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Using the numerical modular bootstrap, we constrain the space of 1þ 1d conformal field theories
(CFTs) with a finite noninvertible global symmetry described by a fusion category C. We derive universal
and rigorous upper bounds on the lightest C-preserving scalar local operator for fusion categories such as
the Ising and Fibonacci categories. These numerical bounds constrain the possible robust gapless phases
protected by a noninvertible global symmetry, which commonly arise from microscopic lattice models such
as the anyonic chains. We also derive bounds on the lightest C-violating local operator. Our bootstrap
equations naturally arise from a “slab construction,” where the CFT is coupled to the 2þ 1d Turaev-Viro
topological quantum field theory , also known as the symmetry TFT.
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I. INTRODUCTION

In recent years, we have seen rapid developments of
generalized global symmetries [1] in high energy physics,
condensed matter physics, and mathematics. See
Refs. [2,3] for reviews. Among these exciting develop-
ments is the study of an exotic kind of symmetry that does
not form a group. In particular, not every symmetry
transformation is invertible. These noninvertible sym-
metries have been most systematically analyzed and best
understood in the context of 1þ 1d conformal field
theories (CFT) through a series of developments [4–35],
building on the seminal work of [36,37]. They have also
been generalized to a variety of higher-dimensional quan-
tum systems, including the real-world quantum electrody-
namics (QED) [38–40]. See Refs. [41–67] for a partial list
of recent advancements in noninvertible symmetries in
general spacetime dimensions.
In 1þ 1d relativistic quantum field theory, generalized

global symmetries are implemented by topological line
operators/defects in Euclidean spacetime. The mathematical
framework for a finite (invertible or noninvertible) general-
ized global symmetry is a fusion category [68]. When the
fusion of some of these lines is not grouplike, they generate a
noninvertible global symmetry. Noninvertible symmetries
are ubiquitous in 1þ 1d CFT, with the simplest example

being the Kramers-Wannier duality line in the critical Ising
CFT [7]. These generalized symmetries have dramatic
consequences on quantum systems and have led to nontrivial
constraints on renormalization group flows [17,21,24,28]
and selection rules [35].
New symmetries give rise to new notions of naturalness

[69]. Starting from a microscopic system with a generalized
global symmetry C, it is natural to impose this symmetry to
forbid any C-violating relevant deformation of the low-
energy phase. For instance, there is a large class of 1þ 1d
anyonic chains [9,70,71,30,31,72] that realize noninverti-
ble symmetries. See also [73,14,25,46,74–76] for statistical
models and other lattice models with noninvertible sym-
metries. The low-energy theories are often robust (or stable)
gapless phases protected by a generalized global symmetry.
For example, the famous “golden chain” [9] flows to the
tricritical Ising CFT, which would not have been robust and
numerically realizable had it been only protected by its
conventional group-like symmetry, Z2. (See Ref. [77] for a
recent discussion on robustness and naturalness in quantum
field theory.)
What are the universal properties of a general 1þ 1d

CFT with a finite noninvertible symmetry C for such a
gapless phase? We approach this question with one of the
most effective nonperturbative tools to study CFT, the
conformal bootstrap [78,79]. More precisely, we will
constrain the space of 1þ 1d CFT with a noninvertible
symmetry from modular covariance.
Modular consistency is the condition that the partition

function ZMdþ1
of a general (dþ 1)-dimensional quantum

field theory on an arbitrary spacetime manifoldMdþ1 must
be invariant under the mapping class group ofMdþ1. When
Mdþ1 ¼ S1 ×Md, this partition function can be computed
as a trace over the Hilbert space HMd

of the theory
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quantized on Md. If furthermore Mdþ1 ¼ S1a × S1b × μd−1,
then the fact that ZMdþ1

can be evaluated as traces over
HS1a×μd−1 and overHS1b×μd−1

gives a relation between the two
Hilbert spaces. Modular bootstrap is the idea that for a
(1þ 1)-dimensional CFT, the Hamiltonians on HS1a and on
HS1b

are related by a simple rescaling, and hence the
invariance of ZT2 under the mapping class group
SLð2;ZÞ imposes strong constraints on the Hilbert space
on a circle. Cardy applied this idea to produce his seminal
formula [80]. The modern numerical modular bootstrap
was initiated in [81] and has since been generalized in many
different ways in 1þ 1d [82–118].1
In the presence of a global symmetry, one can further

refine the partition function by insertions of the topological
lines. These twisted partition functions obey certain modu-
lar covariant conditions, depending on the global symmetry
and its ’t Hooft anomaly. The numerical modular bootstrap
has been applied to obtain universal constraints on CFT
with invertible global symmetries [89,90,102,110,122–
125]. The implications of the ’t Hooft anomalies on the
bootstrap bounds were first studied in [102] and further
generalized in [122,123,125].
In this paper, we apply the numerical modular bootstrap

to constrain 1þ 1d CFT with a finite noninvertible global
symmetry. We focus on the three simplest noninvertible
symmetries, the Fibonacci, Ising, and suð2Þ2 fusion
categories. We derive rigorous and universal bounds on
the local and nonlocal operators in any CFTwith the above
noninvertible symmetry.
Our modular bootstrap equations can be compactly

summarized using a “slab construction” by coupling the
CFT to a topological quantum field theory (TQFT) in one
dimension higher. This slab construction has recently
received a lot of attention in the study of generalized
symmetries [23,56,35], which sometimes goes under the
name of symmetry TFT [126,127,56,128–130], and also in
the context of categorical symmetries [131–135]. More
specifically, we couple the CFT to a 2þ 1d Turaev-Viro
TQFT ZðCÞ by gauging the noninvertible symmetry C. The
partition functions Z3d

μ of this 2þ 1d system, each labeled
by an anyon line μ, transform according to the S and T
matrices of the Turaev-Viro TQFT. Applying the numerical
modular bootstrap to this 2þ 1d system yields universal
bounds on the states in different anyon sectors of this 2þ
1d system. Finally, by relating the Hilbert spaces in 1þ 1d
and 2þ 1d [see (4.1)], we translate these bounds into
universal constraints on the 1þ 1d CFT. We emphasize that
we use the 2þ 1d TQFT only as a trick in the intermediate
steps, while the final numerical bounds apply to any 1þ 1d
CFT with a noninvertible symmetry without a bulk.

In particular, we derive upper bounds on the lightest C-
preserving scalar operator in any CFT. For each of the
symmetries above, we find a window of the central charge
such that the bound is below Δ ¼ 2. Therefore, our results
rigorously rule out stable CFT in those ranges of the central
charge if we only impose the noninvertible symmetry C.
This has potential implications on the phase diagram for
microscopic lattice models with a noninvertible symmetry,
such as the anyonic chains.
This paper is organized as follows. In Sec. II we briefly

review noninvertible symmetries and their topological line
defects in 1þ 1d CFT. In Sec. III, we review three different
noninvertible symmetries, the Fibonacci, Ising, and suð2Þ2
fusion categories, that we will later bootstrap. In Sec. IV we
couple a general 1þ 1d CFTwith a noninvertible symmetry
C to the 2þ 1d Turaev-Viro TQFT ZðCÞ. We relate the
twisted Hilbert spaces of the 1þ 1d CFT toHilbert spaces of
the 2þ 1d systemwith an anyon line insertion. The partition
functions for the latter obey a simple modular property that
we review. Section Vexplains our bootstrap method and the
numerical bootstrap bounds. Finally, the Appendix explains
when a bootstrap bound exists in a given sector.

II. NONINVERTIBLE TOPOLOGICAL
LINES IN 1+ 1 DIMENSIONS

In this section, we discuss some general properties of
topological lines in the context of unitary CFT. We will
only consider bosonic theories which do not require a
choice of the spin structure. Throughout the entire paper,
we will assume that the CFT has a unique topological local
operator, namely, the identity operator. We only consider
CFT with equal left and right central charges, i.e.,
c ¼ cL ¼ cR. Our discussion below is by no means
comprehensive, and we refer the reader to [15,17] and
references therein for a more detailed discussion.

A. Ordinary global symmetries and invertible lines

In relativistic systems, the modern formulation of global
symmetries is in terms of their topological symmetry
operators or defects [1]. In 1þ 1-dimensional CFT, an
ordinary (zero-form), continuous or discrete, global sym-
metry G is implemented by a codimension-one topological
defect line in spacetime. Such a topological line Lg is
labeled by a group element g ∈ G. The fusion rule of
topological lines is defined by placing two parallel topo-
logical lines wrapped around a cylinder and bringing them
close to each other. For topological lines associated with an
ordinary global symmetry G, their fusion obeys the group
multiplication law (which may be Abelian or non-Abelian):

Lg1 × Lg2 ¼ Lg1g2 ; g1; g2 ∈ G: ð2:1Þ

In particular, every such lineLg has an inverseLg−1 such that
the fusion between the two is Lg × Lg−1 ¼ Lg−1 × Lg ¼ 1,

1Modular consistency outside the 1þ 1d CFT context has also
been effectively utilized in, for example, [119–121].
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where 1 is the trivial identity line. For this reason, these lines
associated with an ordinary global symmetry G are called
invertible.
Given two lines, we can consider their direct sum,

L≡ L1 þ L2. The correlation function of L is a sum of
those of L1 and L2, i.e., h� � �Li ¼ h� � �L1i þ h� � �L2i.
More generally, one can define a linear combination of
lines with non-negative integer coefficients. A line is called
simple if it is not a linear combination of other lines.

B. Noninvertible topological lines

In almost every known 1þ 1d CFT, there are topological
lines that are not associated with any ordinary global
symmetry. The fusion rule of such simple lines takes a
more general form:

La × Lb ¼
X
c

Nc
abLc; Nc

ab ∈ Z≥0: ð2:2Þ

This fusion is not grouplike because there is generally more
than one term on the right-hand side. In particular, not every
line has an inverse. A line without an inverse is called
noninvertible and is not associated with any ordinary global
symmetry. In 1þ 1d unitary QFT, a finite set of topological
lines form a unitary fusion category C, generalizing the
notion of a finite group.
For every simple (invertible or not) line L, there is an

orientation-reversed line L̄, known as the dual object in the
fusion category, such that L × L̄ ¼ L̄ × L ¼ 1þ � � � con-
tains the identity line. Finally, the coefficient Nc

ab ∈ Z≥0 in
the fusion rule (2.2) is a non-negative integer, which is the
dimension of the Hilbert space of topological operators
living at the junction between La;Lb; L̄c.
Given a general topological line L, which may or may

not be invertible, we can define an action L̂∶H → H on the
Hilbert space H of local operators by wrapping the line
around a cylinder as in Fig. 1. For an invertible line
associated with a global symmetry G, this action gives
the symmetry transformation of a local operator, i.e.,
L̂g∶ ϕ → g · ϕ. For a noninvertible line, the corresponding

action L̂ might not be invertible on some local operators.
For example, it may map a nontrivial local operator to 0
(not to be confused with the identity operator).
There is a closely related, but not identical, action of

topological line on operators. We can place a local operator
near a topological line, and sweep the line past the local
operator. The hallmark of a noninvertible line is that a local
operator can turn into a nonlocal operator attached to
another topological line in this process. The most familiar
example is that the local, order operator becomes a non-
local, disorder operator when it passes through the
Kramers-Wannier duality line [7,17].
In particular, a local operator ϕ is said to commute with

a topological line if the correlation function is unchanged
as we sweep the line past the local operator as in Fig. 2.
This is equivalent to L̂jϕi ¼ hLijϕi.2 In this case, we also
say the local operator ϕ is symmetric under L. If ϕ
is a scalar operator, then the RG flow triggered by
activating ϕ will preserve the noninvertible symmetry
generated by L.

C. Defect Hilbert space and spin selection rules

When we quantize the 1þ 1d CFT on a spatial circle S1,
we can twist the Hilbert space by a topological defect line
that extends in time and intersects with S1 at a point. This
twisted quantization defines a defect Hilbert space HL.

3

Using the plane-cylinder map, a state jψi in HL is mapped
to a point operator ψðxÞ living at the end of the topological
line L. This generalizes the ordinary operator-state corre-
spondence between states in the untwisted Hilbert spaceH
and local operators. See Fig. 3.
In a bosonic CFT, every local operator has an integer

Lorentz spin, s≡ h − h̄ ∈ Z, due to mutual locality. By
contrast, point operators ψðxÞ, which correspond to states
in HL, living at the end of a topological defect line L need
not have an integer Lorentz spin. In fact, their Lorentz spins
are constrained by the fusion category C characterizing the

FIG. 1. A topological defect line L wrapped around the spatial
circle of a cylinder leads to an action L̂ on the Hilbert space H.

FIG. 2. A local operator ϕðxÞ is said to commute with a
topological line L if we can sweep the line past the operator
without changing any correlation function. In this case we say
that ϕ is symmetric under L.

2Here hLi is the quantum dimension of L defined as the
eigenvalue of L̂ acting on the identity state, i.e. L̂j1i ¼ hLij1i.

3We will use the terms “defect Hilbert space” and “twisted
Hilbert space” interchangeably.
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topological lines. This is called the spin selection rule for
the defect Hilbert spaceHL. In particular, some lines might
not even admit an integer spin operator living at its end.
See Ref. [17] for derivations and examples of these spin
selection rules.
As two demonstrating examples, consider an invertibleZ2

line L obeying L2 ¼ 1. When the Z2 symmetry is non-
anomalous, the spins in HL are constrained to be s ∈ Z=2.
On the other hand,when theZ2 is anomalous, the spins inHL
are constrained to be s ∈ Z=2þ 1=4 [17,102].

III. EXAMPLES OF NONINVERTIBLE
SYMMETRIES IN CFT

Here we review some of the noninvertible symmetries
that we will bootstrap in Sec. V. We also provide several
CFT examples that realize these noninvertible symmetries.
Most of the results in this section are well known and can be
found in, for example, [136,17]. We review these results in
preparation for comparing them with our numerical boot-
strap bounds in Sec. V.

A. Fibonacci Category

The unitary Fibonacci category has a single nontrivial
line W. The fusion rule is

W2 ¼ 1þW: ð3:1Þ

The spin selection rule for the defect Hilbert space HW
is [17]:

s ∈ Zþ
�
0;� 2

5

�
ð3:2Þ

In rational CFT, there is a finite set of distinguished
topological lines that commute with the chiral algebra,
known as the Verlinde lines [4,5]. Both the ðg2Þ1 and
ðf4Þ1 Wess-Zumino-Witten (WZW) models realize the
Fibonacci line as its only nontrivial Verlinde line. Their
central charges are c ¼ 14=5 and c ¼ 26=5, respectively.

Their (bulk) current algebra primary states in the untwisted
Hilbert space have the following conformal weights h; h̄4:

ðg2Þ1∶ j0; 0i;
���� 25 ;

2

5

�
;

ðf4Þ1∶ j0; 0i;
���� 35 ;

3

5

�
: ð3:3Þ

The fusion rule of the current algebra primaries is the same as
(3.1), with 1 andW replaced by the identity and the nontrivial
primary operators, respectively. The modular S-matrix for
both WZW models is

S ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2þ ζ

p
�
1 ζ

ζ −1

�
ð3:4Þ

where ζ ¼ 1þ ffiffi
5

p
2

. In diagonal RCFT, the eigenvalue of the
action of the ath Verlinde line La on the bth local chiral
algebra primary operator ϕb is Sab=S1b [5], with 1 standing
for the identity operator. In particular, the eigenvalue on the
identity local operator (corresponding to choosing b ¼ 1) is
Sa1=S11, which is the quantum dimension of the line hLai. In
the case of the Fibonacci line in these twoWZWmodels, we
have

ðg2Þ1 j0; 0i
��� 25 ; 25

E

ðf4Þ1 j0; 0i
��� 35 ; 35

E

Ŵ∶ ζ −ζ−1

ð3:5Þ

The last line records the eigenvalues of the Fibonacci line
operator Ŵ on the corresponding states in the Hilbert space.
The defect Hilbert space HW twisted by the Fibonacci

line W have states with the following conformal weights
h; h̄:

ðg2Þ1∶ HW∶
���� 25 ; 0

�
;

����0; 25
�
;

���� 25 ;
2

5

�
;

ðf4Þ1∶ HW∶
���� 45 ; 0

�
;

����0; 45
�
;

���� 45 ;
4

5

�
: ð3:6Þ

Importantly, the scalar states (i.e. those with h ¼ h̄) are not
to be confused with the bulk current algebra primaries in
(3.3) in the untwisted Hilbert spaceH. We see that the spins
s ¼ h − h̄ are consistent with the general spin selection rule
in (3.2).

FIG. 3. By quantizing the system on a spatial circle with a
topological defect line L inserted at a point in space, we define a
defect Hilbert space HL. Via the operator-state correspondence,
the states in HL are mapped to operators living at the end of L.

4Here we label a chiral algebra primary in terms of its
conformal dimensions jh; h̄i. More precisely, except for the
identity operator, current algebra primaries of fixed conformal
weights comprise a multiplet that transforms under a nontrivial
representation of the Lie algebra.

YING-HSUAN LIN and SHU-HENG SHAO PHYS. REV. D 107, 125025 (2023)

125025-4



Another simple CFT realizing the Fibonacci category is the tricritical Ising CFT with c ¼ 7=10. There are six Virasoro
primary states jh; h̄i:

j0; 0i;
���� 110 ;

1

10

�
;

���� 35 ;
3

5

�
;

���� 32 ;
3

2

�
;

���� 380 ;
3

80

�
;

���� 716 ;
7

16

�
: ð3:7Þ

The actions of the Fibonacci line on these primaries are:

j0; 0i
��� 1
10
; 1
10

E ��� 35 ; 35
E ��� 32 ; 32

E ��� 3
80
; 3
80

E ��� 7
16
; 7
16

E

Ŵ∶ ζ −ζ−1 −ζ−1 ζ −ζ−1 ζ
ð3:8Þ

This noninvertible line was realized as the “topological
symmetry” operator in the anyon chain [9], which is a
microscopic lattice realization of the tricritical Ising CFT.
Consider the RG flow triggered by turning on the local

operator σ0, which is the subleading magnetic deformation,
corresponding to j 7

16
; 7
16
i. Since σ0 commutes with the

Fibonacci line W, the latter is preserved along the whole
flow. On the other hand, σ0 explicitly breaks the Z2 global
symmetry. The low energy phase of this flow is known to
be a gapped phase with two degenerate ground states [137–
139], which are a direct consequence of the noninvertible
line W [17].

B. Ising and suð2Þ2 categories

The next simplest fusion categories with noninvertible
lines are the Ising and suð2Þ2 categories.5 Both fusion
categories have three simple lines, 1; η;N , obeying the
following fusion rule:

η2 ¼ 1; ηN ¼ N η ¼ N ; N 2 ¼ 1þ η: ð3:9Þ

Here η is a nonanomalous Z2 line and N is a noninvertible
line. As the name suggests, the Ising category is realized in
the Ising CFT, in which case N is the Kramers-Wannier
duality line [7]. While the two categories share the same
fusion rule, they differ in their crossing relations, i.e. the F-
symbols. Technically, their Frobenius-Schur indicators
have opposite signs. In the mathematical literature, these
two fusion categories are known as the two Z2 Tambara-
Yamagami categories [141].
The spin selection rules for the defect Hilbert space HN

of the noninvertible line N are [17]

Ising∶s ∈
Z
2
� 1

16
;

suð2Þ2∶ s ∈
Z
2
� 3

16
: ð3:10Þ

In particular, no state in HN has an integer spin.
Let us discuss some examples of 1þ 1d CFTs realizing

these fusion categories. The Ising fusion category is
realized in the (bosonic) soð2nþ 1Þ1 WZW models with
n ¼ 0, 3 mod 4. The suð2Þ2 fusion category is realized in
soð2nþ 1Þ1 WZW models with n ¼ 1, 2 mod 4.6 In
addition, the Ising category is also realized in the Monster
CFT [20].
Below we focus on the soð2nþ 1Þ1 ¼ ðbnÞ1 WZW

model, which has three current algebra local primary
operators. We denote the corresponding states jh; h̄i in
the Hilbert space H as

H∶ j0; 0i;
���� 12 ;

1

2

�
;

���� 2nþ 1

16
;
2nþ 1

16

�
: ð3:11Þ

In the case of n ¼ 0, i.e. the Ising CFT, these are the
identity 1, thermal operator ε1

2
;1
2
, and the order operator σ 1

16
; 1
16
,

respectively. The modular S-matrix of the soð2nþ 1Þ1
WZW model is

S ¼ 1

2

0
B@

1 1
ffiffiffi
2

p

1 1 −
ffiffiffi
2

p
ffiffiffi
2

p
−

ffiffiffi
2

p
0

1
CA: ð3:12Þ

The defect Hilbert space of N consists of the following
soð2nþ 1Þ1 chiral algebra primary states:

5By forgetting the braiding structure, the Ising and the suð2Þ2
fusion categories can be obtained from the unitary modular tensor
category (UMTC) for the 2þ 1d (bosonic) SpinðνÞ1 Chern-
Simons theory with ν ¼ 1, 7 mod 8 and ν ¼ 3, 5 mod 8,
respectively. See, for example, [140] for the TQFT data.

6Here soð1Þ1 ¼ Ising CFT and soð3Þ1 ¼ suð2Þ2. For the
soð2nÞ1 WZW models, the Verlinde lines are all invertible,
which have been considered in [102,122] in the context of the
modular bootstrap.
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HN ∶
���� 2nþ 1

16
; 0

�
;

����0; 2nþ 1

16

�
;

���� 2nþ 1

16
;
1

2

�
;

���� 12 ;
2nþ 1

16

�
ð3:13Þ

which are consistent with the spin selection rules (3.10).
Finally, the defect Hilbert space for the (nonanomalous) Z2

symmetry η has the following primary spectrum

Hη∶
����0; 12

�
;

���� 12 ; 0
�
;

���� 116 ;
1

16

�
: ð3:14Þ

IV. 2 + 1d TQFT AND ANYON SECTORS

The modular bootstrap equations for a 1þ 1d CFT with
a finite generalized global symmetry can be most com-
pactly described by coupling it to a 2þ 1d topological
quantum field theory (TQFT). In this section, we describe
this connection for both invertible and noninvertible sym-
metries. The connection will help us understand what a
“charge sector” means in this context, properly define
partition functions in said sectors, and determine their
transformation law (4.2) which is the central result of this
section. We emphasize that the final bootstrap results apply
to 1þ 1d CFT on its own, without coupling to any higher
dimensional TQFT; the latter is introduced as a trick for
formulating the bootstrap equations.
We start with a general discussion on symmetry twists

and different charge sectors of a 1þ 1d CFT, and later
relate these to sectors of a 2þ 1d system. In the presence of
a finite invertible global symmetry, the partition function
can be refined by turning on flat background gauge fields,
and the mapping class group of the gauge bundle relates
partition functions with different background gauge con-
figurations. The analysis of such a system of twisted
partition functions refines the modular bootstrap into
constraints on various charged and twisted sectors. For a
finite group symmetry G with an ’t Hooft anomaly ω ∈
H3ðG;Uð1ÞÞ in a 1þ 1d CFT, each defect Hilbert space
H½g� is labeled by a conjugacy class [g]. We can further
grade the states in H½g� by the action of the centralizer
CGðgÞ into different charge sectors. More specifically, each
defect Hilbert space H½g� is further decomposed in sub-
sectors H½g�;ρ, each labeled by ð½g�; ρÞ, where ρ is an
irreducible projective representations of CGðgÞ, with pro-
jectivity specified by ω and [g].
Physically, g corresponds to the insertion of a timelike

g-defect to twist the periodic boundary condition on the
spatial S1, and CGðgÞ comprises the consistent space-like
operator insertions. The modular bootstrap refined by a
finite symmetry (possibly with anomalies) has been con-
sidered in [102,110,122–125].
There is also a 2þ 1d interpretation of these different

sectors H½g�;ρ in a 1þ 1d CFT. We couple the 1þ 1d CFT

with a G symmetry and an anomaly ω to a 2þ 1d G gauge
theory with a twist ω ∈ H3ðG;Uð1ÞÞ. This finite group
gauge theory is a TQFT, which is also known as the
Dijkgraaf-Witten theory [142], or the twisted quantum
double DωðGÞ (see also [143–145]). After the coupling,
the CFT becomes a boundary condition of the 2þ 1d
TQFT. Each simple anyon line in this 2þ 1d TQFT is
labeled by ð½g�; ρÞ. Each sector H½g�;ρ of the 1þ 1d CFT
now becomes the Hilbert space of point operators where the
anyon can terminate on the 1þ 1d boundary.
For a noninvertible symmetry, there is a similar notion of

sectors—we can insert time-like defects to twist the
periodic boundary condition, and then decompose the
defect Hilbert spaces into irreducible representations of
the tube algebra [146,147] implemented by the lasso
actions of these noninvertible lines. We refer the reader
to [17] for the definition of the lasso action and to
[148,25,35] for a detailed physics discussion of the tube
algebra.7 It is a remarkable fact due to [147,149,150]8 that
the irreducible representations of the tube algebra are in
one-to-one correspondence with the simple objects of the
Drinfeld center (quantum double), whose modular data
conveniently gives the modular relations among the differ-
ent sectors.
This correspondence, as explained in [35], becomes

quite intuitive in the slab construction [23,56] depicted
in Fig. 4. We start with a 1þ 1d CFT Q with a (non-
invertible) finite symmetry described by a fusion category
C, whose simple objects are the simple topological lines
labeled by a. Given any fusion category C, there is a
corresponding 2þ 1d TQFT known as the Turaev-Viro
TQFT TVC. The unitary modular tensor category (UMTC)
data of TVC are given by the Drinfeld center ZðCÞ, whose
simple objects, labeled by μ, are the anyon lines. The
Turaev-Viro TQFT can be viewed as a noninvertible
generalization of a finite group gauge theory based on C,
i.e., it is a 2þ 1d C gauge theory (see, e.g., [151] for
discussions on this interpretation). In particular, the CFT Q
can be coupled to a 2þ 1d Turaev-Viro TQFT TVC by
gauging C (see, e.g., [21,35]). This is a noninvertible
generalization of the setup where a G gauge theory in

7Note that each sector can involve multiple defect Hilbert
spaces because lassos generally do not preserve the twisting. This
is analogous to the situation for invertible symmetries where two
defect Hilbert spaces Hg and Hg0 can be mapped to each other
by a symmetry action if g, g0 are in the same conjugacy class.

8See also [148,25] in the contexts of tensor networks and
statistical lattice models and [35] for a continuum field theory
explanation.
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one-higher dimension is coupled to a QFT with G global
symmetry, in which case a is given by a conjugacy class [g]
in G and μ ∈ ð½g�; ρÞ. Recently, the Turaev-Viro TQFT has
also been referred to as the symmetry TFT for noninvertible
symmetries [129,130].
Now, the 1þ 1d CFT Q becomes a boundary condition

BQ for the TQFT TVC. To recover the original CFT, one
places the TQFT on a slab with a Dirichlet boundary
condition D on one side, and BQ on the other [23,56]. The
topological Dirichlet boundary condition D has the dis-
tinguished property that the set of topological lines on it
form the original fusion category C. We can define a
(forgetful) map F∶ZðCÞ → C by the physical process of
bringing a bulk anyon μ to the boundary in parallel fashion
to produce a boundary topological line FðμÞ, which is
generally semisimple (a sum of simple defects in C). Each
point-like operator in Q becomes a pointlike operator on
the nontopological boundary BQ attached to a bulk anyon
line. Because all symmetry operations happen on the
Dirichlet boundary D, the anyons label the irreducible
representations of the symmetry algebra TubeðCÞ.
For each anyon μ, we consider the Hilbert space Vμ from

quantizing the TQFT TVC on a spatial disk with boundary
condition BQ and the anyon line defect inserted at the
origin, as shown in Fig. 5. The defect Hilbert spaces Ha of
the 1þ 1d CFTQ are related to the anyon sectors Vμ of the
2þ 1d TQFT as [35]

Ha ¼ ⨁
μ
Wμ

a ⊗ Vμ ð4:1Þ

where Wμ
a ¼ HomCðFðμÞ; aÞ is the vector space of

D-boundary operators x at the junction of μ and a.

Of special importance to us is the anyon sector V1
corresponding to the trivial anyon μ ¼ 1.9 We claim that all
the C-symmetric states in the untwisted Hilbert space H ¼
H1 of the 1þ 1d CFT arise from V1 via (4.1). These are
states jOi ∈ H such that L̂bjOi ¼ hLbijOi for all b ∈ C,
which correspond to local operators O that commute with
the entire C (see Fig. 2). To see this claim, we encircle a
local operator O by a topological line Lb of C on the right
side of Fig. 4 (with a ¼ 1). Assuming thatO belongs to the
V1 sector, we can replace the original 1þ 1d configuration
with the 2þ 1d configuration on the left of the figure with
μ ¼ 1. The junction operator x ∈ Wμ¼1

a¼1 is trivial, therefore
the topological line Lb on the D-boundary acts on x by its
quantum dimension hLbi. It follows that O commutes with
all the lines of C in the 1þ 1d CFT. Conversely, all the lines
in C act by their quantum dimensions only if μ ¼ 1.10 We
conclude that all the C-preserving deformations arise from
the scalar states in V1, which, if relevant Δ < 2, would
potentially destabilize the gapless phase even when the C
symmetry is imposed.
Let Z3d

μ ðτ; τ̄Þ be the partition function for Vμ. Explicitly,
it is the TQFT partition function on a solid torus of modulus
τ with boundary condition BQ and a μ anyon looping the
noncontractible cycle. Under modular transformations, Z3d

μ

transforms as

Z3d
μ ðτ þ 1; τ̄ þ 1Þ ¼ TμμZ3d

μ ðτ; τ̄Þ;
Z3d
μ ð−1=τ;−1=τ̄Þ ¼

X
ν∈ZðCÞ

SμνZ3d
ν ðτ; τ̄Þ; ð4:2Þ

FIG. 5. The 2þ 1d TQFT TVC quantized on a spatial disk with
boundary condition BQ and the anyon line μ inserted at the origin.
We denote the Hilbert space of this 2þ 1d system on a disk by
Vμ. We denote the partition function over this Hilbert space by
Z3d
μ ðτ; τ̄Þ. (Figure reproduced from [35].).

FIG. 4. A defect operator O ∈ Ha of the 2d theory Q is
composed of a bulk anyon μ ∈ ZðCÞ and a pair of boundary
(defect) operators. (Figure reproduced from [35].)

9We use boldface 1 for the trivial anyon in the 2þ 1d TQFT, to
distinguish from the trivial defect line in the 1þ 1d CFT.

10Otherwise, the half-linking matrix is degenerate, contrary to
what was proven in [ [35], Appendix C]. Note that the projection
operator to the C-symmetric sector ofH is given in [ [35], (4.26)]
such that PH ¼ V1.
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where T and S are the modular matrices of ZðCÞ and the
sum is over the simple objects (i.e. the anyons) of ZðCÞ.11
In Sec. V, we will use the modular properties of these
partition functions to bootstrap 1þ 1d CFT with a non-
invertible global symmetry. We comment that (4.2) can in
principle be derived from a purely 1þ 1d reasoning, such
as in [102,110,122] for invertible symmetries, but the
computation can in practice be quite intractable.
Moreover, the 2þ 1d construction provides a much more
conceptual derivation. These partition functions have
recently been studied in [131–135] in the context of
topological order and categorical symmetries.

A. Example: Ising CFT

We demonstrate the above general discussion using the
simplest example of Ising CFT. The modular data of the
Ising CFT are given by

SIsing ¼ 1

2

0
B@

1 1
ffiffiffi
2

p

1 1 −
ffiffiffi
2

p
ffiffiffi
2

p
−

ffiffiffi
2

p
0

1
CA;

TIsing ¼ e−
2πi
48

0
B@

1

−1
e
πi
8

1
CA; ð4:3Þ

where we order the primaries by 10;0; ε1
2
;1
2
; σ 1

16
; 1
16
with con-

formal weights shown in their subscripts. We denote the
corresponding c ¼ 1

2
torus characters as χIsingh with

h ¼ 0; 1
2
; 1
16
.

Before we discuss the noninvertible duality defect, let
us first focus on the nonanomalous Z2 symmetry, i.e.
C ¼ VecðZ2Þ, as a warm-up. We denote the two simple
objects of VecðZ2Þ as 1; η. The Drinfeld center ZðCÞ
describes the data for the 2þ 1d Z2 gauge theory, which
is the low-energy phase of the 2þ 1d toric code. For
this reason, we will refer to it as the toric code UMTC.
The modular matrices for the toric code are (see, for
example, [140])

STC ¼ 1

2

0
BBB@
1 1 1 1

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

1
CCCA; TTC ¼Diagð1;1;1;−1Þ:

ð4:4Þ

We label the four anyons as 1; e; m; f, whose spins h are
0; 0; 0; 1

2
mod 1. The forgetful map F∶ZðCÞ → C acts as

Fð1Þ ¼ FðeÞ ¼ 1 and FðmÞ ¼ FðfÞ ¼ η.

The trivial anyon sector μ ¼ 1 corresponds to the Z2-
even states in the untwisted Hilbert space Hþ, i.e. the
identity 10;0 and ε1

2
;1
2
, as well as their descendants,

Z3d
1 ¼ χIsing0 χ̄Ising0 þ χIsing1

2

χ̄Ising1
2

: ð4:5Þ

Next, μ ¼ e and μ ¼ m are on equal footing, corresponding
to Z2-odd states in the untwisted Hilbert space H−, i.e. the
spin/order operator and its descendants, and Z2-even states
in the twisted Hilbert space Hþ

η , i.e. the disorder operator
and its descendants,

Z3d
e ¼ Z3d

m ¼ χIsing1
16

χ̄Ising1
16

: ð4:6Þ

(The Z2-charge in the twisted Hilbert spaceHη can be read
off from the Lorentz spin h − h̄ by a spin selection rule
[17,102].) Finally, μ ¼ f corresponds to Z2-odd states in
the twisted Hilbert space H−

η , i.e. the chiral free fermions
and their descendants,

Z3d
f ¼ χIsing0 χ̄Ising1

2

þ χIsing1
2

χ̄Ising0 : ð4:7Þ

Using (4.3), one can immediately verify that Z3d
μ transform

according to the toric code modular data (4.4). To sum-
marize, we have the following identification between the
defect Hilbert spaces in 1þ 1d and the anyon sectors in
2þ 1d [ [102], Sec. II.4]12:

Hþ ≅ V1∶ j0; 0i;

H− ≅ Ve∶
���� 116 ;

1

16

�
;

Hþ
η ≅ Vm∶

���� 116 ;
1

16

�
;

H−
η ≅ Vf∶

���� 12 ; 0
�
;

����0; 12
�
: ð4:8Þ

Now, let us incorporate the noninvertible duality defect
N and choose C to be the Ising fusion category. The defect
Hilbert spaces for 1; η;N in the 1þ 1d CFT are [73,17,20]

H∶ j0; 0i;
���� 12 ;

1

2

�
;

���� 116 ;
1

16

�
;

Hη∶
���� 116 ;

1

16

�
;

���� 12 ; 0
�
;

����0; 12
�
;

HN ∶
����0; 116

�
;

���� 116 ; 0
�
;

���� 12 ;
1

16

�
;

���� 116 ;
1

2

�
:

ð4:9Þ

11There are different conventions for S and T up to overall
factors. Here we fix our convention by choosing S2 ¼ ðSTÞ3 ¼ 1.

12To compare the notationsH�;H�
η here withH½g�;ρ earlier this

section for a general finite group G, we have ½g� ¼ 1; η and
ρ ¼ �.
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Next, we couple the 1þ 1d Ising CFT to the 2þ 1d TQFT
described by the Drinfeld center of the Ising fusion
category. The latter is Ising⊠Ising, i.e. the 2þ 1d double
Ising TQFT. The 9 anyons can be labeled as μ ¼ ða; b̄Þ,
with a; b ¼ 1; η;N . They lead to 9 different anyon sectors
Vða;b̄Þ, each containing exactly one primary state jha; h̄b̄i
with h1 ¼ 0; hη ¼ 1

2
; hN ¼ 1

16
[132]. The corresponding

partition functions are

Z3d
ða;b̄Þ ¼ χIsingha

χ̄Ising
h̄b̄

; ð4:10Þ

which manifestly transform under the modular data of
ZðCÞ, since SZðIsingÞ ¼ SIsing ⊗ SIsing and TZðIsingÞ ¼
TIsing ⊗ T̄Ising. In particular, V1 [where 1 ¼ ð1; 1Þ] only
contains the identity module, so there is no nontrivial scalar
primary in the Ising CFT that is invariant under the full
Ising category.
Note that there are in total 10 primary states in the

untwisted and twisted Hilbert spaces in 1þ 1d, but there
are only 9 primary states in total in all the anyon sectors in
2þ 1d. More specifically, in 1þ 1d, the spin/order oper-
ator σ 1

16
; 1
16
is a local operator in the untwisted Hilbert space

H, while the disorder operator μ 1
16
; 1
16
is a nonlocal operator in

the twisted Hilbert space Hη. They are mapped to each
other by the lasso action in [17]:

ð4:11Þ

After we couple the 1þ 1d Ising CFT to the 2þ 1d double
Ising TQFT, they are identified as a single state in the anyon
sector VðN ;N̄ Þ in 2þ 1d.

B. General RCFTs

For a general diagonal rational CFT associated with a
UMTC C, we can consider the set of topological lines that
commute with the extended chiral algebra. The fusion
category of these lines, known as the Verlinde lines
[4,5,17], is obtained from C by forgetting the braiding
structure.
We can gauge C by coupling the (nonchiral) RCFT to the

2þ 1d Turaev-Viro TQFT, which in this case is given by
ZðCÞ ≅ C⊠C̄ [150], where C̄ denotes the orientation rever-
sal of the UMTC C. It is important to note that in writing
this, C must be understood as a UMTC and not just a fusion
category, so that C and C̄ are generically different, even if
they are identical as fusion categories.

We can unfold the above configuration to have the
2þ 1d TQFT C in the bulk on an interval, sandwiched by
the chiral and anti-chiral RCFTs as the boundary conditions
at the two ends. Each primary local operator ϕa of the
original nonchiral RCFT is now represented by an anyon
line a of C stretched between the two boundaries. When we
fold again, we find that each anyon sector ða; b̄Þ of ZðCÞ ¼
C⊠C̄ contains exactly one primary state jha; h̄b̄i, i.e.,

Z3d
ða;b̄Þ ¼ χha χ̄h̄b̄ : ð4:12Þ

From the unfolded frame, it is also clear that the forgetful
map in this case is given by Fða; b̄Þ ¼ a ⊗ b̄. Using (4.1),
we have

Hc ¼
X
a;b∈C

Na
bcVða;b̄Þ ð4:13Þ

where Na
bc is the fusion coefficient of the RCFT. Note that

for fixed a, b, if c ≠ c0 are such that Na
bc and Na

bc0 are both
nonzero, then this means that the corresponding states in
Hc and Hc0 are mapped to each other by a lasso action.
We are interested in scalar states of the RCFT that

preserve the full noninvertible symmetry C. When coupled
to the TQFT ZðCÞ, they reside in the trivial anyon sector
ða; b̄Þ ¼ ð1; 1Þ (i.e. V1). In the RCFT case, V1 has a scalar
gap determined by the first nontrivial Virasoro primary in
the chiral algebra. In the case of a Kac-Moody algebra, this
gap is 2, realized by the

P
A j

Aj̄A current bilinears, which is
a C-preserving marginal scalar Virasoro primary. (Here A
denotes the adjoint index of the associated Lie algebra.) For
a Wð2; sÞ algebra, this gap is 2s. In particular, any rational
CFT with no spin-one current is stable against any C-
preserving deformation, i.e., it is a C-protected gapless
phase.13

It is worth emphasizing that the Verlinde lines C are not
the only symmetries an RCFT enjoys. For instance, the
continuous Lie group symmetry of the WZW model does
not commute with the current algebra and is not part of the
Verlinde lines. In that case, the symmetry-preserving scalar
gap generally does not follow the above simple rule.

V. CONSTRAINTS FROM
THE MODULAR BOOTSTRAP

A. Modular bootstrap and the linear functional method

Our goal is to derive rigorous bounds on the scaling
dimensions of states in various twisted and untwisted
Hilbert spaces Ha of a general 1þ 1d CFT with a fusion
category symmetry C. To achieve this, we couple the 1þ 1d
CFT to a 2þ 1d TQFTas in Sec. IV. The partition functions
Z3d
μ for the resulting 2þ 1d system obey a simple modular

13When spin-one currents are present, one can consider the
coset which has a different modular tensor category.
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property as in (4.2), which we can use as the bootstrap
equations to derive rigorous bounds on the anyon sectors
Vμ in 2þ 1d. The relation (4.1) in turn translates these
bounds on Vμ into those onHa for the original 1þ 1d CFT.
To implement the numerical bootstrap, we decompose

each partition function Z3d
μ into Virasoro characters,

Z3d
μ ðτ; τ̄Þ ¼

X
ðh;h̄Þ∈Hμ

nμ;h;h̄χhðτÞχh̄ðτ̄Þ; ð5:1Þ

where the coefficients nμ;h;h̄ ∈ Z≥0 are non-negative inte-
gers by unitarity. In our numerical bootstrap, we assume
c > 1, so that the Virasoro characters are nondegenerate

χhðτÞ ¼
e2πiτðh−c=24Þ

ηðτÞ ; ðh ≠ 0Þ ð5:2Þ

except for the vacuum character h ¼ 0

χ0ðτÞ ¼
qh−c=24

ηðτÞ ð1 − qÞ; ð5:3Þ

where q ¼ expð2πiτÞ.
Using the character expansion, we can write the modular

covariance equation (4.2) in the form

0 ¼
X

ν∈ZðCÞ

X
ðh;h̄Þ∈Hν

nν;h;h̄Xμ;ν;h;h̄ðτ; τ̄Þ; ∀ μ ∈ anyons;

ð5:4Þ

where

Xμ;ν;h;h̄ðτ; τ̄Þ ¼ Iμνχhð−1=τÞχh̄ð−1=τ̄Þ − SμνχhðτÞχh̄ðτ̄Þ;
ð5:5Þ

where Iμν is the identity matrix.

FIG. 6. Upper bounds on the scaling dimension of the lightest symmetry-preserving scalar local operator in any CFTwith Fibonacci,
Ising, and suð2Þ2 categories, across a range of values for the central charge, 1 < c < 8. This corresponds to the scalar subsector
ðh ¼ h̄ ¼ Δ=2Þ of V1.

YING-HSUAN LIN and SHU-HENG SHAO PHYS. REV. D 107, 125025 (2023)

125025-10



We are now ready to run the modern numerical bootstrap
[78,79], sometimes also called the linear functional
method, to produce nontrivial bounds. In a nutshell, the
idea is to postulate that the conformal weights ðh; h̄Þ
contributing to Z3d

μ have putative support Pμ, and derive
contradictions with (4.2), (5.1), to rule out the collection
fPμg. First, the T-transform in (4.2) determines the frac-
tional spin h − h̄ mod Z of each anyon sector. Then, we act
with a linear functional, typically chosen to be

αμ ¼
XΛ
m;n¼0

αm;n
μ ∂

m
τ ∂

n
τ̄ jτ¼−τ̄¼i; αm;n

μ ∈ R; ð5:6Þ

on (5.4) to get

0 ¼
X

μ;ν∈ZðCÞ

X
ðh;h̄Þ∈Hν

nν;h;h̄αμ½Xμ;ν;h;h̄�; ð5:7Þ

and search in the space of αm;n
μ to make αμ½Xμ;ν;h;h̄� non-

negative on the entire Pμ, and hence arrive at a contra-
diction. More details can be found in [102]. If such a
functional exists, then the putative spectrum is ruled out.
Iterating this procedure produces various constraints, such
as bounds on the gap in the spectrum of symmetry-
preserving (μ ¼ 1) scalar primaries. The numerical bounds
in this paper are all obtained at derivative order Λ ¼ 19 and
with spin truncation smax ¼ 38. The search for a linear
function utilizes the semi-definite programming solver
SDPB [152,153].14

FIG. 7. Upper bounds on the lightest primary (of any Lorentz spin h − h̄) in various anyon sectors in the case of the Fibonacci
category, across a range of values for the central charge, 1 < c < 8. In particular, the bound in the VðW;W̄Þ sector implies a bound on the
lightest symmetry-violating local operator in any 1þ 1d CFT with a Fibonacci category symmetry.

14We use the following SDPB parameter settings: preci-
sion=768, initialMatrixScalePrimal=1e-10,
initialMatrixScaleDual=1e-10, maxComplemen-
tarity=1e-30, feasibleCenteringParameter=0.1,
infeasibleCenteringParameter=0.3, stepLeng-
thReduction=0.7.
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B. Bounds on symmetry-protected gapless phases

Given a fusion category C, we are particularly interested in
the space ofCFTs that are stable under anyC-preserving local
deformation. This can be thought of as a robust C-protected
gapless phase. Such CFTs have no relevant scalar primary
operators in the symmetry-preserving μ ¼ 1 anyon sector.
The space of stable CFTs with a ZN global symmetry was
studied in [102,122] by the modular bootstrap.
In the modular bootstrap, we choose fPμg to be the

unitarity bound h; h̄ ≥ 0 for all Vμ≠1, as well as for the
nonscalar subsector h ≠ h̄ of V1. For the scalar subsector of
V1, we further impose a gap h ¼ h̄ ≥ Δ=2. For any given
central charge c, we numerically search a critical Δ� such
that Δ > Δ� is ruled out while Δ < Δ� is not. This Δ� is
then a rigorous bound on the symmetry-preserving scalar
gap Δ. If Δ� < 2, then a symmetry-protected gapless phase
does not exist.
For concreteness, we study the three categories reviewed

in Sec. III, Fibonacci, Ising, and suð2Þ2. Since these

categories can all be equipped with a modular braiding
structure, the UMTC of the 2þ 1d TQFT is the product
ZðCÞ ≅ C⊠C̄, as explained near the end of the Sec. IV, and
the modular data are simply the tensor products of the
constituents. The bounds on Δ are presented in Fig. 6. We
find that C-protected gapless phases do not exist for the
following ranges of the central charge:

Fibonacci∶ 1 < c < 6.0;

Ising∶ 1 < c < 6.7;

suð2Þ2∶ 1.6 < c < 5.5: ð5:8Þ
In particular, the bounds are saturated at Δ ¼ 2 by the
current bilinears in the ðbnÞ1, ðg2Þ1, and ðf4Þ1 WZWmodels
discussed in Sec. III; see (4.13) and the discussion below.

C. Bounds on symmetry-preserving/violating operators

Next, we consider bounds on the gap in general anyon
sectors Vμ, not restricting to the scalar subsector. (See the

FIG. 8. Upper bounds on the lightest primary (of any Lorentz spin h − h̄) in various anyon sectors in the case of the Ising category,
across a range of values for the central charge, 1 < c < 8. In particular, the bounds in the Vðη;η̄Þ and VðN ;N̄ Þ sectors imply bounds on two
different kinds of symmetry-violating local operators in 1þ 1d. See the main text for detail.
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Appendix for when a bound is expected to exist in a given
sector.) To be precise, we consider the gap in the spectra of
nondegenerate Virasoro primaries, which in particular
exclude conserved currents with weights ðh; 0Þ or ð0; h̄Þ
for h; h̄ ∈ R, in both the untwisted and twisted Hilbert
spaces. The rest proceeds as described in the previous
subsection. We present these bounds in Figs. 7–9. Using
(4.1), these bounds can be translated into bounds on twisted
Hilbert spaces of the original 1þ 1d CFT.
For the Fibonacci category, we present the bounds in

Fig. 7 for three different sectors. Below we use (4.1) to
interpret these results as bounds on any 1þ 1d CFTwith a
Fibonacci category symmetry:

(i) V1: This is an upper bound on the scaling dimension
of the lightest symmetry-preserving primary oper-
ator (not necessarily a scalar) of the untwisted
Hilbert spaceH in 1þ 1d. It is similar to the bounds
in Fig. 6, but here we do not restrict to the scalar
h ¼ h̄ subsector.

(ii) ∪μ≠1 Vμ: This gives an upper bound on the union of
the symmetry-violating sector of H and the twisted
Hilbert space HW .

(iii) VðW;W̄Þ: Using (4.1), we can express the 1þ 1d
untwisted Hilbert space in terms of the anyon
sectors, H ¼ V1 ⊕ VðW;W̄Þ. Therefore, this bound
in VðW;W̄Þ can be understood as an upper bound on
the lightest symmetry-violating local operator in
1þ 1d.

For the Ising and suð2Þ2 categories,wepresent the bounds
inFigs. 8 and 9 for four different sectors. The first twobounds
in V1 and ∪μ≠1 Vμ admit a similar 1þ 1d interpretation as in
the Fibonacci case above. For the other two:

(i) Vðη;η̄Þ: This corresponds to states in the 1þ 1d
untwisted Hilbert space H that preserve the Z2

symmetry η but violate the noninvertible duality
line N . More precisely, such a state jεi obeys
η̂jεi ¼ jεi; N̂ jεi ¼ −

ffiffiffi
2

p jεi. For instance, the local
operator ε1

2
;1
2
of the Ising CFT belongs to this sector.

FIG. 9. Upper bounds on the lightest primary (of any Lorentz spin) in various anyon sectors in the case of the suð2Þ2 category, across a
range of values for the central charge, 1 < c < 8. In particular, the bounds in the Vðη;η̄Þ and VðN ;N̄ Þ sectors imply bounds on two different
kinds of symmetry-violating local operators in 1þ 1d. See the main text for detail.
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(ii) VðN ;N̄ Þ: This corresponds to the states in the 1þ 1d
untwisted Hilbert spaceH that violate both η andN .
More precisely, such a state jσi obeys η̂jσi ¼
−jσi; N̂ jσi ¼ 0. For instance, the local order/spin
operator σ 1

16
; 1
16
of the Ising CFT belongs to this sector.

For the VðN ;N̄ Þ sector of either Ising or suð2Þ2, the bound
sits tantalizingly close to the simple formula c

4
, which for

c ¼ nþ 1
2
is realized by the h ¼ h̄ ¼ 2nþ1

16
state of the ðbnÞ1

WZW model [see (3.11)]. It would be interesting to see if
this formula gives the exact bound, perhaps by constructing
an analytic functional [154].
The Ising and suð2Þ2 categories of a nonspin CFT are

related to the anomaly of an invertible Z2 symmetry
(together with ð−1ÞF ¼ Zf

2) in a spin CFT by fermioniza-
tion [155,18]. It would be interesting to compare our
bounds with the fermionic modular bootstrap [123].15

As explained above, the bounds on Vða;āÞ with a ≠ 1
correspond to bounds on the C-violating local operators of
any 1þ 1d CFT with a fusion category symmetry C (that
can be lifted to an UMTC). This is analogous to the bound
on the lightest Z2-odd local operator obtained in [102].
Importantly, in [102], it was found that such a bound only
exists if the Z2 is anomalous. This is because, for a
nonanomalous Z2 symmetry, there is a Z2-symmetric
trivially gapped phase with a unique vacuum, which
presents a solution to the bootstrap equation such that
there is no Z2-odd local operator. For noninvertible
symmetries, we expect a bound on the symmetry-violating
sector to exist only for “anomalous” fusion categories, in
the sense that they are not compatible with a symmetric
trivially gapped phase [17,130]. (Mathematically, it means
that they do not admit a fiber functor [21].) All the fusion
categories considered in the current paper are “anomalous”
in this sense.

VI. CONCLUDING REMARKS

In this paper, we presented universal bootstrap bounds on
the scaling dimensions of states in different twisted Hilbert
spaces of general 1þ 1d CFTs with Fibonacci, Ising, and
suð2Þ2 fusion category symmetries. All three fusion cat-
egories are intrinsically noninvertible [156,129,130] in the
sense that their Drinfeld centers are not Dijkgraaf-Witten
gauge theories based on a finite group. Some of these bounds
are saturated by known RCFTs, including the ðbnÞ1; ðg2Þ1;
ðf4Þ1 WZW models. Our bootstrap method made use of the
slab construction by coupling the CFT to a TQFT in one
dimension higher.

We were particularly interested in constraining the space
of CFT that is stable under perturbations preserving a
noninvertible global symmetry C. We rigorously proved
that no such C-protected gapless phase exists for certain
ranges of the central charge c presented in (5.8). Such CFTs
commonly arise in the gapless phase of microscopic lattice
models such as the anyonic chain, and our results place
universal constraints on their phase diagrams.
Our modular bootstrap equations can be applied to more

general systems. The most obvious generalization is to
bootstrap CFTs with more general fusion category sym-
metries C, such as the Haagerup fusion category. It should
be noted that all the categories considered in this paper have
generalized anomalies in the sense that they are not
compatible with a trivially gapped phase. (This is related
to the existence of a bootstrap bound on the symmetry-
violating local operators as presented in Sec. V C.) If we
apply our bootstrap program to fusion categories that are
nonanomalous, such as RepðGÞwithG a finite non-Abelian
group or some of the Tambara-Yamagami categories that
admit a fiber functor, then there would be no bound on the
symmetry-violating sector because of the existence of a
fiber functor, that is, a trivially gapped symmetric phase.
Another exciting generalization is to replace the Turaev-

Viro TQFT discussed in Sec. V with a general 2þ 1d
TQFT that does not necessarily admit a gapped boundary
condition (such as a TQFT with a nontrivial chiral central
charge). The resulting bootstrap bound then places univer-
sal constraints on the edge modes of a 2þ 1d topological
order, such as the fractional quantum Hall state. We leave
this for future investigation.
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APPENDIX: ON THE EXISTENCE OF BOUNDS

In this appendix, we explain when a bootstrap bound on
the gap in a given sector exists.
In [102], it was found that for a nonanomalous Z2

symmetry, a bound on the gap does not exist in the Z2-odd
sector of the untwisted Hilbert space, while such a bound
does exist in the anomalous Z2 case. The former fact is
physically clear: the lightest state charged under the Z2

winding symmetry in a compact free boson CFT grows
with the radius R and can be arbitrarily large. Furthermore,
for a nonanomalous Z2 symmetry, there is a Z2-symmetric

15For instance, the scalar bound in V1 for the Ising category,
presented in Fig. 6, is qualitatively similar to the bound on the
Z2 × Zf

2-symmetric scalar states with ν ¼ 1 in the untwisted NS
Hilbert space in the fermionic modular bootstrap, presented in
Fig. 15 of [123]. Here ν mod 8 labels the fermionic anomaly.
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trivially gapped phase with a unique vacuum, which
presents a solution to the bootstrap equation without any
Z2-odd operator (i.e., the Z2 is not faithful). Similarly, for a
generalized global symmetry, there cannot be a bound in
the symmetry-violating sector if there exists a symmetric
trivially gapped phase, in which case one can say that the
symmetry is free of an anomaly in a generalized sense.
Below we discuss in more detail a criterion for a bound

to exist in a given sector(s) using the bootstrap equations.16

For a general symmetry, a modular bootstrap bound does
not exist in a certain sector (or union of sectors) V if the
modular S- and T-matrices have a nontrivial, non-negative
simultaneous eigenvector with eigenvalue þ1 and vanish-
ing component(s) in V. Such an eigenvector gives a
solution to the modular bootstrap equation (4.2) with
empty V, and therefore there cannot be an upper bound
in V. When the components of this eigenvector are non-
negative integers, we can often understand the obstruction
as coming from the existence of a 1þ 1d topological field
theory realizing the symmetry, generalizing the nonfaithful
Z2 interpretation above.
In the nonanomalous Z2 example, the modular matrices

of the Drinfeld center—the toric code UMTC—is given in
(4.4). The simultaneous eigenspace with eigenvalue one is
spanned by (in the f1; e; m; fg basis)

ð1; 1; 0; 0Þ; ð1; 0; 1; 0Þ: ðA1Þ

telling us that a bound does not exist in either Ve
(corresponding to the untwisted, Z2 odd sector H−) or
Vm (corresponding to the twisted, Z2 even sector Hþ

η ).
However, there is no nontrivial eigenvector with both
components vanishing, and therefore an “order-disorder”
bound is expected to exist in the union Ve ∪ Vm, and was
indeed established in [102].
As another example, consider an anomalousZ2 symmetry.

Its Drinfeld center is the Uð1Þ2 ×Uð1Þ−2 UMTC, which is
the low energy limit of the double semionmodel. Its modular
matrices are given by (in the f1; ηg ⊗ f1; η̄Þg basis)

SDS ¼ 1

2

0
BBB@

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

1
CCCA; TDS ¼ Diagð1; i;−i;1Þ:

ðA2Þ

The simultaneous eigenspace with eigenvalue one is
spanned by

ð1; 0; 0; 1Þ: ðA3Þ

By our general rule, there is no bound in Vðη;1Þ ∪ Vð1;η̄Þ,
which corresponds to the twisted Hilbert space Hη. By
contrast, a bound exists as long as either or both of V1 and
Vðη;η̄Þ are included. For instance, in [102], a bound in the
untwisted, Z2 odd sector H− ≅ Vðη;η̄Þ was derived.
For the Fibonacci category, the simultaneous eigenspace

of S and T with eigenvalue one is spanned by (in the
f1;Wg ⊗ f1; W̄Þg basis)

ð1; 0; 0; 1Þ: ðA4Þ

We reach the same conclusion about the existence of
bounds as for an anomalous Z2.
For either the Ising or suð2Þ2 fusion categories, the

simultaneous eigenspace of S and T with eigenvalue one is
spanned by (in the f1; η;N g ⊗ f1; η̄; N̄ g basis)

ð1; 0; 0; 0; 1; 0; 0; 0; 1Þ: ðA5Þ

We expect a bound to exist if any of V1;Vðη;η̄Þ;VðN ;N̄ Þ is
included.
Generally, for any nontrivial unitary modular S-matrix

(which does not have to be a Drinfeld center), we expect a
bound on the gap in the union of all Vμ≠1, because
ð1; 0;…; 0Þ cannot be an eigenvector with eigenvalue
one. Had it been, it would imply that S1;1 ¼ 1, i.e. that
the total quantum dimension of the UMTC is 1, in which
case S is trivial. In defining the gap, we choose to exclude
conserved currents in both the untwisted and twisted
Hilbert spaces. In RCFT, such a gap is given by the lightest
scalar in the untwisted Hilbert space, or in other words,
twice the minimal nonvacuum weight.
Similarly, we always expect a modular bootstrap bound

on the gap in the symmetry-preserving sector V1. To see
this, let us assume the contrary, that the modular S-matrix
has a nontrivial non-negative eigenvector eμ ≥ 0 with
eigenvalue one and zero first component e1 ¼ 0. Then it
means that 0 ¼ P

μ S1;μeμ, which is a contradiction as
S1;μ ¼ dμS1;1 is strictly positive. Here dμ is the quantum
dimension of the anyon line μ.
To summarize, for any UMTC, bootstrap bounds in the

following two sectors are expected to exist:
(1) The trivial anyon sector V1.
(2) The union of all Vμ with μ ≠ 1.

For the three unitary fusion categories studied in this paper,
the following additional single-anyon-sector bounds are
also expected to exist:

(i) Fibonacci: VðW;W̄Þ.
(ii) Ising/suð2Þ2: Vðη;η̄Þ or VðN ;N̄ Þ.

These single-anyon-sectors correspond to symmetry-vio-
lating local operators of the 1þ 1d CFT as discussed
in Sec. V.

16In some cases, although the modular bootstrap equations
alone do not yield a bound, the combined bootstrap system
including other bootstrap equations, such as those for the four-
point functions, give additional constraints. See Ref. [125] for an
example.
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