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Fluid model of a black hole-string transition
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A fluid model of self-gravitating strings is proposed. It is expected that black holes turn into strings
around the end of black hole evaporation. The transition will occur near the Hagedorn temperature. After
the transition, strings would form a bound state by the self-gravitation. Horowitz and Polchinski formulated
a model of self-gravitating strings by using winding strings wrapping on the Euclidean time circle [Phys.
Rev. D 57,2557 (1998)]. In this paper, we first show that winding strings in the Horowitz-Polchinski model
approximately behave as a perfect fluid. Then, we solve the Einstein equation for the fluid of winding
strings. Our solution reproduces behaviors of the self-gravitating string solution in the Horowitz-Polchinski
model near the Hagedorn temperature, while it approaches the Schwarzschild black hole at low
temperatures. Thus, our fluid model of self-gravitating strings gives a description of the transition

between black holes and strings.
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I. INTRODUCTION

Information loss paradox is one of the most important
problems in black hole physics [1,2]. In order to solve this
problem, it would be important to understand what happens
in the last stages of black hole evaporation. Black holes lose
their mass by emitting the Hawking radiation and become
as small as the Planck length in the last stages. The
Hawking temperature of the black hole becomes also
comparable to the Planck scale, and quantum effects of
gravity will be important. String theory is a promising
candidate of quantum theory of gravity and would provide
a better description of the final state of black hole
evaporation.

It has been proposed that small black holes would transit
into strings when the size of the black hole becomes
comparable to the string scale [3—7]. Unfortunately, it is
very difficult to describe the dynamical process around the
end of black hole evaporation by using string theory.
Instead, some sort of the phase diagram of static states
of black holes and strings have been studied. Susskind
proposed the correspondence between black holes and
fundamental string states by considering adiabatic change
of the string coupling [5] (See also [6] for a brief review).
As the string coupling increases, a highly excited string will
shrink its size by the self-gravitation and will eventually be
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smaller than its Schwarzschild radius. Then, the highly
excited string must turn into a black hole.

Horowitz and Polchinski developed Susskind’s idea
further and formulated a model of the self-gravitating
strings (3].! They considered an effective field theory of
winding strings wrapping on the Euclidean time circle.
String theory has a temperature called the Hagedorn
temperature, beyond which the thermal ensemble would
not be well-defined [19]. Horowitz and Polchinski studied
winding strings near the Hagedorn temperature and found
that there is a solution of bound states of strings by the self-
gravitation.

In this paper, we study the transition between black holes
and strings in more details. In order to see what happens
around the transition, nonlinear effects of gravity should
be taken into account. Around the Hagedorn tempera-
ture, strings behave as almost free strings. As the temper-
ature decreases, interactions between strings become
more important, and strings form a bound state by self-
gravitation. Gravitation between strings is weak as long as
the temperature is sufficiently close to the Hagedorn
temperature. Horowitz and Polchinski studied the bound
state in this regime by using the linearized gravity. The
transition to a black hole occurs at a still lower temperature.
As the temperature decreases, the size of the bound state
approaches the Schwarzschild radius, and gravitation
becomes stronger. Naively, strings are expected to fall
inside the Schwarzschild radius at some critical temper-
ature and turn into a black hole. Around the critical
temperature, gravitation is very strong, as the event horizon

'For related works, see, for example, [7-18].
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is almost formed. In order to describe the bound state in this
regime, nonlinear effects of gravity should be taken into
account. Thus, the transition cannot be studied by using the
approximation of the linearized gravity.

In this paper, we approximate the bound state of strings by
a perfect fluid of winding strings and take the nonlinear
gravity into calculations by solving the Einstein equation for
the winding string fluid. Since fluid is one of the most typical
states of local thermal equilibrium, it is natural to expect that
winding strings near the Hagedorn temperature behave as a
fluid, and dissipation would be negligible in static configu-
rations of the bound state. Near the Hagedorn temperature,
our fluid solution reproduces results of the Horowitz-
Polchinski model. The local temperature inside the bound
state is still very high because of the blueshift even at lower
temperatures from the viewpoint of a fiducial observer. The
solution can be continued to lower temperatures and
approaches the Schwarzschild black hole. Thus, our fluid
model provides a description of the transition between black
holes and self-gravitating strings. The solution behaves as a
bound state of strings at high temperatures and becomes a
black hole approximately at low temperatures. Moreover, itis
expressed as a smooth function of the temperature, implying
that the two phases are continuously connected to each other,
contrary to the naive expectation that strings would collapse
into a black hole at the critical temperature.

The paper is organized as follows. In Sec. II, we briefly
review the Horowitz-Polchinski model. In Sec. III, we show
that winding strings approximately behave as a perfect
fluid. In Sec. IV, we solve the Einstein equation for the fluid
of winding strings to obtain the geometry of the star of
winding strings. In Sec. V, we consider two special cases
of the high temperature limit and low temperature limit. In
Sec. VI, we discuss why our solution can violate the
Buchdahl inequality in the low temperature limit. In
Sec. VII, we show the results for higher dimensions.
Section VIII is devoted to the conclusion and discussions.

II. HOROWITZ-POLCHINSKI MODEL

In this section, we briefly review the Horowitz-Polchinski
model [3], which describes self-gravitating strings near the
Hagedorn temperature [19]. Strings at a finite temperature
can be studied by using the Euclidean spacetime with the
time direction compactified to a circle. Strings propagating
in the Euclidean time direction can be viewed as winding
strings wrapping the Euclidean time circle. Before taking the
Gliozzi-Scherk-Olive (GSO) projection, the lowest mode of
the closed string is tachyonic,

B3
(2za’)?’

m} = — (2.1)
where S is the inverse Hagedorn temperature, which is
given by py =4na’'/? for bosonic strings or Sy =
23270/1/% for type II strings. Winding strings wrapping

the Euclidean time circle with an inverse temperature # have
additional contribution to the mass due to the string tension,

2 _ 2
m* = ’Ezm,ﬂ)’; . (2.2)

The GSO projection does not exclude the tachyonic mode
due to the antiperiodic boundary condition in the Euclidean
time circle for fermionic states [19]. Thus, the tachyonic
mode appears in the winding strings when the temperature
exceeds the Hagedorn temperature, f < ;. The tachyonic
instability in this regime implies that the thermal ensemble is
no longer well-defined. Horowitz and Polchinski showed
that the winding condensate occurs even below the Hagedorn
temperature due to the redshift by the self-gravitation.

Horowitz and Polchinski considered the effective field
theory of winding strings near the Hagedorn temperature.
After the Kaluza-Klain reduction of the Euclidean time
circle, the action of the effective field theory in (D — 1)-
dimensional space is given by

r__ P
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(2.3)

where y is the complex field of winding strings. Here, we
consider only configurations without the Kaluza-Klein
charge and ignore the Kaluza-Klein gauge field. The
redshift factor, or equivalently, the Euclidean time compo-
nent of the metric is

e = €27, (2.4)
and the (D — 1)-dimensional dilaton field ®_, is related to
the original D-dimensional dilaton field ® as

1
(I)D—l =0 —=Q.

: (2.5)

The local radius of the Euclidean time circle becomes
smaller due to the blueshift, and the effective mass of
winding strings is given by

2082 _ 32
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mei () = W (2.6)

Now, we consider the equation of motion of (2.3). As the

temperature is very close to the Hagedorn temperature, we
expand the equation of motion to the leading order of

ﬁz_ﬂ% =E€.

2na

(2.7)

We also make the ansatz that ¢ is of the same order,
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o~ Oe), (2.8)
so that the effective mass (2.6) is of the same order to the
mass in the flat space (2.2). Then, the equations of motion
at the leading order in small ¢ become

0= V2y —m(o)x, (2.9)
2 P 2
0=V2— e 1%, (2.10)
where the effective mass m2;(¢) at the leading order is
2 _ 32 2
> B~ —=Pu 200
o~ . 2.11
meff((p) (271_“/)2 (277,’(1/)2 ( )

The metric is approximately flat and the dilaton is trivial to
this order;

(RD—I)ij = 0(53)’

The equations of motion (2.9) and (2.10) have only one
parameter ¢ and one unit of length o’'/2.

The equations of motion (2.9) and (2.10) can be rewritten
into a single nonlinear equation of the winding string field
- By solving (2.10), ¢ is given in the form of integral as

A 0
o~ ) R

@, = O(e). (2.12)

(2.13)

where Qp_, is the area of the unit (D — 2)-sphere.
Substituting (2.13) into (2.9), we obtain

_ ) — Zﬁélti D— ()P X

V) G R
2

- —ﬂ(zﬂ—a,ﬁ)'; 7). (2.14)

This integrodifferential equation can be viewed as a non-
linear Schrodinger equation with an attractive Coulomb
self-interaction. In order to see this equation as a nonlinear
eigenvalue problem, it is convenient to introduce rescaled
variables as

. P =By X V255¢
SRRV sy P e S x>
(27 )¢ R ANCEDT
(2.15)
where { is chosen so that 7 is normalized as
/dD—lch .y (2.16)

The value of { is not determined by this normalization
condition but obtained by solving the eigenvalue problem
of the nonlinear Schrédinger equation,

S2s 0 Ly RO o a
V() - [ a5 A = . @)
Since the interaction is attractive, this Schrodinger equation
has normalizable solutions of bound states with discrete
eigenvalues of {. Bound states of self-gravitating strings
would be described by the “ground state” with maximal
value of ¢ 2 Since the solution is given in terms of the

rescaled coordinate X, it must scale as

- 2ra’ _ 2ra

Since the winding strings describe strings at finite
temperatures, the entropy S can also be estimated by using
the first law of thermodynamics,

(2.18)

S = (pay, — 1)T. (2.19)

The entropy can be calculated by taking the derivative only
of the explicit f# dependence in (2.3) as’®

e3(pﬂ3

S:/dD_IX\/gD_le_ZQWb(F. (220)

By using (2.15) and (2.16), the entropy of the solution is
expressed as

G (D= 3) (22 )P Q)

- 2.21

162Gy By (B = p3)= 22!
The mass of the bound state is estimated as
D —3)(2zd \P37Q,

M:ﬂ;,lS:( )( ﬂa) 2 D-2 (222)

162GNfy (B = B7)™

Although we obtained a single Schrédinger equation for
the winding string field y, it might be technically easier to
solve the original set of differential equations (2.9) and
(2.10) than the integrodifferential equation (2.17), in
practice. The original equations have no free parameter
that can be treated as the eigenvalue. As we have seen, the

The eigenvalue ¢ is not the energy of the winding string field
¥, and hence, the ground state may not have minimum energy in
solutions. However, the ground state would be the most uniform
configuration as the wave function has no node—|y|? is positive
everywhere except for the spatial infinity. Thus, the ground state
is expected to give a best approximation of the bound state.

For the other implicit # dependence in the fields, the variation
vanishes since the solution satisfies the equation of motion.
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eigenvalue { comes from the normalization condition of %,
implying that the normalization of y cannot be fixed by
hand but is automatically determined when we solve the
differential equations (2.9) and (2.10). Equations (2.9) and
(2.10) are difficult to be solved analytically but can be
solved numerically by imposing boundary conditions at
r =0 and r — oo so that the solution is normalizable and
nonsingular.

It should be noted that the solution above is valid only
near the Hagedorn temperature, since the Horowitz-
Polchinski model relies on the ansatz (2.8), and the
equations of motion (2.9) and (2.10) are approximated
by the linearized gravity. In order for the validity of the
approximation, gravitation must be sufficiently weak. The
size of the bound state becomes smaller as the temperature
is lowered and becomes comparable to the Schwarzschild
radius at some temperature. Then, gravity around the bound
state is very strong, and the Horowitz-Polchinski model
cannot give a good description of the bound state.

The Schwarzschild radius of the bound state is given in
terms of the mass (2.22) as

1 M \r= 2na
= (0TONM i . (223)
(

D=2/ prsp - gy

up to some numerical factor. Thus, the size of the bound
state becomes comparable to the Schwarzschild radius at a
temperature lower than but still comparable with the
Hagedorn temperature,

P By
7

o(1). (2.24)

Thus, the solution can be invalid even at a temperature
comparable with the Hagedorn temperature. For the val-
idity of the solution, the temperature must be very close to
the Hagedorn temperature as’

*Thermal states are approximated by a solution of the equation
of motion if if quantum fluctuations are suppressed. The action is
roughly estimated as

7. D= 3)(22d\P3TQp s
162Gyf (P - p3) =

and it should be sufficiently large for the suppression of
fluctuations. Thus, a solution gives a good description for

PP\ T L e
(55) 2o
This condition gives an upper bound of the temperature for

D < 7. The temperature should be close to the Hagedorn
temperature but should not be too close to it.

: (2.25)

(2.26)

P - By <P (2.27)
In this paper, we study the transition between black holes
and strings. Gravitation becomes very strong near the
critical point and cannot be described by the linearized
gravity. We will make a simplification of the problem to
take nonlinear effects of gravity into account. In the next
section, we first introduce an approximation of winding
strings by a perfect fluid. Then, we derive the analytic
solution of the fluid model in the subsequent sections.

II1. FLUID APPROXIMATION
OF WINDING STRINGS

In this section, we introduce our fluid approximation of
winding strings. We propose that the stress-energy tensor of
winding strings can be approximated by
T;j = Pgij. T,;=0.

Ty =—=pgu (3-1)

with the energy density p and pressure P given by
— 20 362¢ﬂ2_ﬂ%—1 IZ
167Gy (2na’)?

20 /))%I_ezwﬁ2 I)(
162Gy (27a)?

2
’

P=c¢

2, (3.2)

atleastin a static bound state. Here, the time direction labeled
by ¢ is the Lorentzian time associated to the time independ-
ence of the static configuration. Indices i and j indicates the
spacial directions on time slices with ¢ = const.

We derive the stress-energy tensor (3.1)—(3.2) in two
different ways. In Sec. IIT A, we show that contributions from
momenta are sufficiently small compared with those from the
mass of winding strings, and then, obtain (3.1)—(3.2) by
ignoring the kinetic terms. It is reasonable that momenta are
negligible in the bound state of winding strings since the
bound state is described by the ground state, in which strings
have only zero point fluctuations.

In Sec. III B, we assume that winding strings approx-
imately behave as a perfect fluid, and then derive (3.1)-(3.2)
from thermodynamic relations. In the Horowitz-Polchinski
model, thermal states near the Hagedorn temperature are
studied, and the solution involves the condensate of winding
strings. The bound state of winding strings can be viewed as a
bound state of many strings, which are created by thermal
energy. Thus, it is expected that winding strings in the bound
state can be approximated by a fluid. In Sec. III B, we show
that the energy density and pressure are always given by (3.2)
if winding strings behave as a perfect fluid.

It should be noted that the argument in Sec. III A shows
that the stress-energy tensor takes the form of (3.1) but does
not necessarily imply that winding strings behave as a
perfect fluid. There might be corrections that cannot be
seen in static configurations. For example, winding strings
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may not behave as a perfect fluid but have nonzero
viscosity or higher derivative corrections. Also, the typical
scale of the fluid may be longer than the size of the bound
state. For our purpose of studying the transition between
black holes and strings, it is not very important whether
winding strings really behave as a fluid, but the expression
(3.1)—(3.2) is important.

A. Approximation of the stress-energy tensor

Here, we consider the stress-energy tensor of the
Horowitz-Polchinski model and show that it can be
approximated by (3.1)—(3.2). The stress-energy tensor is
given by the variation of the matter part of the action with
respect to the metric,

2 5Imatter
V') 5g,uu ’

where 7. 1S the matter part of the action. In order
to calculate the stress-energy tensor, we consider the
D-dimensional field theory, which gives (2.3) after
the Wick rotation and the dimensional reduction of the
Euclidean time circle. The action is given by

T = (3.3)

7 = !
167TGN

ﬂ2gtt+ﬂ%{ 2

WW )

/de —ge™2® [R + 4(0®)* — |oy|?

+ (3.4)

where @ is the dilaton in D-dimensions, which is related to
®p_; by (2.5). The stress-energy tensor of winding strings
for this model is given by

3ﬂ29n + ﬁ%—l

167[GN62®T11 = gttW I)('z - gttgrr|ar)(

2 (3.5)

B*9u + P
16”GN62¢TN = grr(zt;r—a/)zH I)(|2 + |ar)(|23 (36)
B gu + P .
16”GN62(DT96 = Y00 (2t;m,)2H |)(|2 — 9609 |ar)(|2, (3.7)

and the off diagonal components vanish. Here, we consid-
ered winding strings with mass (2.2), which have no
Kaluza-Klein momentum in the Euclidean time direction,
and focused on configurations without angular momentum.
The index of € indicates any of the angular directions.

In the Horowitz-Polchinski model, we consider the linear
order approximation around the Hagedorn temperature and
focus on configurations in which fields are very small. In
this limit, the effective mass behaves as

admg(p) = Oe). (3.8)

Then, Eq. (2.10) implies that

aV? ~ Ole), (3.9)
for y. Assuming that the Laplacian has a similar scaling
behavior for ¢, Eq. (2.10) with (2.8) gives

oy = O(e). (3.10)
We further focus on spherically symmetric solutions, and
the Laplacian is expressed in terms of the radial coordinate
in the flat space r as

Vi=9?———"90,.

— 3.11
- (3.11)
The solutions have a typical size of # ~ a''/?¢~!/2. Near the
surface of the solution, the derivative has the typical
behavior of

9, ~ O(e'/?). (3.12)
In the distribution of winding strings except near the
surface of the solution, or equivalently for r <7, the
second term of (3.11) will be more important. For r ~ O(e),
we have

D -2

Vi~ —Z250, = 0(0). (3.13)

Thus, inside the “star” of winding strings, the derivative
behaves as

3, ~O(e). (3.14)

Now, we show that the stress-energy tensor (3.5)—(3.7) is
approximated by (3.1)—(3.2). The mass term of the winding
string field behaves as

il = O, (3.15)

while the kinetic term give only higher order corrections,
|0,> = O(e*). (3.16)

Then, the stress-energy tensor at the leading order in the
small-e expansion becomes

3ﬂ2€2(p _ﬂ2
162Gy e*®T,, = _gtt(zT/)zH ly|> + O(e*), (3.17)
/))2 _ 6240/}2
162Gy e*®T;; = gUW lr|* + O(e*). (3.18)

Thus, the stress-energy tensor (3.5)—(3.7) is approximated
by (3.1)-(3.2).
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So far, we assumed that the temperature is very close to
the Hagedorn temperature. Discussions above can be
generalized to lower temperatures, since the local temper-
ature inside the star always exceeds the Hagedorn temper-
ature. In order to see the structure of the star of winding
strings, it is convenient to consider Eq. (2.9) for a given
gravitational potential ¢. Then, Eq. (2.9) can be interpreted
as the Schrodinger equation,

V2 (r) = V(r)x(r) = —Ex(r) (3.19)
with
e p? By
VO =G E= g (20

Normalizable eigenstates can be obtained by tuning f so
that the inverse Hagedorn temperature gives the eigenvalue.
The winding string field y is trapped up to quantum
penetration inside the classical turning point or equiva-
lently, in the region E > V(r). The local temperature is
blueshifted and given by the Tolman temperature,

Tlocal = e—(pﬁ—l ’ (321)
which exceeds the Hagedorn temperature for E > V(r).
Thus, the local temperature is always close to the Hagedorn
temperature even for f > f H,S and hence, the stress-energy
tensor 1is ap%:)roximated by (3.1)~(3.2) even at lower
temperatures.

The approximation (3.17)—(3.18) can also be understood
as follows. The bound state of winding strings is given by
the ground state of the equation of motion (2.9) and (2.10).
The ground state has only the zero-point fluctuation around
the bottom of the potential, and the kinetic term is much
smaller than the potential energy if the potential energy is
nonzero. Thus, we can ignore the kinetic term as an
approximation and obtain (3.17)—(3.18).

In fact, the condition (3.14) is good only for the ground
state of the winding string field y. Size of the excited state
with the principle quantum number n would be estimated as

£~a' e 2n, (3.22)

and hence, the region r~a''/2¢7'/2 would be more

important than the interior r < o’'/?¢='/2. In fact, the

>To be more precise, the effective mass inside the winding
condensate is always small compared with the typical scale of the
model. It can be confirmed straightforwardly from the concrete
solution in the subsequent sections but should be considered as an
ansatz in this sense.

®For p > By, Eq. (2.10) should be modified by nonlinear
effects of gravity. The winding string field is no longer small as
7 = O(e"). Then, we can see only from Egs. (2.9) that (3.15)
and (3.16) become m2|y|> = O(e) and |0,x|> = O(€?).

momentum would not be small in excited states. Highly
excited states can be approximated well by the WKB
approximation and momentum satisfies

=V2 ~ p? > —m2 (o), (3.23)
inside the classical turning point.

On the other hand, momentum of the ground state
approaches zero in the classical limit, as the energy of the
classical winding string would simply be given by its mass.
Small momentum of the ground state comes from the zero
point fluctuation or quantum penetration. Breakdown of the
approximation around the surface of the “star,” or equiv-
alently the classical turning point, would be interpreted as
the effect of the quantum penetration, which would be absent
in the classical limit. Thus, the approximation of the stress-
energy tensor of winding strings (3.1)—(3.2) can be under-
stood as some sort of the classical approximation.

B. Derivation from thermodynamic relations

In Sec. IIl A, we have seen that the stress-energy tensor
of winding strings can be approximated by (3.1)—(3.2) for
the solution of the equations of motion for the ground state.
Here, we show an alternative derivation of (3.1)—(3.2) by
using the assumption that winding strings behave as a
perfect fluid, instead of specific structures of the equation
of motion. In the bound state of winding strings, the local
temperature exceeds the Hagedorn temperature due to the
blueshift. The winding strings are condensing inside the
bound state, and many strings are excited by thermal energy
in the Lorentzian picture. Thus, it is natural to expect that
winding strings in the bound state behave as a fluid.
Although the fluid may not be a perfect fluid but possibly
have some corrections such as the viscosity, we consider a
perfect fluid as a simplest model assuming that corrections
are sufficiently small and negligible at least in static
configurations.

Here, we show two different but essentially equivalent
procedures by using the assumption that winding strings
behave as a perfect fluid. First, we calculate the entropy and
total energy [i.e., the Arnowitt-Deser-Misner (ADM) mass]
from the free energy (i.e., the action) by using thermody-
namic relations. Directly from the assumption, the stress-
energy tensor takes the form of (3.1). Then, the energy
density and pressure can be read off from the entropy and
the ADM mass, and turn out to be given by (3.2).

In another method, we consider the stress-energy tensor
of winding strings. By assuming that winding strings
behave as a perfect fluid, kinetic terms should be isotropic
but still can be nonzero. We show that the kinetic term must
vanish to satisfy the local thermodynamic relation, and
then, the stress-energy tensor becomes (3.1)—(3.2). In both
of two procedures, we do not resort to any specific structure
of the solution, but just assume that the fluid is in local
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thermal equilibrium and static. Hence, winding string field
x 1s not necessarily in the ground state.

First, we calculate the energy density and pressure from
the entropy and the ADM mass. The entropy of winding
strings can be calculated from the action by using the first
law of thermodynamics (2.19) and is obtained as (2.20). We
assume that the integrand of the total entropy (2.20) is the
local entropy density s, which can be read off as

(3.24)

Assuming that winding strings behave as a perfect fluid, the
entropy density satisfies the local thermodynamic relation
with the energy density and pressure (3.2) as
s=e’B(p+ P), (3.25)

where e?f is the local inverse temperature.
By using the thermodynamic relation with the total

action, we obtain the energy of the total system, which
is nothing but the ADM mass,’

2(D - 3)

P (3.26)

As the ADM mass contains contributions from the gravity
part, it is not given by the integration of the energy density
of winding strings.® By using the equations of motion, the
ADM mass can be expressed in terms of the stress-energy
tensor. When the stress-energy tensor takes the form of the
perfect fluid in the Finstein frame, the ADM mass is given
in terms of the energy density and pressure as

M = /dD 'x\/_< +D—;P>

By using the formula (3.26) with equations of motion, we
obtain the following expression of the ADM mass:

(3.27)

M:/dD—lx _ge—ZCD ﬁ%—] (D 4) 2(pﬁ2 (328)

8(D —3)nGy(2na’)? e

By comparing two expressions (3.27) and (3.28), we obtain

e P+ (D =4)ep
8(D —3)nGy(2nd)

sl (3.29)

"The additional factor of 2(D — 3)/(D — 2) appears because
the ADM mass in higher dimensions is defined so that the
coefficient of p in (3.27) becomes 1 and is different from the
Komar integral by this factor.

If we use the matter part of the action instead of the total
action, the thermodynamic relation gives the energy of matters,
which is the integration of the energy density.

Together with the condition (3.25) with (3.24), the energy
density and pressure can be calculated, and we obtain (3.2).

Alternatively, we can show that kinetic terms in the
stress-energy tensor must vanish if winding strings behave
as a perfect fluid,’ by using thermodynamic relations, to
obtain (3.2). The assumption that matters behave as a
perfect fluid means that the pressure is isotropic or
equivalently, that the spatial components of the stress-
energy tensor is proportional to the unit matrix. This
assumption indicates that contributions from the kinetic
terms must satisfy

(3.30)

0> = |0 |* =

for any spatial directions 7 and j in the local lorentz frame.
Then, the stress-energy tensor of the winding strings
becomes

3ﬂ29tt + :B%I

16”GN62®th:9tt (27‘[0/)2 |)(|2_gtt|v}(|27 (3.31)
Pgu+Pi
16nGNez‘DT,-,-ZgiiWVP—Fﬂ@iﬂz—gii|V)(|2,
P94+ P D-3
=g (2’; )”I rl? —5 79l Val?. (3.32)

Then, the energy density and pressure of the fluid are read
off as

3620 — B2 1
-2 Bl 3.33
162Gy 0na 2 ¥ T T6xG (3:33)
_ 20 ﬂ%_eZ(pﬂz |){|2
167Gy (2na’)?
D-3 o
20|72 3.34
16D — 1)2G Vx| (3.34)

By using the local thermodynamic relation (3.25), we
obtain the entropy density,

S ——
872Gy (2ma’)?
e’ 20
Vy/|? 3.35

The entropy can also be calculated from the thermody-
namic relation (2.19), and then, the entropy density is given
by (3.24). By comparing (3.24) and (3.35), we find that
contributions from the kinetic term vanish,

°Of course, kinetic terms vanish only for the winding string
field y and do not vanish if the fluid consists of ordinary matter
fields.
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VxI? =0, (3.36)

since the kinetic term in (3.35) is non-negative. Substituting
(3.36) into (3.34), we obtain (3.2).

Here, we have shown that kinetic terms should vanish
when winding strings behave as a perfect fluid. This is
very different from fluids that consist of ordinary matter
fields. Matters in ordinary fluids usually have nonzero
momenta, and hence, their kinetic terms are nonzero. It
should be noted that momenta of winding strings cannot be
interpreted as those of strings in Lorentzian spacetimes
before the Wick rotation, because winding strings are
wrapping on the Euclidean time circle, while strings in
Lorentzian spacetime do not extend but propagate in the
time direction.

In Sec. Il A, we have seen that the kinetic term is
negligible for winding string field y in the ground state, but
this approximation is invalid for y in some excited states.
Thus, for the derivation in Sec. Il A, the ground state
should be dominated in the path integral of y. In contrast,
the arguments above by using the thermodynamic relation
is valid as long as winding strings are in local thermal
equilibrium and the pressure is isotropic. Since we obtained
the same result to Sec. III A, winding strings can be
approximated by the solution of the ground state when
they behave as a fluid.

At the same time, winding string field y in the ground
state definitely have small but nonzero kinetic terms,
implying that winding strings cannot be a perfect fluid
exactly but have some corrections. Moreover, the winding
string fluid possibly has corrections which cannot be seen
in static configurations. These corrections can be under-
stood as higher derivative corrections to (3.1)—(3.2). Since
the higher derivative corrections for fluids usually give
dissipation, winding strings may be identified with a
dissipative fluid if these corrections are taken into
account.'”

Apart from the relation to dissipative fluids, kinetic terms
can be taken into calculations as higher derivative correc-
tions. Here, we do not pursue this direction but just ignore
these terms. In the next section, we study the Einstein
equation for the stress-energy tensor (3.1)—(3.2).

IV. GEOMETRY OF THE WINDING
STRING FLUID

In the previous section, we have seen that the winding
string field approximately behaves as a perfect fluid. Here,
we study the static solution of the Einstein equation for this
fluid. In this and subsequent sections, we ignore the

'OAlthough, most of higher derivative corrections vanish in
static configurations, some terms may survive in the form of
derivatives of metric components.

coupling with dilaton and take ® = 0 for simplicity.” In
this section, we also focus on the case of D = 4.

A. Solution of the Einstein equation

Here, we first consider the interior geometry of the star of
winding strings. We solve the Einstein equation,

(4.1)

1

le - Egle = 8”GNT;¢1/9
where the stress-energy tensor of the static perfect fluid is
given by

T, = —p, T, =Ty =T?,=P. (42)
As we have seen in Sec. III A, the energy density and
pressure of the winding string fluid are given by (3.2). The
most general metric of spherically symmetric and static
spacetimes can be expressed up to the coordinate trans-
formation as

dr?
ds®> = —f(r)df* + ——— + r*dQ?, 4.3
A F )
where f(r) = ¢*") and
A2 — dO® + sin® g (4.4)

is the metric of unit 2-sphere.
For the consistency with the Einstein equation, the
stress-energy tensor must satisfy the conservation law,
v, " = 0. (4.5)
In this paper, we focus on the spherically symmetric and
static configurations. Then, the conservation law for the
perfect fluid (4.2) on the geometry (4.3) gives the following
constraint on the energy density and pressure:
(p(r) + P(r)f'(r) +2P'(r)f(r) = 0. (4.6)

By using the energy density and pressure of the winding
string fluid (3.2), the constraint (4.6) becomes

d 2 _
—lP=o. (4.7)

and hence, we define

"It should be noted that the dilaton has nontrivial configu-
rations due to the coupling with winding strings in the original
model. Thus, ignoring the dilaton field should be considered as a
modification of the model. Here, we just assume that the
qualitative feature of the solution would not be changed.
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x> = 87%a”” D, = const. (4.8)
This condition is consistent with the approximation 9, ~ 0.

For static and spherically symmetric geometries, only
two components of the Einstein equation give independent
differential equations. From (z,¢) and (r,r) components,
we obtain

0= [rf(Nh(n)] + rPGf(r)f* = p)Do— 1. (4.9)

0=h(r)[rf(r)] + r*(f(r)B* = py)Do — 1. (4.10)

It is straightforward to solve the equations above. The
solution is obtained as'?

£(r) —ﬂ—%*{hio+ - Yre=r [Si“_l (‘) *“} }

G r o
(4.11)
h(r) :ﬁ—jh()(l —r—22> (4.12)
H Iin

where a and h are the integration constants. The redshift
factor f(r) can be real either for r <r,, or for r>r,,
depending on the value of the integration constants, where

r2 = fto .

PHDo

The solution has the singularity at » = 0 for a # 0, and
hence, we take

(4.13)

a=0. (4.14)
Then, f(r) is real only in r < r,,. The solution also satisfies
the condition g,, = 1 at r = 0, which is necessary to avoid
the conical singularity. The redshift factor f(r) monoton-
ically increases from

21
7(0) _’,Bﬁ_glh_g’ (4.15)
to
2
f(rm) —i—é’ <hi0+ 1), (4.16)

as r increases. The pressure (3.2) becomes positive if

Pf(r) < B (4.17)

">This solution is first considered in [20] as early as 1949, as a
simplest example of spherically symmetric and static solutions of
the perfect fluid, of course in a different context from string
theory.

The pressure monotonically decreases as r increases. The
pressure must be positive at least at r = 0 so that it is
positive somewhere on this spacetime. This condition
requires

ho > 1. (4.18)
If we use this solution to r = r,,, the pressure becomes
negative at least at r = r,,. The pressure becomes zero at
some radius r = ry in 0 < rg < r,,. The fluid is trapped
in the region where the pressure is positive, and the pres-
sure is zero at the surface of the star. Thus, the solution
(4.11)—(4.14) should be connected to the exterior solution
at r =r, 0-

B. Junction with the Schwarzschild spacetime

Now, we consider the junction of the solution
(4.11)—(4.14) with the exterior solution. Although there
would be a layer near the surface of the star where the
solution (4.11)—(4.14) would not give a very good approxi-
mation, we just ignore this layer and assume that the
solution (4.11)—(4.14) is directly connected to the exterior
solution. We also neglect the small distribution of the
winding string field in the exterior solution due to the
quantum penetration, and then, the exterior solution is
given by the Schwarzschild spacetime. Distribution of the
fluid (3.2) will end at the radius » = r, where the pressure
becomes zero. Thus, the solution is given by (4.11)—(4.14)
for r < ry and by the Schwarzschild spacetime for r > r,,.
This picture would be understood as some sort of the
classical approximation of the Horowitz-Polchinski model
as we discussed in the previous section.

The Schwarzschild solution is given by

dr?
ds®> = —fo(r)dt> + —— + r*dQ?, 4.19
fo(r) 7o) (4.19)
where
'
fo(r) =1 - (4.20)

and r, is the Schwarzschild radius. The first junction
condition requires that the induced metric on the interface
at r = ry must be identical on both sides of the interface.
The condition for angular components requires that the
radial coordinate r must be continuous at » = r(. The first
junction condition also gives a relation between the redshift
factor in two metrics as

f(ro) = fo(ro).

We also assume that the solution (4.11)-(4.14) is
directly connected to the Schwarzschild solution, and
there is nothing on the interface between two geometries.

(4.21)
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Thus, the second junction condition requires that the
surface stress-energy tensor on the interface must be zero.
This condition implies that the extrinsic curvature on the
interface must be the same in the both sides. The second
junction condition gives the following relations between
two metrics:

f'(ro) = fo(ro), (4.22)

f(ro)h(ro) = folro)- (4.23)
The interface, or equivalently, the surface of the star of
winding strings is located at r = r,, where the pressure of
the fluid (3.2) becomes zero. The pressure becomes zero
when the local temperature agrees with the Hagedorn
temperature,
B f(ro) = P (4.24)
From this condition with the junction condition (4.21), we
find that the position of the surface r is determined by the
temperature of the fluid and the Schwarzschild radius r;, as

. ﬂzrh
=Py

ro (4.25)

The surface radius as a function of f is shown in
Fig. 1 (left).

Constants D, and A in the solution (4.11)—(4.12), are
determined by the junction conditions. The condition (4.24)
gives the condition,

2 2
17 Fm =T . _1( 70
—=————3in"'(— ],
hg o 'm

where r,, and r are given by (4.13) and (4.25), respectively.
The junction condition (4.22) gives another condition,

(4.26)

rolry
4

B

0.5 1.0 1.5 2.0 25 3.0 3.5 40 By

L ﬁ—%{ {—l + ism‘1 <ﬂ)} . (4.27)
"% p ro r% r%,,—r% Fin

By using (4.21), the condition (4.27) can be simplified as

1_7 (1 _ r_%)
hy B )’
The condition (4.28) can be rewritten as h(ry) = 1, which is
equivalent to (4.23) with (4.21). Thus, three junction con-
ditions (4.21)—(4.23) are satisfied if three parameters Dy, k),
and r( are given by three conditions (4.25), (4.26), and (4.28).
All three parameters Dy, h(, and r, are determined for

given f and r;,. We define the parameter £ in terms of the
radio of ry to r,, as

(4.28)

(4.29)

The value of £ is determined by the conditions (4.26) and
(4.28), namely,

L in~! —'B—z -
Vs ( 5(ﬂ)>—ﬁ%{(1 £(6).

though this equation cannot be solved analytically. Since
£(P) is a solution of (4.30), it is a function of /3. Then,
the integration constant h is determined by (4.28) and is
expressed by using &(f3). Since &(f3) is a function of /Sy,
hy is also a function of f/f. The parameter D, which is
related to normalization of y, is also determined by
using (4.13).

Thus, constants hy and D, are calculated and are
expressed as

(4.30)

po P 1
TR 1I-E)

(4.31)

&B)

1.0

0.8

B

05 1.0 15 2.0 25 3.0 35 40 Py

FIG. 1. The surface radius ry and the radio &(8) = rj/ra, as functions of . The parameter £(f3) is calculated numerically.
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b _ B B)Ep)
TR0 -ep)’

and the radius of the surface r, is given by (4.25).
Equation (4.30) has two solutions for ry < r,,. One solution
is rq = r,,, which would be considered unphysical, and
E(B) = ro/r,, should be determined by the other solution.
The ratio £(f#) monotonically increases as the temperature
Pr /P decreases. We have

(4.32)

EB) =0, in f - fy, (4.33)

¢p) =1,

in f— . (4.34)
Equation (4.30) can be solved numerically, and the solution
£(B) is shown in Fig. 1(right). Once we obtain &(f), the
constants /iy and D can also be calculated. The result is
shown in Fig. 2.

Now, we calculate the ADM mass. Since the exterior
geometry is the Schwarzschild spacetime with the
Schwarzschild radius r;,, the ADM mass must be
Th

M=
2Gy

(4.35)
We will calculate the ADM mass by using the for-
mula (3.27) for the fluid of winding strings and see that
it agrees with (4.35). By using the energy density and
pressure of the fluid (3.2), the ADM mass is calculated
as (3.28). Substituting the solution (4.11)—(4.14), the ADM
mass becomes

L By A\
M = dranr? |1 — — 4.36
4Gy pny ] T TR, (4.36)

- 1 r?n/}?-IDO
2Gy Bvhy

| 2
ro ro . ro

ho

B

1.0 1.5 2.0 2.5 3.0 3.5 40 By

By using (4.30) and (4.29), it can be rewritten as

oy — [P (B = By) /T = E(B)Dy
OVEIINC I

Then, substituting (4.31), (4.32) and (4.25), we obtain

(4.38)

T
M=—.
2Gy

(4.39)
Thus, we have reproduced the consistency condition.

The entropy of the fluid can also be calculated by
using (2.20),

_FDy

S =
47TGN

/ dranr’ f(r)h="2(r),  (4.40)

In a similar fashion to the ADM mass, substituting the
solution (4.11)—(4.14) with (4.25), (4.31), and (4.32), we
obtain

I

_ T B 2B°E(P)
4Gy

[3ﬂ+2——

S :
Pu Bu(P* - Br)

(4.41)

C. Quantization condition

We have seen that the solution has two parameters, f and
ry,, at the classical level. In this fluid model, the size of the
star depends on the Schwarzschild radius. In the original
Horowitz-Polchinski model, the solution is obtained for a
given temperature. The size and total mass of the solution
are determined by the temperature. Thus, in the Horowitz-
Polchinski model, the Schwarzschild radius should also be
given as a function of the temperature. Solving the equation
for y corresponds to imposing the quantization condition.
Two parameters in the fluid model, f and r,, are not
independent to each other but should be related to each
other by the quantization condition.

1.0 1.5 2.0 25 3.0 3.5 40 By

FIG. 2. Constants h, and D by using the numerical solution of &(f3).
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In the classical limit, the quantization condition is
approximately given by

/ p,dr ~2zxn.

Although this quantization condition is good for large n,
the size of the ground state can be estimated by taking
n = 1. For the ground state, the size can also be read off
from the uncertainty principle,

(4.42)

(Ar) x (Ap,) = 2=, (4.43)

since the state is localized around a point in the phase
space. Although we have assumed that the momentum is
negligible in the stress-energy tensor (3.5)—(3.7), the
uncertainty of the momentum would be estimated as
(Ap,)? +m2 = 0. (4.44)

Thus, the size of the solution is approximately given by

ro~ (Ar) =

= . 4.45
VB = B+ BPEp) (443

By using (4.25), the Schwarzschild radius is also deter-
mined by the temperature of the fluid as

AP -R)
BN By — P+ BEB)

rh (4.46)

Note that the temperature of the fluid is different from the
Hawking temperature, since the Schwarzschild spacetime
is connected to the interior solution (4.11)—(4.14) outside
the Schwarzschild radius, and the geometry has no event
horizon.

Unfortunately, this rough estimation is not very good for
the low temperature limit f — co. Here, we used the
maximal radius and momentum for the uncertainty Ar
and Ap, in (4.43), but the actual area in the phase space
might be smaller than (Ar) x (Ap,). Thus, this rough
estimation (4.45) just gives lower bound of the size. In the
next section, we will study two cases of the high and low
temperature limit, and see the quantization condition in
more detail.

V. BLACK HOLE-STRING TRANSITION

Although we have solved the Einstein equation for the
winding string fluid analytically, we still have not obtained
intuitive descriptions of the solution as we do not have the

analytic expression of the parameter &(f3). In order to have a
better understanding of the solution, it is convenient to
study some special cases of the solution.

In this section, we consider the structure of the solution
in high and low temperatures. At high temperatures near the
Hagedorn temperature, the solution has consistent behav-
iors with the Horowitz-Polchinski solution and hence,
describes winding strings, which are weakly bounded by
the self-gravitation. In the low temperature limit, the
solution approaches the Schwarzschild black hole. The
solution has approximately the same size, mass, temper-
ature, and entropy to the Schwarzschild black hole. To be
more precise, the size is slightly larger than the
Schwarzscihld radius, and hence, the solution has no event
horizon. Although we focus only on two limits of high and
low temperatures here, our solution is parametrized by the
temperature smoothly, and the solution at any temperature
between these two limits can be obtained just by choosing
the parameter accordingly. Thus, our fluid model of wind-
ing strings gives a description of the transition between
black holes and strings. Since the solution at high temper-
ature continues to the solution at low temperatures
smoothly, the self-gravitating string phase and black hole
phase are continuously connected to each other.

A. High temperature limit: A bound state of strings

Here, we consider the high temperature limit. We take
the limit in which the temperature approaches the Hagedorn
temperature, # — By, and calculate the leading order terms
in this limit.

We first calculate &(B) (=r3/r3,), as most of parameters
of the solution (4.11)—(4.14) are given in terms of &(f3). The
parameter &(f) is determined by the condition (4.30). At
the Hagedorn temperature, we have &£(fy) = 0. Thus, it is
expected that &(f3) is very small at the linear order in the
small-(f — ) limit. We expand (4.30) for small &(f3) as

ﬂZ

1
1= 360 = (1= ) (5.1
Then, &(f) is obtained as

-y 2%

Substituting this solution to (4.31) and (4.32), the constants
hg and Dy are calculated as

G- PP

hy =~ 7 ~1+ T (5.3)
3P =B 3=

Do g = 2, (34)
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Since the solution (4.11)—(4.14) describes spacetime in the
region r < ry, r/r,, is also very small near the Hagedorn
temperature,

<D P o py)

7 (5.5)

r

IA
sl\)‘ow

;
Substituting (5.3) and (5.4) to (4.13), r,, is expressed as

22

308 = P>

P2 o

(5.6)

Thus, the solution f(r) (with a =0) and h(r) are
expanded as

3 2 _ 32 2 _ 23
f(r) =1= (ﬂzﬂ%]ﬂH) + (ﬂzriﬂﬁé]{) r2
+O((B = PBu)?). (5.7)
3 2 _ 132 3 2 _ 221\3
h(l‘) =14+ (ﬂzﬂ%{ﬁH) _ (ﬂzr%tﬁ/;;{> r2
+ OB~ Pu))- (5.8)

At the leading order in the high temperature limit, the
geometry can be treated as flat space f(r) = h(r) = 1. The
linear order corrections are necessary to see the gravita-
tional potential for the winding string field or equivalently,
the effective mass (2.6). They are also necessary to
calculate the curvature. This structure is the same to the
original equations of motion of the Horowitz-Polchinski
model (2.10) and (2.9).

We consider the ADM mass and the entropy of the
solution. The ADM mass of the fluid of winding
strings (3.2) is calculated in Sec. IV B and is obtained
as (4.39). Since the geometry is flat at the leading order in
the high temperature limit, the ADM mass can easily be
calculated directly from (3.28) as

_477:]"3,6%1D0
3 4zGy’

(5.9)
By using (4.25) and (5.4), the ADM mass is evaluated as

T
M=——. 5.10
This is consistent with the Schwarzschild radius in the
exterior geometry. In a similar fashion, by using (2.20), the
entropy is calculated as

S — 4”’”(3) p*Dy 2ﬂH”h
3 47TGN 2GN '

(5.11)

At the leading order of in the high temperature limit, the
ADM mass and entropy satisfy the relation,

S~pM. (5.12)
This relation can also be obtained from the local thermo-
dynamic relation, since the pressure vanishes at the leading

order of f§ — fy.
The quantization condition is expressed as

ro 3
/ dry/ —g,,mgff = Zﬂ,
0

where the numerical factor in rhs is estimated from
the junction condition of the WKB approximation at the
classical turning point. By using (5.7) and (5.8), the
effective mass becomes

(5.13)

2 22
¥ rﬁﬂZH) rZ}, (5.14)

2 :Bz_ﬂ%[ |:1_

Mg = —
eff 8 ”2 a/z

and the radial component of the metric g,, = 1/(f(r)h(r))
gives only higher order corrections. Then, the quantization
condition (5.13) becomes

7 hﬁ%i

=3
N

Thus, the Schwarzschild radius r, is given in terms of the
temperature S as

Vo )
r, =232 . 3zd P~ =P

P

By using (4.25), the position of the surface of the star is
obtained as

(5.15)

(5.16)

23/2. 3zd
rg = —F——=

VI =By
This agrees with the typical size of the solution of

Horowitz-Polchinski model (2.18). The ADM mass and
entropy are also calculated as

(5.17)

_ N =By o VB =B
M_3\/§7taTﬁ%i, S_3ﬂﬂam (5.18)

The quantization can also be estimated by solving the
equation of motion for winding string field (2.9) by using
the solution (4.11)—(4.14) as a background geometry. Near
the Hagedorn temperature, the geometry is approximated
by (5.3)-(5.4), and the effective mass (5.14) gives the
harmonic potential V(r) =} @?r* and the cigenvalue E of

the “Hamiltonian” with
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S BB P-B

T 532, . 32 - 202"
22 nd r, 167~

(5.19)

Thus, the wave function of the ground state is given by the
Gaussian function,

yx e, (5.20)

where the constant ¢ is fixed by solving the equation of
motion as
2 _ 32
P~ —Pu

€= 1822 (5.21)

Since the ground state of the three-dimensional harmonic
oscillator has the energy,

3
E = R (5.22)
the quantization condition is obtained as
/32 _ 2
r, =232, 371'(1/M (5.23)

P

This agrees with the result of the WKB approximation (5.16).

Here, we have seen that the gravitational potential can be
approximated by the harmonic potential by using the fluid
model. We have solved the equation of motion for the string
field y, to see the quantization condition. The solution of y
would be a better description of y and can be considered as
a correction to the fluid approximation. We can further
substitute the solution of y into the Einstein equation and
derive a better solution of the metric, in principle. By
repeating this procedure several times, we will be able to
obtain a more accurate solution of the Horowitz-Polchinski
model. However, in this paper, we will focus on the fluid
model and do not pursue this direction.

B. Low temperature limit: An approximate
black hole

Here, we consider the low temperature limit, f — oo.
First, we consider the size of the solution, ry. The
condition (4.25) implies that the radius of the surface of
the star approaches the Schwarzschild radius in the low
temperature limit, namely,

ro = I'n, in f— . (5.24)

Next, we consider the parameter £(f). The condition
(4.30) implies £(f) — 1 in B — oo. Since &(p) is defined
as (4.29), the condition £(c0) = 1 means
(5.25)

I'm = To.

In contrast to the high temperature limit, entire expressions
of the solution (4.11)—(4.12) are necessary to describe the
geometry in the low energy limit. In order to calculate the
constants i and D, the next-to-leading order correction of
£(B) is needed. We expand the condition (4.30) around
& =1 to obtain

2
T2 ~ 2 (1-£(p)).

il 5.26
2 o (520

Then, the parameter &(f) is calculated approximately as

2 204
_ o, By
i 4p*

(5.27)

By using this solution, the constants hy, and D, are
expressed as

4 2

ho =~ % (5.28)
2

a (5.29)

0= 5 54 -
. By

At the leading order of the large-f expansion, f(r) and
h(r) are approximated as

f(r):‘g—%[ —#sm—l(r—r)] LOB)., (5.30)

4ﬂ4 r2 5
h(r) = 25 (1 r,%) + Op). (5.31)
Thus, in # — oo, we have f(r) — 0. From the viewpoint of
the fiducial observer in the asymptotic region, r — oo, the
redshift factor inside the star is almost zero. This is also
obvious from size of the star—the surface radius ry is
approximately the same to but slightly larger than the
Schwarzschild radius. Thus, from the viewpoint of the
fiducial observer, the star approximately behaves as a black
hole. From the viewpoint of the observer at the surface of
the star r = r(, the redshift factor at the center » = 0 is still
much smaller than the factor at the surface. At the center of
the star, r = 0, (5.30) gives f(r) = O(B~*), and hence, we
need to take the higher order corrections into consideration.
The redshift factor is expanded around r = 0 as

2 2,2
flry="H 28—y .. (5.32)
4p4 3/32r%l
and hence, behaves as
f(r)~0p™), forr< %rh, (5.33)
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f(r)~O(p2), for r> %rh. (5.34)

In a similar fashion, the radial component of the metric also
behaves as

1 aprr Pu
Gy = ~ , forr<<—=r,, (5.35
Fonn™' g pi B3
2 2
0 ﬁ2 oo, forryg—r< 854*’ I (5.36)
e~ O(B72), otherwise. (5.37)

The proper length inside the fluid is mostly much shorter
than the (areal) radius at the surface r,. Only very near the
surface, the proper distance is much longer, as is near the
horizon of the Schwarzschild black hole. At r = 0, we have
g, = 1, which implies no conical singularity at the origin.

Now, we consider the quantization condition (5.13).
Here, we only make a rough order estimation because
(5.13) itself is not a precise condition despite of its
complicated expression in the low temperature limit. At
the leading order in the large-f limit, the effective mass m2;
becomes

2 )
mesz = 4 {2(21/)2[}[-]
2

— 162 rZ -r- . _ r g
= — (2772/)2 hr sin~! <rh> + O(ﬂ 2)' (538)

It has a minimum at r = 0, and hence, we have

P
(2 )’

_mgff < _mgff(r =0)= (5.39)

The radial component of the metric is estimated up to O(1)
factor as

Pu
B

Then, the quantization condition is roughly expressed as

/ \/ ~9rrMege

However, this integration gives logarithmic divergence13 if
we use the expression of f(r) at the leading order, (5.30).
This is because O(B~*) corrections should be taken into

Gy ~ (5.40)

(5.41)

It can be seen from the divergence o 1/r in the integrand.
The integrand has another divergence o« (r — r()~'/2, which does
not give the divergence of the integral.

account near the center of the star, » ~ 0. Since g, behaves
as g,.~ O(1) only at a very small region r < ﬂ/’;’ ry,, the
contribution from the integration around r = 0 is limited to

/ ﬂH
/ oy, grrmeffd
r 7

which is of the same order to (5.41). Thus, the quantization
condition in the low temperature limit is estimated up to the
numerical factor as

(5.42)

Purn _
2xd

(5.43)

From this quantization condition, the size of the solution,
which is also approximately the same to the Schwarzschild
radius, is estimated as

@p
2

Since the Hagedorn temperature is the same to the string
scale (up to the numerical factor), ﬂ%, ~ ', the expression
above implies that the relation between the radius and the
temperature is of the same order to the Schwarzschild black
hole. Although our rough estimation does not reproduce the
numerical coefficient of the temperature, the solution is
expected to behave approximately as the Schwarzschild
black hole in the low temperature limit.

We consider the ADM mass and the entropy. As we
studied in Sec. IV B, the ADM mass is given in terms of the
Schwarzschild radius as (4.39). The entropy is given by
(4.41). Since &(f3) behaves as (5.27) in the low temperature
limit  — oo, the entropy (4.41) becomes

pry,
4Gy~

(5.44)

Fo=r,~

S =~ (5.45)

By using the quantization condition (5.43), the entropy is

approximately proportional to the area of the surface of the

star, which is approximately the same to the area of the

horizon of the Schwarzschild black hole,
i

~ —

G (5.46)

Thus, in the low temperature limit, our solution reproduces
the Bekenstein-Hawking entropy up to the numerical
coefficient.

VI. HORIZONLESS GEOMETRY
AND NEGATIVE ENERGY

In the previous section, we have seen that our fluid
model of winding strings describes the transition between
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black holes and strings. In low temperatures, we obtained a
horizonless geometry that approximately behaves as a
black hole. Our result would imply either that black holes
do not exactly have the event horizon, or that the string
bound state turns into a black hole when the difference
between the Schwarzschild radius, and the size of the star
becomes less than the cutoff scale.

Here, we discuss the possibility of an approximate black
hole without the exact event horizon. It is sometimes
considered that such geometries cannot be realized because
of the Buchdahl theorem [21]. The Buchdahl theorem states
that the size of the star must be larger than 9/8 of the
Schwarzschild radius for static and spherically symmetric
solutions if the star consists of a perfect fluid and the energy
density is nonincreasing outwards (d,p <0) and non-
negative (p > 0). However, in our solution, the size of
the star of winding strings can be arbitrarily close to the
Schwarzschild radius by taking a sufficiently low temper-
ature, and hence, the solution does not satisfy the Buchdahl
inequality. The inequality is violated because our solution
does not satisfy an assumption of the Buchdahl theorem—
the energy density is increasing outwards and can even be
negative around the center of the star.

The energy density p of winding strings behaves as

2 2

— m (6.1)
167Gy (2na’)?

and f(r) is a monotonic function which has minimum at

r = 0. Thus, in contrast to ordinary fluids, the fluid of

winding strings has a larger energy density in outer places.

In fact, it is straightforward to see that

362 ()
="/ >, 6.2
P = 167Gy (22 ) (62)
for 0 < r < ry by using our solution (4.11)—(4.14). Hence,
the solution can violate the Buchdahl inequality.
Moreover, the energy density p becomes negative at
sufficiently low temperatures. The energy density at r = 0

is given by
(r=0) BuDo (3 |
= = — = .
P 872Gy \ g

(6.3)

Thus, the energy density becomes negative around r = 0 if

hy > 3, (6.4)
or equivalently, at temperatures below some critical temper-
ature f,.. The critical temperature is estimated from the low
energy limit as

pe

—=—x272,

= (6.5)

from the high temperature limit as

Pe _ V5224,

6.6
5 (6.6)
or numerically estimated as
Pe a7 (6.7)
Pu

Although the negative energy density is unnatural feature
for ordinary fluids, it is not surprising that the fluid of
winding strings has the negative energy density. The origin
of this negative energy density is the tachyonic mass of
winding strings at temperatures beyond the Hagedorn
temperature. The energy density can be separated as

28°f(r)

= 2
162Gy (27d)

2
2 Mt

. (6.8)

where the first term would be interpreted as the thermal

energy, and the second term is the potential energy which

comes from the effective mass. The fluid is localized in the

region where the pressure is positive,
0<pP— Pa — P f(r) _ —Megy

162Gy (2nd)> 162Gy’

(6.9)

implying that the local temperature of the winding string
fluid always exceeds the Hagedorn temperature due to the
blueshift, although the temperature at spatial infinity is
lower than the Hagedorn temperature. The square of the
effective mass is negative, and winding strings become
tachyonic. The existence of a tachyonic field implies the
instability which leads to the decay into the true vacuum.
The solution of the Horowitz-Polchinski model can be
understood as the result of the tachyon condensation, and in
fact, the winding string field y becomes nonzero around the
region where the mass is tachyonic.'* Thus, the potential
energy which comes from the effective mass is negative
inside the bound state of winding strings.15 If the temper-
ature is sufficiently low, the negative energy of the winding
condensate overcomes the thermal energy, and the energy

"“To be more precise, the solution is not in the bottom of the
potential but stabilized by the connection to the flat spacetime in
the spatial infinity. In flat spacetime, the true vacuum is at y = 0
as the mass of the winding string field is positive. The winding
string field y in the winding condensate cannot be very different
from y = 0 in the spatial infinity to satisty the equation of motion
and hence, is finite.

“In general, the energy in the tachyonic vacuum can be
nonzero, and the true vacuum may not have negative energy. In
the case of the Horowitz-Polchinski model, the energy at y = 0
must be zero so that the energy in flat spacetime outside the
bound state is zero, and hence, the winding condensate y # 0 has
negative potential energy.
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density of the fluid also becomes negative. In contrast to the
energy density, the “density” of the ADM mass, namely the
integrand of (3.28) is always positive. The additional term
in the ADM mass is often interpreted as the energy from the
gravitation. Thus, the energy of the fluid including gravi-
tational effects is always positive.

Although the winding string field has the tachyonic
mass, the winding condensate should be distinguished from
the ordinary tachyon condensation. Winding strings
become tachyonic by wrapping the Euclidean time circle.
Before the Wick rotation, the Lorentzian time is not
compactified, and hence, winding strings do not exist as
itself but describe strings created by the thermal energy. In
order to create massive strings,16 the temperature must be
higher than the string scale, and hence, the winding
condensate appears only in the region where the local
temperature exceeds the Hagedorn temperature.

When the temperature exceeds the Hagedorn temper-
ature, the mass of the winding string field becomes
tachyonic, implying an instability. Oscillations of strings
give an exponentially large number of particle species, and
hence, the entropy of highly excited strings becomes

S(E) ~ pyE. (6.10)

If the system is in contact with a heat bath with a
temperature higher than the Hagedorn temperature, highly
excited strings continue to absorb the energy from the heat
bath without raising the temperature. More and more
strings are created indefinitely, and hence, the system
becomes unstable beyond the Hagedorn temperature.

The free string picture above is valid only around the
tachyonic vacuum y = 0 of the winding string field. After
sufficient amount of massive strings are created, the system
possibly reaches the true vacuum. In the case of bound
states of strings, the solution of the Horowitz-Polchinski
model can be interpreted as the true vacuum. The local
temperature inside the bound state exceeds the Hagedorn
temperature, but the temperature at spatial infinity, which
can be interpreted as the temperature of the heat bath, is
lower than the Hagedorn temperature.'” Thus, strings inside
the bound state cannot absorb the thermal energy directly
from the heat bath. Strings inside the bound state would

"In the world sheet picture, the lowest mode of winding
strings wrapping on the Euclidean time circle and massless
strings propagating in the time direction correspond to different
limits in the moduli space, respectively. Thus, the low energy
effective theory of winding strings does not give a good
description of massless strings but includes massive strings in
the Lorentzian picture.

"7As it can be seen in (2.18) or (5.17), the size of the bound
state becomes infinitely large as the temperature approaches the
Hagedorn temperature, implying that winding strings cannot
form a bound state if the temperature at spatial infinity exceeds
the Hagedorn temperature.

behave as a fluid approximately and shows different
thermal behavior from the free strings.

The fluid of winding strings obeys the same thermody-
namic relation to (6.10) at the Hagedorn temperature,

s =Pulp +P) = Pup. (6.11)

but has different behavior above the Hagedorn temper-
ature.'® The local temperature of the fluid can be higher
than the Hagedorn temperature, and the entropy and energy
density (3.2) decreases as the local temperature is raised.
This is quite different from ordinary fluids but reminiscent
the thermodynamic property of black holes. This behavior
also plays an important role in the violation of the Buchdahl
inequality. The local temperature is higher in inner places
due to the blueshift as gravity is stronger there. For ordinary
fluids, the energy density will be higher at higher temper-
atures, and hence, it is reasonable to assume that the energy
density is nonincreasing outwards. However, the winding
string fluid has smaller energy density at higher local
temperatures, and hence, the energy density increases
outwards. As the Buchdahl inequality can be violated if
the energy density increases outwards, a star of the winding
string fluid can have a size smaller than 9/8 of the
Schwarzschild radius.

Although the energy density of the winding string fluid is
smaller at higher temperatures, the density of ADM mass
(3.28), or equivalently, the energy density including the
gravitational energy is independent of the temperature for
D = 4 and is larger at higher temperature for D > 4. This
implies that the energy of the winding strings would be
converted into the gravitational energy, and hence, the
energy density of winding strings decreases as the temper-
ature is raised. Thus, gravitational effects would play an
important role for the peculiar thermal behavior of the
winding string fluid.

VII. HIGHER DIMENSIONS

In this section, we consider the higher dimensional
generalization of the solution in Sec. IVA. Calculations
can be proceeded in a similar fashion to previous sections,
and hence, we do not explain the details and basically
describe only the results, here.

We first solve the Einstein equation (4.1) for D > 4. The
metric is given in the same form to (4.3), but now the
2-sphere is replaced by (D — 2)-sphere. The fluid equation
gives the same condition that y is a constant, and we define
Dy by (4.8), again.

By virtue of the spherical symmetry, the solution is
obtained by solving only two components of the Einstein

"When the local temperature is lower than the Hagedorn
temperature, the pressure (3.2) becomes negative implying that
the fluid cannot appear inside the bound state.
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equation, as in the case of four dimensions. We consider
(t,1) and (r,r) components, which can be expressed as

0= (D =2)r(f(r)h(r)) + (D =2)(D =3)f(r)h(r)

L2238 (r) - )y - (D=2)(D=3).  (1.1)
0= (D = 2)rf()h(r) + (D = 2)(D = 3)f(r)h(r)
L 2R F(r) - Dy - (D=2)(D=3). (1)

It is straightforward to solve these equations to obtain

f(r)_ﬂi, [l F1<LD—4 D -1 rz)

A 2 2
n 1 rzF 1D—Z D+1 2
D122 "\ 2 2 A
N 7.3
+ ar oy (7.3)
ﬂ2 ’,.2
h(r) = ﬂ—zho 1 — | (74)
H m

where ,F (a, b, x, x) is the hypergeometric function, a and
hq are the integration constants, and r,, is now defined by

(D —2)hy
263D,

P2 =

(7.5)

In order to remove the singularity at »r = 0, we take
a=0. (7.6)

The solution is defined in 0 <r<r,, and f(r) is a
monotonic function with

P 1 Pu(, D=3
=0 =—711 (7
f(o) ﬂ2 hO ’ f(rm) ﬁQ + h() ( )
Here, we show some examples of the solution of f(r).
(i) For D =5,
2 2 2
S/ RSN Y (5 D BT (R
f) B " < " ho) r T
7.8)
(i) For D =6,
s 2\
=——=<-14+3(14+—|=

x {1 - #sin_l <ri)] } (7.9)

(ii1)) For D =17,

x[(l—z’;;)— 1—%}. (7.10)

Next, we consider the junction condition to the
Schwarzschild ~ spacetime. The  higher-dimensional
Schwarzschild metric is given by (4.19), but now f,(r)
is given by

D=3
fo(r)=1- %-

I%

(7.11)

By using (4.24) with the junction condition (4.21), the size
of the star is related to the Schwarzschild radius as

2 _ 32 ﬁ
r0—< ﬁZﬁH> ry.

We define &(f8) by the same relation (4.29). The parameter
£(P) is the solution of the equation,

(7.12)

£(B) D—-2 D+1
1- Fil1
D—12'"\" 2 " 2

)

= ﬂ—%’(l —&(B)),F (1,%1)7_1,5(/5)), (7.13)

which comes from the junction condition for the radio
ro/ - By using the junction condition (4.21)—(4.23), the
integration constant A is expressed in terms of &(f3) as

7
hO = —27 N
B 1-&p)
which is the same expression to the case of D = 4. The

constant Dy, is related to i and £(f) by (4.29) and (7.5) and
expressed as

(7.14)

(D - Z)El)ﬂ_i_ﬂ%)%f(ﬂ) ‘ (7.15)

2357 (1 - E(p))

Now, we consider the high temperature limit. As we
discussed in the case of D = 4, &(f) approaches zero in the
high temperature limit. Then, the condition (7.13) can be
expanded as

DOZ

P _ —ﬂ+0(§2).

7 i (7.16)

Then, &(f3) is obtained as
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(D-1)(B - By)

2/3%1 +O(</))2 _ﬂ%-l)z)

&p) =

(7.17)

Parameters of the solution, hg, Dy, and r,, are expanded as

(D =3)(#* - Bz)

hg=1- T +O((B* = py)?).  (1.18)
_ 2 % 2(D-2
py= L= DR =DF - 4}) w((ﬁz_ﬂ;,);s),
4r2ﬁD3
(7.19)
2 [}ZDI)
- s 2 _ 2\
G e G B

The solution of f(r) and h(r) are expanded as

(D-D(F* - f)  (D=3)(F =)= ,
2,82 2(D— 1)
H 2rhﬂ

+O((F* = Bi)?).

fn=1-

(7.21)

(D= D) = py) _ (D=1 - pp)o=
264 2rhﬂw -’

+O((F* = p)?).

h(r) =1+

(7.22)

Now, we calculate the ADM mass and entropy. The
ADM mass is obtained as

(D =2)r}7Qp,
167[GN ’

ﬁ%{r(?_lDUQD—Z
47Z'GN -

M=~ (7.23)

where Qp_, is the area of the unit (D — 2)-sphere. In a
similar fashion, the entropy is calculated as

Pri'DyQp_, ~ (D -2)pr—Qp_,

S~ 7.24
47Z'GN 167TGN ( )
The effective mass is expanded as
e — _P=NE =B [ (B =B,
eff = 7
3271’ a rhﬂ
+O((B = BH)?)- (7.25)
Then, the quantization condition becomes
D — 2 R D—-1 2(32 _ R D—z

87‘[20!2 - 4 r%ﬂDL—}

Thus, the Schwarzschild radius r), is related to the temper-
ature of the fluid as

3220/ (D — 1) (2 — B2) 755
A ) et/ VSRR Y
VD =337

The radius of the surface of the star agrees with the rough
estimation of the scale of the solution,

23/2 "(D—1
ro = ra(b-1) (7.28)

V(D =3)(F - B%)

The ADM mass and entropy become

(a) =" (D =2)(D - 7

—, (7.29)
(D =3)FTRGp, (B - B)F
e R I
(D 3) (DH)GNﬁH( —-pu)T

Next, we consider the low temperature limit. In the low
temperature limit f — oo, we have &(ff) — 1, and hence,
we expand (7.13) around &(f) = 1. Then, we obtain

2var (25 - o-yo-ar(22) viam,
(7.31)
Then, &(f) is solved as
”FZ(D;)/))H
) =1~ (1.32)

Then, the parameters of the solution, Ay, D, and r,, are
approximated at the leading order as

a2
hy~—2 0 (7.33)
P Al ()R
20D =2 1—'2 D=2\ 32
Dy =~ ( 5 D)3 C2p , (7.34)
al* (53 ﬁ‘}i
Fip & Fg & Fp. (7.35)

At the leading order of the low temperature limit, f(r) and
h(r) become

1 p4r? D-2 D+1 r?
=—S S Fll,—\—— ., 7.36
f(r) D—lﬂzriz 1 2 ) 2 ( )

T
AT2 (B2 pt r?
o = A ()

al? (532)Bu T (7.37)
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The quantization condition can be estimated in a similar
fashion to the case of D = 4. At the leading order of the low
temperature limit, the effective mass is approximated as

b L pyr
—- 1- Fi(1
Mt T 2ad 2| D1 R
+O(p72).

D-2 D+1 r2>]
b 2 9’ 2 ’r%
(7.38)

The radial component of the metric behaves around the
center r =0 as

41'*2 (D—2)ﬂ2

2
_|_ cee,
- l)ﬂFZ(D 3)rhﬂH

g,=1- © (7.39)

and is of O(1) for r « ﬂ” i r) but is suppressed as O(~2) for

r>> ﬂ; r,. Thus, each of quantities which concerns the
quantization condition has the same behavior to the case of
D = 4, in the order estimation. The quantization condition
is roughly estimated in a similar fashion to the case of

D =4 as

ﬂ%ﬂh N
2xd

(7.40)

and hence, the size of the solution is approximately the
same to the Schwarzschild radius,

roﬂrh'\/ﬁ, (741)

or equivalently, the temperature approaches the Hawking
temperature in f — 0.

Now, we calculate the ADM mass and entropy. By using
(3.28), the ADM mass is given by

Do (ﬁH (D =4)f(r)p*)Dy
M= / A B a0
Bird ' DoQp_s

“8(D-1)(D-3 ﬂGNﬁ\/_< o 4)
x [(D—Z)zFl GDTI bl cf(ﬂ))

440—@0—(>bﬂ(§97i9;ifm0}
(7.42)

By taking &(f) — 1, and substituting (7.33)—(7.35), we
obtain

(D - 2)}"11 3QD 2

M =
162Gy

(7.43)

Thus, we have reproduced the ADM mass of the
Schwarzschild spacetime as is expected. The entropy is
calculated by using (2.20) as

S:4;16(3;]\]/der_ZQD_zf(r)h_l/z(r)Do
b 1 (3D-3D+1
"~ 4(D - 1)aGyvhy {hoz 1(2’ 2 2 ’f(ﬂ))
£(B) 3D-1D+3
SO R(GEE R w)] o

By taking &(f) — 1, and substituting (7.33)—(7.35), we
obtain

(D - 3)ﬂ”5_390—2

S pr—
167TGN

(7.45)

By imposing the quantization condition, the temperature
approaches the Hawking temperature in the low temper-
ature limit. Then, we reproduce the Bekenstein-Hawking
entropy up to the numerical coefficient,

ry 2Qp

S
4Gy

(7.46)

VIII. CONCLUSION AND DISCUSSIONS

In this paper, we studied the transition between self-
gravitating strings and black holes. It is expected that black
holes turn into bound states of strings at a temperature near
the string scale. Horowitz and Polchinski studied an
effective field theory of winding strings, which is wrapping
the Euclidean time circle, and showed explicitly that there
is a solution of such bound states slightly below the
Hagedorn temperature. Near the Hagedorn temperature,
strings are bounded weakly by the self-gravitation and the
bound state can be described by the linearized gravity.
However, gravitation becomes very strong around the
transition between black holes and strings, and hence,
nonlinear effects of gravity should be taken into account.

In order to study details of the black hole-string transition,
we have proposed a fluid model of self-gravitating strings.
Since the fluid is one of the most standard states with local
equilibrium, it is expected that strings near the Hagedorn
temperature behave as a fluid, at least approximately. In this
paper, we first have shown that the stress-energy tensor of
winding strings in the Horowitz-Polchinski model approx-
imately takes the same form to perfect fluids. We have
derived the stress-energy tensor in two different ways. First,
we have shown that the stress-energy tensor of the ground
state of the Horowitz-Polchinski model takes the form of the
perfect fluid at the leading order of the derivative expansion.
Alternatively, we also have calculated the energy density and
pressure from the thermodynamic relations, assuming that
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winding strings behave as a perfect fluid. The results of these
two methods agree with each other. Thus, the stress-energy
tensor of winding strings can be approximated by that of a
perfect fluid. The fluid distribution extends only in the
region where the pressure is positive. Since the pressure of
the fluid of winding strings becomes positive if and only if
the local temperature exceeds the Hagedorn temperature due
to the gravitational blueshift. Thus, the fluid of winding
strings localized in the region where the condensate of
winding strings occurs.

Next, we have considered the spacetime geometry of the
fluid of winding strings. For simplicity, we have ignored
the coupling to the dilaton field. Then, we have solved the
Einstein equation for the stress-energy tensor of the wind-
ing string fluid. The interior solution is obtained analyti-
cally for arbitrary dimensions and has no singularity by
choosing the integration constant appropriately. We have
taken the Schwarzschild spacetime as the exterior vacuum
solution and have considered the junction conditions of
these two solutions. The interface between these two
solutions can be put in an arbitrary position but outside
the Schwarzschild radius.

In the solutions of the Horowitz-Polchinski model,
physical configurations of strings would be described by
the ground state of the winding string field, which satisfies
the first quantization condition. In our fluid model, we do
not consider the field equation of the winding string field,
and hence, the quantization condition is not imposed
automatically. The quantization condition gives an addi-
tional constraint between the size of the star and the
temperature of the fluid. In the high temperature limit,
or equivalently near the Hagedorn temperature, the fluid
has approximately the same size to the solution of the
Horowitz-Polchinski model, by imposing the quantization
condition. The ADM mass and entropy is also approx-
imately the same to the Horowitz-Polchinski model.

We also have considered the low temperature limit.
Although the Horowitz-Polchinski model is expected to give
a good description of strings only near the Hagedorn temper-
ature, strings in bound states by the strong self-gravitation
possibly have sufficiently high local temperatures due to the
gravitational blueshift, even if the global temperature is much
lower than the Hagedorn temperature. In fact, our solution
has a configuration whose local temperature exceeds the
Hagedorn temperature, even in the low temperature limit.
By imposing the quantization condition, the size of the star
approaches the Schwarzschild radius in low temperature.
Moreover the temperature and entropy of the fluid are also
approximately the same to the Schwarzschild black hole.
Although the geometry has no event horizon, the star of the
winding string fluid approximately behaves as and is almost
indistinguishable from a black hole from the viewpoint of
fiducial observers sufficiently away from the star.

As summarized above, we have constructed a solution of
a star of winding strings. Our solution is given at arbitrary

temperatures below the Hagedorn temperature and varies
smoothly under the change of the temperature. Winding
strings are weakly bounded by self-gravitation in the high
temperature limit and approaches the Schwarzschild black
hole in the low temperature limit. Thus, our solution gives
a description of the transition between black holes and
strings.

It would be surprising that our solution is still valid at
arbitrarily low temperatures though it is constructed as a
bound state of winding strings. As there is the transition
between self-gravitating strings and black holes, one would
expect that models of winding strings would be valid only
in the self-gravitating string phase and break down at the
critical point. If this were the case, the black hole phase
would be simply given by the Schwarzschild solution. In
this sense, it would be reasonable that Horowitz and
Polchinski focused only on the weakly bounded winding
strings in the linearized gravity. If the Horowitz-Polchinski
solution is naively extrapolated to the critical point between
the self-gravitating string phase and black hole phase,
the bound state of winding strings would fall inside the
Schwarzschild radius, and hence, the winding string picture
might be expected to break down around the critical point.
However, our solution of the winding string fluid does not
break down at the critical point.

In this paper, we have taken the nonlinear effects of gravity
into account and found that the size of the bound state is
slightly larger than the Schwarzschild radius in the low
temperature limit. Our solution is valid at arbitrarily low
temperatures and gives a description even in the black hole
phase, contrary to the naive expectation. The smoothness of
the solution, as a function of the temperature, implies that the
transition between the self-gravitating strings and black holes
takes place continuously, and there is no discontinuity
between two phases. In this sense, it might be inappropriate
to call ita phase transition, but a discontinuity might be found
by taking corrections into account.

Although the horizonless geometry, which is approx-
imately the same to the Schwarzschild black hole, possibly
turns into an exact black hole with the event horizon
when the size of the star is indistinguishable from the
Schwarzschild radius, it may alternatively indicate that real
black holes have no exact event horizon. It is sometimes
considered that such geometries cannot be realized because
of the Buchdahl theorem [21]. The Buchdahl theorem states
that no static configuration of the perfect fluid has the
radius equal to or less than 9/8 of the Schwarzschild radius.
However, our solution can violate the Buchdahl inequality.
The Buchdahl theorem assumes that the energy density is
nonincreasing outward and non-negative. Our solution
does not satisfy these assumptions. The assumption of
the Buchdahl theorem is reasonable for fluids of ordinary
matters but is not necessarily satisfied by strings near the
Hagedorn temperature. The negative energy density comes
from the condensate of winding strings or equivalently,
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appears because winding strings become tachyonic when
the temperature effectively exceeds the Hagedorn temper-
ature. Effects of the winding string condensate are com-
pletely stringy and appear only near the string scale.
However, these stringy effects possibly become important
even if the Hawking temperature is much lower than the
string (or Planck) scale because the local temperature is
highly blueshifted near black holes.

In this paper, we have ignored the coupling with dilaton
field. It would be interesting to see how the dilaton
coupling will modify the results in this paper. Since the fluid
of winding strings couples with the dilaton, the exterior
solution would also be modified from the Schwarzschild
spacetime. The fluid model itself is merely an approxima-
tion, and winding strings do not behave as a perfect fluid
exactly. It would also be interesting to see more precise
behaviors of winding strings, though it is very difficult to

solve the original equations of motion of the winding
string field. Even in the fluid model, several issues are left
to be studied in more detail. For example, the Horowitz-
Polchinski model has no normalizable solution for D > 7,
whereas we have not reproduced this non-normalizability
in our fluid model. There are several models related to this
problem including charged solutions. They are left for
future studies.
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