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We study a holographic model of quantum chromodynamics, which can describe a color
superconductor and a dilute nucleon gas phase. The two phases are adjoined in the phase
diagram at a critical value of the chemical potential. In other words, a first-order transition from
the ordinary nucleon gas to the color superconductor is found by increasing the chemical potential.
This model is suitable to investigate the possibility of a cold compact star with a color superconducting
core. The equation of state of the star is given by the holographic model considered in this article,
and we find that it is impossible in the present model to find a hybrid star of nuclear matter and
the color superconductor core through the relation of mass and radius of the star by solving the
Tolman-Oppenheimer-Volkoff equations. Several other interesting implications are given by using the
equation of state.
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I. INTRODUCTION

The gravity/gauge duality [1–3] is very useful to inves-
tigate the quantum chromodynamics (QCD) in its strong
coupling regime. In particular, this approach is powerful to
investigate the thermodynamic system with the baryon
number chemical potential (μ) since this approach is free
from the sign problem. In this approach, the Gibbs free
energy has been examined, and then the phase diagram can
be found in the μ − T plane. We expect to find color
superconductivity (CSC) in QCD at large μ.
At first, a holographic way to investigate superconduct-

ing condensed matter has been opened by the authors of
[4,5], where a bottom-up model has been proposed. This
model has been extended to the theory with superconduc-
tivity of other kinds of charges [6–8], and also to the CSC in
QCD [9–11].
In the case of QCD, within the probe approximation for

the flavor matter system, we can find the phase diagram that

provides five regions in the space of the temperature and the
chemical potential.1 Two of them correspond to the CSC
phases, one is in the high temperature deconfinement phase
[7] and the other is in the low temperature confinement
phase [6,9,11]. Therefore, the CSC phase is realized in both
the confinement and deconfinement phases for sufficiently
large μ.
We notice that our bottom-up model is suggested by the

type IIA superstring theory at large Nc, the number of the
stacked D4-branes, in which the Yang-Mills gauge fields
live. As for the flavored quarks, which are introduced as Nf

D8-branes, they are supposed to be the probe for Nf ≪ Nc.
Then they are neglected in setting the ground state of QCD.
In other words, the backreaction from the dynamical quarks
are neglected to find the ground state of the theory. In our
model, the probe field, which is dual to the color nonsinglet
scalar operator of QCD, is set in the bulk. This point should
be noticed since such bulk fields dual to color nonsinglet
operators are not introduced usually. We dared to adopt
such a model to investigate the CSC phase further. Within
this probe approximation, on the other hand, we could find
the CSC phase at large chemical potential even in the
confinement phase.
In this modeling, at low temperature side, the CSC phase

is found for μ > μt [6,9]. Here, we notice that the region
μ < μt is furthermore separated into two, one corresponds
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1Here we concentrate on the situation where the flavor part can
be regarded as a probe under some appropriate conditions, for
example, Nf ≪ Nc.
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to the baryon matter phase for μc < μ < μt [12,13]
2 and the

other to vacuum phase for μ < μc. The vacuum can be
considered as an insulator with respect to the baryon charge
current since there is no charge density to form the normal
current. We notice that, in the case of the baryonic matter
phase, the baryonic charge density exists, however, there is
no color charge density, which is generated through a phase
transition in low temperature confinement phase.
How can we see such a CSC phase in QCD? One way is

to observe it through the cold compact star, which may be a
hybrid of nuclear matter and the CSC matter.
The structure of such a hybrid star is implied by the

phase diagram of QCD given by our model. It is
composed of a stiff nuclear outer shell and a soft CSC
core. As for the stiffness, we can estimate it by using the
equation of state (EOS) of each part. Our purpose is to
investigate such a hybrid star to see the CSC phase in
QCD. The possibility of such stars is examined by
solving the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions for the compact star. In solving TOV, we use the
EOS of the CSC states which is obtained by our holo-
graphic model. In this article, we concentrate our inves-
tigation on the low temperature phase of QCD. Some
discussions on the holographic modeling of the neutron
star can be found in Refs. [14–19].
In the next section, our holographic model is given, and

the EOSs of two low-temperature phases, the baryonic and
CSC states, are shown. In Sec. III, the TOV equations for
the compact star are solved and the stability of the hybrid
star is examined by investigating the relations of the mass
and the radius. In the last section, summary and discussions
are given.

II. A MODEL OF HOLOGRAPHIC QCD

Our holographic model is constructed in the (dþ 1)-
dimensional bulk as

L ¼ LGravity þ LV; ð2:1Þ

LGravity ¼ Rþ dðd − 1Þ
L2

: ð2:2Þ

The gravitational theory is supposed to be dual to the
d-dimensional strongly interacting Yang-Mills theory with
large Nc. The typical scale of the compactified space of the
original higher-dimensional gravitational theory is denoted
by L. The dual to the flavor part, the quark system of QCD,
is denoted by LV. This term is given by an appropriate form
for investigating the ground state of the dual QCD.
Hereafter we consider the case of d ¼ 5 and concentrate

on the background given at low temperature phase. It is

known as the anti–de Sitter (AdS) soliton solution [20,21]
and being written as

ds2 ¼ r2ðημνdxμdxν þ fðrÞdw2Þ þ dr2

r2fðrÞ ; ð2:3Þ

where

fðrÞ ¼ 1 −
�
r0
r

�
5

; r0 ¼
2

5Rw
; ð2:4Þ

and 2πRw denotes the compactified length of w. Due to this
compactification of w, we can say that we are considering
an effective 4D QCD.

A. Nuclear matter phase

We consider the baryon condensed phase. This phase has
been studied in Refs. [12,13] using the following form
of LV;

LV ¼ −
1

4
F2 −

1

4
trF2

SUðNfÞ; ð2:5Þ

Fμν ¼ ∂μAν − ∂νAμ; ð2:6Þ

where F2 ¼ FμνFμν and F2
SUðNfÞ denotes the two-form

SUðNfÞ squared gauge fields. In this case, we find an
instanton configuration which is identified with the baryon.
In Ref. [13], the EOS of the dilute gas of this instanton is
given. The way to obtain it is very briefly reviewed. In the
present case, we must add the Chern-Simon (CS) term to
(2.1) and modify the action such as

S ¼
Z

d6ξ
ffiffiffiffiffiffi
−g

p
Lþ SCS: ð2:7Þ

This makes theUð1Þ gauge field couple to the instanton that
has a baryon-number charge.3 Then, the free energy density
E of the instanton gas is given by using the solutions of the
equations of motion of the matter system as

Smatter ¼
Z

d6ξ
ffiffiffiffiffiffi
−g

p �
−
1

4
F2 −

1

4
trF2

SUð2Þ

�
þ SCS; ð2:8Þ

¼ −
Z

d5ξEðρ; μÞ; ð2:9Þ

where μ ¼ A0ð∞Þ, and ρ represents the instanton size,
which is determined by minimizing Eðρ; μÞ. This procedure
to find the minimum has been done numerically for each μ
[13]. Then, the value of the free energy is determined as a
function of μ as EðμÞ.2In Ref. [12], D4=D8 top-down model is used, but we here use

the instanton model given in Ref. [13], where a bottom-up model
is used in the same footing with the one of the CSC model. 3Details of the CS term are shown in Ref. [13].
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Using the above numerical results for EðμÞ, we find an
approximate formula as a function of μ:

p ¼ −E ¼ aμðμ − μcÞ; ð2:10Þ

where a ¼ 0.13 and μc ¼ 0.17 (see Fig. 1). Then, the
energy density is given at zero temperature, T ¼ 0, as

ϵ ¼ μ
∂p
∂μ

− p ¼ aμ2: ð2:11Þ

As a result, we arrive at the EOS of the nuclear matter given
as the instanton gas. It is written as

p ¼ ϵ −
ffiffiffiffiffi
aϵ

p
μc: ð2:12Þ

Using this EOS, the solutions of TOVequations are given in
Ref. [13]. An important point to have a large sized and
heavy star may be the stiffness of the constituent of the star.
The stiffness becomes large with increasing speed of
sound, Cs.
For the baryon phase, the speed of sound is obtained as

C2
s ¼

∂p
∂ϵ

¼ ∂p=∂μ
∂ϵ=∂μ

¼ 1 −
μc
2μ

: ð2:13Þ

This formula implies the constraint on C2
s , 1=2 < C2

s < 1
for μc < μ < ∞. This means that the baryonic matter is stiff
compared to the quark matter in the deconfinement phase,
where we will find C2

s ≈ 1=3 at large μ [22]. This point is
important to construct a compact star with a core of
different phases.

B. CSC phase

We consider the CSC phase of QCD, whose holographic
dual theory is given by the following action [4,5]:

S ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p
L ¼

Z
ddþ1x

ffiffiffiffiffiffi
−g

p ðLGravity þ LCSCÞ;

ð2:14Þ

where

LCSC ¼ −
1

4
F2 − jDμψ j2 −m2jψ j2; ð2:15Þ

with

Fμν ¼ ∂μAν − ∂νAμ; Dμψ ¼ ð∂μ − iqAμÞψ : ð2:16Þ

This is obtained by replacing LV in (2.5) with LCSC, that is,
the flavor part SUð2Þ in LV is replaced by the charged
scalar part. The charge of the scalar, which is supposed as a
diquark state, is set as q, which is taken as 2=Ncð¼ 2=3Þ
[7]. Then, the conformal dimension of the scalar is
consistent with m2 ¼ −4.
The bulk configuration is given by the AdS-soliton

solution obtained from LGravity, and the backreactions from
LCSC are neglected since this part is treated as a probe.
Then, the equations of motion of Aμ and ψ are obtained by
assuming that A ¼ Aμdxμ ¼ ϕðrÞdt and ψ ¼ ψðrÞ:

ψ 00 þ
�
6

r
þ f0

f

�
ψ 0 þ 1

r2f

�
q2ϕ2

r2
−m2

�
ψ ¼ 0; ð2:17Þ

ϕ00 þ
�
4

r
þ f0

f

�
ϕ0 −

2q2ψ2

r2f
ϕ ¼ 0: ð2:18Þ

Since fðrÞ vanishes at r ¼ r0, Eqs. (2.17) and (2.18) should
be solved under the following conditions to evade the
singularity:

ϕ0ðr0Þ ¼
2q2ψ2ðr0Þ

5r0
ϕðr0Þ;

ψ 0ðr0Þ ¼ −
1

5r0

�
q2ϕ2ðr0Þ

r20
−m2

�
ψðr0Þ: ð2:19Þ

Here, we notice that the boundary condition (2.19) allows
the solution of ϕðr0Þ ≠ 0. The details of the solutions of the
above equations can be seen in Ref. [11], so we omit
them here.

1. On-shell Euclidean action and EOS

We estimate the free energy, which can be obtained by
the on-shell action. The Euclidean action is separated to the
bulk and probe parts as

SE ¼ −
Z

ddþ1x
ffiffiffiffiffiffi
−g

p
L ¼ SEbulk þ SEprobe; ð2:20Þ

where

FIG. 1. The μ − p curves for the phases of CSC and baryon
phases.
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SEbulk ¼ −
Z

ddþ1x
ffiffiffiffiffiffi
−g

p
LGravity ¼ −r50

4π

5r0

1

T
V3; ð2:21Þ

SEprobe ¼ −
Z

ddþ1x
ffiffiffiffiffiffi
−g

p
LCSC; ð2:22Þ

with V3 ¼
R
dd−3x.

The probe action SEprobe is separated into two parts:

SEprobe
V5

¼ ŜEψ þ ŜEϕ; ð2:23Þ

where V5ð¼
R
d5ξÞ denotes the volume of the boundary

space-time. Then their on-shell parts are estimated by using
the solutions, ψ and ϕ, of the Eqs. (2.17) and (2.18). As for
the first term, the ψ-dependent part, we see

ŜEψ ¼ −
Z

dr
ffiffiffiffiffiffi
−g

p ð−jDμψ j2 −m2jψ j2Þ; ð2:24Þ

¼
Z

dr
ffiffiffiffiffiffi
−g

p ðgrrψ 02 þ q2A2
0ψ

2g00 þm2ψ2Þ; ð2:25Þ

¼
Z
dr

ffiffiffiffiffiffi
−g

p �
−

1ffiffiffiffiffiffi−gp ∂rð
ffiffiffiffiffiffi
−g

p ðgrrψ 0Þþq2A2
0ψ

2g00þm2ψ

�
ψ

þ½ ffiffiffiffiffiffi
−g

p
grrψ 0ψ �∞r0 : ð2:26Þ

The integrand part in Eq. (2.26) vanishes due to the
equation of motion (2.17). By the boundary term,
Eq. (2.26) is then estimated as

ŜEψ ¼
h ffiffiffiffiffiffi

−g
p

grrψ 0ψ
i
∞

r0
¼

h
r6fðrÞψψ 0

i
∞

r0
¼ 0; ð2:27Þ

where we used

fðr0Þ ¼ 0; ψðrÞjr→∞ ¼ C
r4

þ � � � : ð2:28Þ

For the second term on the rhs of Eq. (2.23), we see

ŜEϕ ¼ −
Z

dr
ffiffiffiffiffiffi
−g

p �
−
1

4
F2

�
; ð2:29Þ

¼ −
Z

dr
ffiffiffiffiffiffi
−g

p �
−
1

2
g00grrϕ02

�
; ð2:30Þ

¼
Z

∞

r0

drðq2r2ψ2A2
0Þ −

3

2
d̄μ; ð2:31Þ

where we assumed

A0ðrÞjr→∞ ¼ μ −
d̄
r3

þ � � � : ð2:32Þ

Then, the pressure of the diquark superconducting gas is
given as

ps ¼
3

2
d̄μ −

Z
∞

r0

drðq2r2ψ2A2
0Þ: ð2:33Þ

We can see that the pressure given above is positive by
rewriting it in a simple form as

ps ¼
Z

∞

r0

dr

�
1

2
r4fϕ02

�
: ð2:34Þ

Here ps represents the pressure of the matter part. On the
other hand, that of the gravity part is omitted since the
gravitational background is common to the two different
matter systems considered here due to the probe approxi-
mation. Then the phase transition can be examined by
comparing the free energies of the different matter parts
coupled to the common gravitational background.

2. Numerical result and phase transition

The numerical estimations for ps ¼ pðμÞ at several
points of μ are shown in Table I. The resultant pðμÞ is
plotted in Fig. 1 and compared with pðμÞ obtained for
the baryon phase. We find the phase transition point
between these two phases. The critical point is shown
by the dot in Fig. 1. For the baryon phase, the curve
represents p ¼ 0.13μðμ − 0.17Þ as given by Eq. (2.10). For
the CSC phase, the curve shows a smoothly connected one
of the points given in Table I. As for the numerical values of
μ and p appeared in the above Table 1 and Figs. 1, 2, and 3
given below, they can be rewritten by dimensionful values

as pϵ0 and μϵ1=40 , where ϵ0 ¼ 8.52 × 104 MeV=fm3 and

ϵ1=40 ¼ 0.899 GeV. The parameter ϵ0 is introduced to solve
the TOV equations [13]. Here we do it when we need the
dimensionful values.
When the pðμÞ in the CSC phase is replaced by an

analytical function of μ, then we can proceed with the

TABLE I. The pressure p ¼ pðμÞ versus μ for the low temper-
ature CSC phase. The numerical estimations are given for r0 ¼ 1.

μ p

4.678 0.03465
4.95202 0.4825
5.36667 2.2515
6.07538 8.90935
6.82273 22.3817
7.63461 46.8952
8.55023 92.0457
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analysis more smoothly. Here, we assume that such a pðμÞ
is written in a power series form,

pnðμÞ ¼
Xn
i¼0

aiμi: ð2:35Þ

The value of n is related to the space-time dimension
of the theory on the boundary. Then, n ¼ 4 is expected
here, this is seen from the analysis given in the type IIB
model [22], where an analytic form of free energy is
obtained at T ¼ 0. In our present model, the solution for
n ¼ 4 is obtained as

p4 ¼ a0 þ a1μþ a2μ2 þ a3μ3 þ a4μ4; ð2:36Þ

where

a0 ¼ 48.2717; a1 ¼ −24.7298; a2 ¼ 5.18881;

a3 ¼ −0.754903; a4 ¼ 0.0650574:

Then, we can show by using this pðμÞ for n ¼ 4 that the
above transition is first-order since the energy density ϵ has
a gap at the transition point, ðμ; pÞ ¼ ð5.60593; 3.96155Þ
as shown in Fig. 2. The curves for ϵ are obtained by using
the formula

ϵ ¼ μ
∂p
∂μ

− p: ð2:37Þ

The dotted line shows the discrete energy gap between
the values on the two phases at the critical μ, μt ¼ 5.60593.
This implies the first-order phase transition between the (c)
and (a-B) phases. We give a comment here on the energy
density of the baryon matter near this critical point. It is
given as ϵð¼0.13 × 5.605932 × ϵ0Þ ¼ 348 GeV=fm3 at
μ ¼ μt. This implies that the density of the baryon (or
the instanton) is very large and we should modify our
model of dilute gas approximation in this region. One way
to avoid this difficulty is to reset the value of ϵ0 to a smaller
value. In this case, however, the size of the neutron star R is
extended to a larger value. Further discussion on this point
is postponed to a future problem.
We notice that pðμÞ for n ¼ 5 can be considered as

another possible pressure form since the present holo-
graphic model has one extra compactified dimension on the
boundary. By giving an appropriate form of p5, it will be
possible to study the availability of our model by compar-
ing various quantities obtained in terms of p5 with the ones
given by p4. However, this investigation is remained as the
future work.

C. Phase diagram

In our model, the phase diagram is given in Fig. 3 in the
μ − T plane. The horizontal line, T ¼ 5

4π ¼ Tc, shows the
critical line between the confinement ðT < TcÞ and
deconfinement ðT > TcÞ phases. The critical point, Tc,
is obtained by using Eq. (2.2). As explained above, the
other transition lines are given by adding LV as a probe in
the two-form of background configurations given by
LGravity. Then we find two CSC phases (c) and (d).
While it is an interesting point how they are different
from each other, we here concentrate on the low temper-
ature side (T < Tc) of baryon condensed phase (a-B) and
the CSC phase (c).
This phase diagram suggests us a cold compact star with

the core of CSC matter. Noticing that the pressure of the
matter monotonically increases with the chemical potential
μ. Then we have a natural composition of the star, which is
made of nuclear matter as outer shell and a CSC core inside.
In this construction, the pressure decreases from the
maximum center value to the vanishing surface value.

E Gap

CSC

Baryon

0 2 4 6 8 10
0

20

40

60

80

FIG. 2. The μ − ϵ curves for the phases of CSC and baryon
phases.

FIG. 3. Schematic figure of the phase diagram for AdS-
Schwarzschild (T > Tc ≃ 0.4) and AdS soliton confinement
background (T < Tc), with q ¼ 2=3, m2 ¼ −4. Using present
mass unit ϵ1=40 ¼ 0.899 GeV [13], we have Tc ¼ 0.36 GeV,
μc ¼ 0.152 GeV, and μt ¼ 5.04 GeV.
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In the next section, we investigate the possibility of this
type of cold star.

III. COMPACT START WITH CSC CORE

A. Phase transition and TOV solutions

In case that the pressure is given as a function of the
chemical potential, the TOV equation can be rewritten as
follows4:

dμ
dr

¼ −μ
mþ 4πr3p
rðr − 2mÞ ; ð3:1Þ

dm
dr

¼ 4πr2ϵ: ð3:2Þ

Inside a star of our model, the two phases contact each
other through a spherical boundary at r ¼ rb, where the
pressure is continuous. However, the chemical potential
keeps its equilibrium by satisfying that μB ¼ Ncμq at the
boundary. Therefore, we should interpret μ as the reduced
chemical potential: i.e., μ ¼ Ncμq for r ≤ rb and μ ¼ μB
for r ≥ rb. Even a case of two-phase star, TOVequation can
be solved with a set of initial conditions given at a certain
point in the core. One of them is μ1 ¼ μðr1Þ, which is the
initial value of the chemical potential at a point very near
the center, r ¼ r1; another is ϵ1 ¼ ϵðμ1Þ, which is the
energy density within the radius r1 and is well approxi-
mated by mðr1Þ ¼ ð4πr31=3Þϵ1. This means that the initial
value μ1 ¼ μðr1Þ governs both parts of the star in the
following way: First, numerical integration for the core part
is terminated where μ reaches the critical value μt, and the
core radius rb is immediately determined. Second, for the

outer shell, the set of initial values is given at r ¼ rb (the
boundary between the two phases), and it consists of μt and
ϵðμtÞ. This time, the numerical integration is terminated
where p vanishes, and finally the radius of the star (R) is
determined.
There are two types of M − R relations, for the core

part and the whole star. In each relation, the physical
dimensions are recovered by introducing a typical length r0
and by the transformation ðr;m;p;ϵÞ→ðr0r;m0m;p0p;ϵ0ϵÞ
with

m0 ¼
r0c2

G
; p0 ¼ ϵ0 ¼

c4

r20G
: ð3:3Þ

For r0 ¼ 3.00 km, it is calculated as m0 ¼ 2.03M⊙ and
p0 ¼ ϵ0 ¼ 1.34 × 1037 J=m3. Assuming that stable stars
with a CSC core exist, we show both relations with Figs. 4
and 5. In Fig. 4, we show the behavior of the CSC core as a
function of the core mass and its radius. In contrast, Fig. 5
represents the M − R relation for the whole star, but we
only plot the solution of TOV equation on the figure
restricting the cases with the CSC core. If the CSC core
vanishes inside the compact star, the result must be that
with single phase.
We also give an example of mass accumulation in a two-

phase star, by Fig. 6. As seen from the figures, even if a
two-phase star exists, the scale of the core is very small
compared to that of the outer shell, and the total mass of the
star is contributed almost by the outer shell. However,
unlike a single-phase star, the chemical potential in the
outer shell (nuclear part) is restricted below μt, which might
strongly control the upper limit of M. Beyond the upper-
right end point of Fig 5, the M − R curve extends to a
part of a single-phase curve as calculated in Ref. [13].
Conversely, the M − R curve of the single-phase star
changes the branch at μ ¼ μt to that of two-phase star.

FIG. 4. TheM − R relation for the core part. The curve covers the region of μ ≥ μt, and starts from the lower-left end point. The marks
(A to D) correspond to those in Fig. 5.

4The meanings of m and r0 below are different from those in
the other sections.
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B. Stability of the hybrid star

The next point to be examined is the stability of the two-
phase star, the hybrid of nuclear matter and CSC matter.
The stability of such a star as the solutions of the TOV
equations can be read from theM − R relation shown in the
Fig. 5. As for the stability of these solutions, it is possible to
check the following points of the M − R relation. The first
point is that the solution has an unstable mode when it is in
a region of the curve of M − R relation where the state of
the star satisfies the condition [23]

∂M
∂ϵc

< 0; ð3:4Þ

where ϵc denotes the central energy density, ϵc ¼ ϵjr¼0. We
notice here that ϵ increases monotonically with μ.
Second, we check the M − R curve at the extremum

points by the Bardeen, Thorne and Meltzer criteria [24,25],

which are given by the following statements: (i) At each
extremum where theM − R curve rotates counterclockwise
with increasing ϵc, one unstable mode appears. (ii) At each
extremum where the M − R curve rotates clockwise with
increasing ϵc, one unstable mode becomes stable.
In Fig. 5, the point of the solution moves on the curve

from the upper end point to the point B and C with
increasing ϵc. Then the solutions up to D0 on the upper
curve are unstable. In the next, other unstable modes appear
for the solutions across the extrema B0 and C0. Any solution
on the curve of Fig. 5 is therefore unstable. Then, we cannot
find any stable solution of a star with CSC core. This result
implies that it seems to be very difficult to observe the CSC
state in the star.
In order to understand the situation of the hybrid star and

the star of pure nuclear matter, we combine the M − R
relation of the hybrid star shown in the Fig. 5 to the one of

FIG. 5. The M − R relation for the whole star. The upper-right end point corresponds to the minimum chemical potential (μ ¼ μt) at
the center of the core. The curve does not extend from the end point, in the present two-phase model.

FIG. 6. An example of the mass inside r, in case of
μðr ¼ 0Þ ¼ 55.56. The phase changes at r ¼ 0.055 km, the core
mass is 0.733 × 10−2M⊙, the radius of star is R ¼ 8.35 km, and
the total mass of star is M ¼ 1.69M⊙.

FIG. 7. The M − R relation for the nuclear matter star. Notice
that the small center μ part of the curve has been given
in Ref. [13].
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the nuclear star. The latter is given in the Fig. 7, where the
value of the central chemical potential, μðr ¼ 0Þ, increases
from the point T1 to Tr along the curve. In the present
model, the curve ends at Tr since the CSC core will be
generated at this point. In other words, the point Tr denotes
the transition point to the hybrid star where the center
chemical potential arrives at the critical point, the upper end
point, μðr ¼ 0Þ ¼ μt, of the hybrid star curve. In the case of
the nuclear star, the stable solutions exist in the region from
T1 to T2, and the one between T2 and Tr are unstable as we
can understand from the rule to find the unstable radial
fluctuation mode mentioned above. Then the two curves in
Figs. 5 and 7 are connected at Tr as shown in the Fig. 8.
The reason why it is difficult to find a stable CSC core is

that the outer nuclear shell covers too large chemical
potential part up to μt ∼ 5.6. The stable solution for pure
nuclear matter is however obtained in the region μ < 0.4
[13]. Then to find a stable star with the CSC core we must
consider a model that gives a small value of μt. The
resolution of this point is an open problem here.

IV. SUMMARY AND DISCUSSIONS

Based on a bottom-up holographic model of QCD, a
hybrid star of the nuclear matter and the CSC matter is
studied. The analysis is executed by a probe approximation
in the low temperature confinement phase. Then the back
reactions from the flavor matter sector to the color gauge
part are neglected. In this case, when μ increases from zero,
we find a baryon condensed phase when μ reaches the
critical point μc ∼ 0.17. Then, at the second critical point,
μt ∼ 5.6, this baryonic matter changes to the CSC phase via
the first-order phase transition. The EOSs of these con-
nected two phases are given holographically, and we find
that, in both phases, the pressure increases monotonically
with μ. Then it seems to be natural to suppose a star that is
composed of a CSC core and an outer nuclear shell.
In order to see the possibility of such a star, the relations

of the mass and the radius of this hybrid star is studied.

The mass-radius curve is obtained by solving the TOV
equations. The resulting curve provides us with information
on the existence of unstable modes of radial fluctuations for
the solutions of the TOVequation. However, we cannot find
any stable hybrid solution on the curve studied here. This
implies that it would be impossible to find the CSC matter
in the compact cold star.
We give here several comments on a trial to find the CSC

core in a cold star from a slightly different viewpoint as
follows:

(I) In the present study, the TOV equations are solved
with two phases. The existence of the CSC core in
the figure of theM − R relation is restricted to a very
tiny region, and thus there is no significant effect
even if we consider the crossover scenario; see the
Appendix for some discussions on the crossover
scenario and model properties.

(II) In this paper, we neglected the interaction effects
among baryons. Once we take into account such
effects, the baryons start to overlap more easily and
the transition to (color-superconducting) quark mat-
ter might occur at smaller chemical potential. Then
the effect of the CSC core for theM − R curve could
be seen. This point remains an open problem at
present.

(III) We should consider other types of holographic
models which give smaller μt. One possible way
is to use the model which can represent deconfined
state as a background. Since we only consider the
confined state in the present study as a first attempt
to investigate the two-phase compact star, the CSC
core tends to shrink. Actually, the Reissner-Nord-
strom (RN) charged black hole solution can provide
a smaller μt [8,11,26] and thus this possibility may
be feasible. We will discuss this elsewhere.

(IV) Finally, related to the RN background for the bulk
configuration, we comment on the backreaction. If
the backreaction is taken into account, as is shown
in Ref. [12], then the AdS Schwarzschild back-
ground, which corresponds to the deconfinement
phase, is replaced to the RN background. As the
result, the critical chemical potential in the con-
finement-deconfinement phase transition becomes
smaller and we expect the earlier onset of the quark
matter inside the neutron star. In this case, how-
ever, quark matter is not color-superconducting,
rather exists as the deconfined free one. One way to
keep CSC phase, in this case, may be to take
into account of the higher power terms of the
curvatures [26].
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FIG. 8. The dotted (solid) curve represents M − R relation for
the nuclear matter star (hybrid star). The two M − R curves are
connected at the point Tr.
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APPENDIX: SMOOTH TRANSITION SCENARIO

In the main text, the TOV equations with two phases
were studied to obtain the mass-radius relation of compact
star. As seen from Fig. 2, it is natural to consider the first-
order phase transition between nuclear matter and color
superconducting quark matter phases. On the other hand,
since our study here is limited to the probe approximation,
we cannot precisely tell about the genuine phase transition
patterns. Therefore, it is possible to consider the case where
those two phases are smoothly connected. Such a case is
studied here and we call the case the smooth phase
transition scenario. In this section, we discuss the crossover
scenario and its effects on the speed of sounds and the trace
anomaly; for example, see Ref. [27] and references therein
for the details of the crossover scenario.

1. Speed of sound and trace anomaly

In the smooth phase-transition scenario, let us define the
pressure as

p ¼ ð1 − fÞpNM þ fpCSC; ðA1Þ

where pNM (pCSC) is the pressure for the nuclear matter (the
quark matter with color superconducting), and f is the
interpolation function given as follows:

f ¼ 1

2

�
1þ tanh

�
μ − μ�
Ns

��
: ðA2Þ

Here μ� shows the cross-point of the two curves for the
pressures, pNM and pCSC.Ns is a constant that controls how
to interpolate two phases. The limit Ns → 0 corresponds to
the step function, i.e.,

1

2

�
1þ tanh

�
μ − μ�
Ns

��
→ Θðμ − μ�Þ; ðA3Þ

where ΘðxÞ ¼ 0 for x < 0 and ΘðxÞ ¼ 1 for x > 0. If we
replace the function by the step function, the model is
corresponding to the bottom-up model used in the
main text.
Using Eq. (A1), one can evaluate the speed of sound C2

s
as the function of chemical potential, which is shown
in Fig. 9. Since our nuclear matter EOS is relatively stiff,
the value of C2

s in the nuclear matter phase quickly
approaches 1. Then in the crossover region where nuclear
matter is smoothly connected to color-superconducting
quark matter, C2

s drops down. Finally, in the color
superconducting phase, the value of C2

s is asymptotically
close to 1=4. We can also compute the trace anomaly
defined as

Δ ¼ 1

3
−
p
ϵ
; ðA4Þ

which measures the conformality of the system. This
is the convenient measure of the trace anomaly used
in Refs. [28–30]. Figure 10 demonstrates the trace
anomaly in the smooth phase transition scenario, where
Δ ranges from −2=3 to 1=3. The asymptotic value of Δ is
1=12, which deviates from zero. Note here that the
authors of [30] have discussed both the speed of sound
and the trace anomaly using the EOSs extracted from
the neutron star observations. It is interesting to compare
their results with those obtained here; see the next
subsection.

2. Properties of our model

In the present study, we employ the ð3þ 1þ 1Þ-
dimensional bottom-up holographic model as a QCD
effective model, and thus there should be a valid region
where we can treat it as the (3þ 1)-dimensional effective
model; the extra dimension should not affect the thermo-
dynamics in the region.
One of the promising ways to estimate the validity region

of the effective model is to use the M − R relation because
we have several observation data of neutron stars where

FIG. 9. Speed of sound in the smooth phase transition scenario.

FIG. 10. Trace anomaly in the smooth phase transition
scenario.
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EOS plays a crucial role. Actually, we already have the
following important restrictions:

(i) From Shapiro delay measurement, two solar mass
(2M⊙) neutron star is observed and thus the M − R
curve must reach the value. See Refs. [31,32].

(ii) From GW170817 via the gravitational wave obser-
vation, we have the radius constraint 9.0 km < R <
13.6 km for M ¼ 1.4M⊙. See Refs. [33–35].

(iii) From the analysis of GW170817 with no detection
of a relativistic optical counterpart, the upper bound
of M for cold spherical neutron stars is estimated as
the range 2.15M⊙–2.26M⊙. See Ref. [36].

Unfortunately, such data are not sufficient to strictly restrict
EOS, and thus we still have several things unclear.
For the evaluation of the validity of our holographic

model, the measure of the trace anomaly (Δ) and the sound
of speed (C2

s) are additional interesting quantities. The
quantity Δ, which is defined in Eq. (A4), is somewhat
related to the absolute value of p and ϵ, and C2

s , which is
defined in Eq. (2.13), relates to the μ derivative of p and ϵ.
These indicate that we may check the validity region of our
holographic model as an QCD effective model from the
behavior of Δ and C2

s , in principle, because both are
directly affected by the behavior of EOS as a function

of μ. Since we know the tendency of the asymptotic limit of
Δ, such asΔ → 0 in QCD, we can use it as an indicator that
our model can treat as the (3þ 1)-dimensional effective
model; for example, see Ref. [30] and references therein for
discussions of Δ in QCD.
The measure of the trace anomaly Δ tends to 0 in the

large μ limit in the four-dimensional model, but deviates
from 0 in a model with an extra dimension because the
extra dimension can contribute to the measure in the
region. This may indicate the acceptable energy regime of
the extradimensional model as the four-dimensional
model. Figure 10 shows the μ dependence of Δ of our
holographic model. We can see that Δ approaches 1=12
when μ becomes large, and thus such a large μ region is
not reliable. In the intermediate μ region, Δ becomes
negative, and after it shows the peak structure. This
behavior has been discussed as a plausible scenario in
Refs. [29,30]. Of course, the intermediate μ region is
difficult to clarify at present because we do not have an
exact result of QCD.
At present, we can say that our holographic model is not

inconsistent with several restrictions from the viewpoint of
the M − R relation, the trace anomaly, and the speed of
sound. A more detailed check will be discussed elsewhere.
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