PHYSICAL REVIEW D 107, 126002 (2023)

Symmetry group at future null infinity: Scalar theory
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We reduce the massless scalar field theory in Minkowski spacetime to future null infinity. We compute
the Poincaré flux operators, which can be generalized and identified as the supertranslation and
superrotation generators. These generators are shown to form a closed symmetry algebra with a divergent
central charge. In the classical limit, we argue that the algebra may be interpreted as the geometric
symmetry of a Carrollian manifold, i.e., the hypersurface of future null infinity. Our method may be used to
find more physically interesting Carrollian field theories.
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I. INTRODUCTION

The detection of gravitational waves [1] opens a new
window on the observation of the Universe. The gravita-
tional wave is one of the greatest predictions of Einstein’s
equation. Theoretically, it has been known for a long time
that the gravitational waves are radiated to future null
infinity (ZT) in asymptotically flat spacetime and they
transform in the solution space according to the Bondi-
Metzner-Sachs (BMS) group [2—4]. Classically, the BMS
group is a semidirect product of Lorentz group and
supertranslations. Over the past decade there have been
various approaches on the understanding of the BMS group.

The conventional approach is the so-called asymptotic
symmetry analysis. By imposing falloff boundary condi-
tions on the solutions of the gravitational field, the
BMS group consists of the large diffeomorphisms that
preserve the boundary conditions. The BMS group allows
various extensions by including the so-called superrota-
tions. The Barnich-Troessaert (BT) superrotations are
generated by local conformal Killing vectors of the celestial
sphere [5-8]. On the other hand, the Campiglia-Laddha
(CL) superrotations are generated by diffeomorphisms of
the celestial sphere [9,10]. Both of them are discussed
extensively in the literature.

The amplitude approach is motivated by the discovery of
a set of infrared equivalences [11,12]. Such equivalences
relate the BMS asymptotic symmetries, soft theorems [13],
and classical memory effects [14-17]. As an attempt to
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apply the holographic principle to flat spacetime, the
amplitude approach is to map the S-matrix to conformal
correlators living on the celestial sphere [18-24].

The Carroll group approach is based on the symmetry of
the Carroll manifold [25-27]. As is well known, the Galilei
group could be obtained from the nonrelativistic limit (the
speed of light ¢ — o0) of the Poincaré group. On the other
hand, the Carroll group is the ultrarelativistic limit (¢ — 0)
of the Poincaré group, which is the dual of the Galilei
group. The BMS group has been shown to be the so-called
conformal Carroll group of level 2 [28-30]. From the point
of view of flat holography, it would be interesting to
construct field theories with Carrollian symmetry [31-38].

In this work, we obtain a scalar field theory by projecting
massless scalar field theory in flat spacetime to its con-
formal boundary Z*. By imposing the falloff condition of
the scalar field near Z", we may solve the bulk equation of
motion (EOM) asymptotically. There is no constraint on
the radiation degree of freedom at the leading order of the
EOM. Nevertheless, they form the radiation phase space
and obey standard commutation relations in the sense of
Ashtekar [39-42]. We can define flux operators at Z* by
computing the outgoing Poincaré fluxes from radiation.
The energy-momentum flux operators are shown to form a
Virasoro algebra. By including the angular momentum and
the center-of-mass flux operators, we find a new group
which may be regarded as a generalization of the Newman-
Unti group of the Carroll manifold Z™. In the soft limit, this
new group is reduced to the BMS group.

This paper is organized as follows. In Sec. II we review
the BMS group and introduce the conventions used in this
work. In Sec. III, we construct the ten Poincaré fluxes
radiated to Z*. We compute the commutation relations at
Z7 in the following section. In Sec. V, we compute the
commutators of the flux operators and find a closed
algebra. We also discuss the antipodal matching condition
in this section. In Sec. VI, we obtain the same algebra by

Published by the American Physical Society


https://orcid.org/0000-0002-5781-2582
https://orcid.org/0000-0002-5407-123X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.126002&domain=pdf&date_stamp=2023-06-06
https://doi.org/10.1103/PhysRevD.107.126002
https://doi.org/10.1103/PhysRevD.107.126002
https://doi.org/10.1103/PhysRevD.107.126002
https://doi.org/10.1103/PhysRevD.107.126002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

WEN-BIN LIU and JIANG LONG

PHYS. REV. D 107, 126002 (2023)

generalizing the Newman-Unti group of the Carroll mani-
fold Z*. We conclude in Sec. VII. Several technical
computations, the derivation of commutators using sym-
plectic structure, and a review about light-ray operator
formalism are relegated to four appendixes.

II. REVIEW OF THE FORMALISM

In Minkowski spacetime R!3, the metric can be
written as
ds? = —d* + dx'dx’,

i=1,23. (2.1)

To study radiation at future null infinity Z*, we can use the
retarded coordinate (u, r, 6, ¢)

u=t=t-r, r:\/x_z, x= (" 2% %), (2.2)
and write the metric as
ds* = —du? — 2dudr + r*dQ?, (2.3)
where
dQ? = dO* + sin*0d¢?* = y,pd0*d6", A,B=1,2
(2.4)
is the metric of the unit sphere
TaB = ((1) si:ze)' (25)

In this paper, the covariant derivative V4 is adapted to the
metric y45. ZT can be approached by setting r — oo while
keeping u fixed. It has the topology R x S? and can be
described by three coordinates
(u,0,¢) = (u,0). (2.6)

In an asymptotically flat spacetime, the large-r expan-
sion of the metric near Z* is

ds? = —du® = 2dudr + r’y .3 d0* d6® + Sg,, dx*dx*.  (2.7)

The original BMS group [2,3] is the large diffeomorphism
that preserves the Bondi gauge

agrr = 5grA = 07 ar(r_4 detgAB) =0 (28)

and the falloff conditions

1 1
0Guu = O(;) > 0Gur = O(ﬁ) ) 0Gua = O(l)’

5gAB = O(r) (29)
Transformations generated by the vector
1 vA

are called supertranslations. The function f is smooth on
S2. More explicitly, we write it as

f=7Q).

Similarly, the transformations generated by the vector

(2.11)

1
5Y—§

+ (YA—%VAVBYB)()A‘F“' (212)

1
MVAYAau — 5(” + V)VAYAar

are called superrotations. We will distinguish two cases:
(1) The vector Y is a local (singular) conformal Killing
vector (CKV) on S2. In this case, the vector Y* can
be divided into holomorphic and antiholomorphic
parts. This is the superrotation in the BT sense. We
will not consider this case in this paper.'
(2) The vector Y# is smooth on S?> and generates a
diffeomorphism on S, namely
YA =YA(Q). (2.13)
This is the CL superrotation.
By combining supertranslations and superrotations, the
usual BMS group is generated by the vector

Er = YAQ0 + @ +5Var(Q)[9,  (214)

at future null infinity.

III. FLUXES

Since BMS symmetry relates to the radiation phase space
at Z7, we will use a massless real scalar to study the
radiation at Z*. The action is

1
sz/d“x[—zaﬂ@aﬂ@—v@wm . (3.1)

The first term is the kinematic term and the second term
is the potential. Since the theory is massless, the potential
is V(@) ~ ®3 perturbatively. To be more precise, we may

'"They may relate to cosmic string defects [43,44].
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S+

outgoing fluxes

t const.

FIG. 1. Penrose diagram of the Minkowski spacetime. Massive
particles come from past timelike infinity i~ and go to future
timelike infinity i*. Massless particles start from past null infinity
Z~ and move to future null infinity Z+. Z* and Z~ are null
hypersurfaces with topology R x S%. There are ingoing fluxes at
Z~ and outgoing fluxes at Z7.

expand the potential as

V@) =3 "
k=3

The last term in the action is a source coupled to the field
and it causes the scalar radiation. The stress-energy tensor
of the theory is

D, (3.2)

=2

T, =0d,®,®+n,L, u,v=0,1,2,3, (3.3)
where the Lagrangian can be read out from the action (3.1).

Figure 1 is the Penrose diagram of the Minkowski
spacetime. The scalar theory is in the bulk of the
Penrose diagram. At the boundary, there are nontrivial
outgoing fluxes at Z" and ingoing fluxes at Z~. To find the
radiation degree of freedom, we should reduce the field ®
to Z*. This is achieved by imposing the following falloff
condition:

®— 2(u, Q) n ZZ(k)(u,Q)

T
r 2

_Z(u.Q) N > (u, Q) n O(%) (3.4)

r r2

near Z7. Just as in electrodynamics [45], the field X
encodes the radiation degree of freedom. The fields
0 k > 2 are subleading terms which will be discussed
in the equation of motion. The variation of the scalar field
under a general diffeomorphism is

5:® = £, . (3.5)

Therefore, the transformation of the boundary field X under
supertranslation is
5;Z=f2 (3.6)

where £ = 9,%. Similarly, we find the transformation of the
field £ under superrotation

1 . 1
Sy = E,NAYAE + YAV, 2 +§VAYAZ. (3.7)

The first term on the right-hand side of (3.7) may be
subtracted, since it has the same form as the right-hand side
of (3.6). For the remaining two terms, we may define

1
A(Y;Zu,Q) = YAV, Z(u, Q) +§VAYAZ(IA,Q) (3.8)
for later convenience.
From the action (3.1), the equation of motion is
oV
O0d—-—+J=0. 3.9

The external source affects the vacuum state of the theory
and modifies the quantum expectation value and the
correlation functions of the field X. However, we will
consider quantum fluctuations of the field around the
vacuum state, so it is safe to set it to zero. From now
on, we ignore the source term” and try to solve the equation
of motion near Z . Using the falloff condition (3.4) and the
potential (3.2), we can solve the equation of motion order
by order. More explicitly, we have

$ 5@ 50
and
, £ 5@ 1 . ) ()

(3.11)

Therefore, we could obtain the following results.

(1) At the leading order O(r~!), the time derivative of £
is cancelled out and there is no corresponding EOM
for 2. There would exist terms with time derivative
of = from d3®. However, the contribution about such
term from —d3® exactly cancels that from 97®.

In Sec. V C, we will insert back the source term to discuss the
antipodal matching condition.
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(2) At the subleading order O(r~2), we find the follow-
ing equation:

132% =0. (3.12)

From (3.12), the field Z should be zero when 45 # 0.

To find nontrivial phase space, we may choose

A3 = 0. Then the equation is valid without imposing

any constraint on the field X.
(3) At next order O(r?), we find

1,33 4232 4 4BV, V3 = 0. (3.13)
The subleading term () is determined when we
impose the initial condition at the initial time u = u;

@ (u = u;, Q) = 6P (Q). (3.14)
The initial data (> (Q) is independent of the field X.
Equation (3.13) indicates that £?) is not an inde-

pendent propagating degree of freedom at Z.

(4) At higher orders O(r*), k > 4, we can also prove
that (=) are not independent propagating degrees
of freedom.

In this paper, the Poincaré fluxes could be expressed in
terms of the field ¥ without any contribution from the

higher order terms Z(k), k > 2. We will focus on field X in
the following.

A. Energy and momentum fluxes

To find the energy flux at 7+, we use the conservation of
the stress-energy tensor’

9,T = 0. (3.15)

It follows that the energy flux can be written as

drP’ d . .
—=— [ &xT% = - / d*x0, T = — / ds,T".
dt  dt )y 14 ov

(3.16)

T% is the ith component of the energy flux density [46]
which is radiated out of surface of the volume V. Near 7™,

it is expanded as
- X2y 1
T = o= ).
7'2 + <r3)

(3.17)

Note that the conservation law is written in Cartesian
coordinates, although arguments of terms are in retarded frame.
This leads to standard definition of energy, momentum and
angular momentum.

The leading term cancels the factor 7> in the integration
measure

ds; = r’n;dQ (3.18)
and leads to a finite result. Note that the right-hand side of
(3.16) is a function of u. In the retarded coordinates (2.2),

the derivative with respect to u# can be found by using the
chain rule,

d _od d

—=——=—. 3.19
du Odudt dt ( )
Therefore, we find the energy flux
ar’ / dQ3*(u, Q) (3.20)
_ = = u, . .
du 2

In a similar way, we find the following momentum flux

dPi ) .
=— [ dQ3*(u,Q)n,
m /SZ (u,Q)n

(3.21)

where n' is the normal vector of the unit sphere S*

n' = (sin @ cos ¢, sin @ cos ¢, cos 0). (3.22)
The energy and momentum radiated to Z* during the time
(=00, up) can be written as

T (u) = /”" dudQf(Q)32, —co <up < oo,  (3.23)

[Se]

where f is a function on the sphere.

(1) When f = —1, (3.23) is the energy radiated to Z™.

(2) When f = —n', (3.23) is the momentum radiated
toZ+.

(3) It is natural to generalize the function f to be any
smooth function on the sphere. As we will see later,
this corresponds to the supertranslation exactly.

The energy and momentum radiated to Z are encoded in
the expression (3.23). It is easy to see that (3.23) can be
naturally generalized to the following version:

T, = /_°° dudQf (u, Q)32. (3.24)

[Se]

Now f is a function on Z*. When it is a step function

f(u, Q) = 0(ug — u)g(Q), (3.25)

T, is equivalent to T (up). If we want to study the
time dependence of the radiation, it is necessary to consider
this generalization. Otherwise, after averaging over time
in (3.24), any time-dependent information of 3*(u, Q) will
get lost.
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Due to the topology of ZT, the function f(u, Q) can be
expanded in the following basis:

f(u’ Q) = Z/ dwcw.f,mfmf.mv
fm Y X

fa)fm = e_iquf,m <Q>7 (326)
where w is the frequency which is dual to the retarded time
and (#,m) are used to label the spherical harmonics.
Therefore, (3.24) can also be labeled by three quantum
numbers (w, ¢, m)

Tw.f,m = /oo dudgfwf,miz'

[Se]

(3.27)

As we will show in Appendix D, the insertion of e~ is
also performed in the context of light-ray operator formal-
ism. At the end of this subsection, we will define an energy
flux density operator at Z*

T(u,Q) = 22, (3.28)

It encodes equivalent information of the smeared

operator (3.24).

B. Angular momentum and center-of-mass fluxes

The system is also Lorentz invariant. Thus we can also
find a conserved current
MWP = xHTYW — xVTHP, 9,M"" =0 (3.29)
whose corresponding conserved charges are the angular
momentum and center of mass. Therefore, we can find the
following fluxes at Z+:

dLm ) .
= —/d3x0,~M””’ = —/ as;mMm'.
du v oV

(3.30)

(1) For the rotation symmetry, we find the angular
momentum fluxes
dLV

du

= /S 2 dQYAYV, ¥, (3.31)

where Y7 are the three Killing vectors of $°:

Y4, =(0,1), (3.32)
Y4, = (—sing, —cotOcos ),  (3.33)
Y4y = (—cos ¢, cot@sin ). (3.34)

(2) For the Lorentz boost, we find the center-of-mass
fluxes

dL" : "
. / dQ(VAEV, S + usnl),  (3.35)
du 2

where Y4 are the three strictly conformal Killing
vectors of S%:

YA = (- cosecos¢,51_n‘£>, (3.36)

S

. cos ¢
Y4 = —cosd ,— , 3.37
5 < cos @sin ¢ “n 9) (3.37)

Y4 = (sin6,0). (3.38)
They are related to the normal vector n' by
VY4 =2nl. (3.39)

More properties on the six conformal Killing vectors
Y4, Y?j can be found in Appendix A.
From (3.31) and (3.35), we can define a smeared operator

Ry = / " qudQYA (u, Q)EV,E, (3.40)

()

where Y4 (u,Q) is a vector on Z.

(1) When Y4 =Y4 Ry is the angular momentum
radiated to Z" during the whole time (—o0, o).

(2) When Y4 =74 Ry+ Tyy,y+ is related to the
variation of the center of mass during the whole
time.

(3) The vector Y# can also be any smooth vector on S?
and Ry will be related to the CL superrotation [9].

(4) When Y4 is any singular conformal Killing vector on
§?, Ry will be related to the BT superrotation [5].

(5) We can choose Y to be

YA (u, Q) = O(ug — u) YA(Q). (3.41)
Then Ry becomes
Ry (ug) = / Y dudQYAQ)SV,E. (3.42)

This is the superrotation charge radiated to Z*
during the time (—oo0, u).
For later convenience, we also define an angular momen-
tum flux density operator
Ry(u, Q) = 3V, 3. (3.43)
Actually, we could define a family of such angular
momentum flux density operators

126002-5
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My(Au,Q) = 1ZV,E — (1 —-DZV,E  (3.44)
where 1 is any real constant. For the cases in which Y4 is
independent of u, all of the operators in this family are
equivalent, since we can integrate by parts. In other words,
the corresponding smeared operator

My(2) = / dudQYA QM (1, Q) (3.45)

does not depend on A. However, when Y4 is time depen-
dent, the smeared operators

My (2) = / dudQYA(u, QM, (1 u.Q)  (3.46)

are not equivalent to each other.

IV. CANONICAL QUANTIZATION

In the previous section, we find the Poincaré fluxes at
Z*. The densities T'(u, Q), R, (u, Q) are classical objects so
far. In this section, we will find the radiative Hilbert
space using canonical quantization. The densities 7'(u, Q),
R, (u,Q) will become quantum flux density operators
defined on Z.

A. Commutators

In perturbative quantum field theory, the scalar field ®
may be quantized asymptotically using annihilation and

creation operators by, b,t

d>(t,x)—/ﬁ :

(e—iwt+ik~xbk + eiwt—ikxb;t')

(27)* 20
(4.1)
with the standard commutation relations
[ b)) = (2m)76(k =K'),  [be.be] =0,
(b4 byy] = 0. (4.2)

The vector k is the momentum and o is the energy. For a
massless particle,
oy = k| = k. (4.3)

The plane wave can be expanded as spherical waves

e —4ny il j(0r)Y},(0.9)Y (0.4,
‘m

(4.4)

where the vectors k and x are written in spherical
coordinates as

k=(0.0.¢), x=(r0.¢). (4.5)

The spherical Bessel function j,(wr) has the following
asymptotic behavior as r — oo:

sin(wr — frz_f) pilor=nt/2) _ =ilwr-n/2)

' - = 4.6
Jeter) wr 2iwr (4.6)
Therefore,

—iwu—izl[2 _ p—iwv+int[2
—iwt+ikx ., 4 2 €
‘ ”;ﬂ:l 2iwr
X Y;,m (9’ ¢) Yf,m (9/, ¢,) (47)

Near 7, the term with e~ oscillates infinite times and
we can set it to zero safely.4 Note that this is also the
requirement of the boundary condition (3.4). We read the
quantum version of X(u, Q) as

© dw ;
2(u, Q) = — Aoy pme "Y1 (Q
0.0) = [T Tt ()

+ aj;}.f,meiqui;,m (Q)] (48)
where
@ / dQb Y% (Q) (4.9)
Aptm = < 7= 2. m s .
.z, 2\/577:3/21' kfe,
- wi
a , =———[dQbY, . (Q). 4.10
®,6,m 2\/§ﬂ3/2/ k', ( ) ( )
We can also inverse (4.9) and (4.10) as
2V273%i
by =—— Y, n(Q), 4.11
k @ ﬂzmawf,m t’,m( ) ( )
2\/§7r3/2i
by =—-"Ndl L, vE Q). (412
k @ {Zn;aw,ﬁm z,”,m( ) ( )
We find the following commutators:
[aw.f,m’ aa)’.f’,m'] = [az;f,m’ az,’f’,m’] = 0’ (413)
(@b @y i) = (@ = 0)3p p8y . (4.14)
Therefore, a,, ,, are annihilation operators and az)f_m are

creation operators at Z*. They are natural operators at Z+
instead of b, and b,t.

*It is common to set the term with e~®" to zero in the context
of the Unruh effect [47,48].
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Now we can find the following commutator:
Z(u, Q). 2(', Q)]

©do _ © dw .
—5(Q-Q 4D vy _ / -
( ) [A drw ¢ o 4dnw ¢

— o) [T e

o drnw

(4.15)
The Dirac delta function on the sphere is
1
S(Q-Q)Y=—260-0)5(p—¢). 4.16
(Q-Q) = ——3(0-0)0(¢ - ).  (4.16)

The integral in the commutator is divergent in general.
However, we can first compute

Z(u,Q),2(u, Q)] = %5(u —u)5(Q-9Q), (4.17)
and then integrate on u’
[Z(u,Q),Z(u, Q)] = %a(u —u)5(Q-Q/). (4.18)

The function a(u — u’) should satisfy the following two
properties:

iOt(u —u)=6(u—-u'),

7 a(u—u')=—a(u' —u).

(4.19)

These fix the expression of a(u — u’)

1
a(u—u') = 3 O —u)—0(u—-u)] (4.20)
where 6(x) is the Heaviside step function
I, x>0
O(x) = 4.21
() {0, x <0. (421)

Finally, we write down the commutator between two X
operators

[E(u, Q). 2(u, Q)] = %5’(u -u)5(Q-Q'), (4.22)
where
5'(u—u’)Ediu5(u—u'):—%5@—#). (4.23)

B. Correlation functions
To compute correlation functions, we need to define the

vacuum state. Since a,, ¢, is a linear combination of by, the
free vacuum is still defined as

Ay rm|0) =0 b]0) = 0. (4.24)
For interacting theory, the physical vacuum |0) is not
exactly the free vacuum. The physical vacuum is defined as
the lowest energy state of the Hamiltonian H. We can
expand the free vacuum as the superposition of the
eigenstates of the Hamiltonian

10) = 10)(0/0) + ) _|n)(n]0). (4.25)

We use n to label the eigenstates of the Hamiltonian
H|n) = E,|n). (4.26)

The energy of the physical vacuum can be shifted to 0
H|0) =0]|0) = 0. (4.27)

Usually, the energy is assumed to be positive for excited
states [49]

E, > 0. (4.28)
The physical vacuum can be found from
lim e~0) = [0)(0]0). (4.29)

t—oo(1—ic)

In this paper, we will only focus on the theory at ZT.
It corresponds to the final states after scattering process.
The radiative Hilbert space may be constructed by the
creation operators acting on the free vacuum state. For
example, a particle with momentum k = (0,Q) is a
superposition state

Yﬂm (Q)ai— |0>

w.,f,.m

2\/§ﬂ3/2i
_Tz y (4.30)

Z.m

We will derive the symmetry algebra at Z+. It is better to
consider the free theory at first. In the following, we will
use |0) to denote the vacuum state. Using the expansion
(4.8), the vacuum correlation function with odd number of
2 is always zero. The fundamental two-point correlation
functions at Z" are

(01 (u, Q)Z(u', Q)|0) = / " d—“’e—iww—"’>5(g -Q),
o 4nw

(4.31)

126002-7
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. wdo
(0[Z(, Q)S (i, ) [0) = i / W prte5(0 - ),
0 T

(4.32)
. . fodo .,
012 (u, Q)Z(u/, Q)|0) = —z/ — emiol=)5(Q — QF),
0 ¥
(4.33)
. . © dw . /
012 (u, Q)2(u, 2)|0) = / — we™ =) §(Q — Q).
0 V¥4
(4.34)

The integral in (4.32) is only well defined when
Im(u — u") < 0. Therefore, we use the following ie pre-
scription [50,51] in the correlators:

u— u—ie, € > 0. (4.35)
Now the correlators (4.32)—(4.34) are
(1, O _ 1 eV
0|1Z(u, Q)X(u/,Q)|0) = P — 5(Q—Q),
(4.36)
S areY: _ 1 eV
01Z(u, Q)Z(u',Q)|0) = —4ﬂ(u . 5(Q -,
(4.37)
S () ! _ 1 e Y
012(u, Q)X(u/,Q)|0) = —4ﬂ(u o i€)2 5(Q—Q).
(4.38)

The correlator (4.31) is still divergent. Nevertheless, we
write it as

(01Z(u, Q)Z(u/, Q)[0) = p(u—u')5(Q-Q'), (4.39)

where

© do _. ;
— ) = —lw(u—u’—ls). 4.40
pu-uwy= [T, (4.40)

This B function may be regularized by

plu—u')= lim _do

3 2 e—ia)(u—u’—ie)‘ (441)
x—=0" Jo T

1-«
1

Besides a divergent part which is proportional to x~',
B(u—u') should be a logarithmic function

1 1 . . YE

pu—u')~———Ilog(i(u—u' —ie) e (4.42)

where y is the Euler constant. There is a branch point at
u =u'. Though f(u—u') is divergent, we find a finite
result by considering the following difference:

Blu—u') = plu — u) = %a(u —u).  (4.43)
This is consistent with the commutator (4.18). The time
derivative of the f(u — u') function is

!/ !/
—pu—u)=——plu—-u)=-

We also notice that the correlators (4.36)—(4.38) are
consistent with the commutators (4.17) and (4.22) by using
the following formula:

(4.45)

where P% is the principal value. Now we compute the
four-point correlation function using Wick contraction

(OIZ(uey, Q1) E(uz, Q) E(u3, Q3)X(uy, 24)0)

= G12G34 + G136 + G146, (4.46)
where we have defined the two-point functions

Gij = (02 (u;, )2 (u;, Q))[0) = plu; — u;)6(L; — ;).
(4.47)

All other four-point correlation functions are generated
from (4.46). For example,

(01 1y, Q1) 219, Qo) (113, Q3) 2 (144, ©4)[0)

= H\,H3, + Hi3Hoy + Hi4Hys, (4.48)
where
H.=0,0,G,;— ! 5(Q— Q). (4.49)
ij — Yu;Y%u;Yij — 4ﬂ(u,~—uj—ie)2 i ) .

Attentive readers may have questions about the corre-
lation functions in this subsection and the commutation
relations in the previous subsection. Usually, the propagator

(D(t,x)D(F,x")) (4.50)
is understood as the corresponding Green’s function which
satisfies the wave equation. Interestingly, we have con-
cluded that the propagating field X is not subject to any
additional constraint upon A; = 0. At the same time, there
is still a nontrivial propagator
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(Z(u, Q)Z(u', Q")). (4.51)
There is no contradiction since the EOM alone does not fix
the propagator. One should also impose suitable initial/
boundary conditions. For example, any plane wave

e—i(ut+ik~x (452)
could satisfy the bulk EOM once the energy w and the
momentum k are related by the identity @ = |k|. Due to the
completeness of the Fourier modes in the solution space,

the bulk field can be expanded in the plane wave basis with
suitable coefficients

&Pk 1
N

(e—iwt+ik~xbk + eiwt—ik‘xb;(')'
(4.53)

In canonical quantization, one should impose nontrivial
commutators between @ and its conjugate momentum d,®
which turns into the commutators between b; and its
Hermitian conjugate. With the definition of vacuum, one
can determine the propagator using the commutators.

There is a similar story for the boundary propagator
(4.51). Any smooth function at the boundary may be
expanded in the basis f,, s, = ¢"“"Y,,,(Q) since boun-
dary manifold is Z+ = R x S, There is no further con-
straint for the three quantum numbers (w, ¢, m) since there
is no dynamical EOM for the boundary field X. This is
exactly the mode expansion (4.8) of the boundary field
which is written below

©  dw .
2(u, Q :/ Ay pme " Y 0 (Q
( ) 0 \/4—7[5;”:{ Z, ‘, ( )

+ aZ}f,meiwu Y;,m (Q)] .

(4.54)

There are still nontrivial commutators between the coef-
ficients a,, ., and a;f‘m which are inherited from the
quantum bulk field. In other words, though the boundary
theory X has no dynamical EOM, there is indeed a
nontrivial symplectic structure in the phase space, from
which we could work out the Poisson brackets and hence
commutation relations. The derivations are collected in
Appendix B. The propagator of the boundary field X is a
consequence of the symplectic structure and the definition
of vacuum state.

C. Normal ordering
After quantization, the densities T'(u, Q), Ry (u, Q) are
operators. We should refine their definition by using normal
ordering

T(u,Q) = :3*(u.Q):, (4.55)

Ry(u, Q) = : EV,2(u,Q):. (4.56)
The procedure is to move the annihilation operators to the
right of the creation operators. Therefore, the vacuum
expectation values of these flux density operators vanish

(0|T(u, 2)|0) = (O|R,(u,2)]0) = 0. (4.57)
An equivalent way is to refine the operators by taking the
following limit:

T(u,Q) = lLim Z(u,Q)3(u, Q)

W' —>u,Q—Q

— (02 (u, Q)Z(u!, )0, (4.58)

Ry(u, Q)= lim X(u,QV,yZ(u/ Q)

' —u,Q'—-Q

— (0[2(u, Q)V 42 (i, )|0). (4.59)

Considering the normal ordering, we find the following
two-point functions:

2
(O[T ()T (. 2)]0) = (:_ io)_ -9,
(4.60)
)
O DR (0. ) 0) =z V(=)
(4.61)

(OIR 4 (u, Q)R (u', X)|0)

_ plu—u) o o
it =i @ Vs - @)
1

167%(u — u' — i€)

SV48(Q - Q)Vs(Q - Q).
(4.62)

The divergent constant 5)(0) is the Dirac functions (4.16)
on the sphere with the argument equalling 0. The non-
vanishing of the two-point function (4.61) indicates that R,
is not orthogonal to 7. We define a new operator

M, ==(:EV,Z —XV,3:). (4.63)

1

2
It is related to R4 by
1 .

MA:RA_ZVAQ’ (464)

where the operator Q is defined as
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0=:3%:. (4.65)
Then the two-point function between 7 and M becomes
Zero

O|T (u, Q)M 4 (u',)|0) = 0. (4.66)
The flux density operators defined in (3.44) are classically
equivalent in the cases where Y4 is independent of time u.
However, in the quantum cases, only the operator with
A=1/2 is orthogonal to T. Therefore, it is natural to
choose such an operator to define our smeared super-
rotation flux operator. As will be shown later, we obtain a
set of concise commutation relations with such an choice.
However, one may also choose other values of 4 since the

orthogonality condition is not necessary.
The two-point function between two Ms is

(0111, (e Q)M (. )]0}
Plu—ut) =

= —mAAB/(Q,Q’), (4.67)
with
My (Q, Q) =686(Q-Q)V,Vps(Q—-Q)
—V,8(Q-Q)Vps(Q-Q). (4.68)
To simplify notation, we will use the convention
My = My(/l = %) = /dudQYA(u, Q)M 4 (u, Q).
(4.69)

D. Correlation functions between flux operators

From the correlation functions between flux density
operators, it is easy to calculate correlation functions
between flux operators. We define the following quantities:

Tr(u) :/de(u,Q)T(u,Q),

My () = / dQYA (1, Q)M 4 (1, Q). (4.70)

They are related to the flux operators

Tf:/dqu(u), My:/dMMy(u). (4.71)

From the correlation functions of the flux density operators,
we could find

(T, ()T, () = 5(:7[(20 ) [aol ((:’_ sz,f i(f’;)fz ),
(4.72)
(Ty(u)My (') =0, (4.73)
(My ()M (u')) ——/deQ'YA(u,Q)ZB’(u',Q/)
X Ay (@, 9) (u=u) =4, (4.74)

Thus the correlation functions of the energy flux oper-
ators are

5@ (0)
872

fl(”sQ)fz(”/»Q).

(u—u' —ie)*
(4.75)

(074, 7,|0) =

/ dudQdu’

When f,, f, do not depend on u, it is easy to see that

01T, 7,10y = O [ dutoa OO

8x° (u—u' —ie)*
(4.76)
As a consequence of (4.660), we find
(0|7 yMy|0) = 0. (4.77)

At last, we consider (0| MyM|0)

(0| My M|0) = — / dudQadu' dQ' YA (u, Q)ZF (u', )

plu—u') -5
— X App(Q, Q).
X87r(u—u/—i€)2x s )

(4.78)
If Y4, Z4 do not depend on u, we find

(OUMyMy0) == [ dudaddrv* @)z" (@)

plu—u) -3
— T x A (Q,Q
X87r(u—u’—i€)2X a (2.2

= / dudQdu' dQ YA (Q) A,y (2,978 (Q)

1
x 327 (u—u' —ie)?

=0. (4.79)

To obtain the second line, we have integrated by parts with
respect to u, and have used the derivative of f(u — ) given
in (4.44).
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In summary, when f,, f, and Y4, Z4 are time indepen-
dent, the correlators between the smeared operators are zeros
However, we have obtained the correlation functions (4.72)

and (4.74). They do not vanish and contain more detailed
|

(M ()M (00)) = = [ AR @)Z" (@) A (€.)

When u and u’ are close to each other, there is a peak for the
correlation function (T, (u)T,,(«')). One can also find a
peak for (My(u)My(u')). In the limit

W' finite, (4.83)

u — 00,

the correlation function (T, (u)Ty,(u')) decays by power

(T, (T, () ~ (4.8)
and (My(u)My(«')) decays as
(M (i) (1)) ~ 152, (4.85)

V. SYMMETRY ALGEBRA AT Z*

In this section, we will relate the operators 7 ; and My to
supertranslation and superrotation respectively. Then we
will generalize the BMS algebra by computing the com-
mutators between these flux operators.

A. Supertranslation and superrotation generators

Using the commutator (4.17), we can find

52(u, Q)= [T . 2, Q)] = —if (i . Q)E(.Q). (5.1)
|

oyZ(u, Q) = My, Z(u/, Q)]

information than the smeared operators when f, f, and
YA, ZA are time independent,

(2)
(T T =25 [ ao y 'E‘i),fjf)ﬁ, (481)
Blu—u) =L
8r(u—u' — iz)2 ' (4.82)

|
This is exactly the transformation of the field under
supertranslation (3.6) up to a constant factor. Therefore,
when f is time independent, the operator 7 ; should be
regarded as the generator of supertranslation. Interestingly,
the test function f in 7 ; could be time dependent. Now we
will explain the terminology used in this paper.
(1) Usually, f is a smooth function on S%. More
explicitly, we write it as
f=rQ). (5.2)
We will call it a special supertranslation (SST).
(2) In this paper, we will also consider the possibility
that f is defined on Z7, i.e., it may depend on the
retarded time u
f=rf(u,9Q). (5.3)
We call it a general supertranslation (GST). Note that
we define the GSTs through the flux operators in the
scalar field theory at ZT. They are not the “real”
supertranslations since a time-dependent function f

in (2.10) would violate the falloff conditions (2.9).
Similarly, we find the following commutator:

= —iY"(u, Q) Z(u, Q) - %VA/YA/(M/, QNZE(u, Q)
[ " 1 Y
+;/ dua(u —u)[Y* (u, @)V Z(u, Q) + EVA/YA (u, Q)Z(u, Q)]

= —iA(Y; 50/, Q) —|—%/dua(u —u)A(Y 2 u, Q). (5.4)

At the last step, we have used the definition of
A(Y;%;u,Q) in (3.8). The transformation of X(u',Q')
under the action of M contains two parts. The first part
is local since it only depends locally on the field with the
same time. The commutator (5.4) can be interpreted as a
superrotation transformation when Y =0, since compared
to the above dyX (3.7), the additional nonlocal terms

vanish. Just like supertranslation, we distinguish the fol-
lowing two cases.
(1) The CL superrotation is time independent and we
will call it a special superrotation (SSR).
(2) Once Y is defined on Z*, namely,

YA =Y4(u,Q), (5.5)
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we will call it a general superrotation (GSR). GSRs
are not “real” superrotations since they not only
violate the falloff condition (2.9), but also break the
null structure of ZT. The latter point will be
discussed in Sec. VIC.
The second part is nonlocal which is a superposition of
the superrotation transformations A(Y; %, u, Q') at different
times. When the vector Y is time independent, the non-
local term vanishes. In this case, the operator

T%uvAyA + My (5.6)

generates the SSRs (3.7). In summary, we find the super-
translation and superrotation generators.

(1) Supertranslation generators 7 ;. It is the smeared

operator of the energy flux density operator 7'(u, Q).

|

My, Mz] = Cy(Y.Z) + iMpy 4 —l—%/dudu/an(u’ —u):A(Y: S0 Q)A(Z:Zu, Q).

Unfortunately, this is not a standard algebra in general.
Besides the local operators on the right-hand side of the
commutators, many interesting new features appear.

1. New operator
There is a new operator

Q,= /dudgg(u,g):z2: (5.10)

on the right-hand side of the commutator between super-
translation and superrotation generators (5.8). This operator
|

My, Q,] = iQyry,, + i / dudi dQa(i’ — u)g(u, Q) (1, Q)A(V: X1, Q) -,

[le,ng]=CQ(gl,gz)—I—Zi/dudu’an(u’—u)gl(u/,Q)gz(u,Q):Z(u,Q)Z(u’,Q):.

2. Central charges

There are two central extension terms in the algebra
(5.7-(5.9),

i

CT(flvf2) - _@5(2) (O>If1f2_f2'fl, (5'15)
Cy(Y,2) = / dudu' dQdQ'Y* (u, Q)ZP (u', Q)
X A g (Q,Q ) (u—u'). (5.16)

(2) Superrotation generators 71,y ya + My. Since the
first part 7 1,7, y4 is just a supertranslation generator,
we may also call My a superrotation generator. It is
a smeared operator of the angular momentum flux
density operator M, (u, Q).

B. Symmetry algebra from flux operators

Since 7, and My are identified as supertranslation
generator and superrotation generator respectively, they
should form a BMS algebra. It is straightforward to find the
following commutators:

(5.7)

[Tfl’TfZ] = CT(fl’fZ) + inlfz—fzfl’

. . i
[Ty Myl = iMypy = iTyay, s+ 7 Qaire,pe (5:8)

(5.9)

is absent for ¥ = 0. The commutator between Qg and the
field X is

[Q,.2(u', Q)] = i/dua(u— u)g(u, Q)E(u, Q).  (5.11)

There is no obvious geometric meaning for this operator.
However, we may relate it to the light-ray operator of ®?
at Z*. This point is clarified in Appendix D. We should
also include it once we consider GSRs. With this operator,
we obtain the following three commutators:

[T, Q4] = Cro(f.9) +iQu s (5.12)
(5.13)
(5.14)
[
where
Plu—ut) b P - -
— / —_— - JT v
’1(1,{ u ) 87[(1/! —u - i€)2 87[(14/ — i€)2 .
(5.17)
The identity operator is defined as
Iy= /dudﬂf(u,ﬂ)- (5.18)

There are also two central extension terms in (5.12)—(5.14)
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Crolf.9) = =502 (519
Colg1. 2) = 26@(0) / dudu' dQ[p(u — u')?
— B’ — u)?]gi (u. Q)gr (', Q). (5.20)

These central terms can be read out from two-point
correlation functions of the corresponding operators.
Three of the central extension terms CT,CQ,CTQ are
divergent due to the Dirac delta function 5)(0) on the
sphere. We will use a constant ¢ to denote 5()(0)

c = 562(0) (5.21)

and will discuss the regularization of c¢ later.

3. Virasoro algebra in higher dimension

We notice that (5.7) actually form a Virasoro algebra. To
see this point, we transform the supertranslation generator
to its Fourier space using (3.27),

‘+t L

{Tw,f,mi Tw’,f’,m’] = (Cl)/ - w) Z Z

L=|/—¢'| M=—L

X Cf.m;f’,m’;L,MTerw’,L,M
3

Y cS(w+ @' )b 06y -

3 (5.22)

The constants ¢y .. .1y are from the decomposition of
the product of two spherical harmonic functions into the
summation of spherical harmonic functions.

4. Nonlocal terms

There are three nonlocal terms in (5.9), (5.13), and
(5.14). The nonlocal terms introduce new operators in the
commutators. It is understood that the new operators are
also normal ordered. It would be interesting to explore the
commutators with these new operators. However, we find
an interesting truncation by setting

Y=Z=§g=§ =i =0. (5.23)
In this case, all the nonlocal terms and the central terms
Cy, CQ, CTQ are zeros. The reader can find more details in

Appendix C.

5. Truncation 1

To find the connections to BMS algebra, we impose two

conditions on the commutators.

(i) There are only supertranslation generators and
superrotation generators in the algebra. The algebra
may also include central extension terms which are
proportional to the identity operator.

(ii) The algebra should be closed and satisfy the Jacobi
identity.
The truncated algebra is

[T, Tr)=Crlf1f2) +iT oy (5:24)
[Ty, My] = =iT yay, . (5.25)
My, Mz] = iMyy z. (5.26)

Since 7 ; generates GSTs and My generates SSRs, we may
denote the corresponding group as

Diff(5%) X C=®(I+). (5.27)

The notation Diff(S?) means that the vectors Y*(Q)
generate diffeomorphisms of $2, and C®(Z*) means that
f is any smooth function on Z+.

6. Truncation 2

We can also include the operator Q. To eliminate the
nonlocal terms in the algebra, we still impose the condition
(5.23). From (5.12), the function f should be a linear
function of u

f(u, Q) = f(Q) + uh(Q).

Now we define two independent operators from 7 ;:

(5.28)

Pf—/dude(Q):iz:, D, _/dudguh(g):iz:.

(5.29)

We find the following algebra:
[P, Pp] =0, (5.30)
[Py Di) = Py (531
[P, My] = =Py, ;. (5.32)
[P.Q,] =0, (5.33)
[Dy,. D] =0, (5.34)
[Dy, My] = =iDyay s (5.35)
Dy, Q] = iQy. (5.36)
My, Mz] =iMy z, (5.37)
My, Q] = iQyay, 4 (5.38)
[Q,,-Q,] =0. (5.39)

In this algebra, all the functions and vectors are defined on
$? and are independent of u. Since there is no geometric
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meaning for the operator Q,, we may also truncate it away
to find the following subalgebra:

[P Pl =0, (5.40)
[P/ Dy] = iPp, (5.41)
[Pr, My] = =Py, /. (5.42)
[D),. D] =0, (5.43)
[D), My] = —iDyay s (5.44)
My, Mz = iMy 4. (5.45)

This is exactly the algebra found in [52].

7. BMS algebra

The algebra (5.24)—(5.26) can be truncated to the usual
BMS algebra. We just list two possible truncations.

(i) 7, generates SSTs and My generates SSRs. Then
the central charge becomes zero. The algebra trun-
cates to the BMS algebra in the CL sense.

(ii) 7 s generates SSTs and M) generates global con-
formal transformations of S2. The algebra truncates
to the original BMS algebra.

C. Antipodal matching condition

We can also discuss the symmetry group at past null
infinity (Z7). The corresponding radiation phase space
could be encoded in the field £~ (v, Q). This field is the
leading falloff term of the field ® near Z~,

D(t,x) = M—l— O<i>

r I"2

(5.46)

The coordinate » =¢+r is the advanced time in
Minkowski spacetime. The symmetry groups at Z= and
7~ may be related to each other by antipodal matching
condition [12]. In this section, we will derive the antipodal
matching condition using two different methods. We will
set the potential V(®) =0 to simplify discussion.
The equation of motion is a linear partial differential
equation

O = —J. (5.47)

Using Green’s function, the linear equation of motion is
solved by

O(t,x) = ®"(1,x) + ®*(t,x). (5.48)

The field ®"(z,x) obeys the sourceless Klein-Gordon
equation. It is determined by the incoming waves from
past null infinity Z~. The second term is the retarded
solution which is caused by the source

1 J(t—|x =x'],x")
(1, x) =— [ dX —————. 5.49
) = 4 [ TS (5.49)
There is a symmetric solution which is written by
O(1,x) = P(1,x) + DV (1, x). (5.50)

Now the field ®°"(z,x) is the outgoing waves to Z.
The second term is the advanced solution

1
q)adv(hx) :4—/dx
T

The difference between the outgoing waves and the
incoming waves

S+ e =X, X))
e—x]

(5.51)

DR (1,x) = O (1,x) — D (1, x) = D (1, x) — D (7,x)
(5.52)

may be regarded as the radiation field [53]. Near Z™, the
advanced solution is zero. Using the Fourier transformation
of the source

dwdk S
Hox) = [ G getorin,

(5.53)
we can find the large r expansion of the field ®*¢ and read
out the leading term

Z(u,Q):é /_ " dod (ke ™, k=(w,0,4). (5.54)

T~ J -0

Usually, the source is located at a finite region of space.
It will contribute to the classical solution of the field X.
For example, for a point source whose frequency is @, and
location is the origin,

J(t,x) = cos wyt(x), (5.55)
we find the radiation field
S(u, Q) = 2201 (5.56)
47

Similarly, near Z~, only the advanced solution in (5.52) is
relevant. We find

1 [o .
T (0.9) =~ / doe= " J(w, <k).  (5.57)
T )
In spherical coordinates,
k=(0.0,.¢) = (0.Q).
k= (0, 7—0,7+ ¢) = (0,QF), (5.58)

where QF is the antipodal point of Q = (0, ¢)
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QF — (10,7 +¢). (5.59)
The antipodal point of QF is still Q
@) = Q. (5.60)

Comparing the solution (5.57) with (5.54), we find

1 . 1 .
J(w,k) :/due’“’”Z(u,Q) :—/dve”‘”’Z_(v,QP).
4z 4z
(5.61)
We may define the Fourier transformation,
1 [e >
X(u, Q) ——/ dwe " "%(w, Q), (5.62)
T J—co
1 [ .
2 (0.9) = - / doe- 3 (,Q).  (5.63)
T .J-

Then we find the following antipodal identification:

Y(w,Q) = -2 (0, QF). (5.64)
The antipodal matching condition (5.64) can also be proved
at the quantum level. Following the same procedure as
Sec. IV A, we find the mode expansion of the field X~ (v, Q)

at 7~

©  dw

2 (v,Q) = — Qg pm€ Yy (Q
( ) \/m;[ £, Z, ( )
+a(ufm waz;,m(Q)] (565)
where
g, = (=) dQb Y% (Q 5.66
%.f,m—(— ) m k f.m( )» (5.66)
i, = (=1 —2 | aQbY,,(Q). (5.67)
w,l.m 2\/§ﬂ3/21 Kkt Em . .

Comparing with Egs. (4.9) and (4.10), we find the
following matching condition:

le,f,m = <_l)f+lawf,m7 az)f,m = (_1>f+1aT

[N/
(5.68)
Using the inverse Fourier transformation
2w, Q) = /00 due'™%(u,Q), (5.69)
S (0, Q) = / Y dvers-(0,Q),  (5.70)

we find

wQ _0 \/—Zawfmyfm +9<_w>

T

X - aa—w £.m Yf m(Q)’

= ( \[ Za em¥em(Q)

+e<—w>\/j; en¥in®) (572

Substituting the matching condition for the creation and
annihilation operators (5.68) and using the parity trans-
formation of the spherical harmonic functions

(5.71)

Yem(Q) = (=1)7Y ., (Q7), (5.73)

we find

Y(w,Q) = -X (0, Q). (5.74)

This is the same matching condition as (5.64).

VI. GEOMETRIC APPROACH

The BMS group could be regarded as a geometric
symmetry of the Carroll manifold Z+. Following [28-30],
we will review the conformal Carroll group and the
Newman-Unti group in this section. It turns out that the
symmetry group we found in the previous section is an
extension of the Newman-Unti group.

A. Conformal Carroll group

The future null infinity Z* is a Carroll manifold

It =R xS (6.1)
This is a null hypersurface with a singular metric
ds* = y,pd0*d6®. (6.2)

To generate the retarded time direction, one should intro-
duce a vector which is the kernel of the metric y,p

X =0y (6.3)
The conformal Carroll group of level k
CCarry(Z%,7,x) (6.4)
is generated by the vector £ such that
Ley =y, Ley = uy, A+ ku=0, (6.5)
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where 1 and p are conformal factors. Then the vector & is
£=YA(Q)d, + <f(sz) + %VAYA(Q)>OM. (6.6)

The vector Y4(Q) is a conformal Killing vector of the
sphere

VAYB + VBYA == ]/ABVCYC. (67)
The conformal Carroll group of level k is a semidirect

product of conformal transformations of $* and SSTs.
When k = 2, the algebra (6.6) is exactly the standard BMS
algebra.

B. Newman-Unti group

Newman-Unti group

NU(Z*,7.7) (6.8)
is one of the extensions of the conformal Carroll group. It is
generated by the vectors ¢ that preserve the conformal
structure of the metric y

Ley =2y. (6.9)
In this case, the vector £ is
&=Y"Q)04 + f(u,Q)d,. (6.10)

where the vector Y is still a conformal Killing vector of S2.
However, the function f may depend on the retarded
time u. Therefore, the Newman-Unti group is a semidirect
product of conformal transformations of $? and GSTs
NU(Z*,y,x) = Conf(S$?) X C®(Z*).  (6.11)

It is possible to truncate it to the Newman-Unti group of
level k(k =1,2,3,...) by requiring

(‘C)()k'f =0.

We still find the vector (6.10). Besides the constraint (6.7),
the GST should be a polynomial of u with degree k — 1

Ley = Ay, (6.12)

k

Q)= uf,(Q).

n=1

(6.13)

C. Extension of the Newman-Unti group

In two-dimensional Virasoro algebra, the central charge
is related to conformal anomaly. When the central charge is
zero, the Virasoro algebra becomes the Witt algebra.
Similarly, We may set the central charge C;(fi,f,) to

be zero and find the classical version of the

algebra (5.24)—(5.26)

T;.T]= T, _ps (6.14)
[T r, My] = =iT yay, 4, (6.15)
My, Mz] = iMpy 2. (6.16)
Interestingly, this algebra is realized by the vector
E=f(u,Q)0, + YA(Q)0y. (6.17)

It is easy to see that the group (5.27) is a straightforward
generalization of the Newman-Unti group (6.11). To
generalize the Newman-Unti group, we should abandon
the condition (6.9) and impose the condition

Lor = . (6.18)

The most general solution of (6.18) is exactly (6.17).
The function y is

p=—fu.Q). (6.19)

The Lie derivative of the metric along (6.17) is still singular

Leyap = VaYp(Q) + VY, (Q).
(6.20)

‘6571414 = 'C.fyuA =0,

Therefore, the vector y is still the kernel of the metric
after the transformation. Now we consider the vector with
respect to GSTs and GSRs,

E=f(u,Q)0, + Y*(u,Q)d,. (6.21)
We find
Lo = —f(u,Q), Lt =-T(wQ), (6.22)
Eé}/uu = 07 EE}/MA = YA(M’Q)v
Levap = VaVp(u, Q) + VY4 (u, Q). (6.23)

The manifold is not Carrollian after the transformation
(6.21). The GSRs break the null structure of Z*. This may
interpret why we should consider GSTs and SSRs to form a
closed algebra. Interestingly, the finite transformation of
(6.17) is exactly the Carrollian diffeomorphism defined
in [54,55]. From a geometric point of view, we may define
any consistent field theory on Z*. When there is no
anomaly, they should obey the geometric symmetry
(6.14)—(6.16). In other words, there should be correspond-
ing generators with respect to the vector (6.17). They are
exactly the supertranslation and superrotation generators.

126002-16



SYMMETRY GROUP AT FUTURE NULL INFINITY: SCALAR ...

PHYS. REV. D 107, 126002 (2023)

We will further comment on the structure (5.40)—(5.45).
This algebra is generated by the vector
E=[f(Q) + uh(Q)]a, + Y4(Q)0,. (6.24)
This is obtained by reducing the function f(u,Q) in the
generator (6.17) to a linear polynomial of u. Similar to
the Newman-Unti group of level k, we may define its
extension as

Lex=wuyx,  (L)¢=0. (6.25)

By setting k = 2, the solution is exactly (6.24).

VII. CONCLUSION AND DISCUSSION

In this paper, we reduce the massless scalar field theory
in Minkowski spacetime to future null infinity Z*. The
information of the scalar field is encoded in a single field
at Z*. The ten Poincaré fluxes are totally determined by the
field . We obtain the flux operators and interpret them as
supertranslation and superrotation generators. These flux
operators do not form a closed algebra in general. However,
there is a consistent group which is formed by GSTs
and SSRs. Its classical version, as a generalization of the
Newman-Unti group, could be realized as a geometric
symmetry of the Carroll manifold Z+.

We notice that the subalgebra (5.24) is a Virasoro
algebra. This has been found in the context of light-ray
operator [56]. Other works on Virasoro algebra from light-
ray operators include [57-61]. However, there are subtle
differences between their results and ours. In [56], the
higher-dimensional Virasoro algebra is realized by free
fermion or Maxwell theory. For free scalar theory, the
authors found a nonlocal term in the commutator of their
energy flow operators, see equation (1.9) of [56]. Switching
into our language, the energy flow operator defined in their
paper corresponds to the operator

~ 1

We have checked that the commutator 7,7 ;] (more

precisely [T, s T o)) is exactly equivalent to
Eq. (1.9) of [56]. See Appendix D for more details.
Therefore, there is no contradiction with light-ray algebra.
The algebra (5.24)—(5.26) could be regarded as a direct
generalization of Virasoro algebra with superrotation. It has
been known for several years that the BMS algebra could
be realized as a light-ray algebra [62]. However, the work
of [62] only focuses on average null operators. They
correspond to the soft limit in the Fourier space. Our result
could also be regarded as an extension of [62] away from
the soft limit.
There are various open questions in this direction.

A. More general field theories

We mainly focus on massless free scalar theory in this
work. However, we could explain the group we found as a
geometric symmetry of Z*. This implies that the algebra
(5.24)—(5.26) may be valid for much more field theory. For
Maxwell theory and gravitational theory, we may check
this point. Since the propagating degree of freedom is 2 for
these theories, the central charge is two times with respect
to the real scalar theory.5 For interacting field theory, it is
interesting to see whether it is possible to refine the
energy flow operators defined in [56] such that the algebra
(5.24)—(5.26) is preserved.

B. Field theories on the Carroll manifold Z *

We notice that the two-point correlators of the scalar
field in (4.38) matches with [63] from representation theory
of Carrollian conformal field theory. By dimension analy-
sis, we find [®] = 1, [£] =0 and [X] = 1. It follows that
correlation function (0|X2|0) is expected to be propor-
tional to (u — u') 72, just as in [63]. There are also Carrollian
free scalar models in the literature [24,33,34,64-66].
However, we should emphasize that our results are not
based on the existence of any action on Zt. As a
consequence, there is no equation of motion for the
boundary field X. The solution phase space is larger
than the Carrollian free scalar model. Consequently, we
find a much larger group than the BMS group. Actually,
the symmetry group can be extended further by
including higher spin fluxes [67-69]. Since the symmetry
(5.24)—(5.26) could be understood as a geometric sym-
metry of the Carroll manifold Z* classically, one may also
consider representation theory of this symmetry group and
define field theory on Z*. The field theory on Z* may
provide explicit realization of flat holography.

C. Nonlocal terms

As we have discussed in Sec. VI, for the Carrollian
diffeomorphism which is generated by GSTs and SSRs,
there is no nonlocal term in the algebra. They appear only
for GSRs. As we have shown in (5.4), the nonlocal term is
the obstacle to identify My as a superrotation generator for
the case of GSRs. As we expect, GSRs violate the null
structure of the Carrollian manifold. The violation may be
reflected in the nonlocal terms and may be thought of as
their origin. It is interesting to discuss this topic in the
future.

D. Correlators

In the context of conformal collider physics [70], the
energy correlators correspond to the correlators of the soft
limit of the supertranslation generators. From the point of

>Work in progress.
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view of BMS algebra, it is also interesting to consider the
correlators of the superrotation generators. They may relate
to angular momentum correlators.

E. Regularization of the central charge

The central charge is divergent in our Virasoro algebra.
It would be fine to find a way to regularize it. To find
the physical meaning of this central charge, we use the
completeness of the spherical harmonic function

= ZYf,m (Q) Y;m(Q)
= 4—; (22 +1

1
:4_2

[

(7.2)

At the second line, we used the addition theorem of
spherical Harmonic function. The Legendre function
P,(x) has the special value

P,(0) = 1. (7.3)
At the last step, we used the fact that there are 2¢ + 1

spherical harmonic functions for each . Interestingly, it is
clear that

5(0) = number of independent states on the unit $?

area of the unit S2

= density of states on the unit S°. (7.4)
Therefore, roughly speaking, 5 (0) counts the number of
degrees of freedom on the sphere. In two-dimensional
conformal field theory, the central charge also counts
the degree of freedom of the theory. Unfortunately, the
number of the degrees of freedom on the sphere is
infinity. One should find a way to regularize the Dirac
delta function. A naive method is to use zeta function
regularization

:%i 24 1)= 1+2§( )+c(0)]:i.
=0
(7.5)

We will not discuss more on the regularization of Dirac
delta function on the sphere. It would be interesting to
check this regularization method in the future.

F. Relaxed falloff conditions

As we have emphasized, the GSTs and GSRs are defined
through the Fourier transformation of the energy- and

angular-momentum flux density operators in this work.
Strictly speaking, they may violate the usual falloff con-
ditions in the context of BMS symmetry. It is natural to see
whether one can relax falloff conditions and explore the
BMS group further up.
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APPENDIX A: CONFORMAL KILLING
VECTORS ON §?

The metric for a unit sphere S* is

ds® = y,pd0*do", A,B=1,2. (A1)
The CKV is the vector Y that obeys the equation
VaYp+ VY4 =y45VcY©. (A2)

There are six global solutions for this equation.
(1) There are three Killing vectors on S?, which are
denoted as Y‘i‘} in the context. The subscript ij are

antisymmetric,
Yf; = —Yj‘,, i,j=1,2,3. (A3)
They satisfy the following condition:
A
VaYi =0. (A4)

(2) There are three strictly conformal Killing vectors
on S2, denoted as Y in this paper. The subscripts
are i =1, 2, 3. Their divergences are not zero
but

VAY? = 2}’11'. (AS)

These six CKVs generate the group SO(1, 3), satisfying the

commutation relations:

Y, Y] =Y, (A6)
Vi, Yi] = 6 Y; — 6y Y ), (A7)
Yij Yl = =0uYj+6uYy—06;Yu+6,Yy. (A8)

We collect some useful identities in the following.
(1) Killing vectors and strictly conformal Killing vec-
tors are related by
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The reverse relation is

A _ YA
Yi —YUn]

(A10)

(2) Identities involving the products of normal vectors
and CKVs are

nY4 =0, kn,»Yj.‘k =0. (A11)
(3) Derivatives of normal vector are
A A 2
v n; = _Yi s aini = —. (AlZ)
r
(4) It is easy to find that
YAYEs,; = 2, YUAYE =248 (A13)

We also have identities with angular indices con-
tracted,

Yij Y= Y%YABYE = 5ik”j - 5jkni’

(A14)

Other identities related to products of CKVs are
collected below:

YEYR +YRY) = —2yn,, (A16)
YAYE - YPY) = e*Beynt. (A17)

APPENDIX B: SYMPLECTIC STRUCTURE

The action of the scalar field is

1
s— /d4x1/_—g{—§6ﬂ<l)0”<l)—V((D) (B
Its variation under 6® reads as

S = / d*x\/=g[~0,(#DP5D) + (3,0 D — V'(®))5D].
(B2)

It is easy to see that the second term is proportional to the
bulk equation of motion. We could write out the presym-
plectic potential form

O(5®; @) = —0"D5D(dx),, (B3)

where

(d*x) dx¥ A dx? A dx°. (B4)

u = g o
Therefore, we obtain the presymplectic form

0 (5,D,5,D; D) = 5,0(5,D; D) — 5,0(5,D; D)
= —(dx),,[6,(0"D)5,® — 6,(# )5, D).
(B5)

Given the falloff condition (3.4), the presymplectic form
at null boundary becomes

(8, ®,6,D; D) = —sinOdu A dO A dp[5,26,% — 6,36,
+0O(r ). (B6)

Eventually, one could obtain the commutator of the
propagating field =

2w, Q). S, Q)] = %5(14 —)5(Q-).  (B7)
With this commutator at hand, other commutation relations
and the correlation functions of X are easy to derive.

APPENDIX C: COMMUTATORS

In this appendix, we will discuss the computation of the
commutators.

1. Central charges

The central charge term can be found from the two-point
correlators. As an example, we compute the central charge
term in the commutator [7 ; , 7 ,]. We first note that the
supertranslation generator is constructed from the local
operator T(u, Q). The two-point correlators can be found
in (4.60). When two operators T(u, Q) and T(u', Q') are
close enough, we can write the operator product expansion
schematically as

TT ~1+---. (C1)
On the right-hand side, we just write down the term which
is proportional to the identity. The terms in --- are
vanishing when we compute the correlator (0|[T,T]|0).
Therefore, to find the central extension, it is enough to
know the two-point correlator,
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central term of [T, ,7 /] = (0|[7 .7 ,]|0)

= / dudQdu' d £, (u, Q) f> (', ') (0T (u, Q)T (i, )[0)
Im (u—u")<0

—/ dudQdu'dQ' f(u, Q) f,(u', Q) (0|T(u', Q)T (u, Q)|0)
Im (u—u")>0

1 1
- /dudeu/dQ’fl (1, Q) f (', ) # [(u e s i€)4] 5(Q-Q)

:—/dudeu’fl(u,Q)fz(u’,Q) ¢ 103{ L 1 }

5 7Y% N N
8726 “lu—u —ie u —u-—ie

= —% dudQdu' f, (1, Q) f>(u', Q)R5(u — u')
T

_ _é/dudﬂ(ﬂfé — faf 1) 2

2. Nonlocal terms

We will compute the nonlocal term in (5.13) as an example. The nonlocal term in this commutator is from the nonlocal
term in the commutator [My, X

nonlocal term of [My, Q ] = Nonlocal term of/ dudQg(u, Q)[My, 12*(u, Q):]
= Nonlocal term 0f2/ dudQg(u, Q) :Z(u, Q)[My, Z(u, Q)]:
= i/dung(u,Q) X(u, Q) / di'a(u’ —u)A(Y;Z 0/, Q):
= i/dudu’an(u’ —u)g(u, Q) Z(u, QA(Y;Z: 1, Q). (C3)
3. The commutator [My, M|
Using the factor A(Y;X;u,Q), we can rewrite the superrotation generator as
My = / dudQEA(Y:Z;u,Q). (C4)

With this expression, we could calculate the commutator [My, M| as follows. Note that the central charge term could be
read out from the correlation function using the previous method, and the following calculation only involves terms with
fields. Hence, all the terms are not expressed in normal order,

My, My] —/du’dQ’[My,i(u’,Q’)A(Z;Z;u’,Q’)]

i / A dQ[A(Z;2)A(Y;E) — A(Z;Z)A(Y; )] +% / dudu' d a(u — ')
X A(Y; 2 u, Q)A(Z: 0/, Q). (C5)
For the local terms, we find

A(Z:)A(Y;Z) — A(Z;2)A(Y:E) = Z[A(Y;A(Z:X)) — A(Z: A(Y:X))]. (C6)

There is an identity
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A(Y;A(Z:%)) — A(Z: A(Y:2)) = A([Y. Z]; Z). (C7)

with which we can concisely express the local terms as i My 7). To prove this identity, we calculate straightforwardly
1 1 1
1 1 1
- EVAZA (YBVBZ + EVBYBZ> -7V, (YBVBZ + EVBYBZ>

= (YBVBZA - ZBVBYA)VAZ + %VA(YBVBZA - ZBVBYA)Z
= A(]Y,Z];%). (C8)

To obtain the second equality, we have used the following Rupcp = YacYBDp — YADY BC- (C10)
identity
When the condition (5.23) is satisfied, we will prove the
YAV, V7B — 7BV VYA =V, [Y, Z]A, following two statements.
(1) The central charges are zeros
for smooth vectors on sphere. It follows from the definition

of the Riemann tensor on sphere, Cy=Crg=Cyp=0. (C11)
V4,V B]VC = RCpapVP. (C9) The vanishing of Cr¢, can be found by setting g = 0.
Therefore, we just need to compute Cy and Cy.

The Riemann tensor on the sphere is We consider the central charge Cy, firstly,

Colg1-92) =2c / dudu'dQg,(Q)g>(Q)[p(u — u') = f(u’ — w)] < [B(u — ') + (u’ — u)]

= ic/dudu’dﬂgl (Q)g(Qa(u—u') x [f(u—u) + p(u — u)]
= 0. (C12)

In the second line, we used the identity (4.43). Since a(u — u’) is antisymmetric while f(u — ') + (v’ — u) is symmetric,
the integral is exactly zero. Now we compute the central charge

Cy(Y,Z) = Z/dudu’n(u —u'). (C13)
We have defined the constant
¢ = / dQdQ'YA(Q)ZE (Q) Ay (Q, Q). (C14)

The function #(u — «’) can be written as

=) = [pl=at) = - o= o= -

T4x| 8z "W —u—ie
1 1
327 (u—u' —ie)> 327*(u —u —ie)?

=0, ) +0y() +

_au<"')+au’("')—321ﬂ20u[ 1 n 1 }

u—u —ie u —u-—ie

=00+ 0 ) =S =), (c15)

126002-21



WEN-BIN LIU and JIANG LONG

PHYS. REV. D 107, 126002 (2023)

The notation 9,(---) means the corresponding term is a
surface term. They do not contribute to the central charge.
Therefore,

Cy(Y,Z) ocZ’/dudu’(s’(u—u’) =0. (C16)

(2) The nonlocal terms in (5.9), (5.13), and (5.14) have
no contribution. Since Y = 0, the function vanishes
A(Y:Zu, Q) = 0. (C17)

The nonlocal terms in (5.13) and (5.9) are zeros
obviously. The nonlocal term of (5.14) is

Zi/dudu’an(u’ —u)g1(Q)gr(Q): Z(u, Q)Z(u, Q)

= 2i/dudu’d9a(u —u')g () (Q): E(u, Q)E(u, Q):

— i / dudi dQa( — )9, (Q)g2(Q) : Z(1, Q)Z(, Q)

=0.

In the second line, we exchanged the variables u <> u’. In
the third line, we used the antisymmetry of the a function
and the symmetry of the normal ordered operator

a(' —u) = —a(u—1u'),

Z(u, QL(u, Q) = 12, Q)Z(u,Q):. (C19)

APPENDIX D: LIGHT-RAY OPERATOR
FORMALISM

In this appendix, we give a review about basic concepts
in light-ray operator formalism [70,71] and its relation
to our formalism. The concentration is four-dimensional
conformal field theory. We will first introduce the
light-ray operators, and then show that our commutator
[’f'wf,m, T o ¢ .| With the operator T  defined in (7.1) with
f=eY,,(Q) is equivalent to the commutator of
w-deformed energy flow operators in light-ray formalism.

Considering a primary operator O, ,, .., With conformal
weight A and spin s which is symmetric and traceless, we
may introduce a null polarization vector z# and contract it
with the O to form an indices free operator which is a
polynomial in z,

72 =0.

O(x,z) = 0#1#2“% (x, Z)Zﬂlzﬂz o ghs (Dl)

This operator O(x, z) is homogeneous in z with degree s,
O(x,4z) = A 0(x, z). (D2)

The light-ray operator L[O] is the light transform of
operator O(x, z)

L[0](x.z) = / " da(-a) -0 <x - 2 , z) (D3)

—0o0

(C18)

|

along the null direction of z#. The light-ray operator
transforms as a primary operator with conformal dimension
1 —s and spin 1 — A.

To implement the light transform, one may introduce
the embedding formalism [72-79]. In this formalism, the
Minkowski spacetime R is a projective null cone in R>#.
We will use capital Latin alphabets X = (X~!, X°, ..., X#)
to denote the coordinates of R>*. By introducing the light
cone coordinates

X+ =Xx"1+ x4, Xt =X X' X2, X3, (D4)
the inner product of X takes the form
X-X =-X*X"+X'X,, (D5)

where X*X, = n,, X*X". A point in Minkowski spacetime
x# corresponds to a null vector X = (X, X, X#) in light
cone coordinates

X =Xt (1,x%,x4), (D6)

The indices free operator O(x, z) is lifted to the operator
O(X.,Z) in the embedding formalism

0(X,Z) = (X")™20(x,z) (D7)
where Z is a null vector which is orthogonal to X
7’=X-7Z=0. (D8)

The null polarization vector z# can be recovered by the
relation
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A

Zﬂ — Z” —FX” (Dg)

The primary operator O(X, Z) in the embedding space has
the following properties:

O(X,Z+pX)=0(X,Z),
p,0>0.

O(pX,0Z)=p=26°0(X,Z),
(D10)

Therefore, the light-ray operator can be written as the form

L[0](X.Z) = /°° daO(Z — aX,~-X). (D11

—o0

In order to be sensitive to the time-dependent structure of
the interesting states, we would like to insert a weight
function in the light transform as follows:

L, [0](X.2) = / ™ dae-20(Z - aX, -X).

—o0

(D12)

The insertion of e~**/2 will not only improve the con-

vergence of the integral, but also give the detector a
nontrivial null momentum. This transformation is called
w-deformed light transform in [80]. The resulting operator
corresponds to generalized event shapes.

Ow.s(”) = 25! lime/Z[O} (va Zv)

To approach null infinity along the direction of a null
vector n* = (1,n') in Cartesian coordinates [81], we
consider the following series of points6

_, 5
Xv:<0,1,”—>, Zv:(—,O,n">,
2v v

with 2 = (=1,n') a null vector satisfying nii = 2, and
v=t-+r the advanced time. It is easy to see that
7 =X2=27,-X,=0. It follows that

2 . an
Z1;—aXU: ;,—a,n’—ﬁ .

Comparing with (D6), the null vector Z, — aX, corre-
sponds to the point

(D13)

(D14)

v u_ .
Xt = —nt —En” = (t,rn'),

5 (D15)

when the parameter « is related to the retarded time as
follows:
a=2u. (D16)

Taking the limit of v — oo while keeping u finite, and
considering the conformal property of O(X,Z), we get

=25"11im dae™*20(Z, — aX,, —X,)

v—>00 [_

=271(=1)*lim " dae

=274(=1)*lim vA~* /oo due™0, _, () - i,

0

V=00

In light cone coordinates (u, v, #), the above null vector
becomes

it = (=2,0,0,0). (D18)
So the light-ray operator O,, ;(n) takes form
O,s(n) = limrt=s /oo due="0,.., (x). (D19)
r—co —oo ~~

s

The energy flow operator £,,(n) is the light-ray operator of
stress-energy tensor Tﬂ] 4, With conformal weight A =4
and spin s = 2. Namely,

. 2 —-A fl.”] flﬂx
iaw/2 <;> Oﬂl"'ﬂs (xﬂ) - ...

v v

(D17)

(D20)

r—o0

oo . ~
E,(n) = lim r2/ due™"T,,.

[Se]

In particular, the soft limit @ = 0 gives the famous average
null energy operator. In free scalar theory, the symmetric
traceless stress-energy tensor is

1 1
~9,0,0% — P o2,

T, =0,0,® - ¢ O Enﬂy

(D21)

Considering the falloff condition of scalar field ®,
we obtain

®In embedding formalism, we use light cone coordinates to
express the vectors of R>* from now on.

126002-23



WEN-BIN LIU and JIANG LONG

PHYS. REV. D 107, 126002 (2023)

E,(Q) = /oo due‘i“’”[:ﬁz(u,g): —l—éwzi 2 (u,Q): .

o)

(D22)

It is easy to see the equivalence between this operator and
the aforementioned 7~'f. To be more accurate, we could
insert a spherical harmonic function Y, (Q) as the weight
function about angular coordinates, and then impose
integration on the energy flow operator with respect to
Q. These operations lead to the following identification:

Foim = / dQY 1, (Q)E,,(Q)

- / " dudQe "y, (Q)

[e5]

< [:22(u,9): +éw2: 2(,Q): |, (D23)

Using the definition of the smeared operators in the context
and going back to the position space, this is exactly

~ 1

where the function f = f(u, Q). Interestingly, the light-ray
transform of the scalar operator ® with A = 2 and s = O is

/ " duemo: 32 (u, Q). (D25)

(e8]

This corresponds to the smeared operator Q, in the context.
One can further check that the commutator of ’f'wf,m is

(4 L

[wa,m’ Tw/.f/.m’] - (w/ - w) Z Z Cemst' ;LM

L=f—¢'|M—L
~ W’
XT ol LM —ﬁcé((o + @)z 8
—l—%/dudu’onc(u—u’)wzw’2
X e—i(wu+w’u’) Yf,m (Q) Yf’,m’ (Q)
X [Z(u, Q)Z(u/, Q) +Z(u',Q)Z(u,Q)].

It matches with the corresponding commutator in [56].

[1] B.P. Abbott ez al. (LIGO Scientific, Virgo Collaborations),
Observation of Gravitational Waves from a Binary Black
Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[2] H. Bondi, M. G.J. van der Burg, and A. W. K. Metzner,
Gravitational waves in general relativity. 7. Waves from
axisymmetric isolated systems, Proc. R. Soc. A 269,21 (1962).

[3] R.K. Sachs, Gravitational waves in general relativity. 8.
Waves in asymptotically flat space-times, Proc. R. Soc. A
270, 103 (1962).

[4] R. Sachs, Asymptotic symmetries in gravitational theory,
Phys. Rev. 128, 2851 (1962).

[5] G. Barnich and C. Troessaert, Aspects of the BMS/CFT
correspondence, J. High Energy Phys. 05 (2010) 062.

[6] G. Barnich and C. Troessaert, Symmetries of Asymptoti-
cally Flat Four-Dimensional Spacetimes at Null Infinity
Revisited, Phys. Rev. Lett. 105, 111103 (2010).

[7] G. Barnich and C. Troessaert, Supertranslations call for
superrotations, Proc. Sci., CNCFG2010 (2010) 010 [arXiv:
1102.4632].

[8] G. Barnich and C. Troessaert, BMS charge algebra, J. High
Energy Phys. 12 (2011) 105.

[9] M. Campiglia and A. Laddha, Asymptotic symmetries and
subleading soft graviton theorem, Phys. Rev. D 90, 124028
(2014).

[10] M. Campiglia and A. Laddha, New symmetries for the
gravitational S-matrix, J. High Energy Phys. 04 (2015) 076.

[11] A. Strominger, On BMS invariance of gravitational scatter-
ing, J. High Energy Phys. 07 (2014) 152.

[12] A. Strominger, Lectures on the infrared structure of gravity
and gauge theory, arXiv:1703.05448.

[13] S. Weinberg, Infrared photons and gravitons, Phys. Rev.
140, B516 (1965).

[14] Y. B. Zel’dovich and A. G. Polnarev, Radiation of gravita-
tional waves by a cluster of superdense stars, Sov. Astron.
18, 17 (1974).

[15] S. Pasterski, A. Strominger, and A. Zhiboedov, New
gravitational memories, J. High Energy Phys. 12 (2016)
053.

[16] D. A. Nichols, Spin memory effect for compact binaries in
the post-Newtonian approximation, Phys. Rev. D 95,
084048 (2017).

[17] D. A. Nichols, Center-of-mass angular momentum and
memory effect in asymptotically flat spacetimes, Phys.
Rev. D 98, 064032 (2018),

[18] D. Kapec, P. Mitra, A.-M. Raclariu, and A. Strominger, 2D
Stress Tensor for 4D Gravity, Phys. Rev. Lett. 119, 121601
(2017).

[19] S. Pasterski, S.-H. Shao, and A. Strominger, Flat space
amplitudes and conformal symmetry of the celestial sphere,
Phys. Rev. D 96, 065026 (2017),

[20] S. Pasterski and S.-H. Shao, Conformal basis for flat space
amplitudes, Phys. Rev. D 96, 065022 (2017).

126002-24


https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1103/PhysRev.128.2851
https://doi.org/10.1007/JHEP05(2010)062
https://doi.org/10.1103/PhysRevLett.105.111103
https://arXiv.org/abs/1102.4632
https://arXiv.org/abs/1102.4632
https://doi.org/10.1007/JHEP12(2011)105
https://doi.org/10.1007/JHEP12(2011)105
https://doi.org/10.1103/PhysRevD.90.124028
https://doi.org/10.1103/PhysRevD.90.124028
https://doi.org/10.1007/JHEP04(2015)076
https://doi.org/10.1007/JHEP07(2014)152
https://arXiv.org/abs/1703.05448
https://doi.org/10.1103/PhysRev.140.B516
https://doi.org/10.1103/PhysRev.140.B516
https://doi.org/10.1007/JHEP12(2016)053
https://doi.org/10.1007/JHEP12(2016)053
https://doi.org/10.1103/PhysRevD.95.084048
https://doi.org/10.1103/PhysRevD.95.084048
https://doi.org/10.1103/PhysRevD.98.064032
https://doi.org/10.1103/PhysRevD.98.064032
https://doi.org/10.1103/PhysRevLett.119.121601
https://doi.org/10.1103/PhysRevLett.119.121601
https://doi.org/10.1103/PhysRevD.96.065026
https://doi.org/10.1103/PhysRevD.96.065022

SYMMETRY GROUP AT FUTURE NULL INFINITY: SCALAR ...

PHYS. REV. D 107, 126002 (2023)

[21] A.-M. Raclariu, Lectures on celestial holography, arXiv:
2107.02075.

[22] S. Pasterski, Lectures on celestial amplitudes, Eur. Phys.
J. C 81, 1062 (2021).

[23] L. Donnay, A. Fiorucci, Y. Herfray, and R. Ruzziconi,
Carrollian Perspective on Celestial Holography, Phys. Rev.
Lett. 129, 071602 (2022),

[24] A. Bagchi, S. Banerjee, R. Basu, and S. Dutta, Scattering
Amplitudes: Celestial and Carrollian, Phys. Rev. Lett. 128,
241601 (2022),

[25] J. M. Lévy-Leblond, Une nouvelle limite non-relativiste du
groupe de Poincaré, Ann. Inst. H Poincaré 3, 1 (1965).

[26] N. Gupta, On an analogue of the Galilei group, Nuovo
Cimento Soc. Ital. Fis. 44, 512 (1966).

[27] M. Henneaux, Geometry of zero signature space-times,
Bull. Soc. Math. Bel., Ser. A 31, 47 (1979).

[28] C. Duval, G. W. Gibbons, and P. A. Horvathy, Conformal
Carroll groups and BMS symmetry, Classical Quantum
Gravity 31, 092001 (2014).

[29] C. Duval, G. W. Gibbons, and P. A. Horvathy, Conformal
Carroll groups, J. Phys. A 47, 335204 (2014).

[30] C. Duval, G. W. Gibbons, P. A. Horvathy, and P. M. Zhang,
Carroll versus Newton and Galilei: Two dual non-Einstein-
ian concepts of time, Classical Quantum Gravity 31, 085016
(2014).

[31] A. Bagchi, Correspondence between Asymptotically Flat
Spacetimes and Nonrelativistic Conformal Field Theories,
Phys. Rev. Lett. 105, 171601 (2010).

[32] A. Bagchi, R. Basu, A. Kakkar, and A. Mehra, Flat
holography: Aspects of the dual field theory, J. High Energy
Phys. 12 (2016) 147.

[33] A. Bagchi, A. Mehra, and P. Nandi, Field theories with
conformal Carrollian symmetry, J. High Energy Phys. 05
(2019) 108.

[34] A. Bagchi, R. Basu, A. Mehra, and P. Nandi, Field theories
on null manifolds, J. High Energy Phys. 02 (2020) 141.

[35] K. Banerjee, R. Basu, A. Mehra, A. Mohan, and A. Sharma,
Interacting conformal Carrollian theories: Cues from
electrodynamics, Phys. Rev. D 103, 105001 (2021).

[36] M. Henneaux and P. Salgado-Rebolledo, Carroll contrac-
tions of Lorentz-invariant theories, J. High Energy Phys. 11
(2021) 180.

[37] A. Bagchi, D. Grumiller, and P. Nandi, Carrollian super-
conformal theories and super BMS, J. High Energy Phys. 05
(2022) 044.

[38] A. Bagchi, R. Chatterjee, R. Kaushik, S. Pal, M. Riegler,
and D. Sarkar, BMS field theories with 1(1) symmetry,
arXiv:2209.06832.

[39] A. Ashtekar and R. O. Hansen, A unified treatment of null
and spatial infinity in general relativity. I. Universal struc-
ture, asymptotic symmetries, and conserved quantities at
spatial infinity, J. Math. Phys. (N.Y.) 19, 1542 (1978).

[40] A. Ashtekar and M. Streubel, Symplectic geometry of
radiative modes and conserved quantities at null infinity,
Proc. R. Soc. A 376, 585 (1981).

[41] A. Ashtekar, Asymptotic Quantization of the Gravitational
Field, Phys. Rev. Lett. 46, 573 (1981).

[42] A. Ashtekar, Asymptotic Quantization: Based on 1984
Naples Lectures (Bibliopolis, Napoli, 1987).

[43] G. Compere and J. Long, Vacua of the gravitational field,
J. High Energy Phys. 07 (2016) 137.

[44] A. Strominger and A. Zhiboedov, Superrotations and black
hole pair creation, Classical Quantum Gravity 34, 064002
(2017).

[45] J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley,
New York, 1998).

[46] C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Princeton University Press, Princeton, NJ, 2018).

[47] L. C.B. Crispino, A. Higuchi, and G.E. A. Matsas, The
Unruh effect and its applications, Rev. Mod. Phys. 80, 787
(2008).

[48] S. Takagi, Vacuum noise and stress induced by uniform
acceleration: Hawking-Unruh effect in Rindler manifold of
arbitrary dimension, Prog. Theor. Phys. Suppl. 88, 1 (1986).

[49] M. E. Peskin and D. V. Schroeder, An Introduction to Quan-
tum Field Theory (Addison-Wesley, Reading, MA, 1995).

[50] R. Haag, Local Quantum Physics: Fields, Particles, Alge-
bras (Springer, Berlin, Germany, 1992).

[51] T. Hartman, S. Jain, and S. Kundu, Causality constraints in
conformal field theory, J. High Energy Phys. 05 (2016) 099.

[52] L. Donnay, G. Giribet, and F. Rosso, Quantum BMS
transformations in conformally flat space-times and holog-
raphy, J. High Energy Phys. 12 (2020) 102.

[53] P.A.M. Dirac, Classical theory of radiating electrons,
Proc. R. Soc. A 167, 148 (1938).

[54] L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos,
and K. Siampos, Covariant Galilean versus Carrollian
hydrodynamics from relativistic fluids, Classical Quantum
Gravity 35, 165001 (2018).

[55] L. Ciambelli, R.G. Leigh, C. Marteau, and P.M.
Petropoulos, Carroll structures, null geometry and con-
formal isometries, Phys. Rev. D 100, 046010 (2019).

[56] G.P. Korchemsky and A. Zhiboedov, On the light-ray
algebra in conformal field theories, J. High Energy Phys.
02 (2022) 140.

[57] K.-W. Huang, Stress-tensor commutators in conformal field
theories near the lightcone, Phys. Rev. D 100, 061701
(2019).

[58] K.-W. Huang, Lightcone commutator and stress-tensor
exchange in d > 2 CFTs, Phys. Rev. D 102, 021701 (2020).

[59] K.-W. Huang, d > 2 stress-tensor operator product expan-
sion near a line, Phys. Rev. D 103, L121702 (2021).

[60] A. Belin, D. M. Hofman, G. Mathys, and M. T. Walters, On
the stress tensor light-ray operator algebra, J. High Energy
Phys. 05 (2021) 033.

[61] M. Besken, J. De Boer, and G. Mathys, On local and
integrated stress-tensor commutators, J. High Energy Phys.
07 (2020) 148.

[62] C. Cérdova and S.-H. Shao, Light-ray operators and the
BMS algebra, Phys. Rev. D 98, 125015 (2018).

[63] B. Chen, R. Liu, and Y.-f. Zheng, On higher-dimensional
Carrollian and Galilean conformal field theories, SciPost
Phys. 14, 088 (2023).

[64] M. Henneaux and C. Troessaert, Asymptotic structure of a
massless scalar field and its dual two-form field at spatial
infinity, J. High Energy Phys. 05 (2019) 147.

[65] P.-x. Hao, W. Song, X. Xie, and Y. Zhong, BMS-invariant
free scalar model, Phys. Rev. D 105, 125005 (2022).

126002-25


https://arXiv.org/abs/2107.02075
https://arXiv.org/abs/2107.02075
https://doi.org/10.1140/epjc/s10052-021-09846-7
https://doi.org/10.1140/epjc/s10052-021-09846-7
https://doi.org/10.1103/PhysRevLett.129.071602
https://doi.org/10.1103/PhysRevLett.129.071602
https://doi.org/10.1103/PhysRevLett.128.241601
https://doi.org/10.1103/PhysRevLett.128.241601
https://doi.org/10.1007/BF02740871
https://doi.org/10.1007/BF02740871
https://doi.org/10.1088/0264-9381/31/9/092001
https://doi.org/10.1088/0264-9381/31/9/092001
https://doi.org/10.1088/1751-8113/47/33/335204
https://doi.org/10.1088/0264-9381/31/8/085016
https://doi.org/10.1088/0264-9381/31/8/085016
https://doi.org/10.1103/PhysRevLett.105.171601
https://doi.org/10.1007/JHEP12(2016)147
https://doi.org/10.1007/JHEP12(2016)147
https://doi.org/10.1007/JHEP05(2019)108
https://doi.org/10.1007/JHEP05(2019)108
https://doi.org/10.1007/JHEP02(2020)141
https://doi.org/10.1103/PhysRevD.103.105001
https://doi.org/10.1007/JHEP11(2021)180
https://doi.org/10.1007/JHEP11(2021)180
https://doi.org/10.1007/JHEP05(2022)044
https://doi.org/10.1007/JHEP05(2022)044
https://arXiv.org/abs/2209.06832
https://doi.org/10.1063/1.523863
https://doi.org/10.1098/rspa.1981.0109
https://doi.org/10.1103/PhysRevLett.46.573
https://doi.org/10.1007/JHEP07(2016)137
https://doi.org/10.1088/1361-6382/aa5b5f
https://doi.org/10.1088/1361-6382/aa5b5f
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1103/RevModPhys.80.787
https://doi.org/10.1143/PTPS.88.1
https://doi.org/10.1007/JHEP05(2016)099
https://doi.org/10.1007/JHEP12(2020)102
https://doi.org/10.1098/rspa.1938.0124
https://doi.org/10.1088/1361-6382/aacf1a
https://doi.org/10.1088/1361-6382/aacf1a
https://doi.org/10.1103/PhysRevD.100.046010
https://doi.org/10.1007/JHEP02(2022)140
https://doi.org/10.1007/JHEP02(2022)140
https://doi.org/10.1103/PhysRevD.100.061701
https://doi.org/10.1103/PhysRevD.100.061701
https://doi.org/10.1103/PhysRevD.102.021701
https://doi.org/10.1103/PhysRevD.103.L121702
https://doi.org/10.1007/JHEP05(2021)033
https://doi.org/10.1007/JHEP05(2021)033
https://doi.org/10.1007/JHEP07(2021)148
https://doi.org/10.1007/JHEP07(2021)148
https://doi.org/10.1103/PhysRevD.98.125015
https://doi.org/10.21468/SciPostPhys.14.5.088
https://doi.org/10.21468/SciPostPhys.14.5.088
https://doi.org/10.1007/JHEP05(2019)147
https://doi.org/10.1103/PhysRevD.105.125005

WEN-BIN LIU and JIANG LONG

PHYS. REV. D 107, 126002 (2023)

[66] A. Bagchi, A. Banerjee, S. Dutta, K.S. Kolekar, and P.
Sharma, Carroll covariant scalar fields in two dimensions,
J. High Energy Phys. 01 (2023) 072.

[67] A.Campoleoni, D. Francia, and C. Heissenberg, On higher-
spin supertranslations and superrotations, J. High Energy
Phys. 05 (2017) 120.

[68] A. Campoleoni and S. Pekar, Carrollian and Galilean
conformal higher-spin algebras in any dimensions, J. High
Energy Phys. 02 (2022) 150.

[69] X. Bekaert and B. Oblak, Massless scalars and higher-spin
BMS in any dimension, J. High Energy Phys. 11 (2022)
022.

[70] D.M. Hofman and J. Maldacena, Conformal collider
physics: Energy and charge correlations, J. High Energy
Phys. 05 (2008) 012.

[71] P. Kravchuk and D. Simmons-Duffin, Light-ray operators
in conformal field theory, J. High Energy Phys. 11 (2018)
102.

[72] P. A. M. Dirac, Wave equations in conformal space, Ann.
Math. 37, 429 (1936).

[73] G. Mack and A. Salam, Finite-component field representa-
tions of the conformal group, Ann. Phys. (N.Y.) 53, 174
(1969).

[74] D.G. Boulware, L.S. Brown, and R.D. Peccei, Deep-
inelastic electroproduction and conformal symmetry,
Phys. Rev. D 2, 293 (1970).

[75] S. Ferrara, R. Gatto, and A. F. Grillo, Conformal algebra in
space-time and operator product expansion, Springer Tracts
Mod. Phys. 67, 1 (1973).

[76] S. Ferrara, A. F. Grillo, and R. Gatto, Tensor representations
of conformal algebra and conformally covariant operator
product expansion, Ann. Phys. (N.Y.) 76, 161 (1973).

[77] L. Cornalba, M. S. Costa, and J. Penedones, Deep inelastic
scattering in conformal QCD, J. High Energy Phys. 03
(2010) 133.

[78] S. Weinberg, Six-dimensional methods for four-dimensional
conformal field theories, Phys. Rev. D 82, 045031 (2010).

[79] M. S. Costa, J. Penedones, D. Poland, and S. Rychkov,
Spinning conformal blocks, J. High Energy Phys. 11 (2011)
154.

[80] G.P. Korchemsky, E. Sokatchev, and A. Zhiboedov,
Generalizing event shapes: In search of lost collider time,
J. High Energy Phys. 08 (2022) 188.

[81] R. Gonzo and A. Pokraka, Light-ray operators, detectors
and gravitational event shapes, J. High Energy Phys. 05
(2021) 015.

126002-26


https://doi.org/10.1007/JHEP01(2023)072
https://doi.org/10.1007/JHEP05(2017)120
https://doi.org/10.1007/JHEP05(2017)120
https://doi.org/10.1007/JHEP02(2022)150
https://doi.org/10.1007/JHEP02(2022)150
https://doi.org/10.1007/JHEP11(2022)022
https://doi.org/10.1007/JHEP11(2022)022
https://doi.org/10.1088/1126-6708/2008/05/012
https://doi.org/10.1088/1126-6708/2008/05/012
https://doi.org/10.1007/JHEP11(2018)102
https://doi.org/10.1007/JHEP11(2018)102
https://doi.org/10.2307/1968455
https://doi.org/10.2307/1968455
https://doi.org/10.1016/0003-4916(69)90278-4
https://doi.org/10.1016/0003-4916(69)90278-4
https://doi.org/10.1103/PhysRevD.2.293
https://doi.org/10.1007/BFb0111103
https://doi.org/10.1007/BFb0111103
https://doi.org/10.1016/0003-4916(73)90446-6
https://doi.org/10.1007/JHEP03(2010)133
https://doi.org/10.1007/JHEP03(2010)133
https://doi.org/10.1103/PhysRevD.82.045031
https://doi.org/10.1007/JHEP11(2011)154
https://doi.org/10.1007/JHEP11(2011)154
https://doi.org/10.1007/JHEP08(2022)188
https://doi.org/10.1007/JHEP05(2021)015
https://doi.org/10.1007/JHEP05(2021)015

