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We present a fermion model characterized by an anticommuting-parameter shift symmetry. The
Hamiltonian formulation exhibits a combination of first-class and second-class constraints. We derive the
well-known Dirac equation by fixing the gauge in a covariant manner, enabling the fields to propagate
accordingly. Notably, the model inherently possesses invariance under reparametrizations of time.
Consequently, the Hamiltonian vanishes, setting it apart from the conventional framework of Dirac’s
theory. Furthermore, we establish a correspondence between these particles and the zero energy modes of
the massless Rarita-Schwinger system, bringing forth the intriguing implication that they may describe a
supergravity ground state.
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I. INTRODUCTION

Particle physics models currently employed describe
fermionic matter, encompassing leptons and quarks, as
spin-half representations conforming to the Lorentz group.
These representations adhere to the variational principle
derived from the first-order Dirac Lagrangian. Within the
framework of fiber bundles, the (non-)Abelian gauge
interactions are formulated, wherein the Dirac fields
assume the role of local sections that transform as modules
of gauge symmetry groups. Concurrently, the force carrier
potentials manifest as (gauge) connections.
This article introduces an alternative characterization of

spin-half fields wherein they transform as gauge connec-
tions associated with a local fermion-parametric shift
symmetry, akin to the Volkov-Akulov [1] or the massless
Rarita-Schwinger model employed in supergravity [2–4].
The model exhibits inherent time-reparametrization

invariance, without extending the phase space, resulting
in the vanishing of the energy of the spin-half field, in
contrast to standard Dirac particles. This model generalizes
the pseudoclassical system [5] to higher dimensions, and
we present its derivation as a truncation of the massless
Rarita-Schwinger system.
The presence of time-reparametrization invariance raises

intriguing questions about the nature of time itself [6]. It
suggests that the concept of time, as we perceive it in our
macroscopic world, may be an emergent phenomenon from

a more fundamental description. Time-reparametrization
invariance in theories such as quantum gravity motivates
the pursuit of deeper insights into the nature of time and its
role in the fundamental laws of physics. The system
presented in this paper is motivated by such inquiries.
Moreover, we will demonstrate that the model under

consideration describes the zero energy modes of the mass-
less Rarita-Schwinger connection. This intriguing finding
suggests that particles of this nature may be present in the
supergravity ground state, aligningwith recent findings [7,8].
The organization of this paper is as follows: In Sec. II,

we describe the Lagrangian model. The Hamiltonian
analysis is conducted in Sec. III. In Sec. IV, we demonstrate
that this serves as a counterexample to Dirac’s conjecture.
Section V presents the connection with the massless Rarita-
Schwinger system. Finally, our conclusions are presented
in Sec. VI.

II. THE MODEL

Consider the action principle,

S ¼ −i
Z

dDxðζ̄γ0 _ψ þ ζ̄∇θÞ; ð1Þ

as a model for fields θðt; xÞ;ψðt; xÞ; ζðt; xÞ, equivalent to
k ¼ 2½D=2� component spinors in D ¼ dþ 1 spacetime
dimensions. Here ðγμÞαβ are Dirac matrices, ∇≔ γi∂i,
i ¼ 1;…; d and ψ̄α¼ðψβÞ�Cβα, where C is the conjugation
matrix.
Complex spinors can be handled by adding the complex

conjugate to (1). However, we shall consider Majorana
spinors for simplicity since the reality conditions will not
change the properties to be studied here. Hence we shall
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assume that the Majorana spinors are “really real”
(ψ� ¼ ψ ), in D ¼ 2; 3; 4 Mod 8 dimensions, and the
conjugation matrix, Cαβ ¼ −Cβα ¼ −Cαβ, lowers and
raises spinor indices according to the northwest/southeast
convention, ψ̄α ¼ ψβCβα, and we choose ðγ0Þαβ ¼ δαβ.
The variation of the action yields the field equations,

γ0 _ψ þ∇θ ¼ 0; ∇ζ ¼ 0; _ζ ¼ 0: ð2Þ

The action and (2) have the gauge symmetry,

δθ ¼ γ0 _ϵ; δψ ¼ ∇ϵ; δζ ¼ 0; ð3Þ

where ϵ is a fermion spinor parameter.
The action (1) is also invariant with respect to the

reparametrization of time

t → t0ðtÞ; θ → θ0α ¼ ∂t
∂t0

θα; ζ0 ¼ ζ; ψ 0 ¼ ψ :

ð4Þ

Hence dtθ is a one form, and ζ, ψ are zero forms. It follows
that the action is invariant with respect to the group
diffðRÞ × SOðdÞ, of time diffeomorphism and the spatial
rotation group.
Even though the system is not explicitlyLorentz covariant,

its spacetime symmetry is larger, and in the gauge,

θ − cψ ≈ 0; ð5Þ

where c is a constant, the Lorentz covariance is recovered.
Indeed, (5) back in (2) yields the Dirac equation,

∂ψ ¼ 0; ð6Þ

where ∂ ≔ c−1γ0∂t þ∇ is the Dirac operator and c appears
as the speed of light.
The gauge (5) can be reached since we can always pass

to a new configuration θ0 ¼ θ þ γ0 _ϵ and ψ 0 ¼ ψ þ∇ϵ with
parameter

ϵ ¼ =̃∂−1ðψ − c−1θÞ; ð7Þ

where =̃∂ ≔ c−1γ0∂t −∇, that fulfills the gauge.
In a different gauge choice, say

θ − c0ðtÞψ ≈ 0; ð8Þ

we get instead

γ0

c0ðtÞ
∂ψ

∂t
þ∇ψ ¼ 0; ð9Þ

which is equivalent to (6) in a different parametrization of
time t0, such that,

1

c0ðtÞ
∂

∂t
¼ 1

c
∂

∂t0
: ð10Þ

Thus, up to the reparametrization of the time coordinate,
the gauges (5) and (8) are physically equivalent.

III. HAMILTONIAN FORMULATION

From (1) the Lagrangian function reads

L ¼ −i
Z

ddx

�
ζ̄γ0 _ψ þ ζ̄∇θ

�
: ð11Þ

The Legendre transform,

ðπθÞα ¼
δL

δ_θα
≈ 0; ðπζÞα ¼

δL

δ_ζα
≈ 0;

ðπψ Þα ¼
δL
δ _ψα ¼ iðζ̄γ0Þα; ð12Þ

produces the primary constraints

πθ ≈ 0; χ1 ¼ πζ ≈ 0; χ2 ¼ πψ − iζ̄γ0 ≈ 0; ð13Þ

which describes the phase space subvariety containing the
physical degrees of freedom.
The unconstrained phase space comes with the Poisson

bracket,

ffðt; xÞ; gðt; yÞg ¼ ð−1Þjfj
Z

dsz

�
δfðt; xÞ
δρaðt; zÞ

δgðt; yÞ
δηaðt; zÞ

þ δfðt; xÞ
δηaðt; zÞ

δgðt; yÞ
δρaðt; zÞ

�
; ð14Þ

where ðρa; ηaÞ ¼ ðθ;ψ ; ζ; πθ; πψ ; πζÞ, a ¼ 1; 2; 3, and
jfj ¼ 0; 1 is the even, odd, Grassmann parity of the
function f.
The constraints χI; I ¼ 1, 2 are second-class,

fχI; χJg ¼ CIJ; CIJ ≔ −i
�

0 ðγ0Þαβ
ðγ0Þαβ 0

�
; ð15Þ

where ðγ0Þαβ ¼ −ðCγ0Þαβ, since CIJ is invertible,

C−1IJ ¼ i

�
0 ðγ0Þαβ

ðγ0Þαβ 0

�
: ð16Þ

The constraint πθ ≈ 0 is first-class since fπθ; χIg ≈ 0.
The canonical Hamiltonian reads

H0 ¼
Z

ddxð_θtπθ þ _ψ tπψ þ _ζtπζÞ − L; ð17Þ

¼ i
Z

ddxζ̄∇θ: ð18Þ
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Implementing the primary constraints,

HT ≔ H0 þ
Z

ddxðπθνþ χIμ
IÞ; ð19Þ

with Lagrange multipliers ν and μI, defines the total
Hamiltonian.
Thus the action principle, in Hamiltonian form, is

given by

SH ¼
Z

dt

�Z
ddxð_θπθ þ _ψπψ þ _ζπζÞ −HT

�
: ð20Þ

The field equations can be obtained from the action
principle, and more general functions in the phase space
evolve according to

_f ¼ ∂tf þ ff;HTg: ð21Þ

The stationary conditions for the primary constraints are
given by

_πθ ¼ iζ̄ =⃖∇≈0; ð22Þ

_χ1 ¼ 0 ⇒ μ2 ¼ γ0∇θ; _χ2 ¼ 0 ⇒ μ1 ¼ 0: ð23Þ

Equation (22) is a secondary constraint. In (23), we obtain
the solution for the second-class Lagrange multipliers—as
a function of the remaining phase space variables—from
their stationary conditions.
The fields evolve according to

_ψ ¼ −μ2; _ζ ¼ −μ1; ð24Þ

_θ ¼ −ν: ð25Þ

From (22), (23), and (24), we reproduce the Euler-
Lagrange equations (2).

A. Gauge fixing

The gauge ambiguities are reflected in ν and θ. With the
gauge choice (5), θ ¼ cψ ceases to be independent, and we
recover the Dirac equation (6) from (23) and (24).
The stationary condition of (5), _θ − c _ψ ≈ 0, fixes the

value ν ¼ cμ2. Together with (23) we obtain

ν ¼ c2γ0∇ψ ; ð26Þ

and there are no arbitrary free fields left in the system.
Alternatively, restricting the system to the surface χI ¼ 0

(13), the variables πζ ≈ 0 can be removed, and ζ can be
replaced by πψ. Hence, the Dirac bracket ff; ggD ≔
ff; gg − ff; χIgC−1IJfχJ; gg reduces to

ff; ggD ¼ ð−1Þf
�
∂f
∂θ

∂g
∂πθ

þ ∂f
∂πθ

∂g
∂θ

þ ∂f
∂ψ

∂g
∂πψ

þ ∂f
∂πψ

∂g
∂ψ

�
;

ð27Þ

on functions of fðθ; πθ;ψ ; πψÞ. Thus the relevant canonical
relations are

fθα; ðπθÞβgD ¼ −δαβ; fψα; ðπψ ÞβgD ¼ −δαβ: ð28Þ

The reduced Hamiltonian, in the surface of strongly
vanishing χI , is given by

HR ≔
Z

ddxðπψγ0∇θ þ πθνÞ: ð29Þ

From πθ ≈ 0, _πθ implies πψ =⃖∇ ≈ 0 and we obtain the field
equations,

γ0 _ψ þ∇θ ≈ 0; πψ ≈ 0; _θ ¼ −ν: ð30Þ

With the gauge fixing (5) we solve for ν as in (26), and the
gauge condition yields from (30) the Dirac equation (6).
The constraints πθ ¼ 0 and the gauge (5) set strongly are

algebraic constraints that project the phase space to the
subspace spanned by coordinates ðψ ; πψÞ. In this subspace,
the Dirac bracket reduces to

ff; ggR ¼ ð−1Þf
�
∂f
∂ψ

∂g
∂πψ

þ ∂f
∂πψ

∂g
∂ψ

�
: ð31Þ

The gauge-fixed Hamiltonian reads

Hfix ¼ c
Z

ddxπψγ0∇ψ ; ð32Þ

and now the fields evolve according to

_f ¼ cð−1Þjfj
�
∂f
∂ψ

· γ0∇ψ −
∂f
∂πψ

· ðπψ =⃖∇Þγ0
�
: ð33Þ

Considering the secondary constraint πψ ðt; x⃗Þ ≈ 0, the
Hamiltonian vanishes. The evolution of the system is
nontrivial and given by

_f ¼ cð−1Þjfj ∂f
∂ψ

· γ0∇ψ ; πψ ≈ 0; ð34Þ

on functions fðψ ; πψÞ, and we set πψ ¼ 0 in the end of the
computation.
Note that in the Hamiltonian formulation of the standard

Dirac theory, the second-class constraints, πψ ≈ ψ̄ , remove
the conjugate momenta differently, and the Hamiltonian
does not vanish. However, the evolution of the system is
still given by the first equation in (34).

GAUGE AND TIME-REPARAMETRIZATION INVARIANT … PHYS. REV. D 107, 125026 (2023)

125026-3



B. The secondary first-class constraint
as an initial condition

Equation (34) is equivalent to (33) with initial condition
πψðt ¼ 0; x⃗Þ ¼ 0,

_f¼ cð−1Þjfj
�
∂f
∂ψ

· γ0∇ψ −
∂f
∂πψ

· ðπψ =⃖∇Þγ0
�
; πψ ð0; x⃗Þ¼ 0;

ð35Þ
since

_πψ ¼ cπψ =⃖∇γ0; πψð0; x⃗Þ ¼ 0 ð36Þ
implies

dnπψ
dtn

ð0; x⃗Þ ¼ 0; ð37Þ

for all order derivatives at the initial Cauchy surface.
Hence, from its Taylor expansion, around t ¼ 0, πψ ðt; x⃗Þ
vanishes for all t. This means

πψðt; x⃗Þ ¼ 0 ð38Þ
is the only solution to the field equations (35) with initial
condition πψð0; x⃗Þ ¼ 0.

IV. ANOTHER EXCEPTION
TO DIRAC’S CONJECTURE

Dirac conjectured in [9] that “it may be that all the first-
class secondary constraints should be included among the
transformations which don’t change the physical state.”
Then, regardingprimary and secondary first-class constraints
in the same footing, Dirac proposed the extended
Hamiltonian, which includes primary and secondary first-
class constraints, as the system’s time translation generator.
The inclusion of secondary first-class constraints introduces
undetermined velocities, equivalent to the Lagrange multi-
pliers associated with these constraints. As a consequence,
the corresponding fields become arbitrary functions of time
and are thus excluded from the physical spectrum.
In Dirac’s treatment of Hamiltonian systems, the degrees

of freedom of the model presented here would all become
unphysical. As his approach is so widely adopted, it is
essential stressing that this model is not an example of his
conjecture.
Noticing that the secondary constraint (22)∇ζ ≈ 0 implies

ζ ≈ 0 on the space of nonconstant functions of x⃗—where∇ is
invertible—the constraints (13)–(22), ðπθ; χI; ζ; Þ ≈ 0 can be
rearranged as ðπθ; πζ; πψ ; ζÞ ≈ 0 and now ðπζ; ζÞ ≈ 0 are
second-class while ðπθ; πψ Þ ≈ 0 are first-class. In Dirac’s
extended dynamics, the conjugate variables associated with
the first-class constraints πψ ≈ 0 and πθ ≈ 0, respectively ψ
and θ, would both become arbitrary functions of time,
equivalent to gauge redundancies.

However, the secondary first-class constraint πψ ≈ 0
does not generate an independent gauge symmetry. The
transformation δλ ¼ ϵ—affecting the field equations gen-
erated by the total Hamiltonian (23) and (24)—would
require _ϵ ¼ 0 to produce a symmetry, then ϵ is not arbitrary.
The true gauge symmetry, (3), is generated by the

Castellani chain [10],

GðϵÞ ¼
Z

ddxðπθγ0 _ϵþ πλ∇ϵÞ: ð39Þ

Hence the number of gauge orbits, of completely indeter-
minate phase space directions, is equivalent to the number
of components in ϵ. This allowed us to fix θ in terms of ψ in
(5) and the system became deterministic. Consequently,
imposing a secondary gauge condition would be unjusti-
fied. Evidently, the presence or not of the Dirac field ψ
represents different physical state of the system, contra-
dicting Dirac’s conjecture.
Though counterexamples of the Dirac conjecture are

well known [11–14], it is argued (e.g. in [14]) that it is
better to assume Dirac’s conjecture as a general principle,
to prevent issues concerning the ill definition of the Poisson
bracket on phase space subspaces where some coordinates
have no conjugate momenta, implying an obstruction for
quantization.
In the approach followed in Sec. III B this situation was

avoided by setting secondary first-class constraints as initial
conditions (36). It is worth noticing that the insight that a
secondary first-class constraint can be viewed as a “mere
initial condition” is pointed out in Weinberg’s book on
quantum field theory [15] (p. 345), as referring to the
electromagnetic Gauss law. Reference [8] extends this
argument to encompass secondary first-class constraints
in general, demonstrating its crucial role in the canonical
analysis and quantization of Dirac’s conjecture counter-
examples. This approach has been employed to quantize
the counterexamples to Dirac’s conjecture found in [8],
including Cawley’s system [11], and the one-dimensional
analog [5] of the model under consideration.

V. RELATION TO THE MASSLESS
RARITA-SCHWINGER LAGRANGIAN

Here we demonstrate that the characterization of the
spin-half particles presented here describes the lowest
energy state of the massless Rarita-Schwinger system,

L ≔ −
i
2
Ψ̄μγ

μνλ
∂νΨλ; ð40Þ

as referred to in the context of supergravity [2,3,16].1 Here
ψα
μ is a vector spinor.

1Note however that the spin–3
2
theory proposed initially by

Rarita and Schwinger [17] differs from (40) (for further details
see [15] and [7,18]).
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Splitting space and time directions we obtain

L ¼ −iΨ̄0γ
0ij
∂iΨj þ

i
2
Ψ̄iγ

0ij _Ψj −
i
2
Ψ̄iγ

ijk
∂jΨk: ð41Þ

We can use the projector operators introduced in [7],

ðPNÞij≔
1

D−2
NiNj; ðPLÞij≔LiLj; PT¼1−PN−PL;

ð42Þ

where Ni ≔ γi − Li and Li ≔ ∇−1
∂i, satisfying the iden-

tities NiNi ¼ D − 2, LiLi ¼ 1, NiLi ¼ 0, to further
decompose the spatial vector-spinor Ψi as

Ψi ¼ ξi þ Niζ þ Liλ; ð43Þ

where

ξi ¼ PT
i
jΨj; ζ ¼ 1

D − 2
NiΨi; λ ¼ LiΨi ð44Þ

carry representations of spin 3
2
, 1
2
, and 1

2
of the spatial rotation

group. Thus we obtain

L ¼ i
Z

dD−1x

�
−ðD − 2ÞΨ̄0γ

0∇ζ þ ðD − 2Þλ̄γ0 _ζ

−
1

2
ξ̄i=∂ξi þ

ðD − 2ÞðD − 3Þ
2

ζ̄=∂ζ

�
: ð45Þ

The field equations read

∂ξi ¼ 0; ð46Þ
where γiξi ¼ ∂

iξi ¼ 0, and

∇ζ ¼ 0; _ζ ¼ 0; γ0 _λþ∇γ0Ψ0 ¼ 0: ð47Þ

The system (47) reduces to (2) with λ ¼ ψ and γ0Ψ0 ¼ θ.
Hence, and from the results of Sec. III, (47) describes a
spin-half particle.
The field ξi is the spin–32 (double-transverse) mode found

in Ref. [19]. However, assuming the validness of the Dirac
conjecture, the spin–1

2
sector (47) was missed in the earliest

literature [19–22], as it was understood in [7,18].
The model (11) can be obtained from the Rarita-

Schwinger Lagrangian truncating (45) to the sector ξi ¼ 0,

Ljξi¼0 ¼ i
Z

dD−1x

�
−ðD − 2ÞΨ̄0γ

0∇ζ þ ðD − 2Þλ̄γ0 _ζ

þ ðD − 2ÞðD − 3Þ
2

ζ̄=∂ζ

�
: ð48Þ

In contrast with (11), (48) is not time-reparametrization
invariant, from the presence of ζ̄∂ζ. However, both

Lagrangians produce the same on-shell physics. Indeed,
removing the last term in (48) does not affect the field
equations; up to boundary terms and a dimensionless
constant, we recover (11).
The total Hamiltonian of the Rarita-Schwinger (RS)

action can be decomposed into spin–3
2
and spin–1

2
decoupled

components [7,18],

HRS ¼ H3=2 þH1=2; ð49Þ

where H3=2 is the spin–32 particle Hamiltonian, ξi, and H1=2

is equivalent to the Hamiltonian (19) of spin–1
2
particles.

The Hamiltonian H3=2 does not vanish for nontrivial
configurations ξi, while H1=2 vanishes, owing to the
presence of the constraints π ≈ 0, even for nontrivial spin–1

2

configurations, as observed in Sec. III. Thus, the lowest
energy state of the RS system consists of the spin–1

2

particles described in this paper.
Since (40) describes the fermion sector of simple super-

gravity (up to the metric’s determinant factor), an intriguing
argument can be made that the particle system discussed
thus far might serve as an effective description of the
fermion sector in the low-energy regime of supergravity.

VI. CONCLUSIONS AND FINAL REMARKS

We have introduced a spin-half particle model charac-
terized by a fermion-parameter gauge symmetry, time-
reparametrization invariance, and a vanishing Hamiltonian.
It is worth noting that reparametrization-invariant systems

can arise in two different ways [14]. The first approach
involves achieving time reparametrization invariance by
introducing new degrees of freedom to a noninvariant
system, promoting the time to a canonical variable along
with its corresponding (constrained) conjugate momenta.
This can always be accomplished. The second approach is
when the system is already given in an invariant form, as is
the gravity case and as demonstrated in our model.
The presence of time-reparametrization invariance leads

to the vanishing of the Hamiltonian. Consequently, the
energy of the particles described in this model is lower than
that of standard Dirac fields. Furthermore, we have shown
that these particles can be identified with the lowest energy
states of the massless Rarita-Schwinger system, which
suggest that they can arise in supergravity on the same
energy level as gravitational degrees of freedom. This
conclusion aligns with previous findings that supergravity
models exhibit truncations to spin-half fields in gravita-
tional backgrounds [7,18,23–25], also known as unconven-
tional supersymmetry models [26,27].
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