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We refine previous investigations on de Sitter space and extremal surfaces anchored at the future
boundary Iþ. Since such surfaces do not return, they require extra data or boundary conditions in the past
(interior). In entirely Lorentzian de Sitter spacetime, this leads to future-past timelike surfaces stretching
between I�. Apart from an overall −i factor (relative to spacelike surfaces in AdS) their areas are real and
positive. With a no-boundary type boundary condition, the top half of these timelike surfaces joins with a
spacelike part on the hemisphere giving a complex-valued area. Motivated by these, we describe two
aspects of “time-entanglement” in simple toy models in quantum mechanics. One is based on a future-past
thermofield double type state entangling timelike separated states, which leads to entirely positive
structures. Another is based on the time evolution operator and reduced transition amplitudes, which leads
to complex-valued entropy.
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I. INTRODUCTION AND SUMMARY

It is of great interest to understand holography for de
Sitter space (see the review [1]). In de Sitter (and cosmol-
ogy more generally) perhaps the natural asymptotics are in
the far future or the far past: this thinking leads to dS=CFT
[2–4] (and [5] in the higher spin context), which associates
a hypothetical nonunitary dual Euclidean CFT at the future
boundary Iþ, with several dramatic differences from AdS
[6–8]. A particularly fascinating question is whether de
Sitter entropy [9] can be understood as some sort of
entanglement entropy. It is then natural to ask if the
extensive investigations of holographic entanglement in
AdS [10–12] can be generalized to de Sitter space.
One possible generalization of the Ryu-Takayanagi (RT)

formulation to de Sitter space is to consider the bulk analog
of setting up entanglement entropy in the dual Euclidean
CFT on the future boundary [13]. We restrict to some
boundary Euclidean time slice as a crutch, define sub-
regions on these slices, and look for extremal surfaces
anchored at Iþ dipping into the holographic (time) direc-
tion. Analyzing this extremization interestingly shows that
surfaces anchored at Iþ do not return to Iþ, i.e., there is no
Iþ → Iþ turning point, so there are no spacelike surfaces
connecting points on Iþ. There exist analytic continuations
of RT surfaces in AdS which lead to complex extremal

surfaces [13–16]. In [17,18], entirely timelike future-past
extremal surfaces were studied, stretching from Iþ to I−.
In this paper, we develop this further, stitching together

an overall perspective which hopefully adds value to the
understanding of these studies. The absence of Iþ → Iþ
returns for surfaces implies that surfaces starting at Iþ
continue inward, to the past: this suggests that they require
extra data or boundary conditions in the interior, or far past
to be well defined. One obvious possibility for an entirely
Lorentzian de Sitter space (Sec. II A) is that the surfaces
then end at the past boundary I−. Analyzing this in detail
leads to future-past surfaces stated above [17,18]. These are
timelike extremal surfaces stretching between subregions at
Iþ and equivalent ones at I−: they are akin to rotated
analogs of the Hartman-Maldacena surfaces [19] in the
eternal AdS black hole. Being entirely timelike, their area
has an overall −i factor, relative to the familiar spacelike
extremal surfaces in AdS (this overall −i was discarded in
[17,18]; see below). Since we obtain codim-2 surfaces
(when they exist), their area scales as de Sitter entropy.
Another possibility for the interior boundary conditions

arises from modifying de Sitter from being entirely
Lorentzian in accord with the Hartle-Hawking no-boundary
prescription, i.e., to cut dS in the middle and remove the
bottom half, replacing it with a hemisphere (Sec. II B).
Now we join the top timelike part of the extremal surfaces
above with regularity at the midslice to a spatial extremal
surface that goes around the hemisphere (thus turning
around): see [20,21] for dS3. This spacelike part has real
area so that the total area is complex valued. The top part of
the surface (in the Lorentzian de Sitter) is the same as in
the entirely timelike surfaces above: this reflects consis-
tency of the future-past surfaces with Hartle-Hawking
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boundary conditions. The finite real part of the area of the
no-boundary surfaces arises from the hemisphere and is
precisely half de Sitter entropy for any dimension when the
subregion at Iþ becomes maximal. In Sec. IV, we give some
comments on these future-past and no-boundary surface
areas in terms of time contours, and argue that they can be
regarded as space-time rotations from timelike subregions
in AdS-like spaces.
Imaginary values also arise in studies of quantum

extremal surfaces in de Sitter with regard to the future
boundary [22,23], stemming from timelike separations
(sec. II C). Complex-valued entanglement entropy was also
found quite explicitly in studies of ghostlike theories,
including simple toy quantum-mechanical models of “ghost
spins,” e.g. [24,25].
For entirelyLorentziandS, the entirely timelike future-past

surfaces are akin to entirely timelike geodesics for ordinary
particles moving in time. Removing the overall −i in their
pure imaginary areas (relative to real spacelike surface areas)
is akin to calling the length of timelike geodesics as “time”
rather than “−i · space.”Overall this suggests that the areas of
these dS extremal surfaces with timelike components encode
some new object, “time entanglement,” distinct from usual
spatial entanglement. In Sec. III, we describe two aspects of
this in ordinary quantum mechanics, which incorporate
this entry of late and early time boundary conditions. One
is based on a future-past thermofield-double state [17] (see
also [26,27]) which leads to entirely positive structures
despite the timelike separation. The other involves the
time-evolution operator and “reduced transition amplitudes,”
giving complex-valued entropy. As we were preparing this,
the work [28] appeared with partial overlap.

II. dS EXTREMAL SURFACES FROM I + ,
BOUNDARY CONDITIONS

The simplest place to see the absence of Iþ → Iþ turning
points [13] is in the Poincaré slicingwith planar foliations, so

ds2dþ1 ¼
R2
dS

τ2
ð−dτ2 þ dy2i Þ ¼

R2
dS

τ2
ð−dτ2 þ dw2 þ dx2i Þ:

ð1Þ

Here we have singled out w ∈ yi as boundary Euclidean
time, without loss of generality. Taking the w ¼ const slice,
we consider at Iþ a strip-shaped subregion (the natural
subregions consistent with planar symmetries), with width
along x ∈ xi and extremal surfaces anchored from one
boundary interface of the strip. This leads to the area
functional and extremization,

SdS ¼ −i
Rd−1
dS Vd−2

4Gdþ1

Z
dτ
τd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð∂τxÞ2

q
→ ð∂τxÞ2

¼ B2τ2d−2

1þ B2τ2d−2
; ð2Þ

where B2 is some constant. The fact that there is a minus
sign relative to the extremization equation in AdS is the
reflection of the absence of turning points back to Iþ. We see
that ð∂τxÞ2 ≪ 1 near the boundary τ ∼ 0 and remains
bounded with ð∂τxÞ2 < 1 throughout, for any real B2 > 0.
(The surfaces with B2 < 0 are equivalent to analytic con-
tinuations from AdS RT surfaces [13–16].) We will return to
this later.
The absence of Iþ → Iþ return implies that the surfaces

march on inward: this suggests they end at I− if we focus on
entirely Lorentzian de Sitter space. These lead to future-
past extremal surfaces, timelike codim-2 surfaces stretching
from Iþ to I−. We describe this now, first in part reviewing
the studies in [17,18]. Alternatively we could modify
Lorentzian dS in accord with the Hartle-Hawking no-
boundary prescription replacing the bottom half of dS
by a hemisphere, and then impose a no-boundary type
boundary condition on extremal surfaces. We will discuss
these now.

A. Lorentzian dS

1. Static coordinates

These coordinates exhibit static patches exhibiting time
translation symmetry, but allowing analytic extensions to
the entire de Sitter space. We have

ds2 ¼ −
�
1 −

r2

l2

�
dt2 þ dr2

1 − r2

l2
þ r2dΩ2

d−1: ð3Þ

In the Northern/Southern diamond regions N=S, the static
patches, t is time enjoying translation symmetry. Event
horizons for observers in N=S are at r ¼ l: the area of these
cosmological horizons is de Sitter entropy. Towards study-
ing the future boundary, we use τ ¼ l

r, w ¼ t
l, to recast as

ds2 ¼ l2

τ2
ð− dτ2

1−τ2 þ ð1 − τ2Þdw2 þ dΩ2
d−1Þ: now τ is bulk

time, with τ ¼ 0 the future/past boundary and the future/
past universes described by 0 ≤ τ < 1. In this case the
boundary at Iþ is R × Sd−1. We can take the boundary
Euclidean time slice as any Sd−1 equatorial plane or as the
w ¼ const slice.
Taking the boundary Euclidean time slice as some Sd−1

equatorial plane, we define a subregion as Δw × Sd−2 ∈ Iþ
and an equivalent one at I−. Then we obtain the area

functional S ¼ −i l
d−1VSd−2

4Gdþ1

R
dτ
τd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
f − fðw0Þ2

q
and extrem-

ization (with B2 > 0 some constant)

ð1− τ2Þ2ðw0Þ2 ¼ B2τ2d−2

1− τ2þB2τ2d−2
;

S¼−i
2ld−1VSd−2

4Gdþ1

Z
τ�

ϵ

dτ
τd−1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− τ2þB2τ2d−2

p :

ð4Þ
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The factor of 2 in the area arises from considering both the
top and bottom parts of the extremal surface (see Fig. 1,
reproduced from [18]). There is now a real turning point τ�
at 1 − τ2� þ B2τ2d−2� ¼ 0, where j _wj → ∞: this lies in the
N=S diamond regions where the surface remains timelike.
The surface from Iþ can be joined to an equivalent one
from I− (hence the factor of 2 in S above) which then gives
the full, entirely timelike, future-past surface stretching
from Iþ to I−. These are rotated analogs of the Hartman-
Maldacena surfaces in the eternal AdS black hole [19].
There is a limiting surface asΔw → ∞where the subregion
becomes the whole space I�. For dS4 this occurs at τ� ¼ffiffiffi
2

p
which corresponds to B → 1

2
. These surfaces have an

area law type divergence (always) and a finite part: for the
limiting surface these are

Sdiv ∼ −i
πl2

G4

l
ϵc
; Sfin ∼ −i

πl2

G4

Δw ½dS4�: ð5Þ

It is not surprising that we obtain an overall scaling as de
Sitter entropy πl2

G4
, which is akin to the number of degrees

of freedom in the dual CFT [recall that for an AdS4 black
hole the RT surface has area S ∼ R2

G4
ðVϵ þ #T2VlÞ]. These

future-past surfaces exhibit various features [18]: e.g. the
absence of Iþ → Iþ returns implies that mutual informa-
tion vanishes.
Considering the w ¼ const slice as the boundary

Euclidean time slice, we consider cap-like subregions
defined by θ ¼ const latitudes on Sd−1 at Iþ and equivalent
ones at I−. Then

S ¼ −i
2ld−1VSd−2

4Gdþ1

Z
dτ
τd−1

ðsin θÞd−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − τ2
− ðθ0Þ2

r
ð6Þ

which is difficult to analyze explicitly for caps at generic θ.
However, at θ ¼ π

2
it is straightforward to see that we obtain

a future-past extremal surface from the hemispherical cap
on Sd−1 ∈ Iþ to the corresponding one at I− [17]. This
gives area

S¼−i
2ld−1VSd−2

4Gdþ1

Z
1

ϵ

dτ
τd−1

1ffiffiffiffiffiffiffiffiffiffiffi
1−τ2

p ⟶
dS4 − i

πl2

G4

1

ϵ
ð7Þ

with no finite part.

2. Global

Here we have sphere foliations with

ds2dþ1 ¼ −dτ2 þ l2cosh2
τ

l
dΩ2

d ð8Þ

and we can take the boundary Euclidean time slice to
be any Sd equatorial plane (which are all equivalent).
Then we obtain the area functional (with factor of 2 for
topþ bottom)

S ¼ −i
2ld−2VSd−2

4Gdþ1

Z
dτðcosh τÞd−2ðsin θÞd−2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosh2τð∂τθÞ2

q
ð9Þ

which has structural similarities to the w ¼ const slice
above. At θ ¼ π

2
it is straightforward to see a future-past

extremal surface stretching from Iþ to I− with area
(focusing on dS4)

S ¼ −i
πl2

G4

Z
τc=l

0

dτ cosh τ ∼ −i
πl2

2G4

eτc=l ∼ −i
πl2

2G4

l
Tc

:

ð10Þ

This is an area law divergence type term, with no finite part.
The last expression has been obtained by noting that near
Iþ we have ds2 ¼ −dτ2 þ l2e2τ=ldΩ2

3 ∼ l2

T2 ð−dT2 þ l2dΩ2
3Þ,

with cutoff Tc ¼ le−τc=l ∼ 0 near τc → ∞. The area law
divergence is structurally similar to the static coordinates
case earlier.

3. Poincaré

The full de Sitter space is obtained from two Poincaré
patches joined at the past horizon τ → −∞. Now based on
the above descriptions for the static and global coordinate
systems, we can likewise construct future-past surfaces by
imposing regularity boundary conditions on the past
horizon. For the surface stretching down from Iþ described
by the extremization (2), we require that the derivatives ∂τx
match smoothly onto the corresponding ones for a corre-
sponding surface stretching up from I−. Note that ð∂τxÞ2 →
1 as τ → −∞. The detailed continuation is similar to that in
[17,18] for the static coordinates. This leads to just the area
law term again, giving SdS4 ∼ −i 2l2

4G4

V
ϵ .

B. dS no-boundary surfaces

In accord with the Hartle-Hawking no-boundary pre-
scription [29] (see also [30]), let us cut global de Sitter

−

F

N S

P

I+

I

FIG. 1. dS future-past extremal surfaces stretching between I�

on an Sd−1 equatorial plane. The red curve is for a generic
subregion while the blue curve is a limiting curve as the subregion
becomes the whole space.
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space in the middle, on the τ ¼ 0 time slice and join the top
half with a hemisphere in the bottom half: this hemisphere
is given by the Euclidean continuation

ds2 ¼ l2dτ2E þ l2cos2τEdΩ2
d; τ ¼ ilτE; 0 ≤ τE ≤

π

2
:

ð11Þ
Consider now some Sd equatorial plane (i.e., Sd−1) and the
timelike extremal surface in (9), at θ ¼ π

2
which is the IR

limit of such surfaces. The top part of this surface from Iþ
hits the τ ¼ 0 midslice “vertically”: we join this smoothly
at τ ¼ 0 with a surface that goes around the bottom
hemisphere, Fig. 3 (see [20] for dS3). This joining being
smooth implies consistency with the Hartle-Hawking
prescription. This IR surface is

ds2 ¼ l2dτ2E þ l2cos2τEðdθ2 þ sin2θdΩ2
d−2ÞÞjθ¼π

2

¼ l2dτ2E þ l2cos2τEdΩ2
d−2

and gives area

ld−1

4Gdþ1

VSd−2

Z
π=2

0

dτEðcos τEÞd−2

¼ ld−1

4Gdþ1

VSd−2

ffiffiffi
π

p
Γðd−1

2
Þ

2Γðd
2
Þ ¼ 1

2

ld−1VSd−1

4Gdþ1

; ð12Þ

using the expression VSd ¼ 2πðdþ1Þ=2
Γððdþ1Þ=2Þ for a d sphere. This

real part of the area of this spacelike surface on the
hemisphere is precisely half of de Sitter entropy. This
recovery of the entropy is in detail somewhat different from
the realization of de Sitter entropy as the area of the
cosmological horizon from the point of view of static patch
observers. In particular, one of the hemisphere directions
that enters here is the Euclidean continuation of the time
direction in the future universe.
Focusing on dS4, the full area for this no-boundary

surface is the sum of the top timelike part (which is half of
the future-past area (10)) and the hemisphere part becomes

S ¼ −i
πl2

4G4

l
Tc

þ πl2

2G4

: ð13Þ

There are some similarities between these no-boundary
surface areas and the semiclassical Wavefunction ΨdS ¼
eiScl for no-boundary dS4, with Scl the action. The top
Lorentzian half has real Scl which gives a pure phase in
ΨdS. The bottom hemisphere arises after the continuation
(11) to Euclidean time (the no-boundary point is τE ¼ π

2

here): iScl continues to the Euclidean gravity action
−
R
nbp

ffiffiffi
g

p ðR − 2ΛÞ pertaining to the hemisphere, which

for dS4 gives 1
2

l4VS4

16πG4

6
l2 ¼ πl2

2G4
as is well known (see

e.g. [31,32]).

A similar calculation of the spatial surface on the hemi-
sphere can be done for the timelike future-past surface in the
static coordinates discussed earlier. In this case, the boundary
was Rw × Sd−1 leading to either any Sd−1 equatorial plane or
thew ¼ const slice as the boundaryEuclidean time slice. The
Euclidean continuation in this case is

ds2 ¼ l2ðcos2ψdτ2E þ dψ2 þ sin2ψdΩ2
d−1Þ; t ¼ iτE;

r ¼ l sinψ ; ð14Þ

where τE ∈ ½0; 2πl� and 0 ≤ ψ ≤ π
2
. First, considering the

Sd−1 equatorial plane surfaces, we saw that there is a limiting
surface at τ� > 1 (this is τ� ¼

ffiffiffi
2

p
fordS4)which translates to

some limiting value ψ� given by sin ψ� ¼ r�
l ¼ 1

τ�
. Then the

surface is described by

ds2 ¼ cos2 ψ�dτ2E þ sin2 ψ�dΩ2
d−2 → Area

¼
Z

πl

0

cos ψ�dτEðsin ψ�Þd−2VSd−2
ld−2

4Gdþ1

: ð15Þ

Focusing on dS4 we have sinψ� ¼ 1
τ�
¼ 1ffiffi

2
p giving the area

1
2
ðπlÞ 2πl

4G4
¼ π2l2

4G4
. This apparently unrecognizable value is

perhaps not surprising due to the limiting surface.
For the w ¼ const slice (equivalently τE ¼ const), the

timelike surface from the θ ¼ π
2
cap on Sd−1 leads on the

hemisphere to

ds2 ¼ dψ2 þ sin ψ2dΩ2
d−2 → Area

¼ ld−1VSd−2

4Gdþ1

Z
π=2

0

dψðsin ψÞd−2 ¼ 1

2

ld−1VSd−1

4Gdþ1

; ð16Þ

identical to global dS (12) above, not surprising given
the similarities in the calculation for this slice. With
the top timelike part from (7), the total area becomes
S ¼ −i πl2

2G4

1
ϵ þ πl2

2G4
for dS4.

Note that all these no-boundary surfaces turn around
only in the bottom hemisphere: the top timelike half is
identical to the corresponding future-past surface and there
is no Iþ → Iþ turning point there. Thus, if we consider two
disjoint subregions the corresponding no-boundary surfa-
ces are unique (following from the top halves of the
corresponding future-past surfaces), with no new connected
surface emerging: so S½A ∪ B� ¼ S½A� þ S½B�. Thus, as for
the future-past surfaces [18], mutual information vanishes
here as well.

C. 2-dim CFT, timelike subsystems, complex EE

Now consider dS3, special for various reasons. In
entirely Lorentzian global de Sitter, the future-past surfaces
on some S2 equatorial plane slice (9) give area S ¼
−i l

G3
log l

Tc
. If we consider no-boundary dS3, the total
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area from the top timelike part and the hemisphere part (12)
becomes

SdS3 ¼ −i
l

2G3

log
l
Tc

þ πl
4G3

: ð17Þ

The last (real) term is half dS3 entropy πl
2G3

. The whole
expression can be seen to be an overall −i times the familiar
c
6
log L2

ϵ2
[33–35] with c ¼ 3lAdS

2G the AdS3 central charge,

along with l2

T2
c
→ − l2

T2
c

[so logð−1Þ ¼ iπ]. Note that

dS3=CFT2 has cdS3 ¼ −i 3ldS
2G [4] which for single intervals

would give imaginary S as for the entirely Lorentzian
future-past surfaces stated above. So perhaps what is most
striking in (17) is the real part arising from the hemisphere
which then requires an additional i, which is a novel feature
of this Euclidean CFTdS3 dual (in contrast with ordinary
Euclidean CFTs with simply real spatial lengths and no
time). Further related comments appear in Sec. IV.
To put this in perspective, for ordinary unitary 2-dim

CFTs, the entanglement entropy is

S ¼ c
6
log

Δ2

ϵ2
¼ c

6
log

−ðΔtÞ2 þ ðΔxÞ2
ϵ2

: ð18Þ

For ordinary spacelike intervals Δ2, we obtain the familiar
S ¼ c

3
log Δx

ϵ . On the other hand, suppose we rotate the
subsystem to be entirely timelike with some widthΔt in the
time direction. This gives

S ¼ c
3
log

Δt
ϵ
þ c
6
ðiπÞ; ð19Þ

the imaginary part arising from logð−1Þ in the timelike
separation in the interval (more generally the real part
contains Δ2 < 0). This imaginary part has appeared pre-
viously in studies of quantum extremal surfaces in de Sitter
with regard to the future boundary [22,23]. The bulk matter
is modeled as a 2-dim CFTwith some central charge c > 0
but the timelike separation of the quantum extremal surface
gives Δ2 < 0 in (18) above.
The usual replica formulation of entanglement entropy

for a single interval proceeds by picking the interval Δx≡
½u; v� on some Euclidean time slice τE ¼ const, then
constructing n replica copies glued at the interval end
points. Evaluating TrρnA can be mapped to the twist operator
two-point function which then leads finally to the entan-
glement entropy SA ¼ − limn→1 ∂nTrρnA. The only data here
is the CFT central charge and the interval in question. The
above Euclidean formulation applies for a timelike interval
as well, with the only change being that the Euclidean time
slice is x ¼ const and the interval is Δt≡ ½ut; vt�. However,
in continuing back to Lorentzian time, we rotate ut, vt, to
−iut;−ivt, and so we obtain Δ2 ¼ −ðvt − utÞ2 ¼ −ðΔtÞ2,

which gives (19) above. This of course requires that the
CFT contains some time direction.
It is also worth noting that complex-valued entanglement

entropy arises quite explicitly in studies of ghostlike
theories and simple quantum mechanical toy models of
“ghost spins” [24,25]: in this case the reduced density
matrix acquires minus signs due to contributions from
negative norm states. Defining contractions over the ghost-
spin Hilbert space appropriately leads to consistent expres-
sions for the reduced density matrix and entanglement
entropy, which are in general complex valued.

III. “TIME ENTANGLEMENT”
IN QUANTUM MECHANICS

We have constructed future-past extremal surfaces
stretching from Iþ to I−. Since they are entirely timelike,
their area is pure imaginary, with an overall −i relative
to the area of the familiar spacelike RT/HRT surfaces in
AdS. However, apart from this overall −i, the area is real
and positive: the overall −i is a uniform factor, for any
subregion at Iþ. This is a bit reminiscent of the length of
timelike geodesics having an overall −i relative to the
length of spacelike geodesics. We call this timelike length
as “time” rather than “−i · space”. This suggests that the
areas of the entirely timelike future-past extremal surfaces
encode some new object, “time entanglement”.
Recall now the appearance of complex-valued areas for

the no-boundary surfaces which are closely related to the
entirely timelike future-past surfaces: they comprise a
timelike component which is identical to the top half of
the future-past one and a spacelike component from the
hemisphere glued in the bottom half. The area is now
complex, with a pure imaginary part from the top timelike
component and a real part from the hemisphere component.
We now describe two aspects of this notion of time

entanglement in quantum mechanics (independent of de
Sitter at this point). The first is based on the thermofield-
double type state described in [17,18], while the second is
based on the time-evolution operator, regarding the time-
like surfaces as some sort of transition amplitude.

A. A future-past thermofield double state

The entirely timelike future-past surfaces, akin to rotated
Hartman-Maldacena surfaces [19], suggest some sort of
entanglement between I�, so consider

jψifp ¼
X

ψ iFn ;iPn jiniFjiniP: ð20Þ

This was written down in [17] as an entirely positive object
entangling identical F and P components (with intuition
based on the thermofield double (TFD) state for the eternal
black hole [36]). A partial trace over the second (P) copy
gives a reduced density matrix with nontrivial entangle-
ment entropy. To see how this works, let us consider a very
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simple toy example of a two-state system in ordinary
quantum mechanics. The action of the Hamiltonian H on
these (orthogonal basis) eigenstates and the resulting
(simple) time evolution are

Hjki ¼ Ekjki; k ¼ 1; 2; jkiF ≡ jkðtÞi ¼ e−iEktjkiP;
½h1j2i ¼ 0�: ð21Þ
We consider theF and P slices to be separated by time t and
obtain the F state from the P state by time evolution
through t. The future-past TFD state (20) in this toy case is

jψifp ¼ 1ffiffiffi
2

p j1iFj1iP þ 1ffiffiffi
2

p j2iFj2iP

¼ 1ffiffiffi
2

p e−iE1tj1iPj1iP þ 1ffiffiffi
2

p e−iE2tj2iPj2iP: ð22Þ

We have normalized the coefficients for maximal entangle-
ment at t ¼ 0. For nonzero t, there are extra phases due to
the time evolution but they cancel in the reduced density
matrix obtained by tracing jψifphψ jfp over the entire
second copy as δijψki

fpðψ�
fpÞlj, so

ρfp ¼ TrPjψifphψ jfp ¼ 1

2
j1iFh1jF þ 1

2
j2iFh2jF: ð23Þ

Now imagine a two-spin analogy, with j1i ¼ j þ þi,
j2i ¼ j − −i, i.e., we identify 1i; j2i with the two-state
subspace j � �i of two spins with states j�i each for
simplicity and concreteness. Then a partial trace over the
second component gives the reduced density matrix
Tr2ρfp ¼ 1

2
jþiFhþjF þ 1

2
j−iFh−jF again with an entirely

positive structure, and entropy log 2.
If the states in question are not ordinary spins but ghost

spins with negative norm states, as discussed in [17] based
on the studies in [24,25], the fact that we have entangled
identical components in both the future and past copies
ensures that the minus signs cancel in γσρψ

ασ
fpðψ�

fpÞβρ (with
γij the indefinite ghost-spin metric) again yielding an
entirely positive structure.
This future-past TFD state with timelike separation is

quite different in principle from the usual TFD state. This
positive structure despite the timelike separation is in some
sense similar in spirit to the areas of the entirely timelike
surfaces after stripping off the universal overall −i.

B. Time-evolution and reduced transition amplitudes

Unlike AdS where specifying boundary data fixes the
extremization problem, dS extremal surfaces starting at late
times on Iþ do not return, thus requiring extra data on
boundary conditions in the far past. This is reminiscent of
scattering amplitudes, i.e., final states from initial states, or
equivalently time evolution. It is then amusing to ask for
entanglement-like structures arising from the time evolu-
tion operator UðtÞ after a partial trace over some

environment: in other words, we look for a “reduced
transition amplitude” and its entropy. This suggests (taking
A subregion, B environment)

ρtðtÞ≡ UðtÞ
TrUð0Þ → ρAt ¼ trBρt → SA ¼ −trðρAt log ρAt Þ:

ð24Þ

The normalization is so we obtain ordinary entanglement
structures at t ¼ 0, as we will see explicitly. To illustrate,
consider again the very simple toy example (21) above.
Since everything is diagonal here, the normalized time
evolution operator is simple, becoming

UðtÞ ¼ e−iHt∶ ρtðtÞ ¼
1

2
e−iE1tj1iPh1jP þ 1

2
e−iE2tj2iPh2jP

¼ 1

2
j1iFh1jP þ 1

2
j2iFh2jP: ð25Þ

Now recall the two-spin analogy: j1i ¼ j þ þi, j2i ¼
j − −i. A partial trace over the second components gives

ρAt ¼ 1

2
e−iE1tjþiPhþjP þ 1

2
e−iE2tj−iPh−jP; ð26Þ

SA ¼ −
X
i

1

2
e−iEit log

�
1

2
e−iEit

�
¼ 1

2
log 2ðe−iE1t þ e−iE2tÞ

þ 1

2
ðiE1tÞe−iE1t þ 1

2
ðiE2tÞe−iE2t: ð27Þ

Normalizing UðtÞ by its trace at time t gives TrρtðtÞ ¼ 1 for
all t (not just t ¼ 0), modifying (24)–(27) to

ρtðtÞ≡ UðtÞ
TrUðtÞ⇒ ρtðtÞ ¼

X
i

pijiiPhijP; pi ¼
e−iEitP
je

−iEjt
;

→ ρAt ¼
X
i

p0
iji0iPhi0jP → SA ¼ −

X
i

p0
i log p0

i; ð28Þ

where Hjii ¼ Eijii and the second line arises after partial
trace. There are similarities with pseudo-entropy [37]
although the details above look different a priori. There
are close interrelations between time entanglement above
(entanglement-like structures based on the time evolution
operator regarded as a density operator) and pseudo-
entropy: some of these explorations in quantum mechanics
with various interesting new features appear in [38], which
also elaborates on some results outlined below.
ρAt resembles an ordinary maximally entangled state at

t ¼ 0. Any later time t ≠ 0 gives complex-valued entropy
in general (although there are real subfamilies: e.g. (28) for
the two-state case contains a single phase e−iðE2−E1Þt and
gives SA real). Further the different normalizations give
different results in detail, as is already clear in the simple
cases above. Overall these structures resemble the usual
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finite temperature mixed state entanglement, except with
imaginary temperature, i.e., β ¼ it.
There are also related quantities that arise along similar

lines. For instance, the time evolution operator UðtÞ along
with a projection operator onto a generic state jIi gives
UðtÞjIihIj ¼ jFIðtÞihIj, where jFIðtÞi is the future state
time evolved from the initial state jIi. Normalizing at time t
and performing a partial trace gives a reduced transition
matrix which resembles that in pseudo-entropy [37] but
with the future state specifically corresponding to the time
evolved state. Relatedly, normalizing at t ¼ 0 gives differ-
ent structures. For instance, projection onto Hamiltonian
eigenstates jEIi and performing partial trace gives simple
phases for ρA;It [essentially components of (26)], so the
corresponding entropy (27) is of the form, e.g., iEIte−iEIt.

IV. DISCUSSION: dS SURFACES, TIME
CONTOURS, ROTATIONS

We have seen that the absence of Iþ → Iþ turning points
for dS extremal surfaces anchored at the future boundary
leads to either future-past surfaces or no-boundary surfaces.
Since these surfaces are characterized by area integrals
which ultimately reduce to simple integrals over the time
direction, they can be organized and recast in terms of time
contours, which leads to certain clarifications. Towards
this, recall that the future-past and no-boundary surface
areas [(9) and (12)] are of the schematic form (with a
reduced area functional aðτÞ)

Sfp ∼ 2 · −iS0
Z

τ�

τcF

dτaðτÞ; ½τ∶ τcF → τ� → τcP�;

Snb ∼ −iS0
Z

τ�

τcF

dτaðτÞ þ S0

Z
nbp

τE�
dτEaEðτEÞ;

½τ∶ τcF → τ� → nbp�; ð29Þ
where S0 is de Sitter entropy, τcF labels the anchoring
cutoff slice at Iþ and τ� is the bulk point where the surface
is going “vertically down” (Figs. 2 and 3). nbp refers to the
no-boundary point. In the no-boundary surfaces, the time
contour goes along the real time direction until τ� and then

along the Euclidean time path until the nbp. As we saw,
these simplify in the IR limit to give

Sfp ¼ −2iS0I½τcF; τ��; Snb ¼ −iS0I½τcF; τ�� þ
S0
2
;

⇒ Sfp ¼ Snb − S�nb: ð30Þ
In this light, it is reasonable to think that the future-past
surface is made of two copies of the no-boundary surface,
but with the time contour schematically being ½τcF →
τ� → τcP� ¼ ½τcF → τ� → nbp� þ ½nbp→ τ� → τcP�. Then
the real parts in the two copies of Snb cancel to give a
pure imaginary Sfp. Regarding Snb as some time entangle-
ment entropy arising from one dual boundary Euclidean
CFT copy ZCFT ¼ ΨdS via dS=CFT [2–4] suggests regard-
ing Sfp as arising from two copies Ψ�

dSΨdS. It would be
interesting to flesh this out more precisely from a replica
formulation, perhaps developing [39] here.
Looking now at the expressions in detail for dS3 and dS4,

i.e., (17), (10), and (13), we have

dS3∶ xSfp ¼ −i
l
G3

log
l
ϵ
; Snb ¼ −i

l
2G3

log
l
ϵ
þ l
2G3

π

2
:

dS4∶ Sfp ¼ −i
πl2

2G4

l
ϵ
; Snb ¼ −i

πl2

4G4

l
ϵ
þ πl2

2G4

; ð31Þ

with ϵ≡ Tc in the dS4 expressions (10) and (13). For dS5
there are pure imaginary subleading divergent terms as
well, from the timelike I integral in (30). Writing the dS3
expression as

dS3∶Snb ¼ −i
�
c
3
log

l
ϵ
þ c
6
ðiπÞ

�
; c ¼ 3l

2G3

; ð32Þ

suggests that these no-boundary surfaces are a rotation
from some surfaces in AdS3, with central charge cAdS3 ¼ c
(recall that the dS3=CFT2 central charge is cdS3 ¼ −ic):
specifically the overall −i arises from the AdS3 radial
integral reinterpreted as a time integral in dS3. The term
inside the brackets is essentially the entanglement

FIG. 2. Global dS future-past extremal surfaces stretching
between I� on any Sd equatorial plane in the IR limit (θ ¼ π

2
).

This is also the picture for the w ¼ const slice in the static
coordinates.

FIG. 3. Global dS no-boundary extremal surfaces, with a top
timelike part joining smoothly with a spatial part going around
the hemisphere in the bottom half. The blue curve is the IR limit
(θ ¼ π

2
) on some Sd equatorial plane. This is also the picture for

the w ¼ const slice in the static coordinates.
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entropy (19) for a timelike interval in 2-dim CFT: the real
logarithmic part is a spatial area contribution in AdS3, while
the imaginary part is a timelike contribution. Thus the real
spacelike part of the dS3 surface, from the Euclidean
hemisphere, maps to a pure imaginary, timelike, contribu-
tion in AdS3.
The dS4 case (13) can be similarly recast as

dS4∶ Snb ¼ −i
�
πl2

4G4

l
ϵ
þ i

πl2

2G4

�
; S0 ¼

πl2

G4

; ð33Þ

which again resembles an overall rotation from an AdS4
surface, encoded by the overall −i. Again, the term inside
has a real part corresponding to half of the Hartman-
Maldacena-like spacelike surface contribution while the
imaginary part is a timelike contribution. The fact that all de
Sitter no-boundary surfaces have area of the form (30), i.e.,

Snb ¼ −i
�
S0I þ i

S0
2

�
; ð34Þ

suggests that the surfaces can be regarded as space-time
rotations from timelike subregions in AdS-like spaces. In
general, these are distinct from analytic continuations of
Poincaré AdS RT expressions, which correspond to distinct
time contours (along imaginary time paths) [13–15]: e.g. in
dS4 those give real negative area. However, these can be
mapped to other appropriate analytic continuations from
AdS (see [28]).

Note that this is consistent with the dS future-past
surfaces (see Fig. 1) being akin to space-time rotations
of Hartman-Maldacena surfaces in the AdS black hole [19],
as discussed in [17,18]. In that case, the dS area Sfp is pure
imaginary, with the overall −i encoding the rotation from a
real spacelike area in AdS.
The pure imaginary part of the no-boundary dS3 surface

area can be identified with c
3
log l

ϵ for a half-size interval in
a Euclidean CFT on a circle [34]: the future-past surfaces
have twice this area, and so correspond to two copies. The
real spacelike part of the no-boundary area, arising from a
deep interior Euclideanization of de Sitter, presumably
indicates some new IR aspect of the dual Euclidean CFT
that encodes “interior regularity.”
There are some parallels in the thinking in Sec. III via the

time evolution operator and viewing de Sitter space as a
collection of past-future amplitudes [3]. This suggests
using the S-matrix jfihij with initial and final states
appropriate to dS to analyze entanglement-like structures.
Needless to say, there are many things to explore here, in
quantum mechanics, de Sitter holography and time.
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