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The propagation of perturbations is studied with generalized holonomy corrections in a fully consistent
way, ensuring that the deformed algebra of constraints remains closed. The primordial cosmological power
spectra are calculated. It is shown that, although the detailed form of the correction does unavoidably
impact the observables, the main known results of loop quantum cosmology are robust in this respect.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a background-indepen-
dent quantization of general relativity (GR) [1]. It can be
expressed in the canonical form [2] or in the covariant
way [3]. The theory has been successfully applied to both
black holes and the early universe. Many consistency
checks—mostly encouraging—have been carried out,
although some important questions remain open [4]. An
excellent philosophical introduction is given in [5].
The cosmological sector of the theory has received

particular attention and numerous complementary aspects
were investigated in details (see, e.g., [6–15], and refer-
ences therein). The main conclusions are the following. The
existence of a bounce replacing the usual big bang is a
robust result. It has been shown analytically in simplified
situations and proven to survive when a cosmological
constant is added, when spatial curvature is taken into
account, and when quite general potentials for the inflaton
field are considered. In addition, the semiclassical states
were demonstrated to remain sharply peaked, allowing the
safe use of effective equations. Importantly, the duration of
inflation is statistically predictable in this framework.
Generic features for the primordial power spectra were
also derived.
This work deals with a specific—and somehow under-

estimated—point: the consequences of a generalized hol-
onomy correction. The outstanding issue of quantization
ambiguities in LQG was mentioned in [16]. New argu-
ments were recently given in [17]. In particular, the
question was addressed from the interesting point of view
of renormalization. The quantization ambiguity of the
connection-based holonomy variable might influence the
associated cosmological predictions. This has been studied
in [18]. The main effects are quite weak on the background
dynamics and do not change substantially the usual
conclusions of loop quantum cosmology (LQC).

Interestingly, most new effects tend to decrease the number
of e-folds. This makes the situation more phenomenologi-
cally promising. Perturbations were also considered in this
work. However, the usual Mukhanov-Sasaki equations for
gauge-invariant perturbations were used, which are not
fully consistent with the underlying deformed algebra. The
effects of the holonomy modifications were accounted for
at the level of the background and at the level of the
potential, but not in the core of the propagation equation.
This article fills this gap and shows the calculation of fully
reliable primordial spectra (in the deformed algebra
approach). The main conclusion is that the known results
of LQC are robust.
In the first section, we review the basics of LQC so that

this article is self-contained for nonspecialists. Then, the
deformed algebra and the propagation equations for per-
turbations are defined. Finally, the results are shown for
different parametrizations of the holonomy correction.
Throughout all the article, we use Planck units.

II. BASICS OF LOOP QUANTUM COSMOLOGY

Loop quantum cosmology is an attempt to perform a
symmetry reduction of LQG, mimicking the quantization
used in the full theory [19,20]. This section explains the
basic ideas for the unfamiliar reader.
The canonical formulation of LQG is based on the

Ashtekar connection,

Ai
a ≔ Γi

a þ γKi
a; ð1Þ

where γ is the Barbero-Immirzi parameter and the extrinsic
curvature coefficients are given byKi

a ¼ Kabebjη
ij for triads

defined such that qab ¼ eai e
b
jδ

ij at each x ∈ Σt. The spin
connection Γi

a reads
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Γi
a ¼ −

1

2
ϵijkebj ð∂½aekb� þ δklδmsecl e

m
a ∂bescÞ; ð2Þ

eai being the inverse triads such that eai e
j
b ¼ δji . In order to

complete the set of canonical variables, one defines the
densitized triads Ea

i ≔ j det ej−1eai that are conjugate to the
Ashtekar connection,

fAi
aðxÞ; Eb

j ðyÞg ¼ κγδbaδ
i
jδ

3ðx − yÞ; ð3Þ

with, κ ¼ 8πG.
The dynamical equations appear as constraints. Namely,

the Gauss constraint,

G½Λ� ¼ ðκγÞ−1
Z
Σt

d3xΛið∂aEa
i þ ϵlikA

k
aEa

lÞ; ð4Þ

the diffeomorphism constraint,

D½Na� ¼ ðκγÞ−1
Z
Σt

d3xNaFi
abE

b
i ; ð5Þ

where Fi
ab ¼ 2∂½aAi

b� þ ϵijkA
j
aAk

b is defined as the curvature

of the Ashtekar connection, and the scalar constraint,

C½N� ¼ ð2κγÞ−1
Z
Σt

d3xNj det Ej−1=2ðϵijkFi
abE

a
jE

b
k

− 2ð1þ γ2ÞKi
½aK

j
b�E

a
i E

b
j Þ: ð6Þ

For an isotropic, homogeneous, and flat universe, the
Friedmann-Lemaître-Robertson-Walker metric can be writ-
ten as

ds2 ¼ −N2ðdx0Þ2 þ a2ðtÞdxadxbδab: ð7Þ

The Ashtekar variables are rewritten as

Ai
aðxÞ ¼ γ _aðtÞδia ≡ cðtÞδia;

Ea
i ðxÞ ¼ a2ðtÞδai ≡ pðtÞδai ; ð8Þ

where a dot denotes a derivative with respect to the cosmic
time dt ¼ Ndx0. Only the scalar constraint contributes to
the dynamics of this system. Taking into account the
symmetries, it can be written as

C½N� ¼ −
3NV0

κγ2
p1=2c2; ð9Þ

where V0 is a fiducial volume element.
The matter sector is assumed to be a scalar field ϕ with

an arbitrary potential VðϕÞ. The full Hamiltonian is

Ht½N� ¼ NV0

�
−

3

κγ2
p1=2c2 þ p3=2ρ

�
; ð10Þ

which, after setting Ht½N� ¼ 0, leads to the usual
Friedmann equation.
The holonomy around the closed fiducial square□ij can

be written as

h□ij
¼ hlihljh

−1
li
h−1lj ; ð11Þ

with

hli ¼ expfjljkτig; ð12Þ

where τi are base matrices of the fundamental SUð2Þ
representation, which is arbitrary at this point. Hence,
the holonomy-corrected curvature is

Fk
ab ¼ −2lim

l→0
tr

�
h□ij

− 1

l2
τk
eiae

j
b

γ2

�
; ð13Þ

which is equivalent to

Fk
ab ¼ lim

l→0

sin2ðjljkÞ
jlj2 ϵkij

eiae
j
b

γ2
: ð14Þ

The presence of a minimal area in the theory, given by the
smallest nonzero eigenvalue of the area operator in LQG,
leads to the introduction of the μ̄ ¼ lPlð4

ffiffiffi
3

p
πγÞ1=2p−1=2

parameter which allows to introduces the so-called hol-
onomy correction substitution,

c2 → μ̄−2 sin2 ðμ̄cÞ: ð15Þ

Gathering everything, the holonomy-corrected
Hamiltonian constraint becomes

Ht½N� ¼ NV0

�
−

3

κγ2μ̄2
p1=2sin2ðμ̄cÞ þ p3=2ρ

�
; ð16Þ

which leads to the LQC-modified Friedmann equation,

H2 ¼ κ

3
ρ

�
1 −

ρ

ρc

�
; ð17Þ

where ρc ¼
ffiffiffi
3

p
=ð4πκγ3Þ is usually assumed to be close to

the Planck density. This is the usual bounce solution.
Many arguments (see, e.g., [21,22]) were given for

considering seriously LQC with arbitrary spin representa-
tions or higher-order terms. In this work, we will remain as
general as possible. To this aim, we will focus on a so-
called polymerization defined by the substitution

c2 ⟶ g2ðc; pÞ: ð18Þ
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Details about the construction of suitable semiclassical
states and associated Dirac observables are given in [6],
where the only restriction on the (periodic) gðc; pÞ function
is the low-curvature limit, in which GR should be recov-
ered, i.e., gðc; pÞ ⟶ c.
In order to set notations let us recall some known results

for the polymerized background dynamics in LQC. As
shown in [23], the background dynamics is described by
the set of equations

_c ¼ −
3N
2

ffiffiffiffi
p

p g2ðc; pÞ þ Nkffiffiffiffi
p

p Gð1Þðc; pÞ − N
κ

2

ffiffiffiffi
p

p
P;

_p ¼ 2N
ffiffiffiffi
p

p
Gð1Þðc; pÞ;

_ϕ ¼ Nπp−3=2;

_π ¼ −Np3=2
∂ϕVðϕÞ; ð19Þ

where, as defined above, dots correspond to derivatives
with respect to the cosmic time t, fϕ; πg are the canonical
variables for a given minimally coupled scalar field with
potential VðϕÞ and pressure P. We also used the nota-
tion Gð1Þðc; pÞ ≔ ∂cg2ðc; pÞ=2.
The background Hamiltonian constraint can be rewrit-

ten as

3
ffiffiffiffi
p

p
g2ðc; pÞ ¼ κρ; ð20Þ

where ρ ¼ π2

2p3 þ VðϕÞ. We make the usual gauge choice

N ¼ 1, which allows us to rewrite the above set of
equations as a generalized Friedmann equation, together
with the usual Klein-Gordon equation for the inflation
field:

H2 ¼ κ

3
ρð∂cgðc; pÞÞ2;

ϕ̈þ 3H _ϕþ ∂ϕVðϕÞ ¼ 0; ð21Þ

where H ≔ 1
2
_pp−1 is the Hubble parameter.

For the background dynamics given above, four initial
conditions are needed: the scale factor a, the Hubble
parameter H, the scalar field ϕ, and its time derivative
∂tϕ, have to be determined at some specific time. The
Ashtekar school has usually advocated the (reasonable)
idea that the bounce time should be chosen, whereas the
Grenoble school prefers the prebounce classical universe.
The dynamics at the bounce being dominated by quantum
effects, we adopt this second choice (which is anyway
meaningful if the bounce state is to be understood as the
result of causal evolution from the contracting branch). In
addition, in the prebounce phase, one can define a clear
measure for probabilities [14,24,25] relying on “safe”
equations.
We impose aðtiÞ ¼ 1. Far in the prebounce phase, the

universe is mostly classical and the Hubble parameter is

then given by the usual Friedmann equation, i.e.,
HðtiÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κρðtiÞ=3

p
. To discuss initial conditions for

the matter sector, we introduce two parameters x and y
defined by

x ¼ ðVðϕÞ=ρcÞ1=2;
y ¼ ð _ϕ2=2ρcÞ1=2; ð22Þ

satisfying the relation

x2 þ y2 ¼ ρ

ρc
: ð23Þ

In this study, we assume a quadratic potential (that is a
simple mass term) for the field. Even though this potential
is not favored by observational data [26], it allows easy
comparisons with other studies. Our results do not, in any
case, significantly depend on the shape of the potential. We
have explicitly checked this with the Starobinsky potential.
In the remote contracting universe, the dynamics of x and y
is described by a harmonic oscillator,

xðtÞ ≈
�
ρðtiÞ
ρc

�
1=2

sin ðmtþ δÞ;

yðtÞ ≈
�
ρðtiÞ
ρc

�
1=2

cos ðmtþ δÞ; ð24Þ

where the phase parameter δ has been studied in [27] and
is not of particular importance in this work. The initial
density is

ρðti ¼ 0Þ ≈ ρc

�
Γ
α

�
2

½1 − ð4αÞ−1 sin ð2δÞ�; ð25Þ

with Γ the ratio of the classical timescale over the quantum
one and α a free parameter (set, as usually, to α ¼ 17π þ 1
to ensure that the scalar field oscillates enough during the
contracting phase for our approximations to be valid).

III. DEFORMED ALGEBRA
AND PERTURBATION EQUATIONS

A. The deformed algebra approach

The treatment of perturbations is less consensual than the
one of the background. On the one hand, the so-called
dressed metric approach (see [28,29] for an introduction)
was developed to account for quantum effects as deeply as
possible. It is basically equivalent to the hybrid quantiza-
tion one [30] and the propagation equation is the usual one.
On the other hand, the deformed algebra framework
(see [31] for an introduction) was suggested to put
emphasis on covariance. It is the main focus of this study
as it constitutes the natural path to investigate the specific
effects of the generalized holonomy correction in a self-
contained way.
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Basically, the deformed algebra approach is a
conservative one which relies on consistency. In the
canonical formulation of GR, the smeared constraints form
a first-class algebra. This closure property—that is, the fact
that each Poisson bracket between constraints is propor-
tional to another constraint—ensures that the evolution
vectors always remain tangent to the submanifold of
constraints. In other words, this makes the constraints
compatible with themselves. When holonomy corrections
are implemented, the resulting quantum gravity effective
constraints do, however, not close anymore for perturba-
tions (the closure is automatically ensured for the back-
ground). In the seminal work [32], an elegant and
consistent way out was found. The interested reader can
find details, e.g., in [33,34]. Important consequences were
derived on the allowed shapes of the correction in [35]. To
cancel the so-called anomalies, that is AIJ terms appearing
in Poisson brackets between (smeared) corrected con-
straints CQ

I ,

fCQI ; CQJ g ¼ fKIJðAj
b; E

a
i ÞCQK þAIJ; ð26Þ

one adds counterterms physically encoding the deformation
of the algebra. A pictorial representation is given in [33].
Those terms are required to vanish in the classical limit and
are uniquely determined by the full system of equations
(including matter). Quite amazingly, similar conclusions
were reached in [23], with a more general holonomy
substitution. The fact that an anomaly-free algebra can
still be constructed, always requiring the μ̄ scheme, is a
strong hint in favor of the consistency of this path.
The idea, when considering linear perturbations, is to

perturb constraints (and so the Hamiltonian) up to the
quadratic order and to add counterterms (vanishing in the
classical limit) to prevent anomalies. The Poisson brackets
between all constraints are explicitly calculated. The
calculations are quite involved but the final result is
surprisingly elegant and simple:

fG½Λ�; G½Λ0�g ¼ 0; ð27Þ

fDtot½Na�; G½Λ�g ¼ 0; ð28Þ

fHtot½N�; G½Λ�g ¼ 0; ð29Þ

fDtot½Na
1�; Dtot½Na

2�g ¼ 0; ð30Þ

and

fHtot½N�; Dtot½Na�g ¼ −Htot½δNa
∂aδN�; ð31Þ

together with

fHtot½N1�; Htot½N2�g ¼
�
1

2

∂
2g2ðc; pÞ
∂c2

�
ð32Þ

×Dtot

�
N
p
∂
aðδN2 − δN1Þ

�
: ð33Þ

The factor 1
2

∂
2g2ðc;pÞ
∂c2 tends to 1 in the classical limit. When

this factor becomes negative, the signature of spacetime
changes to Euclidean, in agreement with what happens in the
μ̄ scheme near the bounce. This has far-reaching conse-
quences, from a specific phenomenology [9,11,12,36–46] to
unforeseen links with the Hartle-Hawking proposal [47,48].
A contradiction with data was noticed in [49] due to

the power increase in the UV part of the spectrum,
associated with the Euclidean phase. It is very important
to underline—as this point is often misunderstood—that
this result does not mean, in any way, that the deformed
algebra approach to LQC is discarded. Just the other way
around, it shows that this framework is suited at making
potentially testable predictions. It could very well be that
the deformed algebra captures the main features of loop
gravity and that LQC in itself is falsified. It could also be
that the observational window does not fall in the altered
part of the comoving spectrum (if inflation is brief). It could
finally be that the way perturbations are propagated in the
“timeless phase” is incorrect, which has nothing to do with
the deformed algebra framework itself [50]. It might even
be that initial conditions are not properly set [41].
The main point that has to be underlined at this stage is

that as long as the function g2ðc; pÞ changes concavity, a
signature change in unavoidable in this (conservative)
approach, as mentioned in [23]. As g2ðc; pÞ ∼ c2 near
the origin (to recover GR) and as the function is periodic,
the change of concavity automatically happens. This is a
strong conclusion. However, contrarily to what is written
in [23], this does not necessarily happen near the maximum
of the function. Otherwise stated, for generalized holonomy
corrections, the signature change is unavoidable but the
energy density at which it takes place does not need to be
close to the one of the bounce.

B. Perturbation equations

Quite a few results were derived both for the background
and the perturbations in [18]. However, the equation for
perturbations was not fully consistent. This is what we
correct here.
The perturbed Einstein equations for a flat Universe

filled with a scalar field in the polymerization framework
has already been derived in the deformed algebra
approach [23]. The Hamilton equation of motion for
background variables is written thanks to the elementary
Poisson brackets, as previously explained. Following the
standard procedure, the equations of motions for the
perturbed variables are decomposed in scalar, vector, and
tensor modes. The physical part is then extracted by
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considering terms invariant under both Gauss and diffeo-
morphism transformations. This results in

v00S=T − Gð2Þðc; pÞ∇2vS=T −
z00S=T
zS=T

vS=T ¼ 0; ð34Þ

where the prime denotes a derivation with respect to the
conformal time dη ¼ p−1=2dt and vS=T is the Mukhanov
variable for, respectively, scalar and tensor modes. We
have also defined Gð2Þðc; pÞ ≔ ∂cGð1Þðc; pÞ. This is in
agreement with what was previously found for the usual
correction [35].
By performing a Fourier decomposition on the k modes

and introducing the variables hk ¼ vk=z and g̃k ¼ffiffiffiffi
p

p _hk=Gð2Þðc; pÞ, it is possible to rewrite Eq. (34) as a
set of first-order coupled differential equations. For tensor
modes, one gets

_hk ¼
Gð2Þðc; pÞffiffiffiffi

p
p g̃k;

_̃gk ¼ −2Hg̃k − ak2hk; ð35Þ
whereas, for scalar modes, the equations are

_hk ¼
1ffiffiffiffi
p

p g̃k;

_̃gk ¼ −2Hg̃k − aKðk; t; c; pÞhk; ð36Þ

with Kðk; t; c; pÞ ¼ Gð2Þðc; pÞk2a−2 −H_zSz−1S − ̈zSz−1S .

C. Initial conditions for perturbations

Following the logic of causality (and remaining consistent
with the background evolution), the initial conditions for
perturbations are set in the prebounce contracting branch.
The perturbations are thereafter propagated through the
bounce and the Euclidean phase until they exit the horizon
during the inflationary stage. This approach is different from
the one depicted in [23] in which the authors set initial
conditions for the perturbations at the onset of inflation. In
this latter case, by construction, the perturbations never feel
the high-energy quantum regime and the Euclidean phase.
This is why our results are deeply different.
The usual canonical quantization procedure is applied

for each mode vk. In the Heisenberg picture,

v̂kðηÞ ¼ vkðηÞâk þ v�kðηÞâ†−k; ð37Þ

where âk, â
†
k are, respectively, the annihilation and creation

operators, satisfying the usual commutation relation. This
leads to the so-called Wronskian condition:

vk
dv�k
dη

− v�k
dvk
dη

¼ i; ð38Þ

implying restrictions for the mode coefficients. In particu-
lar, the Minkowski vacuum can be rewritten (in the case of
tensors modes) as

hkðtiÞ ¼ ð2kÞ−1=2a−1ðtiÞ;
g̃kðtiÞ ¼ −iðk=2Þ−1=2a−1ðtiÞ − ð2kÞ−1=2HðtiÞ: ð39Þ

Initial conditions for scalar modes are way harder to
derive, in particular due to the shape of the potential in the
contracting branch of (all) bouncing models [45]. One can
however rely on an appropriate WKB approximation [42].
In this approach, we constrain the mode coefficients from
the Wronskian equation and choose the coefficients to
describe a wave propagation in the positive time direction.
One is then able to derive the initial conditions of hk and gk
for scalar modes.

IV. NUMERICAL RESULTS AND DISCUSSIONS

For Gaussian perturbations, the full statistical informa-
tion is given by the 2-point correlation function. In a very
standard manner, the scalar and tensor primordial power
spectra are expressed as functions of the Mukhanov
variable and the associated potentials evaluated at the
horizon crossing:

PSðkÞ ¼
k3

2π2

���� vkzS
����2
����
k¼aH

ð40Þ

and

PTðkÞ ¼
4k3

π2

���� vkzT
����2
����
k¼aH

: ð41Þ

In order to study the polymerization effects on those
primordial power spectra, one needs to choose explicit
expressions for the gðk; pÞ function. There are not many
constraints on the shape of g: mainly the low-energy limit
and periodicity. Still, following [23], solving the anomalies
in the algebra of constraints imposes g to be of the
following form:

gðc; pÞ ¼ p1=2φðcp−1=2Þ; ð42Þ

φðcp−1=2Þ being an arbitrary function of ðcp−1=2Þ. For
the rest of this work we rewrite

gðc; pÞ ≔ μ̄−1fðxÞ; ð43Þ

where μ̄ is the parameter already introduced in Eq. (15).
With this notation, one can easily retrieve the usual LQC
prescription with fðxÞ ¼ sinðxÞ.
Several functions have been considered in [18], for

example

fsqrðxÞ ¼ sinðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A1xn1ðx − πÞn2

p
; ð44Þ
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with ni ≥ 1, i ∈ f1; 2g and A1 ≥ 0, together with

fcosðxÞ ¼ sinðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ C1Þ−1

XC1

n¼0

cos2nðxÞ
vuut ; ð45Þ

with C1 ≥ 1. One can easily show that such parametriza-
tions have the correct behavior in the low-energy limit.
To specifically study the effects of the change of

signature, we introduce a new function fζðxÞ which has
GR as a limit and allows to parametrically control the
Gð2Þ ≤ 0 region. It reads

fζðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ2 þ π2

ζ2 þ 4ðx − π=2Þ2

s
sinðxÞ; ð46Þ

where ζ is the free parameter associated with the signature
change. Figure 1 shows how the parameter changes the
shape of the function.

A. Tensor primordial power spectrum

For illustrative purposes, the numerical computation of
the time evolution of the tensor mode amplitude squared
jvkj2 is displayed in Fig. 2 for the fζ polymerization choice
with ζ ¼ 1. As for other plots, Planck units are used. The
contraction phase can easily be seen, together with the
bounce, close to t ¼ 2.275 × 107tP, and the inflationary
phase on the right side of the plot.
Tensor primordial power spectra for the polymerization

choices defined in the previous section are presented in
Figs. 3–5. Those spectra are evaluated at the end of the
slow-roll inflationary phase, when slow-roll hypotheses
break down. We ensure that all modes of interest, i.e., those
represented on the spectra, are outside the horizon at that

FIG. 1. Graphical representation of the fζ polymerization
choice for various values of ζ (ζ ¼ 5 in black with short dashes,
ζ ¼ 1 in gray with intermediate dashes, and ζ ¼ 0.1 in light gray
with big dashes). The usual sin2ðxÞ prescription is represented in
solid blue line.

FIG. 3. Tensor primordial power spectrum for the fsqr polym-
erization (black dots) with A1 ¼ 1 and ni ¼ 1 (i ∈ f1; 2g),
together with the usual sin2ðxÞ prescription (smaller blue dots).
A zoom on the oscillatory regime is also represented.

FIG. 2. Time dependence of the tensor mode amplitudes jvkj2,
in the fζ polymerization framework, with ζ ¼ 1, for the comobile
wave numbers k ¼ 10−6, k ¼ 10−2, and k ¼ 10 from top to
bottom.

FIG. 4. Tensor primordial power spectrum for the fcos polym-
erization (black dots) withC1 ¼ 2, together with the usual sin2ðxÞ
prescription (smaller blue dots). A zoom on the oscillatory regime
is also represented.
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moment. Whatever the polymerization choice, the spectra
exhibit three regimes:
(1) A scale-invariant behavior in the infrared limit

ðk ∈ � −∞; 10−4�Þ;
(2) An oscillatory behavior (associated with the bounce)

for ðk ∈ ½10−4; 2�Þ; and
(3) An exponential divergence in the ultraviolet limit

ðk ∈ ½2;þ∞½Þ.
The infrared (IR) regime corresponds to the largest

wavelengths. Those modes do exit the horizon during
the contracting phase (before slow-roll inflation takes
places) and remain frozen during the bounce and the
subsequent phase of inflation. However, during contraction,
the comoving Hubble radius (hence the tensor potential)
behaves similarly as it does during the slow-roll phase
aH ∼ 2=η and z00T=zT ∼ 2=η2. Moreover, the tensor potential
converges towards 0 when going backward in time in the
contracting branch and those modes can initially be
normalized using the usual Bunch-Davies vacuum. This
situation therefore corresponds to the classical solution of
inflation and the associated tensor power spectrum is scale
invariant. Those perturbations are not impacted by the
presence of the bounce. As will be discussed further in this
paper, the situation is more complicated for scalar pertur-
bations as the scalar potential does not vanish when going
backward in time in the contracting branch, leading to a
scale-dependent behavior of the scalar spectra in the IR.
This issue has been investigated in [45], but is however not
of high importance as, for the vast majority of the parameter
space, those modes cannot be observed in the cosmological
microwave background (CMB). A more exhaustive inter-
pretation of those results has been widely studied in
previous articles [12,39,43,44,49]. It basically means that
depending on the number of inflationary e-folds, the model
is either indiscernible from GR1 (brief inflation),

marginally compatible with GR, or fully different from
GR (long inflation). We insist once more that the UV
increase is not in itself inconsistent as the power spectrum
does anyway not describe the real world in the k → ∞
limit. Nonlinear local effects rule in this regime. In
addition, it should be pointed out that modes are propagated
in the Euclidean regime using their Fourier expansion,
which remains conceptually unclear.
The results displayed in the previously mentioned

figures are not difficult to interpret (within the assumptions
of the model). For tensor modes, the potential z00T=zT
depends only on the scale factor a and its derivatives.
In other words, the potential depends only upon back-
ground variables. Even with quite exotic generalized
holonomy corrections, those variables are mostly equiv-
alent to the usual loop quantum cosmology ones (see [18]).
Nevertheless, some deviations from the standard behavior
can be observed in the ultraviolet. This is due to the
maximum value of f: if it differs from unity, the bounce-
energy density is not exactly the same than the one of the
usual sin2ðxÞ bounce. This can be explicitly seen in Fig. 6
for the fζ polymerization choice.

B. Scalar primordial power spectrum

The numerical results for the scalar primordial power
spectra are given in Figs. 7–9 for the same polymerization
choices. Three regimes can still be identified:
(1) A power law (∝k3) in the infrared ðk ∈ � −∞; 10−3�Þ;
(2) Oscillations for ðk ∈ ½10−3; 2�Þ; and
(3) A divergence in the ultraviolet ðk ∈ ½2;þ∞½Þ.
Once again, the meanings of the main features have

already been studied (see, in particular, [42]).
Starting from the definition of zS ≔ a2 _a−1 _ϕ, one obtains

z00S
zS

¼ −a2ð∂2ϕVÞ þ 2_a2 − 2κf00 _ϕð∂ϕVÞa4 _a−2

−
7

2
a2κf00 _ϕ2 þ 3a2κ _ϕ4 þ 1

2
a4 _a−2κ2f002 _ϕ4: ð47Þ

FIG. 6. ζ dependence of the bounce-energy density for a
background described by the fζ polymerization choice.

FIG. 5. Tensor primordial power spectrum for the fζ polym-
erization with ζ ¼ 1 (black dots) and ζ ¼ 0.1 (gray dots),
together with the usual sin2ðxÞ prescription (blue dots). A zoom
on the oscillatory regime is also represented.

1We do not consider here the subtle normalization effects
associated with the preceding deflation.
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This complicated expression is what makes the case of
scalar perturbations specific. In addition to the previously
explained issues with initial conditions (that are not related
with this specific model but inherent to all bouncing
models), the fact that the polymerization choice also
appears in the z00S=zS term of the propagation equation is
what makes the study of scalar modes subtle. This is
however the most interesting part of the game as they are
directly related with CMB measurements.
To allow a direct comparison with data, one needs to

convert comobile values into physical ones. In this work, as
usual and useful when studying bouncing models, we
normalized the scale factor to unity at the bounce time.
The conversion therefore requires to know the number
of e-folds between the bounce and the decoupling. In
particular, it requires the knowledge of the number of
inflationary e-folds Ninf , which cannot be fully fixed by the
model but depends on contingent parameters (such as the
phase of the scalar field during the contraction phase).
Extensive discussions can be found in [49] and [51,52]. In
practice, the physical wave number kphys is related to the
comobile wave number k used in the different plots of this
article by

kphys ¼ k

�
eNinf

TRH

Tdec

�
−1
; ð48Þ

where TRH and Tdec are, respectively, the reheating and
decoupling temperatures.
The main conclusion that can be drawn from all the plots

is that the spectra remain remarkably close one to the other,
and similar to the “standard” deformed algebra sin2ðxÞ one.
In the scalar case, this was not an a priori expected result.
This shows that the precise shape of the holonomy
correction has a very weak influence on the details of
the observables, even if initial conditions are set in the
contracting branch, and the perturbations propagated
through the bounce and the Euclidean phase. This is an
important point for the reliability of the model.
This work focuses on the shape of the power spectrum as

this is precisely where effects of generalized holonomy
corrections are expected to play a significant role. General
considerations on the amplitude of the spectrum and on
the scalar-tensor ratio in this framework can be found
in [43,49].

V. FALSIFIABILITY

In principle, it could be that measurements allow to
constrain the inflaton potential. In this case, the duration of
inflation would somehow be predicted by the model (see,
in [18], the extension to generalized holonomy correction
of the results from [25]). Should the latter be high enough
so that the observational window falls in the UV part of the
spectrum, the model would be discarded. What conclusions
could then be drawn? Obviously, the situation is intricate as

FIG. 7. Scalar primordial power spectrum for the fsqr polym-
erization (black dots) with A1 ¼ 1 and ni ¼ 1 (i ∈ f1; 2g),
together with the usual sin2ðxÞ prescription (blue dots). A zoom
on the oscillatory regime is also represented.

FIG. 8. Scalar primordial power spectrum for the fcos polym-
erization (black dots) withC1 ¼ 2, together with the usual sin2ðxÞ
prescription (smaller blue dots). A zoom on the oscillatory regime
is also represented.

FIG. 9. Scalar primordial power spectrum for the fζ polym-
erization with ζ ¼ 1 (black dots) and ζ ¼ 0.1 (gray dots),
together with the usual sin2ðxÞ prescription (blue dots). A zoom
on the oscillatory regime is also represented.
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quite a few explicit and implicit hypotheses are always at
play in a cosmological scenario. At the heuristic level, this
would discard a specific approach to generalizing gravity
through a periodization of the Ashtekar connection (with
the suitable low-curvature limit). More deeply, the delicate
and important point would be to clarify the link between
this specific approach and LQG in general.
On the one hand, it is true that the deformed algebra

framework does not retain much of the complicated structure
of loop quantum gravity. It particular, it is obviously “less
quantum” than the dressed metric approach.
On the other hand, it could be argued that it actually

captures the core ingredients. Gauge fixing before quan-
tization is often harmless. However, the constraints con-
sidered here are not of the kind of those encountered in
Yang-Mills theories. When quantum corrected, the gauge
transformation they generate are not of the usual form.
Therefore, gauge fixing before quantization might lead to
choose the gauge according to transformations that need to
be modified; hence, the inconsistency.
In addition, in the case of gravity, the dynamics is part of

the gauge system [53,54]. Consistency therefore imposes
to quantize gauge transformations and the dynamics
simultaneously. It is not correct to fix the gauge in order
to derive the dynamics. The deformed algebra approach
solves both of those issues [31] and should therefore be
taken seriously.
The relation between this approach and the full theory is

still unclear. If it was, in the future, shown to be reliably
related to LQG, possible conflicts with data would rule out
the main theory. On the other hand, if this framework was
demonstrated to miss key features of the full theory, it
would discard only this specific way to describe the
cosmological dynamics.
It is fair to underline that this remains an open question at

this stage. It should however be stressed that the unforeseen
link between the deformed algebra approach and the
disappearance of time, as predicted by the Hartle-
Hawking proposal [55], is quite remarkable. Even more
impressive is the way it might cure the weaknesses of the
original proposal [47,48].
Finally, as previously reminded, it could also be that

modes are not correctly propagated in the Euclidean phase.
In this work, we make minimalist assumptions and work in
Fourier space to avoid obvious problems with the definition
of a wave in a timeless space. Another interesting view was
suggested in [50].

VI. CONCLUSION

In this work we have considered generalized holonomy
corrections, as the usual harmonic choice made in loop
quantum cosmology is far from being the only possible
one. It has even been recently argued that there is no
fundamental reason for focusing on this specific shape [17].
We have studied three different generic functions having

general relativity as their low-energy limit and satisfying
the basic loop gravity requirements. One of them is
specifically parametrized so that the position of the
Euclidean region, corresponding to a change of concavity,
can be easily varied and probed.
The generalized holonomy correction appears both at the

background level and in the propagation equation for
perturbations. In addition, for scalar modes, it also enters
the z00S=zS term. This leads to an intricate situation which
cannot be fully understood intuitively.
To clarify the situation, we have numerically calculated the

primordial power spectra in all cases, setting initial conditions
in the prebounce contracting branch. Since in this setting
(motivatedbygeneral arguments), cosmological perturbations
are propagated through the bounce and the Euclidean phase, a
bigger sensitivity of the spectra to the shape of the holonomy
correction than the one established in [23] could have been
expected. However, we have shown that whatever the
(reasonable) formof the function andvalues of the parameters,
the overall shape of the spectra remains unchanged with
respect to the usual deformed algebraLQCresults. This shows
that the known conclusions are robust.
Obviously, the actual content of the Universe in the

contraction phase is not known and this constitutes a
weakness for all bouncing models. As pointed out
in [56,57] this might raise some interesting paradoxes.
In this work, the only assumption required is that a scalar
field dominates over all the other possible contents at high
energy before the bounce. Although speculative, this
assumption makes sense as it both leads to the desired
phase on inflation and seems favored by grand unified
models of particle physics [58]. Obviously, a detailed
description on an “inverse-reheating” process is still miss-
ing. More important than the actual content is the question
of anisotropies, extensively discussed, e.g., in [14].
In the future, it would be interesting to generalize this

investigation to the dressed metric approach. In this case,
the way the new holonomy correction might alter the
propagation equation is, however, less clear and requires
further investigations.
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