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The Hungarian physicist Eugene Wigner introduced random matrix models in physics to describe the
energy spectra of atomic nuclei. As such, the main goal of random matrix theory (RMT) has been to derive
the eigenvalue statistics of matrices drawn from a given distribution. The Wigner approach gives powerful
insights into the properties of complex, chaotic systems in thermal equilibrium. Another Hungarian,
Cornelius Lanczos, suggested a method of reducing the dynamics of any quantum system to a one-
dimensional chain by tridiagonalizing the Hamiltonian relative to a given initial state. In the resulting
matrix, the diagonal and off-diagonal Lanczos coefficients control transition amplitudes between elements
of a distinguished basis of states. We connect these two approaches to the quantum mechanics of complex
systems by deriving analytical formulas relating the potential defining a general RMT, or, equivalently, its
density of states, to the Lanczos coefficients and their correlations. In particular, we derive an integral
relation between the average Lanczos coefficients and the density of states, and, for polynomial potentials,
algebraic equations that determine the Lanczos coefficients from the potential. We obtain these results for
generic initial states in the thermodynamic limit. As an application, we compute the time-dependent
“spread complexity” in thermofield double states and the spectral form factor for Gaussian and non-
Gaussian RMTs.

DOI: 10.1103/PhysRevD.107.126001

I. INTRODUCTION

It is natural to adopt a statistical approach to the study of
very complex systems by fixing initially given, coarse-
grained, physical data, and averaging over the space of
systems compatible with these data. Universal properties
are then approachable in the average. The most famous
example of this philosophy concerns the statistical origin of
thermodynamics. But there are many other applications.
For example, in quantum mechanics the complexity of a
system might prevent us from knowing the actual
Hamiltonian, impeding us from deriving the energy spec-
trum and the time dependence of wave functions. Again,
we can hope that by averaging over spaces of Hamiltonians

with given coarse-grained data, we might be able to access
important information about the system.
This philosophy was pioneered by Wigner [1–3], who

wanted to understand aspects of the spectra of heavy nuclei.
Wigner postulated that, given the complexity of nucleon
interactions, certain aspects of the spectrum such as the
spacings between the eigenvalues would be universal, and
well described by averaging the Hamiltonian over an
ensemble. Mathematically, since quantum mechanical
Hamiltonians are just matrices (possibly of infinite dimen-
sion) satisfying certain constraints (self-adjoint and accom-
modating potential symmetries), this statistical approach
leads to the consideration of ensembles of “random
matrices.” Although random matrices had been studied
previously in the literature [4,5], Wigner’s contributions are
usually considered seminal in the field of random matrix
theory (RMT) (see [6] for a brief history). Since its
conception, RMT has mostly concentrated on the deriva-
tion of spectral statistics. It is quite striking that such
statistics can be computed exactly for many ensembles of
random matrices and associated measures; see [7] for a
recent account.
Notwithstanding the success of RMT in explaining many

aspects of the spectra of complex systems, applications to
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real time dynamics are scarce in the literature.1 One reason
is that in many problems of interest, not only the eigen-
values but also the structure of eigenstates potentially play a
role, complicating the analysis and formulation of the
problem. From a broader perspective, the problem of
solving the Schrödinger equation for complex systems in
nonequilibrium scenarios is hard, even numerically. The
reason is the exponential growth of the dimension of the
Hilbert space with the number of degrees of freedom. It
would be very useful if RMT could be applied to these
types of problems.
In this regard, the Lanczos or recursion method [8]

provides a powerful procedure for solving the Schrödinger
equation and elucidating the time dependence of wave
functions. Intuitively, this approach optimizes the amount
of information needed to evolve an initial state jψi, given
the Hamiltonian H of the system. Relatedly, as shown
recently [9], this method uses a basis that minimizes the
spread of the wave function over its basis elements. It does
so by exploiting the actual states with which the initial state
mixes through time evolution, i.e., the states Hnjψi, that
appear in the Taylor expansion of the solution to the
Schrödinger equation. As reviewed below, we can use
these states to build an orthonormal basis, simultaneously
generating the minimum subspace of the Hilbert space that
is needed for the computation of the time dependent wave
function. This distinguished set of states is called the
Krylov basis. At a technical level, the method rests on
the computation of the Hamiltonian in the Krylov basis, a
procedure that produces the tridiagonal “Hessenberg form”
of the Hamiltonian. Known numerical algorithms use
Householder reflections [10,11] to compute Hessenberg
forms of matrices. The nonzero tridiagonal entries of this
form of a Hamiltonian are called the Lanczos coefficients.
The advantage of using this basis is that the Schrödinger
equation simplifies and describes a one-dimensional chain
dynamics, making it easier to find time-dependent wave
functions.
Here, we aim to build a bridge between Wigner’s ideas

concerning the approximation of Hamiltonians through
random matrix theory and the Lanczos approach for
analyzing Hamiltonian evolution. In one direction,
Lanczos might enable the expansion of RMT to nonequili-
brium (time-dependent) scenarios in quantum mechanics.
Conversely, RMT might improve our understanding of the
late time dynamics of quantumchaotic systems. Technically,
instead of focusing on spectral statistics, we must determine
the statistics of the Lanczos coefficients, namely the sta-
tistics of the Hessenberg, or tridiagonal, form of random
matrices.
The Lanczos method has indeed seen a recent burst of

activity in the context of the study of chaos and quantum

black holes. In particular, as proposed in [12] and further
developed in [13–34], it has been used to provide a
notion of operator complexity, dubbed Krylov complexity.
In this context Refs. [20,32] use RMT techniques to
analyze certain aspects of Krylov complexity. The Lanczos
approach has also been used to compute out-of-time-
ordered four-point functions and Lyapunov exponents [35].
A geometric and group theory approach to the Lanczos
method has been developed in [21], connecting it to the
field of generalized coherent states [36–38]. Finally, the
method has been used to analyze the long-time dynamics
of quantum states in chaotic systems [9], where a new
measure of state complexity dubbed spread complexity was
put forward (see [39,40] for recent applications to topo-
logical phases of matter, and [41] for an analysis of weak
ergodicity breaking). Concretely, the authors of [9] used the
Lanczos method numerically to find transparent relations
between the wave function at late times, spread complexity,
the so-called spectral form factor in RMT [42], and the
universal ensembles of RMT. In the present article, we will
analytically relate the distribution of Lanczos coefficients
to the density of states in general random matrix theories
and for generic initial states. As a special case, we will
rederive the Lanczos coefficients, real-time dynamics, and
complexity growth of RMTs in thermofield double states
that were previously computed in [9]. We will apply our
results to more general nonequilibrium (time-dependent)
scenarios in a companion article [43].
Six sections follow. In Secs. II and III we review

pertinent aspects of RMT and the Lanczos approach,
respectively. These sections are brief and independent.
They do not contain new results and can be omitted if
the reader is familiar with those techniques. Section IVuses
the existence of a large system size limit to derive an
integral relation between the density of states of a RMTand
the average Lanczos coefficients. Section V uses saddle-
point methods to derive an analytical relation between the
potential of an RMT and the one- and two-point functions
of the Lanczos coefficients, averaged over the ensemble.
For polynomial potentials, this leads to algebraic equations
determining the Lanczos coefficients. All the analytical
findings are verified by numerical computation. Section VI
applies our results to thermofield double states, rederiving
some of the findings of [9] concerning the spectral form
factor and spread complexity. We close the article with a
discussion in Sec. VII.

II. ASPECTS OF RANDOM MATRIX THEORY

This section explains the relevant details of random
matrix theory and will help to contextualize some of the
later results. If the reader is familiar with RMT, generalized
beta ensembles, and the tridiagonal Gaussian ensembles,
this section can be skipped. For a more detailed account of
RMT see [7].

1See [7] for a review of some applications to scattering and the
S-matrix.
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A random matrix theory is defined by specifying the
probability of finding a particular instance of a matrix in a
given ensemble. For example, the Gaussian unitary ensem-
ble (GUE) is an ensemble of Hermitian N × N matricesHij
with measure

1

ZGUE
e−

N
2
TrðH2Þ; ð1Þ

where ZGUE ¼ 2N=2πN
2=2, the partition function, normal-

izes the probability distribution. Further Gaussian examples
include the Gaussian orthogonal ensemble (GOE), defined
as an ensemble of real symmetric N × N matrices H with
measure

1

ZGOE
e−

N
4
TrðH2Þ; ð2Þ

and the Gaussian symplectic ensemble (GSE), defined as
an ensemble of N × N Hermitian quaternionic matrices
with measure

1

ZGSE
e−NTrðH2Þ: ð3Þ

These ensembles are often denoted by their Dyson index:
β ¼ 1 for GOE, β ¼ 2 for GUE, and β ¼ 4 for GSE. The
Dyson index counts the number of real components per
matrix element. In these conventions, the variance of each
off-diagonal matrix entry for all ensembles is fixed to
σ2 ¼ 1=N.
More generally, we can consider the same ensembles but

modify the measure. Instead of using the Gaussian mea-
sure, we can write the distribution as an exponential of a
generic potential VðHÞ, by replacing TrðH2Þ → VðHÞ. If
the potential is invariant under H → UHU†, with U a
unitary matrix, then it is natural to diagonalize the matrix.
This is a change of variables H → ðU;ΛÞ, where U is the
diagonalizing matrix and Λ is a diagonal matrix of
eigenvalues. The statistics of U and Λ factorize; so, for
a Gaussian ensemble we get the joint probability distribu-
tion of eigenvalues

pðλ1;…; λnÞ ¼ Zβ;Ne
−βN

4

P
k
λ2k
Y
i<j

jλi − λjjβ; ð4Þ

whereZβ;N normalizes the distribution andwe have used the
Dyson index to write a single formula applying simulta-
neously to the GUE, GOE, and GSE ensembles. The
nontrivial aspect of this change of variables is the compu-
tation of the Jacobian, which famously gives rise to the
Vandermonde determinant Δ≡Q

i<j jλi − λjjβ. Extensions
to non-Gaussian measures are straightforward since the
Jacobian remains the same, and we have to simply modify
the exponent which arises from the potential. For example,
for a polynomial potential

VðHÞ ¼
X
n

vnTrðHnÞ; ð5Þ

with some real constantsvn, the joint probability distribution
is just

pðλ1;…; λnÞ ¼ Zβ;Ne
−βN

4

P
n
vn
P

k
λnk
Y
i<j

jλi − λjjβ: ð6Þ

This distribution serves as the starting point for analyzing the
spectrum. For example, consider the statistics of the eigen-
value density. For a single matrix, this is defined as

ρðEÞ ¼ 1

N

X
i

δðE − λiÞ; ð7Þ

where λi are the eigenvalues. The eigenvalue density is a
random variable as it depends on the random eigenvalues λi.
We seek the correlation functions

ρðE1ÞρðE1Þ � � � ρðEnÞ: ð8Þ

Equivalently we can compute the Laplace transform of the
eigenvalue density, namely the partition function

Zβ ¼
Z

∞

0

dEρðEÞe−βE; ð9Þ

and compute the associated correlation functions

Zβ1Zβ2 � � �Zβn : ð10Þ

We assumed here that the theory is stable so that the
spectrum is bounded from below, and then shifted the
minimum energy to zero without loss of generality. This
problem has been completely solved for a zoo of matrix
models (see [7,44]).
Importantly, the joint probability distribution of eigen-

values (4) makes sense for arbitrary positive real values of
β. This extends the GOE, GUE, and GSE universality
classes to “generalized β-ensembles.” Remarkably, for the
Gaussian case, it was shown in [45] that such joint
probability distributions of eigenvalues equivalently arise
from certain ensembles of tridiagonal random matrices
whose entries are distributed as

Hβ¼
1ffiffiffiffiffiffiffi
βN

p

0
BBBBBBBB@

Nð0;2Þ χðN−1Þβ
χðN−1Þβ Nð0;2Þ χðN−2Þβ

. .
. . .

. . .
.

χ2β Nð0;2Þ χβ

χβ Nð0;2Þ

1
CCCCCCCCA
;

ð11Þ
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where Nðr; sÞ are independent Gaussian random variables
with mean r and variance s, and the χr are independent chi-
distributed random variables, i.e. with probability density
function

pχrðxÞ ¼
1

2r=2−1Γðr=2Þ x
r−1e−x

2=2: ð12Þ

This tridiagonal rewriting of Gaussian matrix models is
very useful for the numerical generation of random
matrices since it only involves OðNÞ random numbers,
instead of OðN2Þ numbers in the usual approach.

III. LANCZOS APPROACH TO UNITARY
EVOLUTION

In quantum mechanical systems the time evolution of a
state jψðtÞi (a vector in a Hilbert space) is determined by
the Schrödinger equation

i∂tjψðtÞi ¼ HjψðtÞi; ð13Þ

where H is the Hamiltonian operator. The solution is
jψðtÞi ¼ e−iHtjψð0Þi. Taylor expanding, one obtains

jψðtÞi ¼
X∞
n¼0

ð−itÞn
n!

jψni; ð14Þ

where

jψni≡Hnjψð0Þi: ð15Þ

Knowledge of jψni is then equivalent to knowledge of the
time evolution. Although we can expand jψðtÞi in the set of
vectors jψni, the latter are neither orthogonal to each
other nor normalized. To remedy this we can apply the
Gram-Schmidt procedure to the jψni. This generates an
ordered, orthonormal basis K ¼ fjKni∶n ¼ 0; 1; 2;…g
that expands the subspace of the Hilbert space explored
by time development of jψð0Þi≡ jK0i. The basis K,
typically known as the Krylov basis, may not expand
the full Hilbert space, depending on the dynamics and the
choice of the initial state.
The Krylov basis K can be derived via the Lanczos

algorithm [8]. Starting from jψni ¼ Hnjψð0Þi this algorithm
generates an orthonormal basisK ¼ fjKni∶n ¼ 0; 1; 2;…g
as

jAnþ1i ¼ ðH − anÞjKni − bnjKn−1i; jKni ¼ b−1n jAni;
ð16Þ

where the Lanczos coefficients an and bn read

an ¼ hKnjHjKni; bn ¼ hAnjAni1=2: ð17Þ

This iterative process has initial conditions b0 ≡ 0 and
jK0i ¼ jψð0Þi being the initial state. Notice that the
Lanczos algorithm (16) implies

HjKni ¼ anjKni þ bnþ1jKnþ1i þ bnjKn−1i: ð18Þ

The Hamiltonian then becomes a tridiagonal matrix in the
Krylov basis

H ¼

0
BBBBBBBBBB@

a0 b1
b1 a1 b2

b2 a2 b3

. .
. . .

. . .
.

bN−2 aN−2 bN−1

bN−1 aN−1

1
CCCCCCCCCCA
: ð19Þ

For finite-dimensional systems, this tridiagonal form of the
Hamiltonian is known as the “Hessenberg form” of the
matrix. For finite dimensional matrices there are numeri-
cally stable algorithms for computing it; see [9] for details.
There is also a more general method for computing the
Lanczos coefficients, which remains valid for infinite
dimensional systems. It starts from the “survival ampli-
tude,” i.e., the amplitude that the state at time t is the same
as the state at time zero; see [9] for a detailed account and
references.
This algorithm for matrix tridiagonalization was origi-

nally conceived by Lanczos [46] to aid in the computation
of eigenvalues and eigenvectors. Once the Hamiltonian is
in tridiagonal form there are more effective methods for
solving the eigenvalue/vector problem.2 Nowadays there
are better algorithms for this problem, but the tridiagonal
form can be used directly to solve for the time evolution of
the quantum system, without finding eigenvalues/vectors.
Indeed, the wave function in the Krylov basis can be
obtained by exponentiating the Hessenberg form and
applying it to the initial state. The tridiagonal form
of the Hamiltonian then implies that the Schrödinger
equation (13), when written in the Krylov basis, takes the
form

i∂tψnðtÞ ¼ anψnðtÞ þ bnþ1ψnþ1ðtÞ þ bnψn−1ðtÞ: ð20Þ

We conclude that in this basis, any time evolution
becomes a one-dimensional motion with a “hopping”
Hamiltonian.
Finally, given ψnðtÞ it is natural to analyze the average

position in the Krylov chain

2The original Lanczos algorithm suffers from an instability. The
generated Krylov basis is less and less orthonormal at each step of
the algorithm. This can be cured by orthogonalizing with all
previously generated vectors, and not with the last two only [47].
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CðtÞ ¼ CKðtÞ ¼
X
n

njψnðtÞj2 ¼
X
n

npnðtÞ; ð21Þ

and the effective dimension of the Hilbert space explored
by the time evolution

Cdim ¼ eHShannon ¼ e−
P

n
pn logpn: ð22Þ

InRef. [9] it was proven that these quantities, as computed in
the Krylov basis, are a global minimum over different
choices of basis. In this sense, they are sensible quantifica-
tions of complexity, understood as ameasure of the spread of
the wave function in the time evolved quantum state.
Examples in which the computation of the Lanczos

coefficients an and bn [the Hamiltonian in tridiagonal
form (19)] can be carried out analytically are sparse in
the literature; see [8] for old examples and [9,12,21,30] for
more recent ones. But there are extensive numerical
applications of these techniques to different aspects of
quantum mechanical theories. In particular, this approach
has been used to study operator complexity in [12–34],
more recently in connection with quantum chaos, random
matrices and state complexity in [9], for the study of
topological phases of matter [39,40], and for an analysis of
weak ergodicity breaking [41].

IV. TRIDIAGONALIZING RANDOM MATRICES:
A FIRST APPROACH

Given the above comments about randommatrix theories
and the Lanczos approach to nonequilibrium quantum
mechanics, we now state our problem precisely. Given a
Hermitian operator in a Hilbert space (a Hamiltonian) and a
quantum state, we can apply the Lanczos method to obtain
a tridiagonal matrix as in (19). In RMT we have an
ensemble of Hamiltonians, and thus the Lanczos algorithm
will produce an ensemble of tridiagonalized random
matrices. We thus seek to find the statistics of these
tridiagonal matrices, namely the statistics of the Lanczos
coefficients an and bn, given a particular RMT, defined by
some potential VðHÞ and/or its associated average density
of states ρðEÞ.
Equivalently, given a RMT, we want to find the joint

probability distribution for the Lanczos coefficients

pða0;…; aN−1; b1;…; bN−1Þ; ð23Þ

together with averaged quantities such as

am � � � anbr � � � bs: ð24Þ

In this section, we will identify the joint distribution of
Lanczos coefficients for Gaussian theories, and derive an

analytical formula for the average Lanczos coefficients in a
generic RMT with an arbitrary potential.

A. Exact examples: The Gaussian generalized
β-ensembles

It is instructive to start with examples that are both
simple and exactly solvable. To this end, we start with the
GOE. This is a Gaussian-distributed ensemble of orthogo-
nal matrices:

1

ZGOE
e−

N
4
TrðH2Þ: ð25Þ

As an initial state we choose

jψi ¼ ð1; 0; 0;…; 0ÞT: ð26Þ

These coefficients are given in the basis in which the
Hamiltonian is a random matrix drawn from a GOE
distribution. This is a generic choice of initial state since,
given the orthogonal invariance of the GOE, we would
obtain the same results for any initial state which is an
orthogonal rotation of (26).
Since the initial state is always part of the Krylov basis,

the Lanczos procedure is solved if we find a similarity
transformation O such that

OHOT ¼ Tridiagonal Ojψi ¼ jψi; ð27Þ

where the tridiagonal matrix has real entries and off-
diagonal positive entries. We require positive off-diagonal
entries conventionally because the bn coefficients in the
Lanczos procedure are chosen to be positive real
numbers by a choice of phases in the Krylov basis
elements [see Eq. (17)]. Since a similarity transformation
takes orthonormal bases to orthonormal bases, the second
relation in (27) implies the initial state is part of
both the initial basis and the new basis. The first relation
in (27) then implies that the new basis is the desired
Krylov basis.
The second relation is fulfilled by any matrix of the form

O ¼
�
1 0

0 M

�
; ð28Þ

where the zeros represent (N − 1)-dimensional vectors and
M is an ðN − 1Þ × ðN − 1Þ matrix. As shown by Dumitriu
and Edelman [45], the tridiagonal form is then achieved as
follows. Without loss of generality, suppose we draw an
N × N matrix HN from the GOE ensemble. We can write
it as
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HN ¼
�
a0 xT

x HN−1

�
; ð29Þ

where x ¼ ðx1;…; xN−1Þ is a generic (N − 1)-dimensional
vector, a0 is the first entry of the matrix, and HN−1 is an
ðN − 1Þ × ðN − 1Þmatrix. We have called the first entry a0
because, given the initial state, it coincides with the first
Lanczos coefficient, namely

a0 ¼ hψ jHN jψi: ð30Þ

We will now construct the required similarity transforma-
tion in steps. We first choose O of the form (28) with any
ðN − 1Þ × ðN − 1Þ orthogonal matrix M such that

Mx ¼ kxjj2ð1; 0; 0;…; 0ÞT ≡ kxjj2eT1 ; ð31Þ

where kxjj2 is the norm of x. This brings the matrix HN to
the following form:

OHNOT ¼
�

a0 kxjj2e1
kxjj2eT1 MHN−1MT

�
: ð32Þ

We can argue as follows that the statistics of a0, kxjj2,
and MHN−1MT are uncorrelated given the statistics of the
GOE in (25). Note first that the probability distribution in
(25) is proportional to expð−N=4TrðH2ÞÞwith a symmetric
H and hence is independently Gaussian in each entry of H
up to the symmetricity constraint. Thus, since the entry a0
is unchanged after the transformation (32), it continues to
be Gaussian distributed with the same mean and variance as
the GOE, namely 2=N in our normalization since it belongs
to the diagonal. The norm kxjj2 is then the square root of
the sum of uncorrelated Gaussian random variables with
zero mean and variance equal to the off-diagonal entries
of the GOE, which is 1=N. This gives rise to the chi-
distribution defined earlier: χN−1=

ffiffiffiffi
N

p
. Finally, since HN−1

is by definition a random matrix from the GOE ensemble of
ðN − 1Þ × ðN − 1Þ matrices, and this ensemble is invariant
under orthogonal transformations, M HN−1MT is just a
random matrix from the GOE.3 Repeating this procedure
along the diagonal direction, and remembering that off-
diagonal variances are fixed to 1=N, we arrive at a
tridiagonal matrix whose Lanczos coefficients have statis-
tics given by

HN ¼

0
BBBBBBBB@

a0 b1
b1 a1 b2

. .
. . .

. . .
.

bN−2 aN−2 bN−1

bN−1 aN−1

1
CCCCCCCCCA

¼ 1ffiffiffiffi
N

p

0
BBBBBBBB@

Nð0;2Þ χðN−1Þ
χðN−1Þ Nð0;2Þ χðN−2Þ

. .
. . .

. . .
.

χ2 Nð0;2Þ χ1

χ1 Nð0;2Þ

1
CCCCCCCCA
:

The same argument applies to the GUE and GSE, and the
Lanczos algorithm will give rise to the following Lanczos
coefficients:

HN ¼

0
BBBBBBBB@

a0 b1
b1 a1 b2

. .
. . .

. . .
.

bN−2 aN−2 bN−1

bN−1 aN−1

1
CCCCCCCCA

¼ 1ffiffiffiffiffiffiffi
βN

p

0
BBBBBBBB@

Nð0;2Þ χðN−1Þβ
χðN−1Þβ Nð0;2Þ χðN−2Þβ

. .
. . .

. . .
.

χ2β Nð0;2Þ χβ

χβ Nð0;2Þ

1
CCCCCCCCA
:

We conclude that, for the Gaussian orthogonal, unitary, and
symplectic ensembles, and generic initial states, the an
Lanczos coefficients are independent random variables
with zero mean and variance equal to the one of the
RMT. The bn Lanczos coefficients are also independently
distributed random variables with distribution

pðbnÞ¼2

�
βN
2

�ðN−nÞβ=2 1

ΓððN−nÞβ=2Þb
ðN−nÞβ−1
n e−βNb2n=2:

ð33Þ

The average of the bn Lanczos coefficients is then

bn ¼
ffiffiffiffiffiffiffi
2

βN

s
Γðð1þ ðN − nÞβÞ=2Þ

ΓððN − nÞβ=2Þ ; ð34Þ

while the variance reads

3Note that HN−1 and/or M HN−1MT belong to the GOE
ensembles of ðN − 1Þ × ðN − 1Þ orthogonal matrices, but nor-
malized such that the off-diagonal entries have variance equal to
1=N, since they descend from the original HN which was
normalized in such a way.
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σ2 ¼ ðbn − bnÞ2 ¼
ðN − nÞ

N
− bn

2: ð35Þ

We verify this numerically in Fig. 1.
Finally, notice that the generalized β-ensembles for any

β > 0 define Hamiltonians with sensible Lanczos coeffi-
cients given by their tridiagonal version.

B. The average Lanczos coefficients for generic RMT:
A physicist’s argument

Above we used the work of Dumitriu and Edelman [45]
to explain the tridiagonal form, and hence the Lanzos
coefficients, of Gaussian random matrix ensembles. We
now generalize these results to generic random matrix
theories with generic densities of states ρðEÞ and compute
the statistics of the associated tridiagonal matrices, namely
the statistics of the Lanczos coefficients.
Notice first that, in numerical computations (see [9] and

below), and in the exact analytical solution above for the
Gaussian case, the Lanczos coefficients an, bn, when
expressed as a function of x ¼ n=N, have a continuous
large-N limit aðxÞ, bðxÞ, where N is the dimension of the
Hilbert space. We will show that an approximate analytical
formula relating the average Lanczos coefficients to the
density of states can be derived simply by assuming the
existence of a continuous large-N limit.
Let H be our Hamiltonian, and an, bn be its Lanczos

coefficients when starting from some initial state. In the
Krylov basis, the dynamics is that of a one-dimensional
(1D) chain (20). We cut this 1D Krylov chain into many
(say S ¼ ffiffiffiffi

N
p

) shorter “segments” (of length, say
L ¼ ffiffiffiffi

N
p

). This modification is accomplished by setting
bn to zero at the boundaries of each segment and then
setting the an and bn within each segment to be their
average across the segment. We claim that for large N, this
process approximately preserves the density of states. The
intuition is that for large N, each of these segments is long,
so the first step of cutting the 1D chain into segments only
introduces a small effect from the edges of the segments.

The second step of setting the Lanczos coefficients to their
average also only introduces a small effect because we are
assuming that the an’s and bn’s, when expressed as a
function of x ¼ n=N, have a continuous large-N limit.4 To
have such a limit, the Lanczos coefficients must be
sufficiently slowly changing in any segment of length L
such that L=N → 0 as N → ∞. Below, we will numerically
confirm the validity of this approximation and also provide
a more precise argument making use of the moments of the
Hamiltonian.
We thus proceed to compute the Lanczos coefficients

aðxÞ and bðxÞ, as a function of x ¼ n=N for 0 ≤ x ≤ 1 as
N → ∞. These are the natural variables in the large-N limit,
and we seek to compute their averages aðxÞ; bðxÞ over the
matrix ensemble. For notational simplicity, we will omit the
overline denoting the average so that the functions aðxÞ,
bðxÞ, and ρðEÞ denote the average Lanczos coefficients and
density of states, respectively.
In the block approximation of the Hamiltonian, the

density of states is simply the sum of the densities of
states of each of the S segments. Each segment, of size L,
has approximately constant a and b, and is therefore
Toeplitz. A standard formula from linear algebra then
tells us the block has eigenvalues Ek ¼ 2b cosðkπ=ðLþ
1ÞÞ þ a, with k ¼ 1 � � �L. Recall also that we can take a to
be real and b to be positive given the Lanczos algorithm
(17). The density of states in such a segment is then

ρa;bðEÞ ¼
1=L

jdEk=dkj
¼ Hð4b2 − ðE − aÞ2Þ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2 − ðE − aÞ2

p ; ð36Þ

where HðxÞ is the Heaviside step function setting the
density of states to zero outside of its domain. Here we
divided by L to normalize the density of states to integrate
to 1 over its domain, as conventional in random matrix

FIG. 1. Graph of the Lanczos coefficients aðxÞ, bðxÞ for one instance (light colors) and an average over 256 instances (moderate
colors) of size N ¼ 1024 random matrices with potentials Vg, Vs, and Vq from left to right, along with the analytical solution for the
average values (dark colors, continuous). The analytical solution overlaps well with the averaged values.

4We are using this trick only to approximate the total density of
states. At the end of the day, the Lanczos coefficients we will find
do not vanish anywhere, except at the end of the Krylov chain.
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theory. In the large-N limit, both S ¼ ffiffiffiffi
N

p
and L ¼ ffiffiffiffi

N
p

are
large as well. Noticing that N ¼ SL, the total (normalized)
density of states is then approximated by an integral

ρðEÞ ¼ 1

N

XS
n¼1

LHð4bðnLÞ2 − ðE − aðnLÞÞ2Þ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðnLÞ2 − ðE − aðnLÞÞ2

p
¼

Z
1

0

dx
Hð4bðxÞ2 − ðE − aðxÞÞ2Þ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðxÞ2 − ðE − aðxÞÞ2

p : ð37Þ

This formula explicitly relates the average Lanczos coef-
ficients to the density of states in the large-N limit when the
block approximation of theHamiltonian is valid, and x is not
too close to the edges x ¼ 0, 1, where by close we mean
x ∼Oð1=NÞ. Equation (37) is one of the main results of this
article.
A somewhatmore precise argument for this formulamakes

use of the moments of the Hamiltonian. Notice that because
theHamiltonian is tridiagonal, ½Hn�ij, the i, jth entry ofHn, is
annth order polynomial of someaj,bj with jj − ij < n. Let k
be an index within n of i, j and let n scale sublinearly inN in
the large N limit so that the difference in x satisfies
ji − kj=N < n=N → 0. Then assuming as above that aðxÞ
and bðxÞ have continuous largeN limits, we can approximate
all instances ai, bi with ak, bk instead, and so5

½Hn�ij ≈ ½Tðak; bkÞn�ij; ð38Þ

where Tða; bÞ is an infinite tridiagonal matrix6 with constant
diagonal a and off-diagonal b,

Tða; bÞ ¼

0
BBBBBBBBB@

. .
. . .

.

. .
.

a b

b a b

b a . .
.

. .
. . .

.

1
CCCCCCCCCA
: ð39Þ

Therefore, the trace of the moment of H is

trHn ¼
X
i

½Hn�ii ≈
X
i

½Tðai; biÞn�ii: ð40Þ

Notice that the matrices on the right-hand sides of (38) and
(40) depend on i; for every index i on the left-hand side, we
make this approximation with a different matrix.

Now we make some observations about the matrix
Tða; bÞ. First, by counting Dyck paths one can verify that
when a ¼ 0 and b ¼ 1,

½Tð0; 1Þn�ij ¼
�

n
ðnþ ði − jÞÞ=2

�
; ð41Þ

where the binomial is taken to be zero when ðnþ ði −
jÞÞ=2 is not an integer. We are also going to use the integral
identities�

n
n=2

�
¼
Z

2

−2
dx

xn

π
ffiffiffiffiffiffiffiffiffiffiffi
4−x2

p ¼½Tð0;1Þn�ii;�
n

ðnþ1Þ=2
�
¼
Z

2

−2
dx

xnþ1

2π
ffiffiffiffiffiffiffiffiffiffiffi
4−x2

p ¼½Tð0;1Þn�iðiþ1Þ: ð42Þ

We will only need the first expression in this section, but
include the i − j ¼ 1 case in the second expression for use
in later sections.
Second, we note that Tða; bÞ is related to Tð0; 1Þ by a

scaling and a shift

Tða; bÞ ¼ bTð0; 1Þ þ a: ð43Þ

Using this relation and the integral expression of
½Tð0; 1Þn�ii, we can expand

½Tða; bÞn�ii ¼
Z

2

−2
dx

X
k

�
n
k

�
bkan−k

xk

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − x2

p : ð44Þ

Adding powers of xk and substituting E ¼ bxþ a, and
similarly treating ½Tða; bÞn�ðiþ1Þi, we find

½Tðai;biÞn�ii¼
Z

aiþ2bi

ai−2bi
dE

En

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2i −ðE−aiÞ2

p ; ð45Þ

½Tðai;biÞn�i;iþ1¼
Z

aiþ2bi

ai−2bi
dE

EnðE−aiÞ
biπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2i −ðE−aiÞ2

p : ð46Þ

Thus Eq. (40) becomesZ
dEEnρðEÞ ≈ 1

N

X
i

Z
aiþ2bi

ai−2bi
dE

En

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2i − ðE − aiÞ2

p
ð47Þ

≈
Z

1

0

dx
Z

aðxÞþ2bðxÞ

aðxÞ−2bðxÞ
dE

×
En

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðxÞ2 − ðE − aðxÞÞ2

p ; ð48Þ

where we have taken the large N limit and used the same
definitions of aðxÞ, bðxÞ as above. Note that we always use
the convention that ρðEÞ is normalized so that its integral is

5This approximation applies far from the first rows and
columns of H. Namely, it does not apply when i is Oð1Þ in
the large N limit [equivalently when x ∼Oð1=NÞ].

6We are not saying that Hn, a finite dimensional matrix, is
approximately equal to an infinite dimensional matrix. We are
just asserting the approximate equality of certain elements in both
matrices.
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one. Given (47), and the fact that the polynomials form a
complete basis of functions, we can infer that

ρðEÞ ≈
Z

1

0

dx
Hð4bðxÞ2 − ðE − aðxÞÞ2Þ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðxÞ2 − ðE − aðxÞÞ2

p ; ð49Þ

arriving again at the relation (37) between the density of
states and the Lanczos coefficients. In the next two
sections, we explain how to solve this equation and verify
the results for specific examples numerically.

1. Solving the integral equation

We now explain a strategy for solving the integral
equation (49), thus deriving the Lanczos coefficients from
the density of states, under the assumption that the interval
of support in E of the integrand of (49) shrinks monoton-
ically as x increases. In fact, it is known that the outer
envelope of the Lanczos coefficients does contract mono-
tonically [48,49]. Concretely, the Heaviside function dic-
tates that a given value of x in the integrand of (49)
contributes to the density of states for energies in the
range aðxÞ − 2bðxÞ ≤ E ≤ aðxÞ þ 2bðxÞ. We will assume
that if x1 > x2, then aðx1Þ þ 2bðx1Þ < aðx2Þ þ 2bðx2Þ and
aðx1Þ − 2bðx1Þ > aðx2Þ − 2bðx2Þ, or, infinitesimally,
a0ðxÞ þ 2b0ðxÞ < 0 and a0ðxÞ − 2b0ðxÞ > 0. This implies
that 2b0ðxÞ ≤ a0ðxÞ < −2b0ðxÞ. Solutions to this constraint
require b0ðxÞ < 0 and ja0ðxÞj < −2b0ðxÞ. Solutions to the
integral equation (49) that correspond to the Lanczos
coefficients at large N obey this monotonicity assumption
for all examples that we have checked that also satisfy the
assumption of a continuous large N limit.7

We start with theories for which aðxÞ ¼ 0. By inspec-
tion, this scenario (49) corresponds to Hamiltonians whose
density of states ρðEÞ is even in E. In fact, the converse is
also true—if the density of states is even, then aðxÞ ¼ 0.
This follows because the Heaviside function in (49)
determines a noneven range of E with a nonvanishing
density of states if aðxÞ ≠ 0.8 In this case, the integral
equation can be solved by deconvolving via Laplace
transforms. The monotonicity condition tells us that
b0ðxÞ ≤ 0, so we may define γðbðxÞÞ≡ b0ðxÞ, where
γðbÞ can be thought as the density of values of b. Then
a change of variables gives

ρðEÞ ¼
Z

0

b0

dbγðbÞHð4b2 − E2Þ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2 − E2

p ; ð50Þ

where, using the monotonicity assumption, b goes
from some initial b0 at x ¼ 0 to b ¼ 0 at x ¼ 1,
where the Lanczos algorithm must halt since we have
reached the dimension of the Hilbert space, thus implying
that bð1Þ ¼ 0. Further substituting b ¼ b0e−z and E ¼
E0e−ϵ we arrive at

ρðE0e−ϵÞ¼
Z

∞

0

dzb0e−zγðb0e−zÞ
Hð4−E2

0b
−2
0 e2ðz−ϵÞÞ

πb0e−z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4−E2

0b
−2
0 e2ðz−ϵÞ

q :

ð51Þ

¼
Z

∞

0

dzb0γðb0e−zÞ
Hð4 − E2

0b
−2
0 e2ðz−ϵÞÞ

πb0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − E2

0b
−2
0 e2ðz−ϵÞ

q :

ð52Þ

This equation is of the form

fðϵÞ ¼
Z

∞

0

dz gðzÞhðϵ − zÞ: ð53Þ

Since f and h are known, we can deconvolve, either
numerically or analytically, using the Laplace transform to
solve for gðzÞ ¼ b0γðb0e−zÞ. Then solving the differential
equation b0ðxÞ ¼ γðbðxÞÞ gives us bðxÞ.
Next we consider the general case with aðxÞ ≠ 0. Recall

again that the support of E in the integrand of (49) lies
in the interval from EleftðxÞ ¼ aðxÞ − 2bðxÞ to ErightðxÞ ¼
aðxÞ þ 2bðxÞ, and that we have assumed that this interval
shrinks as x increases. To use this assumption we first
integrate to compute the cumulative density of states (49)
to get

PðEÞ ¼
Z

E

Emin

dEρðEÞ

≈
Z

1

0

dx
Z

E

EleftðxÞ
dE

Hð4bðxÞ2 − ðE − aðxÞÞ2Þ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðxÞ2 − ðE − aðxÞÞ2

p
¼

Z
1

0

dxPc

�
4

E − EleftðxÞ
ErightðxÞ − EleftðxÞ

− 2

�
; ð54Þ

where PcðzÞ ¼
R
z
−2

1

π
ffiffiffiffiffiffiffiffi
4−z02

p dz0 and PðEÞ ¼ R
E
Emin

dEρðEÞ
are cumulative distributions. The lower limit of the integral
over E in the first line is EleftðxÞ because a given x only
contributes to the density of states for E > EleftðxÞ. To
arrive at the second line we used the substitu-
tion E ¼ bz0 − a.
Now suppose that we consider an E that is equal to

EleftðXÞ for some X. Then our monotonicity assumption
says that the density of states for any E < EleftðXÞ only
takes contributions from x ≤ X. Thus the cumulative
density of states from E ¼ Emin up to E ¼ EleftðXÞ only

7It would be useful to give a proof establishing physical
conditions under which the monotonicity condition holds. Note
also that the derivation of (49) did not require this assumption.

8More generally we only need the density of states to be
symmetric around a certain energy E0. If this is the case we just
shift so that E0 → 0 to arrive at an even density of states.
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takes contributions from x ≤ X. Thus, we can reduce the
limits of integration in (54) to

PðEleftðXÞÞ ¼
Z

X

0

dxPc

�
4
EleftðXÞ − EleftðxÞ
ErightðxÞ − EleftðxÞ

− 2

�
: ð55Þ

We may carry out the same steps but integrate from the
other end to obtain an equation for ErightðXÞ as well

1 − PðErightðXÞÞ

¼
Z

X

0

dx

�
1 − Pc

�
4
ErightðXÞ − EleftðxÞ
ErightðxÞ − EleftðxÞ

− 2

��
: ð56Þ

Since these equations only “look into the past” of X, we can
iteratively solve this system of equations for EleftðxÞ and
ErightðxÞ as in algorithm 1, given the functions PðEÞ (which
can be determined from the density of states) and PcðzÞ
(which can be determined by computation of the defining
integral). Then the Lanczos coefficients aðxÞ and bðxÞ
are simply given by inverting the definitions of Eleft;rightðxÞ:
aðxÞ ¼ ðErightðxÞ þ EleftðxÞÞ=2 and bðxÞ ¼ ðErightðxÞ−
EleftðxÞÞ=4.
Here, we assumed that the density of states is supported

over a finite interval ½Emin; Emax�; if not, we can cut off the
tail of the density of states as an approximation. The
numerical algorithm works by discretizing x into M small
intervals of size 1=M, and assuming that Eleft; Eright are
constant over those intervals, so that the integrals in (55)
and (56) become discrete sums. Evaluating the resulting
equations at the points m=M þ ϵ gives us (57) and (58),
which can be used to solve for the values of Eleft; Eright at
m=M from the values at i=M for i < m.

To solve Eqs. (57) and (58) we used a bisection method
to get a good initial estimate before using Newton’s method
to find an accurate solution. Note that the strict inequality
for E is necessary because E ¼ Eleftðn−1N Þ and E ¼
Erightðn−1N Þ are themselves solutions to the equation. We
will describe a few steps of the procedure to make it more
intuitive. At m ¼ 0, solving PðEÞ ¼ 0 and 1 − PðEÞ ¼ 0
gives Eleftð0Þ ¼ Emin and Erightð0Þ ¼ Emax, respectively.
The interval of support of the zeroth step is the same
as the interval of support of the density of states.
For m ¼ 1, we solve for the Eleftð1=MÞ such that

PðEleftð1=MÞÞ ¼ 1
MPcð4 Eleftð1=MÞ−Emin

Emax−Emin
− 2Þ, and similarly

for the Eright. The right-hand side is the contribution to
the cumulative density of states of the first interval of the
integral from x ¼ 0 to x ¼ 1=M. We then set the bounds of
the next contribution to be the Eleft; Eright where the first
contribution is equal to the cumulative density of states.
This is where the first contribution starts undershooting the
cumulative density of states and another contribution is
needed to make up for it.

2. Examples and numerical verification

First consider the Gaussian unitary ensemble, defined by
a potential

VgðEÞ≡ E2: ð59Þ

The exact tridiagonalization of this theory was reviewed
before, but here we arrive at the same results using the
analytical relation between the density of states and
the Lanczos coefficients (49). In particular, for the GUE
the density of states is given by the Wigner semicircle law

Algorithm 1. Approximating solutions to the integral equation.

1: Erightð0Þ ← Emax

2: Eleftð0Þ ← Emin
3: for m ∈ 1∶M do
4: Set EleftðmMÞ be the lowest solution E > Eleftðm−1

M Þ of

PðEÞ ¼ 1

M

Xm−1

i¼0

Pc

�
4

E − Eleftð i
MÞ

Erightð i
MÞ − Eleftð i

MÞ
− 2

�
ð57Þ

5: Set ErightðmMÞ be the highest solution E < Erightðm−1
M Þ of

1 − PðEÞ ¼ 1

M

Xm−1

i¼0

2
641 − Pc

0
B@4

E − Eleft

�
i
M

�
Eright

�
i
M

�
− Eleft

�
i
M

� − 2

1
CA
3
75 ð58Þ

6: end for
7: a ← EleftþEright

2

8: b ← Eright−Eleft

4
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ρðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − E2

p

2π
: ð60Þ

Using this as the input to the integral equation we find the
analytical solutions

aðxÞ ¼ 0; bðxÞ2 ¼ ð1 − xÞ: ð61Þ

The leftmost plot in Fig. 1 compares this result to numeri-
cally computed Lanczos coefficients for individual draws
from the GUE ensemble. The noisy fluctuations in this plot
depict the actual Lanczos coefficients of specific instances
of matrices in the corresponding ensemble, a computation
that can be done using conventional stable routines to find
the Hessenberg form of a matrix (see [9] for details).
Next, consider a theory with a density of states

ρðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − E2

p

π

�
7

10
−
3

5
E2 þ 1

5
E4

�
: ð62Þ

Using the Coulomb gas method as explained in [44], the
principal value integral

1

4
V 0ðωÞ ¼ p:v:

Z
dE

ρðEÞ
ω − E

ð63Þ

leads to the associated potential as

VsðEÞ≡ 3E2 − E4 þ 2

15
E6: ð64Þ

Using this density of states as the input to the integral
equation (49) we numerically obtain the average Lanczos
coefficients using the algorithm discussed above. The
results agree well with the average over the Lanczos
coefficients computed for individual draws from the
ensemble (middle plot in Fig. 1).
The previous two examples had densities of states that

are even in E, giving vanishing a-type Lanczos coefficients
as discussed above. To obtain nontrivial a coefficients we
consider a theory with a noneven density of states

ρðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − E2

p

π

�
1

3
−
1

3
Eþ 1

6
E2

�
: ð65Þ

Following (63), this arises in a matrix model with a quartic
potential including a cubic term

VqðEÞ≡ 1

6
E4 −

4

9
E3 þ 8

3
E: ð66Þ

Using this density of states in the integral equation (49)
we again compute the average Lanczos coefficients. The
results are in precise agreement with the ensemble average
(right-hand plot in Fig. 1).

V. STATISTICS OF THE LANCZOS
COEFFICIENTS

The starting point for studying the spectral statistics of a
random matrix theory is the joint probability distribution
for the eigenvalues (6). In this section, we will similarly
obtain the joint probability distribution of the Lanczos
coefficients. We first recall from above that for a Gaussian
random matrix these quantities are independent random
variables (11). Therefore, multiplying the probability dis-
tribution for each random variable, the joint distribution of
the Lanczos coefficients for the Gaussian generalized β-
ensembles can be written as

pGaussianða0;…; aN−1; b1;…; bN−1Þ

∝
�YN−1

n¼0

e−βN
a2n
4

��YN−1

n¼1

bðN−nÞβ−1
n e−βN

b2n
2

�
: ð67Þ

This can be generalized to random matrix ensembles with
arbitrary potentials VðHÞ. As mentioned above these are
defined by a modified measure

1

Zβ;N;V
e−

βN
4
TrðVðHÞÞ: ð68Þ

Since TrðVðHÞÞ does not change under unitary trans-
formations, the joint distribution of the Lanczos coeffi-
cients becomes

pða0;…; aN−1; b1;…; bN−1Þ

∝ pGaussianða0;…; aN−1; b1;…; bN−1Þ
e−

βN
4
TrðVðHÞÞ

e−
βN
4
TrðH2Þ

∝
�YN−1

n¼1

bðN−nÞβ−1
n

�
e−

βN
4
TrðVðHÞÞ: ð69Þ

Here we used the fact that TrðH2Þ for the triagonalized
Hamiltonian is just

P
nða2n þ 2b2nÞ. Equivalently, the

Jacobian of the coordinate transformation from the original
form of the matrix to its tridiagonal form via the Lanczos
procedure is

J ∝
YN−1

n¼1

bðN−nÞβ−1
n : ð70Þ
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Since this coordinate change applies to single realizations
of the random matrix, once we find it for one example, say
the Gaussian ensemble, it will be the same for any other
distribution. The same happens when we change variables
to the eigenvector basis, with the universal appearance of
the Vandermonde determinant for any given potential.
This Jacobian can also be obtained directly by

finding the volume of the space of matrices that corre-
spond to a particular set of Lanczos coefficients. Recall
that every step of the Householder transformation pro-
cedure of tridiagonalizing a matrix converts matrices as
follows:

0
BBBBB@

. .
. . .

.

. .
.

an−1 bn
bn an xT

x HN−n−1

1
CCCCCA

→

0
BBBBB@

. .
. . .

.

. .
.

an−1 bn
bn an bnþ1eT1

bnþ1e1 H0
N−n−1

1
CCCCCA: ð71Þ

At every step, ðN − n − 1Þβ independent real numbers
corresponding to β parameters for each of the ðN − n − 1Þ
entries of x are collapsed into their magnitude, bnþ1. The
space of entries corresponding to the same bnþ1 are those
on a surface of a ðN − n − 1Þβ dimension sphere with

radius bnþ1, giving us a factor of bðN−n−1Þβ−1
nþ1 in the

volume. Multiplying the volume factor due to every step
of the transformation, we find that a total volume propor-
tional to

YN−1

n¼1

bðN−nÞβ−1
n ð72Þ

in the original space of matrices corresponds to the same
tridiagonal matrix after the Lanczos procedure.
For a third approach, we can follow the results of [45],

where the Jacobian that takes us from the tridiagonal form
of GOE to the eigenvalue form was found to be

JT→λ ∝
ΔQ

N−1
n¼1 b

N−n−1
n

; ð73Þ

where Δ is the Vandermonde determinant. The proof of the
form of that Jacobian does not depend on the specific
potential we assume for the orthogonal matrices. Therefore
we can invert that Jacobian and multiply it by the Jacobian

that takes us from the original matrix form to the eigenvalue
form, namely the Vandermonde determinant Δ. We again
arrive at the result (70).

A. Saddle-point approach to the one-point function

At large N, the probability distribution of the Lanczos
coefficients (69) becomes peaked around its average value,
so we may use a saddle-point approximation to find the
average and covariance of the Lanczos coefficients. The
logarithm of the probability from the exponent of (69) is
given by

Seff ≡ lnpða0;…; an−1; b1;…; bN−1Þ

¼
X
n

ððN − nÞβ − 1Þ ln bn −
βN
4

TrðVðHÞÞ: ð74Þ

The average coefficients, or one-point functions, are those
that maximize Seff . We can find them by taking the
gradient and setting it to zero. In this sense, the function
Seff plays the role of an effective action for the Lanczos
coefficients.
We want to take derivatives of TrðVðHÞÞ with respect to

the Lanczos coefficients and to evaluate them at the average
of the distribution. To evaluate derivatives with respect to a
given ai or bi wewill see that it is convenient to first expand
the potential as a polynomial around the average value of
ai, namely VðEÞ ¼ P

n wnðE − aiÞn. First, we recall the
matrix identity

∂

∂Aij
TrðAnÞ ¼ n½An−1�ji: ð75Þ

Defining āi to be the average value of ai, it follows from
this identity that

∂

∂Hij
TrððH − āiIÞnÞ ¼ n½ðH − āiIÞn−1�ji; ð76Þ

where I is the identity matrix. As discussed in the previous
section, when i, j are close to k, the same continuity
assumption that we used to derive (38) implies that the
average Hamiltonian is then approximated by

½ðH̄ − ākIÞn�ij ≈ ½Tð0; b̄kÞn�ij; ð77Þ

where Tða; bÞ was defined above in (39) and I is the
identity matrix. Also note that, as before, the approximation
is not accurate when i, j areOð1Þ in the large N limit. Next,
we notice that
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∂

∂bi
TrððH − āiÞnÞ ¼ 2

∂

∂Hi−1;i
TrððH − āiÞnÞ

¼ 2n½ðH − āiIÞn−1�i;i−1; ð78Þ

∂

∂ai
TrððH − āiÞnÞ ¼

∂

∂Hi;i
TrððH − āiÞnÞ

¼ n½ðH − āiIÞn−1�i;i: ð79Þ

We now evaluate at the average of the tridiagonal
Hamiltonian and use (41) to arrive at

∂

∂bi
TrððH − āiÞnÞ

				
H¼H̄

¼ 2n½Tð0; b̄kÞn−1�i;i−1

¼ 2nb̄n−1i

�
n − 1

n=2

�
; ð80Þ

∂

∂ai
TrððH − āiÞnÞ

				
H¼H̄

¼ n½Tð0; b̄kÞn−1�i;i

¼ nb̄n−1i

�
n − 1

ðn − 1Þ=2
�
: ð81Þ

Here we see why it was convenient to expand the potential
around ā1: this allowed us to exploit the binomial identity
for powers of Tð0; b̄kÞ.
We now come back to the generic potential written as

VðEÞ ¼ P
n wnðE − āiÞn. Using the integral identities for

the binomial coefficients in (42) we can write the deriv-
atives as follows:

∂

∂bi
TrðVðHÞÞ

				
H¼H̄

¼ 2
X
n

nwnb̄n−1i

�
n − 1

n=2

�

¼
�

∂

∂bi

Z
2

−2
dx

Vðai þ bixÞ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − x2

p
�				

H¼H̄
;

∂

∂ai
TrðVðHÞÞ

				
H¼H̄

¼
X
n

nwnb̄n−1i

�
n − 1

ðn − 1Þ=2
�

¼
�

∂

∂ai

Z
2

−2
dx

Vðai þ bixÞ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − x2

p
�				

H¼H̄
;

ð82Þ

where we used the observations that

∂

∂bi
Vðai þ bixÞjH¼H̄ ¼ xV 0ðai þ bixÞjH¼H̄

¼
X
n

nwnb̄n−1i xn; ð83Þ

∂

∂ai
Vðai þ bixÞjH¼H̄ ¼ V 0ðai þ bixÞjH¼H̄

¼
X
n

nwnb̄n−1i xn−1: ð84Þ

Changing variables to E ¼ ai þ bix, we finally obtain

∂

∂ai
TrðVðHÞÞ ¼ ∂

∂ai

Z
dE

VðEÞ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2i − ðE − aiÞ2

p ;

∂

∂bi
TrðVðHÞÞ ¼ ∂

∂bi

Z
dE

VðEÞ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2i − ðE − aiÞ2

p ; ð85Þ

where the limits of the integration in the energy are fixed by
those of x. These last expressions can also be derived using
the integral equation relating the density of states and
the Lanczos coefficients (37).9 Conversely, this derivation
provides a different path to the integral equation.
Integrating both sides of (85) gives an integral

expression for TrðVðHÞÞ. Thus, the effective action can
be written as

Seff ¼
X
n

ððN − nÞβ − 1Þ ln bn

−
βN
4

X
n

Z
dE

VðEÞ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2n − ðE − anÞ2

p : ð86Þ

Writing the Lanczos coefficients as a function of x ¼ n=N
[not to be confused with the x in (82)], namely aðxÞ
and bðxÞ, we can rewrite the effective action in the large-N
limit as

Seff
βN2

¼
Z

dxð1 − xÞ ln bðxÞ

−
1

4

Z
dx

Z
dE

VðEÞ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðxÞ2 − ðE − aðxÞÞ2

p : ð87Þ

This form of the effective action (the logarithm of the joint
probability distribution of the Lanczos coefficients) shows
that the nice variables in the large-N limit are aðxÞ and
bðxÞ, as assumed in the previous section. To maximize the
probability we just need to find the extrema of this action.
We obtain the following coupled equations for the Lanczos
coefficients:

4ð1 − xÞ ¼ bðxÞ ∂

∂bðxÞ
�Z

dE
VðEÞ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðxÞ2 − ðE − aðxÞÞ2

p �
;

0 ¼ ∂

∂aðxÞ
�Z

dE
VðEÞ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðxÞ2 − ðE − aðxÞÞ2

p �
:

ð88Þ

9In more detail, we can substitute the integral expression for
the density of states (37) into TrðVðHÞÞ ¼ R

dEρðEÞVðEÞ. The
integral expression for ρ involves a sum over all the Lanczos
coefficients. Taking the derivative as in (85) pulls out one term in
the sum.
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If VðEÞ ¼ P
n wnEn is a polynomial, then the integrals also

give polynomials, resulting in a system of algebraic
equations in a, b, x. This system reads

4ð1−xÞ¼
X
n

wn

X
m

man−mbm−1
�
n
m

��
m

m=2

�
;

0¼
X
n

wn

X
m

ðn−mÞan−m−1bm
�
n
m

��
m

m=2

�
: ð89Þ

These equations are consistent with the generic equations
derived in Refs. [48,49] for the thermodynamic limit of the
Lanczos method. We have arrived at them in a simpler
manner, using conventional saddle-point techniques in the
context of random matrix theory.
In the previous equation we can see that if VðEÞ is an

even polynomial, then the second equation can be solved
with a ¼ 0, since the only terms that contribute have even
m so every term in the sum has a factor of a. This allows us
to write x as a polynomial of b.
We now verify that the solutions to the integral equation

in the examples considered previously can also be obtained
by solving this system of equations. For the Gaussian case,
namely VgðEÞ ¼ E2, the equations are just

aðxÞ ¼ 0; bðxÞ2 ¼ ð1 − xÞ: ð90Þ

For the second potential VsðEÞ ¼ 3E2 − E4 þ 2
15
E6 we

find

a ¼ 0; 3b2 − 6b4 þ 4b6 ¼ ð1 − xÞ: ð91Þ

This algebraic equation can be solved numerically,
and the solution precisely matches the result coming from
the integral equation (37) and displayed in Fig. 1.
For the last case, namely VqðEÞ ¼ 1

6
E4 − 4

9
E3 þ 8

3
E, we

observe that the Lanczos coefficients obey the following
equations:

0 ¼ 1

24
ð4a3 þ 24ab2Þ − 1

9
ð3a2 þ 6b2Þ þ 2

3
; ð92Þ

ð1 − xÞ ¼ 1

24
ð24a2b2 þ 24b4Þ − 1

9
ð12ab2Þ: ð93Þ

This system of equations has multiple solutions a, b at
some values of x, but choosing the solution with the
smallest b, we find the numerical solution again coincides
precisely with the one obtained by solving the integral
equation relating the Lanczos coefficients and the density
of states, and is shown in Fig. 1.
These results establish a connection between solutions of

the integral equation for the Lanczos coefficients and
algebraic relations arising from the saddle-point conditions.

It would be interesting to better understand the origin of this
connection.

B. Saddle-point approach to the two-point function

To find the covariance of the Lanczos coefficients or,
equivalently, their two-point function, we approximate the
probability distribution as a Gaussian around its peak. This
is equivalent to expanding the effective action to quadratic
order around the saddle point derived above.10 We thus seek
an expansion

Seffða; bÞ ¼ Seffðā; b̄Þ þ ΔSeff ; ð94Þ

where

ΔSeff ≡ −
1

2
ðδaiMaa

ij δai þ 2δaiMab
ij δbi þ δbiMbb

ij δbiÞ;
ð95Þ

and we have defined the Gaussian kernels

Maa
ij ¼ βN

4

∂
2

∂ai∂aj
TrðVðHÞÞ;

Mbb
ij ¼ βN

4

∂
2

∂bi∂bj
TrðVðHÞÞ

−
∂
2

∂bi∂bj

X
n

ððN − nÞβ − 1Þ ln bn;

Mab
ij ¼ Mba

ji ¼ βN
4

∂
2

∂ai∂bj
TrðVðHÞÞ: ð96Þ

The two-point functions of the Lanczos coefficients are
computed from the inverse of these kernels.
The first step is to compute the second derivative

of TrðVðHÞÞ with respect to the Lanczos coefficients.
As above, we do this by expanding VðHÞ as a polynomial
and then expressing the sum in an alternate form.
For a general matrix H, a standard identity gives the
second derivative of TrHn with respect to the matrix
entries Hij as

∂
2

∂Hij∂Hkl
TrHn ¼ n

Xn−2
m¼0

ðHmÞliðHn−2−mÞjk: ð97Þ

We want to apply this formula in the basis in which H is
tridiagonal, and then evaluate the result at the average
value of the Lanczos coefficients.
First notice that, using (97),

10In physics language, we are expanding the action around the
classical solution.
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∂
2

∂ai∂aj
TrðH − ākÞn ¼

∂
2

∂Hi;i∂Hj;j
TrðH − ākÞn ¼ n

Xn−2
m¼0

½ðH − ākÞm�j;i½ðH − ākÞn−2−m�i;j;

∂
2

∂ai∂bj
TrðH − ākÞn ¼ 2

∂
2

∂Hi;i∂Hj−1;j
TrðH − ākÞn ¼ 2n

Xn−2
m¼0

½ðH − ākÞm�ji½ðH − ākÞn−2−m�i;j−1;

∂
2

∂bi∂bj
TrðH − āiÞn ¼ 2

∂
2

∂Hi−1;i∂Hj−1;j
TrðH − ākÞn þ 2

∂
2

∂Hi;i−1∂Hj−1;j
TrðH − ākÞn

¼ 2n
Xn−2
m¼0

½ðH − ākÞm�j;i−1½ðH − ākÞn−2−m�i;j−1 þ 2n
Xn−2
m¼0

½ðH − ākÞm�j;i½ðH − ākÞn−2−m�i−1;j−1: ð98Þ

As we did for the one-point functions, we evaluate these expressions at the average value of the Lanczos coefficients in the
large N limit. In this limit, choosing k close to i, j allows us to use (41) and (77). We get

∂
2

∂ai∂aj
TrðH − āiÞn

				
H¼H̄

≈ n
Xn−2
m¼0

½Tð0; b̄kÞm�ji½Tð0; b̄kÞn−2−m�ij ¼ nb̄n−2k Cn−2
j−i;j−i;

∂
2

∂ai∂bj
TrðH − āiÞn

				
H¼H̄

≈ 2n
Xn−2
m¼0

½Tð0; b̄kÞm�ji½Tð0; b̄kÞn−2−m�i;j−1 ¼ 2nb̄n−2k Cn−2
j−i;j−i−1;

∂
2

∂bi∂bj
TrðH − āiÞn

				
H¼H̄

≈ 2n
Xn−2
m¼0

½Tð0; b̄kÞm�j;i−1½Tð0; b̄kÞn−2−m�i;j−1 þ 2n
Xn−2
m¼0

½Tð0; b̄kÞm�j;i½Tð0; b̄kÞn−2−m�i−1;j−1

¼ 2nb̄n−2k ðCn−2
j−iþ1;j−i−1 þ Cn−2

j−i;j−iÞ; ð99Þ

where we have defined

Cn
α;β ≡

Xn
k¼0

�
k

ðkþ αÞ=2
��

n − k
ðn − kþ βÞ=2

�
: ð100Þ

As before we always assume the binomials are zero when
their arguments are not integers.
In the Appendix, we prove some properties satisfied by

the coefficients Cn
α;β. In particular, Cn

α;β ¼ Cn
0;αþβ for α,

β ≥ 0, so we will write everything in terms of Cn
δ ≡ Cn

0;δ.
Using this relation and choosing k ¼ i and j ¼ iþ δ, we
can rewrite the second derivatives (99) as

∂
2

∂ai∂aiþδ
TrðH − āiÞn

				
H¼H̄

≈ nb̄n−2i Cn−2
j2δj ;

∂
2

∂ai∂biþδ
TrðH − āiÞn

				
H¼H̄

≈ 2nb̄n−2i Cn−2
j2δ−1j;

∂
2

∂bi∂biþδ
TrðH − āiÞn

				
H¼H̄

≈ 2nb̄n−2i ðCn−2
δþ1;δ−1 þ Cn−2

j2δj Þ:

ð101Þ

From now on, we rename āi → ai and b̄i → bi; there will
be no ambiguity because we will be evaluating all quan-
tities at the average values of the Lanczos coefficients.
In the third equation of (101), when δ ≠ 0, we can

simplify Cn−2
δþ1;δ−1 ¼ Cn−2

j2δj , but δ ¼ 0 needs to be treated as a

special case since Cn−2
1;−1 ¼ Cn−2

2 . Ignoring that special case
for now, if we expand VðEÞ ¼ P

n wnðE − āiÞn, we can
compute the Gaussian kernels M from (96) as

Maa
i;iþδ ≈

βN
4

X
n

nwnbn−2i Cn−2
j2δj ;

Mbb
i;iþδ ≈

βN
4

X
n

4nwnbn−2i Cn−2
j2δj ;

Mab
i;iþδ ¼ Mba

iþδ;i ≈
βN
4

X
n

2nwnbn−2i Cn−2
j2δ−1j: ð102Þ

Here we have used that − ∂
2

∂bi∂biþδ

P
nððN−nÞβ−1Þ lnbn¼0

when δ ≠ 0. This is an explicit algebraic expression for the
Gaussian kernels associated with any polynomial potential.
In the δ ¼ 0 case, we have

Mbb
i;i ≈

βN
4

X
n

2nwnbn−2i ðCn−2
2 þ Cn−2

0 Þ þ ðN − iÞβ − 1

b2i
:

ð103Þ
This can be further simplified. From (A19), we derive that

Cn
2 ¼ Cn

0 −
1

2

�
nþ 2

ðnþ 2Þ=2
�
: ð104Þ

Meanwhile, we can use the saddle-point equations (82),
(85), and (88) to rewrite the last quantity in (103) in terms of
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4
ðN − iÞβ − 1

βN
≈ 4ð1 − xÞ ≈ 2bi

X
n

nwnbn−1i

�
n − 1

n=2

�

¼
X
n

nwnbni

�
n

n=2

�
: ð105Þ

The second expression follows by defining x ¼ i=N and
taking the largeN limit. The last expression follows by using
Pascal’s identity for binomials. Therefore

Mbb
i;i ≈

βN
4

X
n

4nwnbn−2i Cn−2
0 −

βN
4

X
n

nwnbn−2i

�
n
n=2

�

þ βN
4

4ð1 − xÞ
b2i

¼ βN
4

X
n

4nwnbn−2i Cn−2
0 : ð106Þ

So (102) is true for δ ¼ 0 as well.
These expressions determine the Gaussian kernel for

polynomial potentials VðEÞ. In the interest of arriving at an
analytical treatment for general VðEÞ (or general density of
states), we can convert these sums to integral expressions in
the large N limit. To do so, we use results from the
Appendix. In particular, as shown in Eqs. (A25) and (A26),
we can write the Cn

m as moments
R
xnηmðxÞdx of

ηmðxÞ ¼
1

2
δðx − 2Þ þ ð−1Þm 1

2
δðxþ 2Þ

þ 1

2

xPmðxÞ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − x2

p Hð4 − x2Þ;

PmðxÞ ¼ −
sin

�
mcos−1

�
x
2

��
sin

�
cos−1

�
x
2

�� : ð107Þ

In what follows, we will focus on the correlations of ai, bi
with aj, bj when ji − jj ¼ δ with δ=N → 0 in the large N
limit. We focus on this regime because the correlations fall
off with δ in the large N limit. Then, in terms of the
functions (107) the Gaussian kernels become

Maa
i;iþδ≈

βN
4

Z
dx

X
n

nwnðbixÞn−2ηj2δjðxÞ

¼ βN
4

Z
dE

V 0ðEÞ−V 0ðaiÞ
biðE−aiÞ

ηj2δj

�
E−ai
bi

�
;

Mbb
i;iþδ≈βN

Z
dE

V 0ðEÞ−V 0ðaiÞ
biðE−aiÞ

ηj2δj

�
E−ai
bi

�
;

Mab
i;iþδ ¼Mba

iþδ;i≈
βN
2

Z
dE

V 0ðEÞ−V0ðaiÞ
biðE−aiÞ

ηj2δ−1j

�
E−ai
bi

�
:

ð108Þ
Again, due to the continuity of the Lanczos coefficients in
the large N limit, and since Maa

ij is approximated by a

function of ai, bi that does not depend explicitly on i,
we can make the approximation that for small δ,
Maa

ij ≈Miþδ;jþδ. This also holds for Mab
ij ;M

bb
ij and can

be verified numerically.
Finally, we want to invert the Gaussian kernel in the

vicinity of some Lanczos index i. To this end, rather than
writing the full Gaussian kernel M as a block matrix
separating the a’s and b’s, we index M as follows:

M2α;2β ¼ Maa
iþα;iþβ; M2α−1;2β−1 ¼ Mbb

iþα;iþβ;

M2α;2β−1 ¼ Mab
iþα;iþβ; ð109Þ

where α=N; β=N → 0 in the large N limit. Then M is the
Gaussian kernel for both a and b Lanczos coefficients in
the vicinity of the index i. M can be written as a product of
matrices SM0S where

Spq ¼


δpq; p even

2δpq; p odd
;

M0
pq ¼

Z
dE

V 0ðEÞ − V 0ðaiÞ
biðE − aiÞ

ηjp−qj

�
E − ai
bi

�
: ð110Þ

Notice that M0 is implicitly labeled by the Lanczos index i.
The matrix S is diagonal, so its inverse is simple. The
matrix M0 is Toeplitz; i.e., its entries are functions only of
the distance to the diagonal jp − qj in the large N limit.
Thus the eigenvectors of M0 are plane waves eikq. We can
then compute its eigenvalues via

λM0 ðkÞ ¼
X
q

Z
dE

V 0ðEÞ − V 0ðaiÞ
biðE − aiÞ

ηjqj

�
E − ai
bi

�
eikq

¼
Z

dE
V 0ðEÞ − V 0ðaiÞ
biðE − aiÞ

η

�
E − ai
bi

; eik
�
: ð111Þ

Here we took the inner product of the matrix M0 with the
eigenvector and its conjugate, and we used the fact that the
matrix is Toeplitz to reduce one integral to a delta function.
In the second line, the sum over q is brought into the
integral via the function

ηðx; tÞ ¼
X∞
q¼−∞

ηqðxÞtq ¼
x

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − x2

p 1

tþ 1
t − x

; ð112Þ

derived in the Appendix [see Eq. (A29)]. We then invertM0
in the momentum basis and take the Fourier transform to
find

M0
αβ

−1 ¼ 1

2π

Z
2π

0

eikðα−βÞdk
λM0 ðkÞ : ð113Þ

Since the matrix S defined in (110) is diagonal, this allows
us to compute the inverse of the Gaussian kernel:
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M−1 ¼ S−1M0−1S−1: ð114Þ

Thus, in conclusion, given VðEÞ, we may compute the
integral (111), plug the resulting function into (113), and
scale it by some factors of 2 according to S (110) to
approximate the covariance of any two Lanczos coeffi-
cients in the vicinity of some index i, where by vicinity we
mean any distance δ such that δ=N dies in the large-N limit.
An immediate outcome of this computation is that,

unlike the Gaussian case where the fluctuations of an
and bn are statistically independent, in a non-Gaussian
random matrix theory an and bn have nonzero covariance.
Another simple result is that since S contains a factor
of 2 differentiating the entries associated with a’s and b’s,
this equation implies the covariances of the Lanczos
coefficients satisfy

ðaðxÞ− āðxÞÞðaðyÞ− āðyÞÞ¼4ðbðxÞ− b̄ðxÞÞðbðyÞ− b̄ðyÞÞ;
ð115Þ

a relation valid in the large-N limit. A special case of this is
the following relation between variances of the Lanczos
coefficients:

σ2aðxÞ ¼ 4σ2bðxÞ: ð116Þ

1. Examples and numerical verification

We again consider the same three examples that we used
to study the average Lanczos coefficients. The first of these
was the GUE, defined by VgðEÞ ¼ E2. The variance of the
Lanczos coefficients can be obtained in this case from the
exact tridiagonalization reviewed in a previous section.
We now arrive at the same results using the saddle-point
approach.
For VgðEÞ ¼ E2, Eq. (102) gives us that the nonzero

entries of M are

Maa
ii ¼ βN

2
; Mbb

ii ¼ 2βN: ð117Þ

Thus the Lanczos coefficients are uncorrelated, with
variance

σ2a ¼
2

βN
; σ2b ¼

1

2βN
: ð118Þ

This is consistent with the exact tridiagonalization in the
large-N limit and compares well with the numerical
evaluation in Fig. 2. Notice the factor of 4 difference
between the variances of a and b.
We now move to the potential

VsðEÞ ¼ 3E2 − E4 þ 2

15
E6: ð119Þ

In this case, Eq. (102) gives the only nonzero entries
of M as

Maa
i;i ¼βN

�
3

2
−4b2i þ

16

5
b4i

�
; Maa

i;iþ1¼βN

�
6

5
b4i −b2i

�
;

Maa
i;iþ2¼

βN
5
b4i : ð120Þ

The values of Mbb are 4 times the values for Maa, and
Mab ¼ 0. The eigenvalues of M0 can be computed via

λM0 ðkÞ ¼ Maa
i;i þ 2Maa

i;iþ1 cosð2kÞ þ 2Maa
i;iþ2 cosð4kÞ:

ð121Þ

Taking the inverse Fourier transform of the reciprocal as
in (113) gives us the entries of the inverse matrix.
Numerically, one can take the matrix coefficients Maa

i;iþδ,
pad it with an appropriate number of zeros for the desired
accuracy, take the discrete Fourier transform via fast
Fourier transform (FFT), take the reciprocals, and then
invert the Fourier transform again via FFT to efficiently
compute the entries of the inverse matrix.

FIG. 2. Graph of the variance of aðxÞ, bðxÞ averaged over 256 samples of N ¼ 1024 random matrices with potentials Vg, Vs, and Vq
from left to right (light colors), along with the analytical calculations of the variance (dark colors, continuous).
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Thus computing the eigenvalues directly leads to the
two-point function. For the specific case of the variances,
this result is plotted in the second panel of Fig 2, along with
the numerical evaluation of specific instances of random
matrices generated with the potential (119). There is an
excellent match between the analytic prediction and the
average over this ensemble of random matrices.
As mentioned before, the previous two examples have

zero average a-type Lanczos coefficients because they
contain only even powers of the energy. To obtain non-
trivial aðxÞ we again consider the potential

VqðEÞ ¼
1

6
E4 −

4

9
E3 þ 8

3
E: ð122Þ

We can compute the nonzero values ofM, but this time as a
function of both ai and bi:

Maa
i;i ¼ βN

�
2

3
b2i þ

1

2
a2i −

2

3
ai

�
;

Maa
i;iþ1 ¼

βN
6

b2i ; Mab
i;i ¼ 2βN

�
1

2
ai −

1

3
bi

�
: ð123Þ

These expressions lead to the eigenvalues

λM0 ðkÞ ¼ Maa
i;i þMab

i;i cosðkÞ þ 2Maa
i;iþ1 cosð2kÞ: ð124Þ

The variance of the Lanczos coefficients can then be
computed as above. The result is plotted in the third panel
of Fig. 2.

VI. SPECTRAL FORM FACTOR AND TFD SPREAD
COMPLEXITY

The previous sections have determined the average and
covariance of the Lanczos coefficients of a generic random
matrix model. Now we want to show that this information
by itself is sufficient to replicate many aspects of the long-
time dynamics of chaotic systems. In particular, we first
concentrate on the spectral form factor (SFF) defined by

SFF ¼ Zβ−itZ�
βþit

Z2
β

; ð125Þ

where Zβ ¼
P

i e
−βEi is the partition function of a

Hamiltonian with eigenvalues Ei. The SFF is well known
in the context of matrix models (see [42]) and has recently
been studied in relation to black hole dynamics (see [50]).
Second, we consider the spread complexity proposed

in [9], associated with the time evolution of the thermofield
double (TFD) state.11 Concretely, the TFD state is defined

as follows. Consider a Hamiltonian H, with eigenstates jni
and eigenvalues En. Then the TFD is defined by the state

jψβi≡ 1ffiffiffiffiffiffi
Zβ

p X
n

e−
βEn
2 jn; ni; ð126Þ

in the tensor product of the original Hilbert space with
itself. Unitary evolution with a single Hamiltonian gives

jψβðtÞi ¼ e−iHtjψβi ¼ jψβþ2iti: ð127Þ

This state has many applications. In the AdS=CFT corre-
spondence, it is dual to the eternal black hole [51]. The
crucial feature exploited in Ref. [9] is that the survival
amplitude for the time evolved TFD state, i.e., the ampli-
tude that time evolution leaves it unchanged, is

SðtÞ ¼ hψβþ2itjψβi ¼
Zβ−it

Zβ
: ð128Þ

The SFF is then the survival probability [i.e., the magnitude
squared of (128) associated with the evolution of the TFD],
a point that has been observed on a number of occasions
(see, e.g., [52–55]). The authors of [9] showed that this
quantity controls the wave function of the time-evolved
TFD in the Krylov basis at all times; indeed, the entire wave
function can be computed just from knowledge of the
survival amplitude as a function of time.
Numerical methods can be used to compute the spectral

form factor and spread complexity exactly for a given
member of a matrix ensemble (see [9]). Repeated draws
from the ensemble can then be used to compute the
ensemble average. But we can also compute these quantities
by using the one- and two-point functions of the Lanczos
coefficients to approximate the Hamiltonian of the theory.
Even numerically, one advantage is that instead of requiring
OðN2Þ matrix elements the approximation only requires
OðNÞ matrix elements since it is tridiagonal. Once we have
the approximationHapprox

trid ofHtrid
12 we compute the SFF via

Zβ ¼ Trðe−βHÞ ¼ Trðe−βHtridÞ ≈ Trðe−βHapprox
trid Þ ð129Þ

and the spread complexity using the methods described
in [9].
Equivalently, for a given RMT, we define a new theory of

tridiagonal Hamiltonians defined by fixing the average and
covariance of the diagonal and off-diagonal matrix ele-
ments. These are given by Eqs. (88) and (102), respectively.
To sample a Gaussian distribution with a known covariance
matrix M−1, we use the Cholesky decomposition to write
the covariance as a product M−1 ¼ LLT . We then sample
i.i.d. Gaussian variables ξi with covariance ξiξj ¼ δij; a

11The generic definition of spread complexity was reviewed
above in Sec. III; see (21).

12By Htrid we mean the exact Hamiltonian in the Krylov basis,
i.e., in the basis in which it is tridiagonal.
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linear transformation of these variables xi ¼ Lijξj has
covariance

xixj ¼ LikLjlξkξl ¼ LikLjk ¼ M−1
ij : ð130Þ

Our approximateM−1 calculated using ourmethods above is
not precisely symmetric as translation invariance is not
perfectly preserved for finite N. We can make it symmetric
taking the average of M−1 with its transpose. The precise
symmetrizationmethod does not affect the results at largeN.
In Fig. 3 we numerically compute the SFF for the three

example classes of RMT studied above. In all cases, we
compare results obtained from the exact distribution of
eigenvalues of the matrix model and the tridiagonal version
approximated by fixing the leading behavior of the one-
and two-point functions at large N. Remarkably, there is an
extremely good match between the computations at all
times. Figure 4 shows a similar excellent match between
the exact and approximate calculations of the spread
complexity (21).
The same methods using an approximate tridiagonal

Hamiltonian with the correct one- and two-point statistics
can be used to compute the survival probability and spread
complexity of the initial state jψi ¼ ð1; 0;…; 0Þ associated

with the Lanczos coefficients computed in this paper and
the corresponding Krylov basis. However, we should
expect this computation to deviate from the exact answer,
because, as discussed above, our analytical formulas
describe the bulk of the large-N matrix Hamiltonian, but
not the “edge,” i.e., ai and bi for i of Oð1Þ. This inaccuracy
is washed out in the analysis of the thermofield double state
that we described above. This is because we simply used
the tridiagonal approximation as a method of generating a
Hamiltonian, and then we used the methods of [9] to
produce the SFF and spread complexity associated with the
TFD. This computation retridiagonalizes the Hamiltonian
for the TFD state. The associated Lanczos coefficients are
then global linear combinations of the coefficients for
which we derived an analytical formula. As such, at large
N, the “edge” of our Hamiltonian makes a negligible
contribution to the time development of the TFD state, and
the results of this section simply serve as a check on the
accuracy of our results for the bulk of the Hamiltonian. In a
forthcoming paper, we will explain how to “pad” the edge
of our analytical approximation to accurately describe the
full-time evolution of the initial state jψi ¼ ð1; 0;…; 0Þ,
which, as mentioned above, can be considered as an initial
random state.

FIG. 3. SFF for N ¼ 1024 random matrices distributed according to the potentials Vg, Vs, Vq, averaged over 256 samples (in orange),
as well as the average computed from 256 samples based on the one- and two-point functions of the Lanczos coefficients (in blue).

FIG. 4. Spread complexity of the TFD state for N ¼ 1024 random matrices distributed according to the potentials Vg, Vs, Vq,
averaged over 256 samples (in orange), as well as the average computed from 256 samples based on only the one- and two-point
functions of the Lanczos coefficients (in blue).
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VII. DISCUSSION

The Lanczos tridiagonalization method is an important
tool for studying quantum theories. In the context of
quantum evolution, it facilitates efficient computation of
the time-evolved wave function. In the context of RMTs,
it enables a more efficient generation of random matrix
ensembles. The Lanczos algorithm also suggests a defi-
nition of the complexity of time evolution, for both
operators [12] and states [9], that can be practically
analyzed in a wide range of theories.
Here, we provided an analytical treatment of the statistics

of the Lanczos coefficients, i.e., the components of the
tridiagonalized Hamiltonian, for general random matrix
theories. Mathematically speaking, our results generalize
the seminal article of Dumitriu and Edelman [45] concern-
ing Gaussian beta ensembles to RMTs controlled by
generic potentials, or, equivalently, having arbitrary den-
sities of states. Specifically, we gave integral formulas for
the one- and two-point functions of the components of
tridiagonalized Hamiltonians drawn from ensembles speci-
fied by arbitrary potentials in the large-N limit. For
polynomial potentials, we showed that the expected values
and covariances of these Lanczos coefficients are deter-
mined by the solutions to certain algebraic equations. All
our findings were verified numerically in a variety of
examples. One could compare this tridiagonal RMT story
with the traditional one, in which one seeks to understand
the eigenvalue statistics. In the traditional story, similar to
our case, the first results corresponded to Gaussian
RMT, afterwards integral equations were derived for
generic RMT, and it was only later that a full solution
was derived [7].
Our results are derived under the assumption that the

Lanczos coefficients at large N are continuous. While this
holds for a wide variety of random matrix ensembles,
particularly those that have a unimodal density of states,
this assumption fails when the density of states is sharply
multimodal such as when the spectrum is gapped. In such a
case, Eq. (37) does not have a solution that satisfies the
monotonicity assumption of Sec. IV B 1, as the integrand
spans an interval while the density of states is broken or is
too thin in the middle of that interval to support the
integrand at all x. This does not mean, however, that these
cases are intractable; some numerical experimentation
shows that rather than being approximately constant across
small intervals, as we have assumed, the Lanczos coef-
ficients in these cases become approximately periodic
across small intervals. A generalization of our methods
to these periodic cases would be interesting and would
tackle a wider range of problems.
We close with some remarks and future directions.

Wigner envisioned random matrices as a means for under-
standing aspects of the spectra of heavy nuclei. However,
another prominent application of RMT concerns quantum
chaos. In particular, a basic conjecture states that the

statistics of random matrices approximates the fine-grained
structure of the spectrum of a quantum chaotic Hamiltonian
[56,57] (see the reviews [7,42]). In this context, our new
tools may assist in studying universal aspects of the wave
functions of many-body quantum chaotic systems at long-
time scales. These tools may also allow the study of aspects
of the quantum complexity of these systems [9].
For example, the authors of [9] showed that the widely

studied spectral form factor of an RMT is in fact just
one component of the occupancy distribution in the
Krylov basis associated with the time evolution of the
thermofield double state [58].13 The time development of
the spectral form factor is then governed by a Schrödinger
equation (20) that encodes the long-time dynamics of the
complete wave function in the Krylov basis. For RMTs, this
Schrödinger equation is effectively a random one-dimen-
sional chain, where the hopping parameters are the Lanczos
coefficients whose statistics we computed above. The study
of this random Schrödinger equation may shed new light on
quantum chaos. Wewill expand on this idea in a companion
article [43].
It would also be interesting to connect our ideas and

framework to the recently considered effective field theory
of quantum chaos (see [60–62] and references therein),
which also seeks to describe aspects of the long-time
dynamics of quantum chaotic systems, and the associated
spectral structure. On a different note, as mentioned in [9],
our approach may be a promising avenue for understanding
the late time dynamics of black hole interiors, potentially
connecting with [55,63]. Finally, it would be desirable to
connect our “physics” approach to quantum state complex-
ity to other approaches for studying the complexity of time
evolution in many-body systems that have appeared
recently [64–80].
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Note added.—Recently, we became aware of Refs. [48,49]
(see [81,82]), which contain related methods and results in
the context of the thermodynamic limit of the Lanczos
method, dubbed there “the plaquette expansion.” Since
large random matrices are a special case of a thermo-
dynamic limit, some of our results can be translated to
those of [48,49]. In terms of the specific application to
random matrix theory, our approach clarifies some of the
constructions, thus allowing new analyses such as the
computation of the statistics of correlations of Lanczos
coefficients.

APPENDIX: RECURSION RELATIONS AND
GENERATING FUNCTIONS

In this appendix, we prove some properties of the
coefficients

Cn
α;β ≡

Xn
k¼0

�
k

ðkþ αÞ=2
��

n − k
ðn − kþ βÞ=2

�
ðA1Þ

that appeared in the Gaussian kernels derived in the main
text. Our first objective is to prove the following relations
for α, β ≥ 0:

Cn
α;β ¼ Cn

0;αþβ ≡ Cn
αþβ; ðA2Þ

Cn
δ ¼ Cn−1

δ−1 þ Cn−1
δþ1; ðA3Þ

C2n
0 ¼ 4n: ðA4Þ

Note that flipping the sign of either α or β in Cn
α;β does not

change its value, due to the symmetry of the binomial
coefficients.
To this end, we start by proving some properties of the

generating functions of the binomial coefficients.
Lemma 1. Let

gαðxÞ ¼
X∞
n¼0

�
n

ðnþ αÞ=2
�
xn; ðA5Þ

and then we have the recursion relation

xðgαðxÞ þ gαþ2ðxÞÞ ¼ gαþ1ðxÞ ðA6Þ

for α, a non-negative integer.
Proof.—This follows from Pascal’s triangle relation

�
n
k

�
¼

�
n − 1

k

�
þ
�
n − 1

k − 1

�
: ðA7Þ

▪

Notice that the first two elements of the sequence are

g0ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4x2
p ; g1ðxÞ ¼

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p

2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p ; ðA8Þ

which can be obtained from the well-known generating
function of the Catalan numbers.
Lemma 2. Let

gαðxÞ ¼
X∞
n¼0

�
n

ðnþ αÞ=2
�
xn; ðA9Þ

where the binomial coefficients are assumed to be zero if
the arguments are not integers. Then the following relation:

gαðxÞgβðxÞ ¼ gγðxÞgδðxÞ ðA10Þ

holds whenever α, β, γ, δ are non-negative integers
satisfying αþ β ¼ γ þ δ.
Proof.—We prove this by strong induction on

maxðα; β; γ; δÞ. Assume without loss of generality that
maxðα; β; γ; δÞ ¼ α.
Base cases: Consider α < 3 satisfying αþ β ¼ γ þ δ.

The only nontrivial case to show is

g2ðxÞg0ðxÞ ¼
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p

2x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p
�
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p

ðA11Þ

¼
�
1 − 2x2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p

2x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p ðA12Þ

¼ 2 − 4x2 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p

4x2ð1 − 4x2Þ ¼ g21ðxÞ: ðA13Þ

Step: Now we consider α ≥ 3.
If α is equal to γ or δ, then β is equal to δ or γ,

respectively, and the relation holds trivially. If α is equal to
β, then α ¼ β ¼ γ ¼ δ, and the relation holds. If α ¼ β þ 1,
then necessarily α ¼ γ, β ¼ δ or α ¼ δ, β ¼ γ, and again
the relation holds. The only remaining cases satisfy
α > β þ 1; γ; δ.
In this case, Lemma 1 and the fact that α ≥ 3 give us

gαðxÞgβðxÞ ¼ gβðxÞ
�
gα−1ðxÞ

x
− gα−2ðxÞ

�
: ðA14Þ

Using the inductive hypothesis, since α > β þ 1, we
have gα−1ðxÞgβðxÞ ¼ gα−2ðxÞgβþ1ðxÞ and gα−2ðxÞgβðxÞ ¼
gα−3ðxÞgβþ1ðxÞ. We can apply Lemma 1 again to get
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¼ gβþ1ðxÞ
�
gα−2ðxÞ

x
− gα−3ðxÞ

�
¼ gα−1ðxÞgβþ1ðxÞ: ðA15Þ

Finally, since α > β þ 1; γ; δ, we have that maxðα − 1;
β þ 1; γ; δÞ < α, so using the inductive hypothesis again

gαðxÞgβðxÞ ¼ gα−1ðxÞgβþ1ðxÞ ¼ gγðxÞgδðxÞ: ðA16Þ

▪
Now we come back to the sequences that appear directly

in the Gaussian kernels, namely

Cn
α;β ¼

Xn
k¼0

�
k

ðkþ αÞ=2
��

n − k
ðn − kþ βÞ=2

�
: ðA17Þ

These are convolutions between the previous binomial
sequences corresponding to gα, gβ. Therefore the generat-
ing function of the sequence is

X∞
n¼0

Cn
α;βx

n ¼ gαðxÞgβðxÞ: ðA18Þ

By Lemma 2, this depends only on αþ β rather than α and
β independently. We then define Cn

δ ¼ Cn
α;β for any

αþ β ¼ δ. The next lemma establishes the properties of
Cn
m we wanted to prove.
Lemma 3. Cn

m satisfies

Cn
0 ¼



2n ðn evenÞ
0 ðn oddÞ ;

Cn
1 ¼

8<
:

0 ðn evenÞ
2n − 1

2

�
nþ1

ðnþ1Þ=2
�

ðn oddÞ ;

Cn
δ þ Cn

δþ2 ¼ Cnþ1
δþ1 : ðA19Þ

Proof.—We use the generating function fδðxÞ¼P
Cn
δx

n¼g0ðxÞgδðxÞ. For δ ¼ 0, f0ðxÞ ¼ g0ðxÞ2 ¼ 1
1−4x2,

whose Taylor expansion is given by the first relation. For

δ ¼ 1, f1ðxÞ ¼ g0ðxÞg1ðxÞ ¼ 1
1−4x2

1−
ffiffiffiffiffiffiffiffiffi
1−4x2

p
2x ¼ 1

2xð1−4x2Þ−
1

2x
ffiffiffiffiffiffiffiffiffi
1−4x2

p . The first term gives the exponential, and the

second term gives the binomial in the second relation.
To show the third relation, we use Lemma 1 in the

following equation:

xðfδðxÞ þ fδþ2ðxÞÞ ¼ g0ðxÞxðgδðxÞ þ gδþ2ðxÞÞ
¼ g0ðxÞgδþ1ðxÞ ¼ fδþ1ðxÞ: ðA20Þ

Extracting the coefficient of xnþ1 in the above equation
gives the third relation. ▪
Finally, to have an intuitive idea of the binomial

sequence Cn
α;β, we depict the first few values in Fig. 5.

Our next step is to find distributions ηmðxÞ whose
moments correspond to the given sequences, namelyZ

dxxnηmðxÞ ¼ Cn
m: ðA21Þ

It is possible to find ηm analytically by first converting the
above (ordinary) generating functions into exponential
generating functions via a Borel transform, and then
finding ηm via a Fourier transform of such a Borel trans-
form along the imaginary axis. But it is easier to analyze
this directly with a recursion relation.
First, notice that

η0ðxÞ ¼
1

2
δðxþ 2Þ þ 1

2
δðx − 2Þ ⇒

Z
dxxnη0ðxÞ ¼ Cn

0;

ðA22Þ

where Cn
m was defined in (A19).

In order to find η1ðxÞ, we remind the reader thatR
2
−2 x

n 1

π
ffiffiffiffiffiffiffiffi
4−x2

p dx ¼ ð n
n=2Þ. Then we have

η1ðxÞ ¼
1

2
δðx − 2Þ − 1

2
δðxþ 2Þ − 1

2

x

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − x2

p Hð4 − x2Þ

⇒
Z

dxxnη1ðxÞ ¼ Cn
1; ðA23Þ

where HðxÞ is the Heaviside step function. The recursion
relation in (A19) is satisfied if ηmðxÞ þ ηmþ2ðxÞ ¼ xηmþ1,
as follows from

Cnþ1
mþ1 ¼

Z
dxxnþ1ηmþ1ðxÞ

¼
Z

dxxnðηmðxÞ þ ηmþ2ðxÞÞ

¼ Cn
m þ Cn

mþ2: ðA24Þ
To solve this linear recurrence relation, we can write

ηmðxÞ ¼
1

2
δðx − 2Þ þ ð−1Þm 1

2
δðxþ 2Þ

þ 1

2

xPmðxÞ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − x2

p Hð4 − x2Þ; ðA25Þ

FIG. 5. Values of Cn
m for various m (columns) and n (rows).

Blank spots are zero. The first three columns appear in the online
encyclopedia of integer sequences as OEIS A000302, A000346,
A008549; see [83].

BALASUBRAMANIAN, MAGAN, and WU PHYS. REV. D 107, 126001 (2023)

126001-22



where Pm satisfies Pm ¼ xPm−1 − Pm−2. Using the ansatz
Pm ¼ rm, the characteristic equation is r2 − xrþ 1 ¼ 0,
which gives the solutions r� ¼ e�iθ, with θ ¼ cos−1ðx

2
Þ.

Solving for P0 ¼ 0, P1 ¼ 1, this gives us

PmðxÞ ¼ Ae−imθ þ Beimθ ¼ −
sin

�
mcos−1ðx

2
Þ
�

sin
�
cos−1ðx

2

�� : ðA26Þ

Last, due to the recurrence relations, we know that

ηjm−1jðxÞtm þ ηjmþ1jðxÞtm ¼ xηjmjðxÞtm; ðA27Þ

except at m ¼ 0, where 2η1ðxÞ ¼ xη0ðxÞ − x
π
ffiffiffiffiffiffiffiffi
4−x2

p .

Summing the two-sided generating function

ηðx; tÞ≡ X∞
m¼−∞

ηjmjðxÞtm; ðA28Þ

we find�
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