the theory. However, from Eq. (B3), we get

lim
σ→∞

Δx ¼ 0: ðB7Þ

Thus, the one-parameter family of states in Eq. (B1)
satisfying the uncertainty relation in Eq. (B5) has vanishing
uncertainty in position in the limit σ → ∞. To put it
differently, the model does not predict a minimal uncer-
tainty in position.
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