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We reduce the massless scalar field theory in Minkowski spacetime to future null infinity. We compute
the Poincaré flux operators, which can be generalized and identified as the supertranslation and
superrotation generators. These generators are shown to form a closed symmetry algebra with a divergent
central charge. In the classical limit, we argue that the algebra may be interpreted as the geometric
symmetry of a Carrollian manifold, i.e., the hypersurface of future null infinity. Our method may be used to
find more physically interesting Carrollian field theories.
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I. INTRODUCTION

The detection of gravitational waves [1] opens a new
window on the observation of the Universe. The gravita-
tional wave is one of the greatest predictions of Einstein’s
equation. Theoretically, it has been known for a long time
that the gravitational waves are radiated to future null
infinity (Iþ) in asymptotically flat spacetime and they
transform in the solution space according to the Bondi-
Metzner-Sachs (BMS) group [2–4]. Classically, the BMS
group is a semidirect product of Lorentz group and
supertranslations. Over the past decade there have been
various approaches on the understanding of the BMS group.
The conventional approach is the so-called asymptotic

symmetry analysis. By imposing falloff boundary condi-
tions on the solutions of the gravitational field, the
BMS group consists of the large diffeomorphisms that
preserve the boundary conditions. The BMS group allows
various extensions by including the so-called superrota-
tions. The Barnich-Troessaert (BT) superrotations are
generated by local conformal Killing vectors of the celestial
sphere [5–8]. On the other hand, the Campiglia-Laddha
(CL) superrotations are generated by diffeomorphisms of
the celestial sphere [9,10]. Both of them are discussed
extensively in the literature.
The amplitude approach is motivated by the discovery of

a set of infrared equivalences [11,12]. Such equivalences
relate the BMS asymptotic symmetries, soft theorems [13],
and classical memory effects [14–17]. As an attempt to

apply the holographic principle to flat spacetime, the
amplitude approach is to map the S-matrix to conformal
correlators living on the celestial sphere [18–24].
The Carroll group approach is based on the symmetry of

the Carroll manifold [25–27]. As is well known, the Galilei
group could be obtained from the nonrelativistic limit (the
speed of light c → ∞) of the Poincaré group. On the other
hand, the Carroll group is the ultrarelativistic limit (c → 0)
of the Poincaré group, which is the dual of the Galilei
group. The BMS group has been shown to be the so-called
conformal Carroll group of level 2 [28–30]. From the point
of view of flat holography, it would be interesting to
construct field theories with Carrollian symmetry [31–38].
In this work, we obtain a scalar field theory by projecting

massless scalar field theory in flat spacetime to its con-
formal boundary Iþ. By imposing the falloff condition of
the scalar field near Iþ, we may solve the bulk equation of
motion (EOM) asymptotically. There is no constraint on
the radiation degree of freedom at the leading order of the
EOM. Nevertheless, they form the radiation phase space
and obey standard commutation relations in the sense of
Ashtekar [39–42]. We can define flux operators at Iþ by
computing the outgoing Poincaré fluxes from radiation.
The energy-momentum flux operators are shown to form a
Virasoro algebra. By including the angular momentum and
the center-of-mass flux operators, we find a new group
which may be regarded as a generalization of the Newman-
Unti group of the Carroll manifold Iþ. In the soft limit, this
new group is reduced to the BMS group.
This paper is organized as follows. In Sec. II we review

the BMS group and introduce the conventions used in this
work. In Sec. III, we construct the ten Poincaré fluxes
radiated to Iþ. We compute the commutation relations at
Iþ in the following section. In Sec. V, we compute the
commutators of the flux operators and find a closed
algebra. We also discuss the antipodal matching condition
in this section. In Sec. VI, we obtain the same algebra by
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generalizing the Newman-Unti group of the Carroll mani-
fold Iþ. We conclude in Sec. VII. Several technical
computations, the derivation of commutators using sym-
plectic structure, and a review about light-ray operator
formalism are relegated to four appendixes.

II. REVIEW OF THE FORMALISM

In Minkowski spacetime R1;3, the metric can be
written as

ds2 ¼ −dt2 þ dxidxi; i ¼ 1; 2; 3: ð2:1Þ

To study radiation at future null infinity Iþ, we can use the
retarded coordinate ðu; r; θ;ϕÞ

u ¼ t − r; r ¼
ffiffiffiffiffi
x2

p
; x ¼ ðx1; x2; x3Þ; ð2:2Þ

and write the metric as

ds2 ¼ −du2 − 2dudrþ r2dΩ2; ð2:3Þ

where

dΩ2 ¼ dθ2 þ sin2θdϕ2 ≡ γABdθAdθB; A; B ¼ 1; 2

ð2:4Þ

is the metric of the unit sphere

γAB ¼
�
1 0

0 sin2 θ

�
: ð2:5Þ

In this paper, the covariant derivative ∇A is adapted to the
metric γAB. Iþ can be approached by setting r → ∞ while
keeping u fixed. It has the topology R × S2 and can be
described by three coordinates

ðu; θ;ϕÞ ¼ ðu; θAÞ: ð2:6Þ

In an asymptotically flat spacetime, the large-r expan-
sion of the metric near Iþ is

ds2¼−du2−2dudrþ r2γABdθAdθBþδgμνdxμdxν: ð2:7Þ

The original BMS group [2,3] is the large diffeomorphism
that preserves the Bondi gauge

δgrr ¼ δgrA ¼ 0; ∂rðr−4 det gABÞ ¼ 0 ð2:8Þ

and the falloff conditions

δguu ¼ O
�
1

r

�
; δgur ¼ O

�
1

r2

�
; δguA ¼ Oð1Þ;

δgAB ¼ OðrÞ: ð2:9Þ

Transformations generated by the vector

ξf ¼ f∂u þ
1

2
∇A∇Af∂r −

∇Af
r

∂A þ � � � ð2:10Þ

are called supertranslations. The function f is smooth on
S2. More explicitly, we write it as

f ¼ fðΩÞ: ð2:11Þ

Similarly, the transformations generated by the vector

ξY ¼ 1

2
u∇AYA

∂u −
1

2
ðuþ rÞ∇AYA

∂r

þ
�
YA −

u
2r

∇A∇BYB

�
∂A þ � � � ð2:12Þ

are called superrotations. We will distinguish two cases:
(1) The vector YA is a local (singular) conformal Killing

vector (CKV) on S2. In this case, the vector YA can
be divided into holomorphic and antiholomorphic
parts. This is the superrotation in the BT sense. We
will not consider this case in this paper.1

(2) The vector YA is smooth on S2 and generates a
diffeomorphism on S2, namely

YA ¼ YAðΩÞ: ð2:13Þ

This is the CL superrotation.
By combining supertranslations and superrotations, the
usual BMS group is generated by the vector

ξf;Y ¼ YAðΩÞ∂A þ
�
fðΩÞ þ u

2
∇AYAðΩÞ

�
∂u ð2:14Þ

at future null infinity.

III. FLUXES

Since BMS symmetry relates to the radiation phase space
at Iþ, we will use a massless real scalar to study the
radiation at Iþ. The action is

S ¼
Z

d4x

�
−
1

2
∂μΦ∂

μΦ − VðΦÞ þ JΦ
�
: ð3:1Þ

The first term is the kinematic term and the second term
is the potential. Since the theory is massless, the potential
is VðΦÞ ∼Φ3 perturbatively. To be more precise, we may

1They may relate to cosmic string defects [43,44].
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expand the potential as

VðΦÞ ¼
X∞
k¼3

λk
k
Φk: ð3:2Þ

The last term in the action is a source coupled to the field
and it causes the scalar radiation. The stress-energy tensor
of the theory is

Tμν ¼ ∂μΦ∂νΦþ ημνL; μ; ν ¼ 0; 1; 2; 3; ð3:3Þ

where the Lagrangian can be read out from the action (3.1).
Figure 1 is the Penrose diagram of the Minkowski

spacetime. The scalar theory is in the bulk of the
Penrose diagram. At the boundary, there are nontrivial
outgoing fluxes at Iþ and ingoing fluxes at I−. To find the
radiation degree of freedom, we should reduce the field Φ
to Iþ. This is achieved by imposing the following falloff
condition:

Φ ¼ Σðu;ΩÞ
r

þ
X
k≥2

ΣðkÞðu;ΩÞ
rk

¼ Σðu;ΩÞ
r

þ Σð2Þðu;ΩÞ
r2

þO
�
1

r3

�
ð3:4Þ

near Iþ. Just as in electrodynamics [45], the field Σ
encodes the radiation degree of freedom. The fields
ΣðkÞ; k ≥ 2 are subleading terms which will be discussed
in the equation of motion. The variation of the scalar field
under a general diffeomorphism is

δξΦ ¼ ξμ∂μΦ: ð3:5Þ

Therefore, the transformation of the boundary field Σ under
supertranslation is

δfΣ ¼ f _Σ ð3:6Þ

where _Σ ¼ ∂uΣ. Similarly, we find the transformation of the
field Σ under superrotation

δYΣ ¼ 1

2
u∇AYA _Σþ YA∇AΣþ 1

2
∇AYAΣ: ð3:7Þ

The first term on the right-hand side of (3.7) may be
subtracted, since it has the same form as the right-hand side
of (3.6). For the remaining two terms, we may define

ΔðY;Σ; u;ΩÞ ¼ YA∇AΣðu;ΩÞ þ
1

2
∇AYAΣðu;ΩÞ ð3:8Þ

for later convenience.
From the action (3.1), the equation of motion is

□Φ −
∂V
∂Φ

þ J ¼ 0: ð3:9Þ

The external source affects the vacuum state of the theory
and modifies the quantum expectation value and the
correlation functions of the field Σ. However, we will
consider quantum fluctuations of the field around the
vacuum state, so it is safe to set it to zero. From now
on, we ignore the source term2 and try to solve the equation
of motion near Iþ. Using the falloff condition (3.4) and the
potential (3.2), we can solve the equation of motion order
by order. More explicitly, we have

∂
2
0Φ ¼ Σ̈

r
þ Σ̈ð2Þ

r2
þ Σ̈ð3Þ

r3
þ � � � ; ð3:10Þ

and

∂
2
iΦ ¼ Σ̈

r
þ Σ̈ð2Þ

r2
þ 1

r3
½γAB∇A∇BΣþ 2 _Σð2Þ þ Σ̈ð3Þ� þ � � � :

ð3:11Þ

Therefore, we could obtain the following results.
(1) At the leading order Oðr−1Þ, the time derivative of Σ

is cancelled out and there is no corresponding EOM
for Σ. There would exist terms with time derivative
of Σ from ∂

2
0Φ. However, the contribution about such

term from −∂20Φ exactly cancels that from ∂
2
iΦ.

FIG. 1. Penrose diagram of the Minkowski spacetime. Massive
particles come from past timelike infinity i− and go to future
timelike infinity iþ. Massless particles start from past null infinity
I− and move to future null infinity Iþ. Iþ and I− are null
hypersurfaces with topology R × S2. There are ingoing fluxes at
I− and outgoing fluxes at Iþ.

2In Sec. V C, we will insert back the source term to discuss the
antipodal matching condition.
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(2) At the subleading order Oðr−2Þ, we find the follow-
ing equation:

λ3Σ2 ¼ 0: ð3:12Þ

From (3.12), the field Σ should be zero when λ3 ≠ 0.
To find nontrivial phase space, we may choose
λ3 ¼ 0. Then the equation is valid without imposing
any constraint on the field Σ.

(3) At next order Oðr−3Þ, we find

−λ4Σ3 þ 2 _Σð2Þ þ γAB∇A∇BΣ ¼ 0: ð3:13Þ

The subleading term Σð2Þ is determined when we
impose the initial condition at the initial time u ¼ ui

Σð2Þðu ¼ ui;ΩÞ ¼ σð2ÞðΩÞ: ð3:14Þ

The initial data σð2ÞðΩÞ is independent of the field Σ.
Equation (3.13) indicates that Σð2Þ is not an inde-
pendent propagating degree of freedom at Iþ.

(4) At higher orders Oðr−kÞ; k ≥ 4, we can also prove
that Σðk−1Þ are not independent propagating degrees
of freedom.

In this paper, the Poincaré fluxes could be expressed in
terms of the field Σ without any contribution from the
higher order terms ΣðkÞ; k ≥ 2. We will focus on field Σ in
the following.

A. Energy and momentum fluxes

To find the energy flux at Iþ, we use the conservation of
the stress-energy tensor3

∂μTνμ ¼ 0: ð3:15Þ

It follows that the energy flux can be written as

dP0

dt
¼ d

dt

Z
V
d3xT00 ¼ −

Z
V
d3x∂iT0i ¼ −

Z
∂V

dSiT0i:

ð3:16Þ

T0i is the ith component of the energy flux density [46]
which is radiated out of surface of the volume V. Near Iþ,
it is expanded as

T0i ¼
_Σ2ni

r2
þO

�
1

r3

�
: ð3:17Þ

The leading term cancels the factor r2 in the integration
measure

dSi ¼ r2nidΩ ð3:18Þ

and leads to a finite result. Note that the right-hand side of
(3.16) is a function of u. In the retarded coordinates (2.2),
the derivative with respect to u can be found by using the
chain rule,

d
du

¼ ∂t
∂u

d
dt

¼ d
dt

: ð3:19Þ

Therefore, we find the energy flux

dP0

du
¼ −

Z
S2
dΩ _Σ2ðu;ΩÞ: ð3:20Þ

In a similar way, we find the following momentum flux

dPi

du
¼ −

Z
S2
dΩ _Σ2ðu;ΩÞni; ð3:21Þ

where ni is the normal vector of the unit sphere S2

ni ¼ ðsin θ cosϕ; sin θ cosϕ; cos θÞ: ð3:22Þ

The energy and momentum radiated to Iþ during the time
ð−∞; u0Þ can be written as

Tfðu0Þ ¼
Z

u0

−∞
dudΩfðΩÞ _Σ2; −∞ < u0 < ∞; ð3:23Þ

where f is a function on the sphere.
(1) When f ¼ −1, (3.23) is the energy radiated to Iþ.
(2) When f ¼ −ni, (3.23) is the momentum radiated

to Iþ.
(3) It is natural to generalize the function f to be any

smooth function on the sphere. As we will see later,
this corresponds to the supertranslation exactly.

The energy and momentum radiated to Iþ are encoded in
the expression (3.23). It is easy to see that (3.23) can be
naturally generalized to the following version:

T f ¼
Z

∞

−∞
dudΩfðu;ΩÞ _Σ2: ð3:24Þ

Now f is a function on Iþ. When it is a step function

fðu;ΩÞ ¼ θðu0 − uÞgðΩÞ; ð3:25Þ

T f is equivalent to Tgðu0Þ. If we want to study the
time dependence of the radiation, it is necessary to consider
this generalization. Otherwise, after averaging over time
in (3.24), any time-dependent information of _Σ2ðu;ΩÞ will
get lost.

3Note that the conservation law is written in Cartesian
coordinates, although arguments of terms are in retarded frame.
This leads to standard definition of energy, momentum and
angular momentum.
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Due to the topology of Iþ, the function fðu;ΩÞ can be
expanded in the following basis:

fðu;ΩÞ ¼
X
l;m

Z
∞

−∞
dωcω;l;mfω;l;m;

fω;l;m ¼ e−iωuYl;mðΩÞ; ð3:26Þ

where ω is the frequency which is dual to the retarded time
and ðl; mÞ are used to label the spherical harmonics.
Therefore, (3.24) can also be labeled by three quantum
numbers ðω;l; mÞ

T ω;l;m ¼
Z

∞

−∞
dudΩfω;l;m _Σ2: ð3:27Þ

As we will show in Appendix D, the insertion of e−iωu is
also performed in the context of light-ray operator formal-
ism. At the end of this subsection, we will define an energy
flux density operator at Iþ

Tðu;ΩÞ ¼ _Σ2: ð3:28Þ

It encodes equivalent information of the smeared
operator (3.24).

B. Angular momentum and center-of-mass fluxes

The system is also Lorentz invariant. Thus we can also
find a conserved current

Mμνρ ¼ xμTνρ − xνTμρ; ∂ρMμνρ ¼ 0 ð3:29Þ

whose corresponding conserved charges are the angular
momentum and center of mass. Therefore, we can find the
following fluxes at Iþ:

dLμν

du
¼ −

Z
V
d3x∂iMμνi ¼ −

Z
∂V

dSiMμνi: ð3:30Þ

(1) For the rotation symmetry, we find the angular
momentum fluxes

dLij

du
¼

Z
S2
dΩYA

ij
_Σ∇AΣ; ð3:31Þ

where YA
ij are the three Killing vectors of S2:

YA
12 ¼ ð0; 1Þ; ð3:32Þ

YA
23 ¼ ð− sinϕ;− cot θ cosϕÞ; ð3:33Þ

YA
13 ¼ ð− cosϕ; cot θ sinϕÞ: ð3:34Þ

(2) For the Lorentz boost, we find the center-of-mass
fluxes

dL0i

du
¼ −

Z
S2
dΩðYA

i
_Σ∇AΣþ u _Σ2niÞ; ð3:35Þ

where YA
i are the three strictly conformal Killing

vectors of S2:

YA
1 ¼

�
− cos θ cosϕ;

sinϕ
sin θ

�
; ð3:36Þ

YA
2 ¼

�
− cos θ sinϕ;−

cosϕ
sin θ

�
; ð3:37Þ

YA
3 ¼ ðsin θ; 0Þ: ð3:38Þ

They are related to the normal vector ni by

∇AYA
i ¼ 2ni: ð3:39Þ

More properties on the six conformal Killing vectors
YA
i ; Y

A
ij can be found in Appendix A.

From (3.31) and (3.35), we can define a smeared operator

RY ¼
Z

∞

−∞
dudΩYAðu;ΩÞ _Σ∇AΣ; ð3:40Þ

where YAðu;ΩÞ is a vector on Iþ.
(1) When YA ¼ YA

ij, RY is the angular momentum
radiated to Iþ during the whole time ð−∞;∞Þ.

(2) When YA ¼ YA
i , RY þ T u

2
∇AYA is related to the

variation of the center of mass during the whole
time.

(3) The vector YA can also be any smooth vector on S2

and RY will be related to the CL superrotation [9].
(4) When YA is any singular conformal Killing vector on

S2, RY will be related to the BT superrotation [5].
(5) We can choose YA to be

YAðu;ΩÞ ¼ θðu0 − uÞYAðΩÞ: ð3:41Þ

Then RY becomes

RYðu0Þ ¼
Z

u0

−∞
dudΩYAðΩÞ _Σ∇AΣ: ð3:42Þ

This is the superrotation charge radiated to Iþ
during the time ð−∞; u0Þ.

For later convenience, we also define an angular momen-
tum flux density operator

RAðu;ΩÞ ¼ _Σ∇AΣ: ð3:43Þ
Actually, we could define a family of such angular
momentum flux density operators
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MAðλ; u;ΩÞ ¼ λ _Σ∇AΣ − ð1 − λÞΣ∇A
_Σ ð3:44Þ

where λ is any real constant. For the cases in which YA is
independent of u, all of the operators in this family are
equivalent, since we can integrate by parts. In other words,
the corresponding smeared operator

MYðλÞ ¼
Z

dudΩYAðΩÞMAðλ; u;ΩÞ ð3:45Þ

does not depend on λ. However, when YA is time depen-
dent, the smeared operators

MYðλÞ ¼
Z

dudΩYAðu;ΩÞMAðλ; u;ΩÞ ð3:46Þ

are not equivalent to each other.

IV. CANONICAL QUANTIZATION

In the previous section, we find the Poincaré fluxes at
Iþ. The densities Tðu;ΩÞ; RAðu;ΩÞ are classical objects so
far. In this section, we will find the radiative Hilbert
space using canonical quantization. The densities Tðu;ΩÞ;
RAðu;ΩÞ will become quantum flux density operators
defined on Iþ.

A. Commutators

In perturbative quantum field theory, the scalar field Φ
may be quantized asymptotically using annihilation and
creation operators bk; b

†
k

Φðt; xÞ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωk

p ðe−iωtþik·xbk þ eiωt−ik·xb†kÞ;

ð4:1Þ

with the standard commutation relations

½bk; b†k0 � ¼ ð2πÞ3δðk − k0Þ; ½bk; bk0 � ¼ 0;

½b†k; b†k0 � ¼ 0: ð4:2Þ

The vector k is the momentum and ω is the energy. For a
massless particle,

ωk ¼ jkj≡ k: ð4:3Þ

The plane wave can be expanded as spherical waves

eik·x ¼ 4π
X
l;m

iljlðωrÞY�
l;mðθ;ϕÞYl;mðθ0;ϕ0Þ; ð4:4Þ

where the vectors k and x are written in spherical
coordinates as

k ¼ ðω; θ;ϕÞ; x ¼ ðr; θ0;ϕ0Þ: ð4:5Þ

The spherical Bessel function jlðωrÞ has the following
asymptotic behavior as r → ∞:

jlðωrÞ ∼
sinðωr − πl

2
Þ

ωr
¼ eiðωr−πl=2Þ − e−iðωr−πl=2Þ

2iωr
: ð4:6Þ

Therefore,

e−iωtþik·x ∼ 4π
X
lm

il
e−iωu−iπl=2 − e−iωvþiπl=2

2iωr

× Y�
l;mðθ;ϕÞYl;mðθ0;ϕ0Þ: ð4:7Þ

Near Iþ, the term with e−iωv oscillates infinite times and
we can set it to zero safely.4 Note that this is also the
requirement of the boundary condition (3.4). We read the
quantum version of Σðu;ΩÞ as

Σðu;ΩÞ ¼
Z

∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p
X
lm

½aω;l;me−iωuYl;mðΩÞ

þ a†ω;l;me
iωuY�

l;mðΩÞ� ð4:8Þ

where

aω;l;m ¼ ω

2
ffiffiffi
2

p
π3=2i

Z
dΩbkY�

l;mðΩÞ; ð4:9Þ

a†ω;l;m ¼ ωi

2
ffiffiffi
2

p
π3=2

Z
dΩb†kYl;mðΩÞ: ð4:10Þ

We can also inverse (4.9) and (4.10) as

bk ¼
2

ffiffiffi
2

p
π3=2i
ω

X
l;m

aω;l;mYl;mðΩÞ; ð4:11Þ

b†k ¼ −
2

ffiffiffi
2

p
π3=2i
ω

X
l;m

a†ω;l;mY
�
l;mðΩÞ: ð4:12Þ

We find the following commutators:

½aω;l;m; aω0;l0;m0 � ¼ ½a†ω;l;m; a†ω0;l0;m0 � ¼ 0; ð4:13Þ

½aω;l;m; a†ω0;l0;m0 � ¼ δðω − ω0Þδl;l0δm;m0 : ð4:14Þ

Therefore, aω;l;m are annihilation operators and a†ω;l;m are
creation operators at Iþ. They are natural operators at Iþ

instead of bk and b†k.

4It is common to set the term with e−iωv to zero in the context
of the Unruh effect [47,48].
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Now we can find the following commutator:

½Σðu;ΩÞ;Σðu0;Ω0Þ�

¼ δðΩ −Ω0Þ
�Z

∞

0

dω
4πω

e−iωðu−u0Þ −
Z

∞

0

dω
4πω

eiωðu−u0Þ
�

¼ δðΩ −Ω0Þ
Z

∞

−∞

dω
4πω

e−iωðu−u0Þ: ð4:15Þ

The Dirac delta function on the sphere is

δðΩ − Ω0Þ ¼ 1

sin θ
δðθ − θ0Þδðϕ − ϕ0Þ: ð4:16Þ

The integral in the commutator is divergent in general.
However, we can first compute

½Σðu;ΩÞ; _Σðu0;Ω0Þ� ¼ i
2
δðu − u0ÞδðΩ −Ω0Þ; ð4:17Þ

and then integrate on u0

½Σðu;ΩÞ;Σðu0;Ω0Þ� ¼ i
2
αðu − u0ÞδðΩ −Ω0Þ: ð4:18Þ

The function αðu − u0Þ should satisfy the following two
properties:

d
du0

αðu − u0Þ ¼ δðu − u0Þ; αðu − u0Þ ¼ −αðu0 − uÞ:
ð4:19Þ

These fix the expression of αðu − u0Þ

αðu − u0Þ ¼ 1

2
½θðu0 − uÞ − θðu − u0Þ� ð4:20Þ

where θðxÞ is the Heaviside step function

θðxÞ ¼
�
1; x > 0

0; x < 0:
ð4:21Þ

Finally, we write down the commutator between two _Σ
operators

½ _Σðu;ΩÞ; _Σðu0;Ω0Þ� ¼ i
2
δ0ðu − u0ÞδðΩ −Ω0Þ; ð4:22Þ

where

δ0ðu − u0Þ≡ d
du

δðu − u0Þ ¼ −
d
du0

δðu − u0Þ: ð4:23Þ

B. Correlation functions

To compute correlation functions, we need to define the
vacuum state. Since aω;l;m is a linear combination of bk, the
free vacuum is still defined as

aω;l;mj0i ¼ 0 ⇔ bkj0i ¼ 0: ð4:24Þ

For interacting theory, the physical vacuum j0i is not
exactly the free vacuum. The physical vacuum is defined as
the lowest energy state of the Hamiltonian H. We can
expand the free vacuum as the superposition of the
eigenstates of the Hamiltonian

j0i ¼ j0ih0j0i þ
X
n

jnihnj0i: ð4:25Þ

We use n to label the eigenstates of the Hamiltonian

Hjni ¼ Enjni: ð4:26Þ

The energy of the physical vacuum can be shifted to 0

Hj0i ¼ 0j0i ¼ 0: ð4:27Þ

Usually, the energy is assumed to be positive for excited
states [49]

En > 0: ð4:28Þ

The physical vacuum can be found from

lim
t→∞ð1−iϵÞ

e−iHtj0i ¼ j0ih0j0i: ð4:29Þ

In this paper, we will only focus on the theory at Iþ.
It corresponds to the final states after scattering process.
The radiative Hilbert space may be constructed by the
creation operators acting on the free vacuum state. For
example, a particle with momentum k ¼ ðω;ΩÞ is a
superposition state

−
2

ffiffiffi
2

p
π3=2i
ω

X
l;m

Y�
l;mðΩÞa†ω;l;mj0i: ð4:30Þ

We will derive the symmetry algebra at Iþ. It is better to
consider the free theory at first. In the following, we will
use j0i to denote the vacuum state. Using the expansion
(4.8), the vacuum correlation function with odd number of
Σ is always zero. The fundamental two-point correlation
functions at Iþ are

h0jΣðu;ΩÞΣðu0;Ω0Þj0i ¼
Z

∞

0

dω
4πω

e−iωðu−u0ÞδðΩ −Ω0Þ;

ð4:31Þ
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h0jΣðu;ΩÞ _Σðu0;Ω0Þj0i ¼ i
Z

∞

0

dω
4π

e−iωðu−u0ÞδðΩ − Ω0Þ;

ð4:32Þ

h0j _Σðu;ΩÞΣðu0;Ω0Þj0i ¼ −i
Z

∞

0

dω
4π

e−iωðu−u0ÞδðΩ − Ω0Þ;

ð4:33Þ

h0j _Σðu;ΩÞ _Σðu0;Ω0Þj0i ¼
Z

∞

0

dω
4π

ωe−iωðu−u0ÞδðΩ −Ω0Þ:

ð4:34Þ

The integral in (4.32) is only well defined when
Imðu − u0Þ < 0. Therefore, we use the following iϵ pre-
scription [50,51] in the correlators:

u → u − iϵ; ϵ > 0: ð4:35Þ

Now the correlators (4.32)–(4.34) are

h0jΣðu;ΩÞ _Σðu0;Ω0Þj0i ¼ 1

4πðu − u0 − iϵÞ δðΩ −Ω0Þ;

ð4:36Þ

h0j _Σðu;ΩÞΣðu0;Ω0Þj0i ¼ −
1

4πðu − u0 − iϵÞ δðΩ −Ω0Þ;

ð4:37Þ

h0j _Σðu;ΩÞ _Σðu0;Ω0Þj0i ¼ −
1

4πðu − u0 − iϵÞ2 δðΩ −Ω0Þ:

ð4:38Þ

The correlator (4.31) is still divergent. Nevertheless, we
write it as

h0jΣðu;ΩÞΣðu0;Ω0Þj0i ¼ βðu − u0ÞδðΩ −Ω0Þ; ð4:39Þ

where

βðu − u0Þ ¼
Z

∞

0

dω
4πω

e−iωðu−u0−iϵÞ: ð4:40Þ

This β function may be regularized by

βðu − u0Þ ¼ lim
κ→0þ

Z
∞

0

dω
4πω1−κ e

−iωðu−u0−iϵÞ: ð4:41Þ

Besides a divergent part which is proportional to κ−1,
βðu − u0Þ should be a logarithmic function

βðu − u0Þ ∼ 1

4πκ
−

1

4π
logðiðu − u0 − iϵÞÞ − γE

4π
; ð4:42Þ

where γE is the Euler constant. There is a branch point at
u ¼ u0. Though βðu − u0Þ is divergent, we find a finite
result by considering the following difference:

βðu − u0Þ − βðu0 − uÞ ¼ i
2
αðu − u0Þ: ð4:43Þ

This is consistent with the commutator (4.18). The time
derivative of the βðu − u0Þ function is

d
du

βðu − u0Þ ¼ −
d
du0

βðu − u0Þ ¼ −
1

4πðu − u0 − iϵÞ :

ð4:44Þ

We also notice that the correlators (4.36)–(4.38) are
consistent with the commutators (4.17) and (4.22) by using
the following formula:

1

x� iϵ
¼ P

1

x
∓ iπδðxÞ ð4:45Þ

where P 1
x is the principal value. Now we compute the

four-point correlation function using Wick contraction

h0jΣðu1;Ω1ÞΣðu2;Ω2ÞΣðu3;Ω3ÞΣðu4;Ω4Þj0i
¼ G12G34 þ G13G24 þG14G23; ð4:46Þ

where we have defined the two-point functions

Gij ¼ h0jΣðui;ΩiÞΣðuj;ΩjÞj0i ¼ βðui − ujÞδðΩi −ΩjÞ:
ð4:47Þ

All other four-point correlation functions are generated
from (4.46). For example,

h0j _Σðu1;Ω1Þ _Σðu2;Ω2Þ _Σðu3;Ω3Þ _Σðu4;Ω4Þj0i
¼ H12H34 þH13H24 þH14H23; ð4:48Þ

where

Hij ¼ ∂ui∂ujGij ¼ −
1

4πðui − uj − iϵÞ2 δðΩi −ΩjÞ: ð4:49Þ

Attentive readers may have questions about the corre-
lation functions in this subsection and the commutation
relations in the previous subsection. Usually, the propagator

hΦðt; xÞΦðt0; x0Þi ð4:50Þ

is understood as the corresponding Green’s function which
satisfies the wave equation. Interestingly, we have con-
cluded that the propagating field Σ is not subject to any
additional constraint upon λ3 ¼ 0. At the same time, there
is still a nontrivial propagator
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hΣðu;ΩÞΣðu0;Ω0Þi: ð4:51Þ

There is no contradiction since the EOM alone does not fix
the propagator. One should also impose suitable initial/
boundary conditions. For example, any plane wave

e−iωtþik·x ð4:52Þ

could satisfy the bulk EOM once the energy ω and the
momentum k are related by the identity ω ¼ jkj. Due to the
completeness of the Fourier modes in the solution space,
the bulk field can be expanded in the plane wave basis with
suitable coefficients

Φðt; xÞ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωk

p ðe−iωtþik·xbk þ eiωt−ik·xb†kÞ:

ð4:53Þ

In canonical quantization, one should impose nontrivial
commutators between Φ and its conjugate momentum ∂tΦ
which turns into the commutators between bk and its
Hermitian conjugate. With the definition of vacuum, one
can determine the propagator using the commutators.
There is a similar story for the boundary propagator

(4.51). Any smooth function at the boundary may be
expanded in the basis fω;l;m ¼ e−iωuYl;mðΩÞ since boun-
dary manifold is Iþ ¼ R × S2. There is no further con-
straint for the three quantum numbers ðω;l; mÞ since there
is no dynamical EOM for the boundary field Σ. This is
exactly the mode expansion (4.8) of the boundary field
which is written below

Σðu;ΩÞ ¼
Z

∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p
X
lm

½aω;l;me−iωuYl;mðΩÞ

þ a†ω;l;me
iωuY�

l;mðΩÞ�: ð4:54Þ

There are still nontrivial commutators between the coef-
ficients aω;l;m and a†ω;l;m which are inherited from the
quantum bulk field. In other words, though the boundary
theory Σ has no dynamical EOM, there is indeed a
nontrivial symplectic structure in the phase space, from
which we could work out the Poisson brackets and hence
commutation relations. The derivations are collected in
Appendix B. The propagator of the boundary field Σ is a
consequence of the symplectic structure and the definition
of vacuum state.

C. Normal ordering

After quantization, the densities Tðu;ΩÞ; RAðu;ΩÞ are
operators. We should refine their definition by using normal
ordering

Tðu;ΩÞ ¼ ∶ _Σ2ðu;ΩÞ∶; ð4:55Þ

RAðu;ΩÞ ¼ ∶ _Σ∇AΣðu;ΩÞ∶: ð4:56Þ

The procedure is to move the annihilation operators to the
right of the creation operators. Therefore, the vacuum
expectation values of these flux density operators vanish

h0jTðu;ΩÞj0i ¼ h0jRAðu;ΩÞj0i ¼ 0: ð4:57Þ

An equivalent way is to refine the operators by taking the
following limit:

Tðu;ΩÞ ¼ lim
u0→u;Ω0→Ω

_Σðu;ΩÞ _Σðu0;Ω0Þ

− h0j _Σðu;ΩÞ _Σðu0;Ω0Þj0i; ð4:58Þ

RAðu;ΩÞ ¼ lim
u0→u;Ω0→Ω

_Σðu;ΩÞ∇A0Σðu0;Ω0Þ

− h0j _Σðu;ΩÞ∇A0Σðu0;Ω0Þj0i: ð4:59Þ

Considering the normal ordering, we find the following
two-point functions:

h0jTðu;ΩÞTðu0;Ω0Þj0i ¼ δð2Þð0Þ
8π2ðu − u0 − iϵÞ4 δðΩ −Ω0Þ;

ð4:60Þ

h0jTðu;ΩÞRA0 ðu0;Ω0Þj0i¼ δð2Þð0Þ
16π2ðu−u0− iϵÞ3∇A0δðΩ−Ω0Þ;

ð4:61Þ

h0jRAðu;ΩÞRB0 ðu0;Ω0Þj0i

¼ −
βðu − u0Þ

4πðu − u0 − iϵÞ2 δðΩ −Ω0Þ∇A∇B0δðΩ − Ω0Þ

−
1

16π2ðu − u0 − iϵÞ2∇AδðΩ −Ω0Þ∇B0δðΩ − Ω0Þ:

ð4:62Þ

The divergent constant δð2Þð0Þ is the Dirac functions (4.16)
on the sphere with the argument equalling 0. The non-
vanishing of the two-point function (4.61) indicates that RA
is not orthogonal to T. We define a new operator

MA ¼ 1

2
ð∶ _Σ∇AΣ − Σ∇A

_Σ∶Þ: ð4:63Þ

It is related to RA by

MA ¼ RA −
1

4
∇A

_Q; ð4:64Þ

where the operator Q is defined as
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Q≡ ∶Σ2∶: ð4:65Þ

Then the two-point function between T and M becomes
zero

h0jTðu;ΩÞMA0 ðu0;Ω0Þj0i ¼ 0: ð4:66Þ

The flux density operators defined in (3.44) are classically
equivalent in the cases where YA is independent of time u.
However, in the quantum cases, only the operator with
λ ¼ 1=2 is orthogonal to T. Therefore, it is natural to
choose such an operator to define our smeared super-
rotation flux operator. As will be shown later, we obtain a
set of concise commutation relations with such an choice.
However, one may also choose other values of λ since the
orthogonality condition is not necessary.
The two-point function between two Ms is

h0jMAðu;ΩÞMB0 ðu0;Ω0Þj0i

¼ −
βðu − u0Þ − 1

4π

8πðu − u0 − iϵÞ2 ΛAB0 ðΩ;Ω0Þ; ð4:67Þ

with

ΛAB0 ðΩ;Ω0Þ ¼ δðΩ − Ω0Þ∇A∇B0δðΩ −Ω0Þ
−∇AδðΩ − Ω0Þ∇B0δðΩ −Ω0Þ: ð4:68Þ

To simplify notation, we will use the convention

MY ≡MY

�
λ ¼ 1

2

�
¼

Z
dudΩYAðu;ΩÞMAðu;ΩÞ:

ð4:69Þ

D. Correlation functions between flux operators

From the correlation functions between flux density
operators, it is easy to calculate correlation functions
between flux operators. We define the following quantities:

TfðuÞ ¼
Z

dΩfðu;ΩÞTðu;ΩÞ;

MYðuÞ ¼
Z

dΩYAðu;ΩÞMAðu;ΩÞ: ð4:70Þ

They are related to the flux operators

T f ¼
Z

duTfðuÞ; MY ¼
Z

duMYðuÞ: ð4:71Þ

From the correlation functions of the flux density operators,
we could find

hTf1ðuÞTf2ðu0Þi ¼
δð2Þð0Þ
8π2

Z
dΩ

f1ðu;ΩÞf2ðu0;ΩÞ
ðu − u0 − iϵÞ4 ;

ð4:72Þ

hTfðuÞMYðu0Þi¼ 0; ð4:73Þ

hMYðuÞMZðu0Þi ¼−
Z

dΩdΩ0YAðu;ΩÞZB0 ðu0;Ω0Þ

×ΛAB0 ðΩ;Ω0Þ βðu−u0Þ− 1
4π

8πðu−u0− iϵÞ2 : ð4:74Þ

Thus the correlation functions of the energy flux oper-
ators are

h0jT f1T f2 j0i ¼
δð2Þð0Þ
8π2

Z
dudΩdu0

f1ðu;ΩÞf2ðu0;ΩÞ
ðu − u0 − iϵÞ4 :

ð4:75Þ

When f1, f2 do not depend on u, it is easy to see that

h0jT f1T f2 j0i ¼
δð2Þð0Þ
8π2

Z
dudΩdu0

f1ðΩÞf2ðΩÞ
ðu − u0 − iϵÞ4 ¼ 0:

ð4:76Þ
As a consequence of (4.66), we find

h0jT fMY j0i ¼ 0: ð4:77Þ

At last, we consider h0jMYMZj0i

h0jMYMZj0i ¼ −
Z

dudΩdu0dΩ0YAðu;ΩÞZB0 ðu0;Ω0Þ

×
βðu − u0Þ − 1

4π

8πðu − u0 − iϵÞ2 × ΛAB0 ðΩ;Ω0Þ:

ð4:78Þ

If YA, ZA do not depend on u, we find

h0jMYMZj0i¼−
Z

dudΩdu0dΩ0YAðΩÞZB0 ðΩ0Þ

×
βðu−u0Þ− 1

4π

8πðu−u0− iϵÞ2×ΛAB0 ðΩ;Ω0Þ

¼
Z

dudΩdu0dΩ0YAðΩÞΛAB0 ðΩ;Ω0ÞZB0 ðΩ0Þ

×
1

32π2ðu−u0− iϵÞ2¼ 0: ð4:79Þ

To obtain the second line, we have integrated by parts with
respect to u, and have used the derivative of βðu − u0Þ given
in (4.44).
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In summary, when f1, f2 and YA, ZA are time indepen-
dent, the correlators between the smeared operators are zeros

hT f1T f2i ¼ hT fMYi ¼ hMYMZi ¼ 0: ð4:80Þ

However, we have obtained the correlation functions (4.72)
and (4.74). They do not vanish and contain more detailed

information than the smeared operators when f1, f2 and
YA, ZA are time independent,

hTf1ðuÞTf2ðu0Þi ¼
δð2Þð0Þ
8π2

Z
dΩ

f1ðΩÞf2ðΩÞ
ðu − u0 − iϵÞ4 ; ð4:81Þ

hMYðuÞMZðu0Þi ¼ −
Z

dΩdΩ0YAðΩÞZB0 ðΩ0ÞΛAB0 ðΩ;Ω0Þ βðu − u0Þ − 1
4π

8πðu − u0 − iϵÞ2 : ð4:82Þ

When u and u0 are close to each other, there is a peak for the
correlation function hTf1ðuÞTf2ðu0Þi. One can also find a
peak for hMYðuÞMZðu0Þi. In the limit

u → ∞; u0 finite; ð4:83Þ
the correlation function hTf1ðuÞTf2ðu0Þi decays by power

hTf1ðuÞTf2ðu0Þi ∼
1

u4
ð4:84Þ

and hMYðuÞMZðu0Þi decays as

hMYðuÞMZðu0Þi ∼
log u
u2

: ð4:85Þ

V. SYMMETRY ALGEBRA AT I +

In this section, wewill relate the operators T f andMY to
supertranslation and superrotation respectively. Then we
will generalize the BMS algebra by computing the com-
mutators between these flux operators.

A. Supertranslation and superrotation generators

Using the commutator (4.17), we can find

δ̄fΣðu0;Ω0Þ≡ ½T f;Σðu0;Ω0Þ� ¼−ifðu0;Ω0Þ _Σðu0;Ω0Þ: ð5:1Þ

This is exactly the transformation of the field under
supertranslation (3.6) up to a constant factor. Therefore,
when f is time independent, the operator T f should be
regarded as the generator of supertranslation. Interestingly,
the test function f in T f could be time dependent. Now we
will explain the terminology used in this paper.
(1) Usually, f is a smooth function on S2. More

explicitly, we write it as

f ¼ fðΩÞ: ð5:2Þ

We will call it a special supertranslation (SST).
(2) In this paper, we will also consider the possibility

that f is defined on Iþ, i.e., it may depend on the
retarded time u

f ¼ fðu;ΩÞ: ð5:3Þ

We call it a general supertranslation (GST). Note that
we define the GSTs through the flux operators in the
scalar field theory at Iþ. They are not the “real”
supertranslations since a time-dependent function f
in (2.10) would violate the falloff conditions (2.9).

Similarly, we find the following commutator:

δ̄YΣðu0;Ω0Þ≡ ½MY;Σðu0;Ω0Þ�

¼ −iYA0 ðu0;Ω0Þ∇A0Σðu0;Ω0Þ − i
2
∇A0YA0 ðu0;Ω0ÞΣðu0;Ω0Þ

þ i
2

Z
duαðu − u0Þ½ _YA0 ðu;Ω0Þ∇A0Σðu;Ω0Þ þ 1

2
∇A0 _YA0 ðu;Ω0ÞΣðu;Ω0Þ�

¼ −iΔðY;Σ; u0;Ω0Þ þ i
2

Z
duαðu − u0ÞΔð _Y;Σ;u;Ω0Þ: ð5:4Þ

At the last step, we have used the definition of
ΔðY;Σ; u;ΩÞ in (3.8). The transformation of Σðu0;Ω0Þ
under the action of MY contains two parts. The first part
is local since it only depends locally on the field with the
same time. The commutator (5.4) can be interpreted as a
superrotation transformation when _Y ¼ 0, since compared
to the above δYΣ (3.7), the additional nonlocal terms

vanish. Just like supertranslation, we distinguish the fol-
lowing two cases.
(1) The CL superrotation is time independent and we

will call it a special superrotation (SSR).
(2) Once YA is defined on Iþ, namely,

YA ¼ YAðu;ΩÞ; ð5:5Þ
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we will call it a general superrotation (GSR). GSRs
are not “real” superrotations since they not only
violate the falloff condition (2.9), but also break the
null structure of Iþ. The latter point will be
discussed in Sec. VI C.

The second part is nonlocal which is a superposition of
the superrotation transformations Δð _Y;Σ;u;Ω0Þ at different
times. When the vector YA is time independent, the non-
local term vanishes. In this case, the operator

T 1
2
u∇AYA þMY ð5:6Þ

generates the SSRs (3.7). In summary, we find the super-
translation and superrotation generators.
(1) Supertranslation generators T f. It is the smeared

operator of the energy flux density operator Tðu;ΩÞ.

(2) Superrotation generators T 1
2
u∇AYA þMY . Since the

first part T 1
2
u∇AYA is just a supertranslation generator,

we may also call MY a superrotation generator. It is
a smeared operator of the angular momentum flux
density operator MAðu;ΩÞ.

B. Symmetry algebra from flux operators

Since T f and MY are identified as supertranslation
generator and superrotation generator respectively, they
should form a BMS algebra. It is straightforward to find the
following commutators:

½T f1 ; T f2 � ¼ CTðf1; f2Þ þ iT f1 _f2−f2 _f1 ; ð5:7Þ

½T f;MY � ¼ iMf _Y − iT YA∇Af þ
i
4
Q d

duð _YA∇AfÞ; ð5:8Þ

½MY;MZ� ¼ CMðY; ZÞ þ iM½Y;Z� þ
i
2

Z
dudu0dΩαðu0 − uÞ∶Δð _Y;Σ; u0;ΩÞΔð _Z;Σ; u;ΩÞ∶: ð5:9Þ

Unfortunately, this is not a standard algebra in general.
Besides the local operators on the right-hand side of the
commutators, many interesting new features appear.

1. New operator

There is a new operator

Qg ¼
Z

dudΩgðu;ΩÞ∶Σ2∶ ð5:10Þ

on the right-hand side of the commutator between super-
translation and superrotation generators (5.8). This operator

is absent for _Y ¼ 0. The commutator between Qg and the
field Σ is

½Qg;Σðu0;Ω0Þ�¼ i
Z

duαðu−u0Þgðu;Ω0ÞΣðu;Ω0Þ: ð5:11Þ

There is no obvious geometric meaning for this operator.
However, we may relate it to the light-ray operator of Φ2

at Iþ. This point is clarified in Appendix D. We should
also include it once we consider GSRs. With this operator,
we obtain the following three commutators:

½T f;Qg� ¼ CTQðf; gÞ þ iQ d
duðfgÞ; ð5:12Þ

½MY;Qg� ¼ iQYA∇Ag þ i
Z

dudu0dΩαðu0 − uÞgðu;ΩÞ∶Σðu;ΩÞΔð _Y;Σ; u0;ΩÞ∶; ð5:13Þ

½Qg1 ;Qg2 � ¼CQðg1;g2Þþ2i
Z

dudu0dΩαðu0−uÞg1ðu0;ΩÞg2ðu;ΩÞ∶Σðu;ΩÞΣðu0;ΩÞ∶: ð5:14Þ

2. Central charges

There are two central extension terms in the algebra
(5.7)–(5.9),

CTðf1; f2Þ ¼ −
i

48π
δð2Þð0ÞIf1f

…

2−f2f
…

1
; ð5:15Þ

CMðY; ZÞ ¼
Z

dudu0dΩdΩ0YAðu;ΩÞZB0 ðu0;Ω0Þ

× ΛAB0 ðΩ;Ω0Þηðu − u0Þ: ð5:16Þ

where

ηðu − u0Þ ¼ −
βðu − u0Þ − 1

4π

8πðu − u0 − iϵÞ2 þ
βðu0 − uÞ − 1

4π

8πðu0 − u − iϵÞ2 :

ð5:17Þ

The identity operator is defined as

If ¼
Z

dudΩfðu;ΩÞ: ð5:18Þ

There are also two central extension terms in (5.12)–(5.14)
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CTQðf; gÞ ¼ −
i
4π

δð2Þð0ÞIf _g; ð5:19Þ

CQðg1; g2Þ ¼ 2δð2Þð0Þ
Z

dudu0dΩ½βðu − u0Þ2

− βðu0 − uÞ2�g1ðu;ΩÞg2ðu0;ΩÞ: ð5:20Þ
These central terms can be read out from two-point
correlation functions of the corresponding operators.
Three of the central extension terms CT; CQ; CTQ are
divergent due to the Dirac delta function δð2Þð0Þ on the
sphere. We will use a constant c to denote δð2Þð0Þ

c ¼ δð2Þð0Þ ð5:21Þ
and will discuss the regularization of c later.

3. Virasoro algebra in higher dimension

We notice that (5.7) actually form a Virasoro algebra. To
see this point, we transform the supertranslation generator
to its Fourier space using (3.27),

½T ω;l;m; T ω0;l0;m0 � ¼ ðω0 − ωÞ
Xlþl0

L¼jl−l0j

XL
M¼−L

× cl;m;l0;m0;L;MT ωþω0;L;M

−
ω3

12
cδðωþ ω0Þδl;l0δm;m0 : ð5:22Þ

The constants cl;m;l0;m0;L;M are from the decomposition of
the product of two spherical harmonic functions into the
summation of spherical harmonic functions.

4. Nonlocal terms

There are three nonlocal terms in (5.9), (5.13), and
(5.14). The nonlocal terms introduce new operators in the
commutators. It is understood that the new operators are
also normal ordered. It would be interesting to explore the
commutators with these new operators. However, we find
an interesting truncation by setting

_Y ¼ _Z ¼ _g ¼ _g1 ¼ _g2 ¼ 0: ð5:23Þ
In this case, all the nonlocal terms and the central terms
CM;CQ; CTQ are zeros. The reader can find more details in
Appendix C.

5. Truncation 1

To find the connections to BMS algebra, we impose two
conditions on the commutators.

(i) There are only supertranslation generators and
superrotation generators in the algebra. The algebra
may also include central extension terms which are
proportional to the identity operator.

(ii) The algebra should be closed and satisfy the Jacobi
identity.

The truncated algebra is

½T f1 ; T f2 � ¼ CTðf1; f2Þ þ iT f1 _f2−f2 _f1 ; ð5:24Þ
½T f;MY � ¼ −iT YA∇Af; ð5:25Þ
½MY;MZ� ¼ iM½Y;Z�: ð5:26Þ

Since T f generates GSTs andMY generates SSRs, we may
denote the corresponding group as

DiffðS2Þ ⋉ C∞ðIþÞ: ð5:27Þ
The notation DiffðS2Þ means that the vectors YAðΩÞ
generate diffeomorphisms of S2, and C∞ðIþÞ means that
f is any smooth function on Iþ.

6. Truncation 2

We can also include the operator Q. To eliminate the
nonlocal terms in the algebra, we still impose the condition
(5.23). From (5.12), the function f should be a linear
function of u

fðu;ΩÞ ¼ fðΩÞ þ uhðΩÞ: ð5:28Þ
Now we define two independent operators from T f:

Pf ¼
Z

dudΩfðΩÞ∶ _Σ2∶; Dh ¼
Z

dudΩuhðΩÞ∶ _Σ2∶:

ð5:29Þ
We find the following algebra:

½Pf1 ;Pf2 � ¼ 0; ð5:30Þ

½Pf;Dh� ¼ iPfh; ð5:31Þ
½Pf;MY � ¼ −iPYA∇Af; ð5:32Þ

½Pf;Qg� ¼ 0; ð5:33Þ

½Dh1 ;Dh2 � ¼ 0; ð5:34Þ
½Dh;MY � ¼ −iDYA∇Ah; ð5:35Þ

½Dh;Qg� ¼ iQhg; ð5:36Þ

½MY;MZ� ¼ iM½Y;Z�; ð5:37Þ

½MY;Qg� ¼ iQYA∇Ag; ð5:38Þ

½Qg1 ;Qg2 � ¼ 0: ð5:39Þ

In this algebra, all the functions and vectors are defined on
S2 and are independent of u. Since there is no geometric
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meaning for the operator Qg, we may also truncate it away
to find the following subalgebra:

½Pf1 ;Pf2 � ¼ 0; ð5:40Þ
½Pf;Dh� ¼ iPfh; ð5:41Þ

½Pf;MY � ¼ −iPYA∇Af; ð5:42Þ

½Dh1 ;Dh2 � ¼ 0; ð5:43Þ
½Dh;MY � ¼ −iDYA∇Ah; ð5:44Þ
½MY;MZ� ¼ iM½Y;Z�: ð5:45Þ

This is exactly the algebra found in [52].

7. BMS algebra

The algebra (5.24)–(5.26) can be truncated to the usual
BMS algebra. We just list two possible truncations.

(i) T f generates SSTs and MY generates SSRs. Then
the central charge becomes zero. The algebra trun-
cates to the BMS algebra in the CL sense.

(ii) T f generates SSTs and MY generates global con-
formal transformations of S2. The algebra truncates
to the original BMS algebra.

C. Antipodal matching condition

We can also discuss the symmetry group at past null
infinity (I−). The corresponding radiation phase space
could be encoded in the field Σ−ðv;ΩÞ. This field is the
leading falloff term of the field Φ near I−,

Φðt; xÞ ¼ Σ−ðv;ΩÞ
r

þO
�
1

r2

�
: ð5:46Þ

The coordinate v ¼ tþ r is the advanced time in
Minkowski spacetime. The symmetry groups at Iþ and
I− may be related to each other by antipodal matching
condition [12]. In this section, we will derive the antipodal
matching condition using two different methods. We will
set the potential VðΦÞ ¼ 0 to simplify discussion.
The equation of motion is a linear partial differential
equation

□Φ ¼ −J: ð5:47Þ
Using Green’s function, the linear equation of motion is
solved by

Φðt; xÞ ¼ Φinðt; xÞ þΦretðt; xÞ: ð5:48Þ
The field Φinðt; xÞ obeys the sourceless Klein-Gordon
equation. It is determined by the incoming waves from
past null infinity I−. The second term is the retarded
solution which is caused by the source

Φretðt; xÞ ¼ 1

4π

Z
dx0

Jðt − jx − x0j; x0Þ
jx − x0j : ð5:49Þ

There is a symmetric solution which is written by

Φðt; xÞ ¼ Φoutðt; xÞ þΦadvðt; xÞ: ð5:50Þ
Now the field Φoutðt; xÞ is the outgoing waves to Iþ.
The second term is the advanced solution

Φadvðt; xÞ ¼ 1

4π

Z
dx0

Jðtþ jx − x0j; x0Þ
jx − x0j : ð5:51Þ

The difference between the outgoing waves and the
incoming waves

Φradðt; xÞ ¼ Φoutðt; xÞ −Φinðt; xÞ ¼ Φretðt; xÞ −Φadvðt; xÞ
ð5:52Þ

may be regarded as the radiation field [53]. Near Iþ, the
advanced solution is zero. Using the Fourier transformation
of the source

Jðt; xÞ ¼
Z

dωdk
ð2πÞ4 Jðω; kÞe

−iωtþik·x; ð5:53Þ

we can find the large r expansion of the field Φrad and read
out the leading term

Σðu;ΩÞ¼ 1

8π2

Z
∞

−∞
dωJðω;kÞe−iωu; k¼ðω;θ;ϕÞ: ð5:54Þ

Usually, the source is located at a finite region of space.
It will contribute to the classical solution of the field Σ.
For example, for a point source whose frequency is ω0 and
location is the origin,

Jðt; xÞ ¼ cosω0tδðxÞ; ð5:55Þ

we find the radiation field

Σðu;ΩÞ ¼ cosωu
4π

: ð5:56Þ

Similarly, near I−, only the advanced solution in (5.52) is
relevant. We find

Σ−ðv;ΩÞ ¼ −
1

8π2

Z
∞

−∞
dωe−iωvJðω;−kÞ: ð5:57Þ

In spherical coordinates,

k ¼ ðω; θ;ϕÞ ¼ ðω;ΩÞ;
−k ¼ ðω; π − θ; π þ ϕÞ ¼ ðω;ΩPÞ; ð5:58Þ

where ΩP is the antipodal point of Ω ¼ ðθ;ϕÞ
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ΩP ¼ ðπ − θ; π þ ϕÞ: ð5:59Þ

The antipodal point of ΩP is still Ω

ðΩPÞP ¼ Ω: ð5:60Þ

Comparing the solution (5.57) with (5.54), we find

Jðω;kÞ ¼ 1

4π

Z
dueiωuΣðu;ΩÞ ¼−

1

4π

Z
dveiωvΣ−ðv;ΩPÞ:

ð5:61Þ
We may define the Fourier transformation,

Σðu;ΩÞ ¼ 1

2π

Z
∞

−∞
dωe−iωuΣðω;ΩÞ; ð5:62Þ

Σ−ðv;ΩÞ ¼ 1

2π

Z
∞

−∞
dωe−iωvΣ−ðω;ΩÞ: ð5:63Þ

Then we find the following antipodal identification:

Σðω;ΩÞ ¼ −Σ−ðω;ΩPÞ: ð5:64Þ

The antipodal matching condition (5.64) can also be proved
at the quantum level. Following the same procedure as
Sec. IVA, we find the mode expansion of the field Σ−ðv;ΩÞ
at I−

Σ−ðv;ΩÞ ¼
Z

∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p
X
lm

½āω;l;me−iωvYl;mðΩÞ

þ ā†ω;l;me
iωvY�

l;mðΩÞ� ð5:65Þ
where

āω;l;m ¼ ð−1Þl ωi

2
ffiffiffi
2

p
π3=2

Z
dΩbkY�

l;mðΩÞ; ð5:66Þ

ā†ω;l;m ¼ ð−1Þl ω

2
ffiffiffi
2

p
π3=2i

Z
dΩb†kYl;mðΩÞ: ð5:67Þ

Comparing with Eqs. (4.9) and (4.10), we find the
following matching condition:

āω;l;m ¼ ð−1Þlþ1aω;l;m; ā†ω;l;m ¼ ð−1Þlþ1a†ω;l;m:

ð5:68Þ
Using the inverse Fourier transformation

Σðω;ΩÞ ¼
Z

∞

−∞
dueiωuΣðu;ΩÞ; ð5:69Þ

Σ−ðω;ΩÞ ¼
Z

∞

−∞
dveiωvΣ−ðv;ΩÞ; ð5:70Þ

we find

Σðω;ΩÞ ¼ θðωÞ
ffiffiffiffi
π

ω

r X
l;m

aω;l;mYl;mðΩÞ þ θð−ωÞ

×

ffiffiffiffiffiffiffiffi
−
π

ω

r
a†−ω;l;mY

�
l;mðΩÞ; ð5:71Þ

Σ−ðω;ΩÞ ¼ θðωÞ
ffiffiffiffi
π

ω

r X
l;m

āω;l;mYl;mðΩÞ

þ θð−ωÞ
ffiffiffiffiffiffiffiffi
−
π

ω

r
ā†−ω;l;mY

�
l;mðΩÞ ð5:72Þ

Substituting the matching condition for the creation and
annihilation operators (5.68) and using the parity trans-
formation of the spherical harmonic functions

Yl;mðΩÞ ¼ ð−1ÞlYl;mðΩPÞ; ð5:73Þ

we find

Σðω;ΩÞ ¼ −Σ−ðω;ΩPÞ: ð5:74Þ

This is the same matching condition as (5.64).

VI. GEOMETRIC APPROACH

The BMS group could be regarded as a geometric
symmetry of the Carroll manifold Iþ. Following [28–30],
we will review the conformal Carroll group and the
Newman-Unti group in this section. It turns out that the
symmetry group we found in the previous section is an
extension of the Newman-Unti group.

A. Conformal Carroll group

The future null infinity Iþ is a Carroll manifold

Iþ ¼ R × S2: ð6:1Þ

This is a null hypersurface with a singular metric

ds2 ¼ γABdθAdθB: ð6:2Þ

To generate the retarded time direction, one should intro-
duce a vector which is the kernel of the metric γAB

χ ¼ ∂u: ð6:3Þ

The conformal Carroll group of level k

CCarrkðIþ; γ; χÞ ð6:4Þ

is generated by the vector ξ such that

Lξγ ¼ λγ; Lξχ ¼ μχ; λþ kμ ¼ 0; ð6:5Þ
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where λ and μ are conformal factors. Then the vector ξ is

ξ ¼ YAðΩÞ∂A þ
�
fðΩÞ þ u

k
∇AYAðΩÞ

�
∂u: ð6:6Þ

The vector YAðΩÞ is a conformal Killing vector of the
sphere

∇AYB þ∇BYA ¼ γAB∇CYC: ð6:7Þ

The conformal Carroll group of level k is a semidirect
product of conformal transformations of S2 and SSTs.
When k ¼ 2, the algebra (6.6) is exactly the standard BMS
algebra.

B. Newman-Unti group

Newman-Unti group

NUðIþ; γ; χÞ ð6:8Þ

is one of the extensions of the conformal Carroll group. It is
generated by the vectors ξ that preserve the conformal
structure of the metric γ

Lξγ ¼ λγ: ð6:9Þ

In this case, the vector ξ is

ξ ¼ YAðΩÞ∂A þ fðu;ΩÞ∂u; ð6:10Þ

where the vector YA is still a conformal Killing vector of S2.
However, the function f may depend on the retarded
time u. Therefore, the Newman-Unti group is a semidirect
product of conformal transformations of S2 and GSTs

NUðIþ; γ; χÞ ¼ ConfðS2Þ ⋉ C∞ðIþÞ: ð6:11Þ

It is possible to truncate it to the Newman-Unti group of
level kðk ¼ 1; 2; 3;…Þ by requiring

Lξγ ¼ λγ; ðLχÞkξ ¼ 0: ð6:12Þ

We still find the vector (6.10). Besides the constraint (6.7),
the GST should be a polynomial of u with degree k − 1

fðu;ΩÞ ¼
Xk
n¼1

un−1fnðΩÞ: ð6:13Þ

C. Extension of the Newman-Unti group

In two-dimensional Virasoro algebra, the central charge
is related to conformal anomaly. When the central charge is
zero, the Virasoro algebra becomes the Witt algebra.
Similarly, We may set the central charge CTðf1; f2Þ to

be zero and find the classical version of the
algebra (5.24)–(5.26)

½T f1 ; T f2 � ¼ iT f1 _f2−f2 _f1 ; ð6:14Þ

½T f;MY � ¼ −iT YA∇Af; ð6:15Þ

½MY;MZ� ¼ iM½Y;Z�: ð6:16Þ

Interestingly, this algebra is realized by the vector

ξ ¼ fðu;ΩÞ∂u þ YAðΩÞ∂A: ð6:17Þ

It is easy to see that the group (5.27) is a straightforward
generalization of the Newman-Unti group (6.11). To
generalize the Newman-Unti group, we should abandon
the condition (6.9) and impose the condition

Lξχ ¼ μχ: ð6:18Þ

The most general solution of (6.18) is exactly (6.17).
The function μ is

μ ¼ − _fðu;ΩÞ: ð6:19Þ

The Lie derivative of the metric along (6.17) is still singular

Lξγuu ¼ LξγuA ¼ 0; LξγAB ¼ ∇AYBðΩÞ þ∇BYAðΩÞ:
ð6:20Þ

Therefore, the vector χ is still the kernel of the metric
after the transformation. Now we consider the vector with
respect to GSTs and GSRs,

ξ̃ ¼ fðu;ΩÞ∂u þ YAðu;ΩÞ∂A: ð6:21Þ

We find

Lξ̃χ
u ¼ − _fðu;ΩÞ; Lξ̃χ

A ¼ − _YAðu;ΩÞ; ð6:22Þ

Lξ̃γuu ¼ 0; Lξ̃γuA ¼ _YAðu;ΩÞ;
Lξ̃γAB ¼ ∇AYBðu;ΩÞ þ∇BYAðu;ΩÞ: ð6:23Þ

The manifold is not Carrollian after the transformation
(6.21). The GSRs break the null structure of Iþ. This may
interpret why we should consider GSTs and SSRs to form a
closed algebra. Interestingly, the finite transformation of
(6.17) is exactly the Carrollian diffeomorphism defined
in [54,55]. From a geometric point of view, we may define
any consistent field theory on Iþ. When there is no
anomaly, they should obey the geometric symmetry
(6.14)–(6.16). In other words, there should be correspond-
ing generators with respect to the vector (6.17). They are
exactly the supertranslation and superrotation generators.
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We will further comment on the structure (5.40)–(5.45).
This algebra is generated by the vector

ξ ¼ ½fðΩÞ þ uhðΩÞ�∂u þ YAðΩÞ∂A: ð6:24Þ

This is obtained by reducing the function fðu;ΩÞ in the
generator (6.17) to a linear polynomial of u. Similar to
the Newman-Unti group of level k, we may define its
extension as

Lξχ ¼ μχ; ðLχÞkξ ¼ 0: ð6:25Þ

By setting k ¼ 2, the solution is exactly (6.24).

VII. CONCLUSION AND DISCUSSION

In this paper, we reduce the massless scalar field theory
in Minkowski spacetime to future null infinity Iþ. The
information of the scalar field is encoded in a single field Σ
at Iþ. The ten Poincaré fluxes are totally determined by the
field Σ. We obtain the flux operators and interpret them as
supertranslation and superrotation generators. These flux
operators do not form a closed algebra in general. However,
there is a consistent group which is formed by GSTs
and SSRs. Its classical version, as a generalization of the
Newman-Unti group, could be realized as a geometric
symmetry of the Carroll manifold Iþ.
We notice that the subalgebra (5.24) is a Virasoro

algebra. This has been found in the context of light-ray
operator [56]. Other works on Virasoro algebra from light-
ray operators include [57–61]. However, there are subtle
differences between their results and ours. In [56], the
higher-dimensional Virasoro algebra is realized by free
fermion or Maxwell theory. For free scalar theory, the
authors found a nonlocal term in the commutator of their
energy flow operators, see equation (1.9) of [56]. Switching
into our language, the energy flow operator defined in their
paper corresponds to the operator

T̃ f ¼ T f −
1

6
Qf̈ : ð7:1Þ

We have checked that the commutator ½T̃ f1 ; T̃ f2 � (more

precisely ½T̃ ω;l;m; T̃ ω0;l0;m0 �) is exactly equivalent to
Eq. (1.9) of [56]. See Appendix D for more details.
Therefore, there is no contradiction with light-ray algebra.
The algebra (5.24)–(5.26) could be regarded as a direct
generalization of Virasoro algebra with superrotation. It has
been known for several years that the BMS algebra could
be realized as a light-ray algebra [62]. However, the work
of [62] only focuses on average null operators. They
correspond to the soft limit in the Fourier space. Our result
could also be regarded as an extension of [62] away from
the soft limit.
There are various open questions in this direction.

A. More general field theories

We mainly focus on massless free scalar theory in this
work. However, we could explain the group we found as a
geometric symmetry of Iþ. This implies that the algebra
(5.24)–(5.26) may be valid for much more field theory. For
Maxwell theory and gravitational theory, we may check
this point. Since the propagating degree of freedom is 2 for
these theories, the central charge is two times with respect
to the real scalar theory.5 For interacting field theory, it is
interesting to see whether it is possible to refine the
energy flow operators defined in [56] such that the algebra
(5.24)–(5.26) is preserved.

B. Field theories on the Carroll manifold I +

We notice that the two-point correlators of the scalar
field in (4.38) matches with [63] from representation theory
of Carrollian conformal field theory. By dimension analy-
sis, we find ½Φ� ¼ 1, ½Σ� ¼ 0 and ½ _Σ� ¼ 1. It follows that
correlation function h0j _Σ _Σ j0i is expected to be propor-
tional to ðu − u0Þ−2, just as in [63]. There are also Carrollian
free scalar models in the literature [24,33,34,64–66].
However, we should emphasize that our results are not
based on the existence of any action on Iþ. As a
consequence, there is no equation of motion for the
boundary field Σ. The solution phase space is larger
than the Carrollian free scalar model. Consequently, we
find a much larger group than the BMS group. Actually,
the symmetry group can be extended further by
including higher spin fluxes [67–69]. Since the symmetry
(5.24)–(5.26) could be understood as a geometric sym-
metry of the Carroll manifold Iþ classically, one may also
consider representation theory of this symmetry group and
define field theory on Iþ. The field theory on Iþ may
provide explicit realization of flat holography.

C. Nonlocal terms

As we have discussed in Sec. VI, for the Carrollian
diffeomorphism which is generated by GSTs and SSRs,
there is no nonlocal term in the algebra. They appear only
for GSRs. As we have shown in (5.4), the nonlocal term is
the obstacle to identifyMY as a superrotation generator for
the case of GSRs. As we expect, GSRs violate the null
structure of the Carrollian manifold. The violation may be
reflected in the nonlocal terms and may be thought of as
their origin. It is interesting to discuss this topic in the
future.

D. Correlators

In the context of conformal collider physics [70], the
energy correlators correspond to the correlators of the soft
limit of the supertranslation generators. From the point of

5Work in progress.

SYMMETRY GROUP AT FUTURE NULL INFINITY: SCALAR … PHYS. REV. D 107, 126002 (2023)

126002-17



view of BMS algebra, it is also interesting to consider the
correlators of the superrotation generators. They may relate
to angular momentum correlators.

E. Regularization of the central charge

The central charge is divergent in our Virasoro algebra.
It would be fine to find a way to regularize it. To find
the physical meaning of this central charge, we use the
completeness of the spherical harmonic function

δð2Þð0Þ ¼
X
l;m

Yl;mðΩÞY�
l;mðΩÞ

¼ 1

4π

X∞
l¼0

ð2lþ 1ÞPlð0Þ

¼ 1

4π

X
l;m

1: ð7:2Þ

At the second line, we used the addition theorem of
spherical Harmonic function. The Legendre function
PlðxÞ has the special value

Plð0Þ ¼ 1: ð7:3Þ

At the last step, we used the fact that there are 2lþ 1
spherical harmonic functions for each l. Interestingly, it is
clear that

δð2Þð0Þ ¼ number of independent states on the unit S2

area of the unit S2

¼ density of states on the unit S2: ð7:4Þ

Therefore, roughly speaking, δð2Þð0Þ counts the number of
degrees of freedom on the sphere. In two-dimensional
conformal field theory, the central charge also counts
the degree of freedom of the theory. Unfortunately, the
number of the degrees of freedom on the sphere is
infinity. One should find a way to regularize the Dirac
delta function. A naive method is to use zeta function
regularization

δð2Þð0Þ¼ 1

4π

X∞
l¼0

ð2lþ1Þ¼ 1

4π
½1þ2ζð−1Þþζð0Þ� ¼ 1

12π
:

ð7:5Þ

We will not discuss more on the regularization of Dirac
delta function on the sphere. It would be interesting to
check this regularization method in the future.

F. Relaxed falloff conditions

As we have emphasized, the GSTs and GSRs are defined
through the Fourier transformation of the energy- and

angular-momentum flux density operators in this work.
Strictly speaking, they may violate the usual falloff con-
ditions in the context of BMS symmetry. It is natural to see
whether one can relax falloff conditions and explore the
BMS group further up.
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APPENDIX A: CONFORMAL KILLING
VECTORS ON S2

The metric for a unit sphere S2 is

ds2 ¼ γABdθAdθB; A; B ¼ 1; 2: ðA1Þ

The CKV is the vector YA that obeys the equation

∇AYB þ∇BYA ¼ γAB∇CYC: ðA2Þ

There are six global solutions for this equation.
(1) There are three Killing vectors on S2, which are

denoted as YA
ij in the context. The subscript ij are

antisymmetric,

YA
ij ¼ −YA

ji; i; j ¼ 1; 2; 3: ðA3Þ

They satisfy the following condition:

∇AYA
ij ¼ 0: ðA4Þ

(2) There are three strictly conformal Killing vectors
on S2, denoted as YA

i in this paper. The subscripts
are i ¼ 1, 2, 3. Their divergences are not zero
but

∇AYA
i ¼ 2ni: ðA5Þ

These six CKVs generate the group SOð1; 3Þ, satisfying the
commutation relations:

½Yi; Yj� ¼ Yij; ðA6Þ

½Yij; Yk� ¼ δjkYi − δikYj; ðA7Þ

½Yij; Ykl� ¼ −δikYjl þ δjkYil − δjlYik þ δilYjk: ðA8Þ

We collect some useful identities in the following.
(1) Killing vectors and strictly conformal Killing vec-

tors are related by

YA
ij ¼ YA

i nj − YA
j ni: ðA9Þ
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The reverse relation is

YA
i ¼ YA

ijnj: ðA10Þ

(2) Identities involving the products of normal vectors
and CKVs are

niYA
i ¼ 0; ϵijkniYA

jk ¼ 0: ðA11Þ

(3) Derivatives of normal vector are

∇Ani ¼ −YA
i ; ∂ini ¼

2

r
: ðA12Þ

(4) It is easy to find that

YA
i Y

B
j δij ¼ γAB; YijAYB

ij ¼ 2γAB: ðA13Þ

We also have identities with angular indices con-
tracted,

Yij · Yk ≡ YA
ijγABY

B
k ¼ δiknj − δjkni; ðA14Þ

Yi · Yj þ ninj ≡ YA
i γABY

B
j þ ninj ¼ δij: ðA15Þ

Other identities related to products of CKVs are
collected below:

YA
ijY

B
j þ YB

ijY
A
j ¼ −2γABni; ðA16Þ

YA
i Y

B
j − YB

i Y
A
j ¼ ϵABϵijknk: ðA17Þ

APPENDIX B: SYMPLECTIC STRUCTURE

The action of the scalar field is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂μΦ∂

μΦ − VðΦÞ
�
: ðB1Þ

Its variation under δΦ reads as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½−∂μð∂μΦδΦÞ þ ð∂μ∂μΦ − V 0ðΦÞÞδΦ�:

ðB2Þ

It is easy to see that the second term is proportional to the
bulk equation of motion. We could write out the presym-
plectic potential form

ΘðδΦ;ΦÞ ¼ −∂μΦδΦðd3xÞμ; ðB3Þ

where

ðd3xÞμ ¼
1

6
ϵμνρσdxν ∧ dxρ ∧ dxσ: ðB4Þ

Therefore, we obtain the presymplectic form

ωðδ1Φ; δ2Φ;ΦÞ ¼ δ1Θðδ2Φ;ΦÞ − δ2Θðδ1Φ;ΦÞ
¼ −ðd3xÞμ½δ1ð∂μΦÞδ2Φ − δ2ð∂μΦÞδ1Φ�:

ðB5Þ

Given the falloff condition (3.4), the presymplectic form
at null boundary becomes

ωðδ1Φ;δ2Φ;ΦÞ¼−sinθdu∧dθ∧ dϕ½δ1 _Σδ2Σ−δ2 _Σδ1Σ�
þOðr−1Þ: ðB6Þ

Eventually, one could obtain the commutator of the
propagating field Σ

½Σðu;ΩÞ; _Σðu0;Ω0Þ� ¼ i
2
δðu − u0ÞδðΩ −Ω0Þ: ðB7Þ

With this commutator at hand, other commutation relations
and the correlation functions of Σ are easy to derive.

APPENDIX C: COMMUTATORS

In this appendix, we will discuss the computation of the
commutators.

1. Central charges

The central charge term can be found from the two-point
correlators. As an example, we compute the central charge
term in the commutator ½T f1 ; T f2 �. We first note that the
supertranslation generator is constructed from the local
operator Tðu;ΩÞ. The two-point correlators can be found
in (4.60). When two operators Tðu;ΩÞ and Tðu0;Ω0Þ are
close enough, we can write the operator product expansion
schematically as

TT ∼ 1þ � � � : ðC1Þ

On the right-hand side, we just write down the term which
is proportional to the identity. The terms in � � � are
vanishing when we compute the correlator h0j½T; T�j0i.
Therefore, to find the central extension, it is enough to
know the two-point correlator,
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central term of ½T f1 ; T f2 � ¼ h0j½T f1 ; T f2 �j0i

¼
Z
Im ðu−u0Þ<0

dudΩdu0dΩ0f1ðu;ΩÞf2ðu0;Ω0Þh0jTðu;ΩÞTðu0;Ω0Þj0i

−
Z
Im ðu−u0Þ>0

dudΩdu0dΩ0f1ðu;ΩÞf2ðu0;Ω0Þh0jTðu0;Ω0ÞTðu;ΩÞj0i

¼
Z

dudΩdu0dΩ0f1ðu;ΩÞf2ðu0;Ω0Þ c
8π2

�
1

ðu − u0 − iϵÞ4 −
1

ðu0 − u − iϵÞ4
�
δðΩ −Ω0Þ

¼ −
Z

dudΩdu0f1ðu;ΩÞf2ðu0;ΩÞ
c
8π2

1

6
∂
3
u

�
1

u − u0 − iϵ
þ 1

u0 − u − iϵ

�

¼ −
ic
24π

Z
dudΩdu0f1ðu;ΩÞf2ðu0;ΩÞ∂3uδðu − u0Þ

¼ −
ic
48π

Z
dudΩðf1f

…

2 − f2f
…

1Þ: ðC2Þ

2. Nonlocal terms

We will compute the nonlocal term in (5.13) as an example. The nonlocal term in this commutator is from the nonlocal
term in the commutator ½MY;Σ�

nonlocal term of ½MY;Qg� ¼ Nonlocal term of
Z

dudΩgðu;ΩÞ½MY; ∶Σ2ðu;ΩÞ∶�

¼ Nonlocal term of 2
Z

dudΩgðu;ΩÞ∶Σðu;ΩÞ½MY;Σðu;ΩÞ�∶

¼ i
Z

dudΩgðu;ΩÞ∶Σðu;ΩÞ
Z

du0αðu0 − uÞΔð _Y;Σ; u0;ΩÞ∶

¼ i
Z

dudu0dΩαðu0 − uÞgðu;ΩÞ∶Σðu;ΩÞΔð _Y;Σ; u0;ΩÞ∶: ðC3Þ

3. The commutator ½MY ;MZ�
Using the factor ΔðY;Σ; u;ΩÞ, we can rewrite the superrotation generator as

MY ¼
Z

dudΩ _ΣΔðY;Σ; u;ΩÞ: ðC4Þ

With this expression, we could calculate the commutator ½MY;MZ� as follows. Note that the central charge term could be
read out from the correlation function using the previous method, and the following calculation only involves terms with
fields. Hence, all the terms are not expressed in normal order,

½MY;MZ� ¼
Z

du0dΩ0½MY; _Σðu0;Ω0ÞΔðZ;Σ; u0;Ω0Þ�

¼ i
Z

du0dΩ0½ΔðZ; _ΣÞΔðY;ΣÞ − ΔðZ;ΣÞΔðY; _ΣÞ� þ i
2

Z
dudu0dΩ0αðu − u0Þ

× Δð _Y;Σ;u;Ω0ÞΔð _Z;Σ; u0;Ω0Þ: ðC5Þ

For the local terms, we find

ΔðZ; _ΣÞΔðY;ΣÞ − ΔðZ;ΣÞΔðY; _ΣÞ ¼ _Σ½ΔðY;ΔðZ;ΣÞÞ − ΔðZ;ΔðY;ΣÞÞ�: ðC6Þ

There is an identity
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ΔðY;ΔðZ;ΣÞÞ − ΔðZ;ΔðY;ΣÞÞ ¼ Δð½Y; Z�;ΣÞ; ðC7Þ
with which we can concisely express the local terms as iM½Y;Z�. To prove this identity, we calculate straightforwardly

ΔðY;ΔðZ;ΣÞÞ − ΔðZ;ΔðY;ΣÞÞ ¼ 1

2
∇AYA

�
ZB∇BΣþ 1

2
∇BZBΣ

�
þ YA∇A

�
ZB∇BΣþ 1

2
∇BZBΣ

�

−
1

2
∇AZA

�
YB∇BΣþ 1

2
∇BYBΣ

�
− ZA∇A

�
YB∇BΣþ 1

2
∇BYBΣ

�

¼ ðYB∇BZA − ZB∇BYAÞ∇AΣþ 1

2
∇AðYB∇BZA − ZB∇BYAÞΣ

¼ Δð½Y; Z�;ΣÞ: ðC8Þ

To obtain the second equality, we have used the following
identity

YA∇A∇BZB − ZB∇B∇AYA ¼ ∇A½Y; Z�A;

for smooth vectors on sphere. It follows from the definition
of the Riemann tensor on sphere,

½∇A;∇B�VC ¼ RC
DABVD: ðC9Þ

The Riemann tensor on the sphere is

RABCD ¼ γACγBD − γADγBC: ðC10Þ

When the condition (5.23) is satisfied, we will prove the
following two statements.
(1) The central charges are zeros

CM ¼ CTQ ¼ CQ ¼ 0: ðC11Þ

The vanishing of CTQ can be found by setting _g ¼ 0.
Therefore, we just need to compute CM and CQ.
We consider the central charge CQ firstly,

CQðg1; g2Þ ¼ 2c
Z

dudu0dΩg1ðΩÞg2ðΩÞ½βðu − u0Þ − βðu0 − uÞ� × ½βðu − u0Þ þ βðu0 − uÞ�

¼ ic
Z

dudu0dΩg1ðΩÞg2ðΩÞαðu − u0Þ × ½βðu − u0Þ þ βðu0 − uÞ�

¼ 0: ðC12Þ
In the second line, we used the identity (4.43). Since αðu − u0Þ is antisymmetric while βðu − u0Þ þ βðu0 − uÞ is symmetric,
the integral is exactly zero. Now we compute the central charge

CMðY; ZÞ ¼ c̃
Z

dudu0ηðu − u0Þ: ðC13Þ

We have defined the constant

c̃ ¼
Z

dΩdΩ0YAðΩÞZB0 ðΩ0ÞΛAB0 ðΩ;Ω0Þ: ðC14Þ

The function ηðu − u0Þ can be written as

ηðu − u0Þ ¼
�
βðu − u0Þ − 1

4π

�
1

8π
∂u

1

u − u0 − iϵ
−
�
βðu0 − uÞ − 1

4π

�
1

8π
∂u0

1

u0 − u − iϵ

¼ ∂uð� � �Þ þ ∂u0 ð� � �Þ þ
1

32π2ðu − u0 − iϵÞ2 −
1

32π2ðu0 − u − iϵÞ2

¼ ∂uð� � �Þ þ ∂u0 ð� � �Þ −
1

32π2
∂u

�
1

u − u0 − iϵ
þ 1

u0 − u − iϵ

�

¼ ∂uð� � �Þ þ ∂u0 ð� � �Þ −
i

16π
δ0ðu − u0Þ: ðC15Þ

SYMMETRY GROUP AT FUTURE NULL INFINITY: SCALAR … PHYS. REV. D 107, 126002 (2023)

126002-21



The notation ∂uð� � �Þ means the corresponding term is a
surface term. They do not contribute to the central charge.
Therefore,

CMðY; ZÞ ∝ c̃
Z

dudu0δ0ðu − u0Þ ¼ 0: ðC16Þ

(2) The nonlocal terms in (5.9), (5.13), and (5.14) have
no contribution. Since _Y ¼ 0, the function vanishes

Δð _Y;Σ; u0;ΩÞ ¼ 0: ðC17Þ

The nonlocal terms in (5.13) and (5.9) are zeros
obviously. The nonlocal term of (5.14) is

2i
Z

dudu0dΩαðu0 − uÞg1ðΩÞg2ðΩÞ∶Σðu;ΩÞΣðu0;ΩÞ∶

¼ 2i
Z

dudu0dΩαðu − u0Þg1ðΩÞg2ðΩÞ∶Σðu0;ΩÞΣðu;ΩÞ∶

¼ −2i
Z

dudu0dΩαðu0 − uÞg1ðΩÞg2ðΩÞ∶Σðu;ΩÞΣðu0;ΩÞ∶

¼ 0: ðC18Þ

In the second line, we exchanged the variables u ↔ u0. In
the third line, we used the antisymmetry of the α function
and the symmetry of the normal ordered operator

αðu0 − uÞ ¼ −αðu − u0Þ;
∶Σðu;ΩÞΣðu0;ΩÞ ∶ ¼ ∶Σðu0;ΩÞΣðu;ΩÞ∶: ðC19Þ

APPENDIX D: LIGHT-RAY OPERATOR
FORMALISM

In this appendix, we give a review about basic concepts
in light-ray operator formalism [70,71] and its relation
to our formalism. The concentration is four-dimensional
conformal field theory. We will first introduce the
light-ray operators, and then show that our commutator
½T̃ ω;l;m; T̃ ω0;l0;m0 �with the operator T̃ f defined in (7.1) with
f ¼ e−iωuYl;mðΩÞ is equivalent to the commutator of
ω-deformed energy flow operators in light-ray formalism.
Considering a primary operator Oμ1μ2���μs with conformal

weight Δ and spin s which is symmetric and traceless, we
may introduce a null polarization vector zμ and contract it
with the O to form an indices free operator which is a
polynomial in z,

Oðx; zÞ ¼ Oμ1μ2���μsðx; zÞzμ1zμ2 � � � zμs ; z2 ¼ 0: ðD1Þ

This operatorOðx; zÞ is homogeneous in z with degree s,

Oðx; λzÞ ¼ λsOðx; zÞ: ðD2Þ

The light-ray operator L½O� is the light transform of
operator Oðx; zÞ

L½O�ðx; zÞ ¼
Z

∞

−∞
dαð−αÞ−Δ−sO

�
x −

z
α
; z

�
ðD3Þ

along the null direction of zμ. The light-ray operator
transforms as a primary operator with conformal dimension
1 − s and spin 1 − Δ.
To implement the light transform, one may introduce

the embedding formalism [72–79]. In this formalism, the
Minkowski spacetime R1;3 is a projective null cone in R2;4.
We will use capital Latin alphabets X ¼ ðX−1; X0;…; X4Þ
to denote the coordinates of R2;4. By introducing the light
cone coordinates

X� ¼ X−1 � X4; Xμ ¼ X0; X1; X2; X3; ðD4Þ

the inner product of X takes the form

X · X ¼ −XþX− þ XμXμ; ðD5Þ

where XμXμ ¼ ημνXμXν. A point in Minkowski spacetime
xμ corresponds to a null vector X ¼ ðXþ; X−; XμÞ in light
cone coordinates

X ¼ Xþð1; x2; xμÞ; xμ ¼ Xμ

Xþ : ðD6Þ

The indices free operator Oðx; zÞ is lifted to the operator
OðX; ZÞ in the embedding formalism

OðX; ZÞ ¼ ðXþÞ−ΔOðx; zÞ ðD7Þ

where Z is a null vector which is orthogonal to X

Z2 ¼ X · Z ¼ 0: ðD8Þ

The null polarization vector zμ can be recovered by the
relation
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zμ ¼ Zμ −
Zþ

Xþ Xμ: ðD9Þ

The primary operator OðX; ZÞ in the embedding space has
the following properties:

OðX;ZþβXÞ¼OðX;ZÞ; OðρX;σZÞ¼ ρ−ΔσsOðX;ZÞ;
ρ;σ> 0: ðD10Þ

Therefore, the light-ray operator can be written as the form

L½O�ðX; ZÞ ¼
Z

∞

−∞
dαOðZ − αX;−XÞ: ðD11Þ

In order to be sensitive to the time-dependent structure of
the interesting states, we would like to insert a weight
function in the light transform as follows:

Lω=2½O�ðX; ZÞ≡
Z

∞

−∞
dα e−iωα=2OðZ − αX;−XÞ: ðD12Þ

The insertion of e−iωα=2 will not only improve the con-
vergence of the integral, but also give the detector a
nontrivial null momentum. This transformation is called
ω-deformed light transform in [80]. The resulting operator
corresponds to generalized event shapes.

To approach null infinity along the direction of a null
vector nμ ¼ ð1; niÞ in Cartesian coordinates [81], we
consider the following series of points6

Xv ¼
�
0; 1;

n̄μ

2v

�
; Zv ¼

�
2

v
; 0; nμ

�
; ðD13Þ

with n̄ ¼ ð−1; niÞ a null vector satisfying nn̄ ¼ 2, and
v ¼ tþ r the advanced time. It is easy to see that
Z2
v ¼ X2

v ¼ Zv · Xv ¼ 0. It follows that

Zv − αXv ¼
�
2

v
;−α; nμ −

αn̄μ

2v

�
: ðD14Þ

Comparing with (D6), the null vector Zv − αXv corre-
sponds to the point

xμ ¼ v
2
nμ −

u
2
n̄μ ¼ ðt; rniÞ; ðD15Þ

when the parameter α is related to the retarded time as
follows:

α ¼ 2u: ðD16Þ

Taking the limit of v → ∞ while keeping u finite, and
considering the conformal property of OðX; ZÞ, we get

Oω;sðnÞ≡ 2s−1 lim
v→∞

Lω=2½O�ðXv; ZvÞ

¼ 2s−1 lim
v→∞

Z
∞

−∞
dαe−iαω=2OðZv − αXv;−XvÞ

¼ 2−1ð−1Þs lim
v→∞

Z
∞

−∞
dαe−iαω=2

�
2

v

�
−Δ

Oμ1���μsðxμÞ
n̄μ1

v
� � � n̄

μs

v

¼ 2−Δð−1Þs lim
v→∞

vΔ−s
Z

∞

−∞
due−iωuOμ1���μsðxμÞn̄μ1 � � � n̄μs : ðD17Þ

In light cone coordinates ðu; v; θAÞ, the above null vector
becomes

n̄μ ¼ ð−2; 0; 0; 0Þ: ðD18Þ

So the light-ray operator Oω;sðnÞ takes form

Oω;sðnÞ ¼ lim
r→∞

rΔ−s
Z

∞

−∞
due−iωuOu���u|{z}

s

ðxÞ: ðD19Þ

The energy flow operator EωðnÞ is the light-ray operator of
stress-energy tensor T̃μ1μ2 with conformal weight Δ ¼ 4

and spin s ¼ 2. Namely,

EωðnÞ ¼ lim
r→∞

r2
Z

∞

−∞
due−iωuT̃uu: ðD20Þ

In particular, the soft limit ω ¼ 0 gives the famous average
null energy operator. In free scalar theory, the symmetric
traceless stress-energy tensor is

T̃μν ¼ ∂μΦ∂νΦ −
1

6
∂μ∂νΦ2 −

1

12
ημν∂

2Φ2: ðD21Þ

Considering the falloff condition of scalar field Φ,
we obtain

6In embedding formalism, we use light cone coordinates to
express the vectors of R2;4 from now on.
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EωðΩÞ ¼
Z

∞

−∞
due−iωu

�
∶ _Σ2ðu;ΩÞ∶þ 1

6
ω2∶ Σ2ðu;ΩÞ∶

�
:

ðD22Þ

It is easy to see the equivalence between this operator and
the aforementioned T̃ f. To be more accurate, we could
insert a spherical harmonic function Yl;mðΩÞ as the weight
function about angular coordinates, and then impose
integration on the energy flow operator with respect to
Ω. These operations lead to the following identification:

T̃ ω;l;m ≡
Z

dΩYl;mðΩÞEωðΩÞ

¼
Z

∞

−∞
dudΩe−iωuYl;mðΩÞ

×

�
∶ _Σ2ðu;ΩÞ∶þ 1

6
ω2∶ Σ2ðu;ΩÞ∶

�
: ðD23Þ

Using the definition of the smeared operators in the context
and going back to the position space, this is exactly

T̃ f ¼ T f −
1

6
Qf̈ ; ðD24Þ

where the function f ¼ fðu;ΩÞ. Interestingly, the light-ray
transform of the scalar operatorΦ2 withΔ ¼ 2 and s ¼ 0 is

Z
∞

−∞
due−iωu∶ Σ2ðu;ΩÞ∶: ðD25Þ

This corresponds to the smeared operatorQg in the context.
One can further check that the commutator of T̃ ω;l;m is

½T̃ ω;l;m; T̃ ω0;l0;m0 � ¼ ðω0−ωÞ
Xlþl0

L¼jl−l0j

XL
M¼−L

cl;m;l0;m0;L;M

× T̃ ωþω0;L;M−
ω3

12
cδðωþω0Þδl;l0δm;m0

þ i
36

Z
dudu0dΩαðu−u0Þω2ω02

×e−iðωuþω0u0ÞYl;mðΩÞYl0;m0 ðΩÞ
× ½Σðu;ΩÞΣðu0;ΩÞþΣðu0;ΩÞΣðu;ΩÞ�:

It matches with the corresponding commutator in [56].
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