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We determine the impact of the # angle and axion physics on the near conformal dynamics of the
large-charge baryon sector of SU(2) gauge theories with N, fermions in the fundamental representation.
We employ an effective approach featuring Goldstone and dilaton degrees of freedom augmented by the
topological terms in the theory. We investigate how different dilaton potentials, including the ones for
which a systematic counting scheme can be established, affect the results. Via state-operator correspon-
dence we compute the corrections to the would-be conformal dimensions of the lowest large-charge

operators as a function of the # term and dilaton potential.

DOI: 10.1103/PhysRevD.107.125024

I. INTRODUCTION

Understanding the nonperturbative dynamics of strongly
coupled theories has proven a formidable challenge for
theoretical physics. We concentrate here on gaining precious
information on the near-conformal strongly coupled dynam-
ics of two-color QCD for previously inaccessible sectors
of the theory, i.e., the ones with large baryon charge
and nonvanishing € angle [1] including the presence of
axions [2-9]. We do so by employing and extending the
formalism developed in [10-12]. Here, the near-conformal
dynamics is enforced by introducing a dilaton state. This
subject has received much attention over the years
starting from the early work where the dilaton state was
introduced at the effective action level to saturate the
underlying trace anomaly for strongly coupled (supersym-
metric) theories [13-22]. Recently attention has shifted to
include the dilaton [23-42] to investigate near-conformal
strongly coupled dynamics of theories close to the lower end
of the conformal window for arbitrary matter representations
[43.,44].
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For a summary of lattice results as well as relevant physical
applications see [45.,46].

For fixed charge physics [47-55] the dilaton (also
referred to as the radial mode) was introduced [11,12]
in the absence of the topological € term. The second
ingredient is the interpretation via state-operator correspon-
dence [56,57] of the ground state energy on the cylinder as
the lowest conformal dimension of the operators carrying a
nonzero baryon charge. We are, therefore, able to deter-
mine, for the first time to our knowledge, the dependence of
near-conformal scaling dimensions including the impact of
the 6 angle.

A novelty of the present work is the study of the
impact of different dilaton potential models including the
ones for which a systematic counting scheme can be
established.

The paper is organized as follows. In Sec. II we
introduce the dilaton for the two-color low energy
effective theory at nonzero baryon chemical potential
including the #-angle operator and axion field. Here we
review the general dilaton theory emerging when
deforming the underlying conformal field theory (CFT)
away from the fixed point. We summarize different dilaton
potentials, investigated in the literature, encoding infor-
mation on the conformal dimensions of the operators
driving the CFT away from conformality. Preparing for the
state-operator correspondence we couple the theory to a
nontrivial gravitational background with cylindrical top-
ology. The classical vacuum structure on the cylinder is
determined in Sec. III in an expansion in inverse powers of

Published by the American Physical Society
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the baryon charge [12]. This allows us to determine the 6
dependence of the near-conformal scaling dimensions of
the baryon charged operators, including the interplay on
the quark and dilaton masses and potential. We further
unveil a subtle dependence of the dynamics of the
superfluid phase on the anomalous dimension of the
fermion condensate. The corrections to the near-
conformal scaling dimensions stemming from the quan-
tum fluctuations arising from the spectrum of the theory
are evaluated in Sec. IV. We offer our conclusions
in Sec. V.

II. CHIRAL LAGRANGIAN NEAR THE
CONFORMAL WINDOW

A. Axion and #-angle chiral Lagrangian

Following [10], the effective Lagrangian describing two-
color QCD at finite baryon density is

L = V*Tr{9,Z0"T'} + 4u*Tr{BZ'0,X}
+ m2PTe{MZ + MTE"} + 2422 [Tr{ZB"Z'B}
+ Tr{BBY}). (1)

Here X(7,x) is a matrix field that transforms in the two-

index antisymmetric representation of SU(2N ), 4zv is the

energy scale of the chiral symmetry breaking, and y is the

baryonic chemical potential. The mass M and baryon
charge B matrices are given by

’ )

. 2

—ly,

0 -1 1
M= M) =12 Y
Iy, 0 0

To take into account the #-angle physics and the axial
anomaly, the above needs to be augmented by the following
term [58]:

2
’

ALy = —al? (9 — iTr{log X —log 2T}> (3)

while in the presence of the Peccei-Quinn axion field
N [2,3] one has to add

ALy = 139, NN — ar? (9 - iTr{log T —log 2
i )
— ZaPQ<10gN - logN ) 5 (4)

where \/a and , /d@p are the scales of the anomalous U(1),
and U(1)p, symmetries, respectively, while vpg is the
scale of the spontaneous symmetry breaking of U(1) PO

B. Near-conformal chiral Lagrangian:
The dilaton story

To smoothly approach the conformal phase of the theory
we nonlinearly realize scale invariance by dressing our
Lagrangian via a dilaton field o(x), partially, serving as a
conformal compensator [23,59-66].

Therefore, under a scale transformation x — e%x, each
operator (O, of dimension k is assumed to transform as
follows:

Oy > k=41 0, (5)

where f is the order parameter of the spontaneous scale
symmetry breaking whose pseudo-Goldstone boson trans-
forms as

o> 0——. (6)

We consider the fermion-induced mass term operator to
have dimension y = 3 —y, with y being the anomalous
dimension of the fermion condensate constrained to be 0 <
y < 2 by the unitarity bound. However, around y ~ 1 the
underlying four fermion operator becomes near-marginal,
and therefore we will concentrate our analysis in the
interval 0 <y < 1.

However, in the absence of the underlying quark mass,
the underlying conformal symmetry can break due to the
emergence of another operator O with A scaling dimen-
sions just below the critical number of matter fields below
which conformality is lost. This dynamics is encoded in the
dilaton potential. This amounts to adding to the CFT the
following Lagrangian term:

SLo = 200. (7)

Here Ay is the associated coupling to the Lagrangian.
One expects this operator to be, for example, related to the
emergence of a quasirelevant four-fermion interaction
[67-71].

The general form of the dilaton potential is

V(g) = f_4e_4”f Z Cn e_n(A0_4)f”’ (8)
n=0

as can be shown by introducing a spurion field
taking into account the explicit breaking of conformal
symmetry [66,72-74]. Here Ay is the scaling dimension of
O while the ¢, depend on the given theory. Since we are
interested in describing near-conformal dynamics, we
assume that the explicit breaking is small. This can be
realized when 1o < 1 and/or O is near marginal. In the
former case one expects ¢, ~ 4.

Inspired by the above ordering one could truncate the
expansion (8) to the first two terms and obtain [66]
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2 ,—4fc 4
V(o) = (1 —e‘(A@‘4)f"> +OU). (9)

TAE-80)P\ T Ao

Here the first two unknown coefficients have been fixed by
requiring that the ground state occurs for ¢ = 0 and that the
mass squared of ¢ on the ground state is m2. These
constraints link the ¢y and ¢, coefficients as follows:

c 4 .
L—_ " with o=
Co Ao

2,2
& . ( 1 ())
4(4 = Ap)
The coefficient of the cosmological constant ¢, is thereby
forced to be of the same order as the first coefficient of the
series ¢; ~ Ap. This potential has been employed in recent
investigations [74] including comparisons with lattice
simulations [75]. Assuming A, = 2 one recovers the usual
¢* Higgs-like potential, while in the Ay — O limit one
obtains
2 2
ms ms _4fo
- ———5(—4foc—e"" 1)+0(Ap).
4A0f2 16f2( fU e + )+ ( O)
(11)

The order O(AY) term in the above expression coincides
with the dilaton potential considered in the pioneering work
of Coleman [59].

Another interesting limit is the one for which the
deformation itself is nearly marginal A, — 4. Here one
expands Eq. (8) in powers of Ay — 4 obtaining

VAo—)O (U) =

mie=4fo

162

V(o) = (1+4fc) +0((Ap —4)?). (12

In fact, here one can abide the conditions that the potential
is minimized for ¢ = 0 and that at the leading order in
Ap — 4 the mass for the dilaton is m, without assuming
an expansion in Ap. The same potential can be derived
from (9) in the double limit Apy — 4 and A — O.

The potential in (12) acquired central stage in a
series of interesting papers by Golterman and Shamir
[26,27,30,31,33,41,42]. In these works the authors consid-
ered a dilaton effective field theory (henceforth EFT)
featuring the following counting in the parameters
p*~m~Ny—=Nj~1/N.. Njis taken to be the critical

J

number of fermions marking the onset of the IR fixed point,
and m is the quark mass. The identification between the
potential in Eq. (2) of [33] and ours (12) occurs via the
following map: fo = —t and m2/4f% = f2B.c%B.

In this work, we consider the established potentials for
Ap—4, Ap =2, and Ap —» 0. In the latter case we
disregard the divergent constant in Eq. (11).

C. Baryon charging the dilaton-0-axion-chiral
Lagrangian

To access the (near) conformal dynamics of large-charge
operators we consider our system on a manifold M with
volume V and curvature R such that the underlying new
scale of the theory is Ay = (Q/V)'/? where Q is the fixed
baryon charge. Concretely, we will take our manifold to be
M =R x 5% such that we consider an approximate
state-operator correspondence implying

Ao =V'PEy,  Eg=uQ-L, (13)
where A, is the scaling dimension of the lowest-lying
operator with baryon charge Q, E, is the ground state
energy on R x S¢°! at fixed charge, V'/? is the radius of
§9=1, and p is the baryon chemical potential.

As customary, we introduce the chemical potential into
the covariant derivative as the zero component of a gauge
field. The dynamics of the theory is controlled by various
energy scales. These are the chemical potential x, the mass
of the quarks m, the scale of the axial anomaly g, the scales
of chiral and conformal symmetry breaking v and f,
respectively, and the explicit conformal symmetry breaking
scale m,. One can envision different counting schemes
respecting the following hierarchy:

my,m, <K | <K 4rv. (14)

The first inequality implies that the theory is in the broken
phase where pion condensation occurs [10] while the last
inequality ensures the applicability of the chiral EFT at the
finite chemical potential.

After taking into account the background geometry and
the dressing with the dilaton, we arrive at the following two
Lagrangians [11,47,59,76,77]:

Ly, = *Tr{0, 2" e/ + 4> Tr{BZ0,Z}e > + mo*Tr{MXE + M'E"} e/

1 2
+ 22UV [Tr{EBTE'B} + Tr{BB}|e >/ — a1? <9 - iTr{log T —log zf}> e~4o!

2\” 61>

and

1 R .
+ = (0 cd'c — —> el — V(o) — Afe=/ (15)
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Ly, =1V*Tr{0, 20" } e/ + 4u*Tr{BZ0yZ} e > + m2*Tr{MZ + M'E"} e/
+ 242 2[Tr{EB"LB} + Tr{BB}]e "/ + 1},0,NoN'e 2/

. . 5
—av? (9 - iTr{logZ —logXf} - %apQ(logN - logNT)> e/

1 R
=+ E (0”06"6 - 6_f2> 6_20]( - V(O') - Age_‘wf, (16)

where for later convenience we included the bare cosmo-
logical constant A,.

III. THE VACUUM STRUCTURE AND
SEMICLASSICAL EXPANSION

In this section, we study the classical ground state energy
of the theory which, according to the state-operator
correspondence, gives the leading order in the large-charge
|

—lay —ia
e foe

U(q;) = diag{e™™, ...,

~Ty, 0

where the alignment angle ¢ and the Witten variables a; are
determined by the equations of motion (EOMs).

Replacing this vacuum ansatz, the Lagrangian (15)
becomes

Lo.s[Z0, 00] = =" ONG = V(0g) = ——=5-

+ 4m21*X cos @ e Ty

+2PN e 0sin? g — a8, (19)

where

The respective equations of motion are

N jp*e™% cos p — miXe /oY = 0, (21)
|
4/3 2
130 & = X0
Ey<<1 = 2 + 2/3vl/3 Cr iR —
ER M AN

2
Im;

expansion for the scaling dimension of the lowest-lying
operator with baryon charge Q. As discussed in detail in
[10] the ground state takes the following form:

2= U(ai)zc (17)

with

. e—me} and

0 Ty, 7 0 0
EC:< ')COS¢+i<O I)sinqo with I:<

—ﬂNf/2> (18)
Iy, 0 )

ae=*%00 — 2m?2 sin a; cos pe=/7Y =0, i=1,..Ny
(22)
R —2foq i i oV
e +4afy26—4jooy2 +4nge—4jaU _ (0')
6f do 6=0
—4fN pr*e0sin® o —4fm22yX cos gpe™/70 =0,
(23)
4uN ;1720 sin? @ = % (24)

We solve these equations in the large @ expansion;
focusing on the two extreme cases y < 1 and 1 —y < 1,
we find the following expressions for the ground state
energy:

() Vay-o(o)

2 2 32N 2 rtcy s V33
) [1—y<§log Q—log( i ﬂ3c4/3 >

- 1672 Y 9m2\?2 5 9m2\?2
-—+00H)|;-VI ——N m2———v () o5 o2 ) X}
Xoo) 4 )]} OgQ{ g Nrepatie 3N \3w) [8et NE\32w) T
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~ 9X 00X
— cysRN X3 + 220 L O(y2) b + O(Q°)  and
326‘4/3
_ cy30*° . 16 9(1 — y)X3,ms -
El-r<1 — %/1/3 + C2/3Q2/3RV1/3 _ ?ﬂngNfC2/3C4/3y2 +ﬁ+ O((l _7/)2) 1% IOg 0+ O(QO) (25)
4/3°7f

(i) Va,—2(0)

Q 1 X2 9m2 2 X10
Er<! — 4/3 2/3{71/3 R__ 00 T 1— 1 _
+eQ copR =3 coms =0 2Nicd, \32 r\zle -y
32N ;12 mP ey 3 V3 % 9m2\ 2 5 9m2
-1 O(y? . 7)o —_ x4
°g< 3 >+ Y )>”+{3n2N4c4/3(32u> [87: 2 N2 <3zy) 00

9XooX01}+O(y2)}\710gQ+O(QO) and
3204/3

—e23RN (XG0 +

El—y<<1 4/3
Vl /3

2 2/371/3 N y2 5
0V + o2y R MR TV U (1) [V log 0 +0(07).  (26)
2 64Nfc4/3

(iii) Va,-a(0)

4/3 3 §Q

430 a3 \/.

Er<l = 22 1 A5 |4 _3 Ol
Vi m 256ﬂ' l/szC4/3 12873 ¢ 2/2113‘/]\,3/2 + (ma)

. X2 9m? 2 X 32N 12 rtey s V23
+ 230 PRV ——— 00— Mz logQ ——10 log YT a3
471' NfC2/3C4/3 32v 00

3
m2 3\/§Q ) , o 2
~ Ber PN, 23108 + O(mt, m2y,y?) » +V log Q{— ( n>
(8¢cq/3mv)* Ny 2/3 128”3C3/2 3VN%/2 ( ) 3

3 2p2
<[ G et 2520 o s} o)
plored _ c4/~3Q4/3 . micy 3 3\/§Q ~3 | +O0mb)
ZE 2562°N ;3 51 12873¢} 2 VN ’
=~ 02/3"13 3\/§Q
e @RV - (8cq/3mv)*N, tog 128733213 + Om2)

Cys3v VN;/2

N 14c% m2R? 9(1—y) 4x2

/3o Y )Mz A0 2 0
+ Vi + O(m, m2(1 - 1 - + O ,
OgQ{(?)Zﬂ'z/)szcZ/3 64N%c‘3‘/3 (rig, (1 = ). (1=7) )} (@)

(27)
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where we introduced

Ag—i- m(2, Ao—)o

16f°
3 A2 2/3 1 2 1/3 . R 5 74 A )
= — = — = — = — = 4 my —
“nTg (:zNM) L BTy <Nfl/2/\4> - k= Ve M= A +gE Bo=20 ()
Ag A(’) —)4
and we double-expanded X first in y and then also in 1/Q as follows:
X
X=X+ Xy +00").  Xe=Xg+ 35+ 00, fory <1,
X
X=Xo+X,(1-9)+0((1-y)?), Xk:Xk0+QTk/'3+(’)(Q‘2), for 1l —y < 1. (29)

Within the same double expansion we will solve for 0. In absence of the dilaton. In other words, the results of [10]
particular, we will solve the equation of motion that at the  apply here by replacing X — X, and @; = @, and the 6

leading order in this expansion yields 6y, (a;) = 0. Hence- ~ dependence of the vacuum in the presence of the dilaton is
forth, the latter is interpreted as double expanding the ;.  identical to the case without it.
With a slight abuse of notation we use the same name for Interestingly, when y < 1 the situation is more subtle

the coefficients of the expansions around y =0 and  since the leading 8-dependent contribution is of the form
1 —y = 0. Interestingly, in the latter case there is no term X3, (%y log QO — 1). Therefore, at fixed y there exists a

of order O(Q%/3). critical charge below/above which the @ vacuum has to
For @ = 0 Eq. (25) reproduces the results in [12].' When  maximize/minimize X3,. In other words, there is a phase

the theory is conformal (i.e., m, = m, = 0), the 6 depend-  (ransition in the large-charge regime as Q crosses

ence disappears and the scaling dimension depends only on

dimensionless coefficients as 0, = e, (31)

Ay = ‘71/3EQ =y 043 + cy3 0¥ +0(Q%, (30)  Therefore, for @ < Q. the 6 vacuum will be analogou.s to
the 1 —y < 1 case. We expect this to be the natural limit
here as well given that for charges larger than Q. we should
start exploring the UV asymptotically free fixed point rather
than the IR interacting one.

As we showed in [10], the a;y, assume the following
expressions that solve Eq. (21):

in agreement with the general form of the large-charge
expansion for generic nonsupersymmetric CFTs [53]. As
first pointed out in [11], the deviations from conformality
lead to corrections depending on the background geometry
and involve the appearance of logarithms of Q.

From Eq. (25), we observe that € does not affect the

. . . r—a, i=1,...,n
leading order in the large-charge expansion. Moreover, we Ajop = 7 (32)
have that the € vacuum is determined by Xy, which can be a, i=n+1,...,Ny
obtained by solving fyy(a;) = 0 in terms of the ;. In o
particular, Xy = vaf cos ajgo (with the obvious notation) where a is given by
where the a;,’s are the solutions found in [10] for the a; 0+ 2k —n)x
variables at the leading order in ’%’2’ and we will refer to such = (N = 2n) k=0,....Ny=2n—1,
results in the text. In particular, in the 1 —y <« 1 case, the N.—1
minimum energy is achieved when X3, is maximizeddueto  n =0, ..., { ! > ] . (33)

the minus sign in front of the log Q term in the energy (25).
It follows that the problem of maximizing X, in terms of
the ;o) is equivalent to the problem studied in [10] of
maximizing X? in terms of the @; which determines the
vacuum structure of the superfluid phase of theory in

As discussed in [10], X%O is always maximized by solutions
with n = 0. For even N, the ground state solutions have

Aoy = Ni/ in the interval 6 € [0,z] and ;o = 9;,3” for
0 € [r,2x]. The energies stemming from the two solutions
cross at @ = & where for N, > 2 we have spontaneous CP

1 . . . .
Our expression corrects a few misprints in Egs. (23) and (24) symmetry breaking. For odd N, the solutions that maxi-

of [12]. We will give the corrected expression for 8 =0 in
Sec. 1L A. mize X3, are ;o) = N% (for 0 € [0,2]), ;00 = 6N;;T + 7z (for

125024-6
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0 € [3.%]), and a;p9 = %= (for 6 € %, 27]). In particu-

lar, this entails that for odd Ny, CP is conserved at 0 = 7,
being the vacuum nondegenerate, while we have two first-
order phase transitions at ¢ =7 and 6 = 3¢

We conclude this section by determining the #-dependent
parameters entering the ground state energy for the y <« 1
case when O < Q. where Xy = Ny cos a. We obtain

0+ 2k
Xoo =Ny cos< + ﬂ) , (34)
P
9misin? (—945\,2"”) cos (—97\,2"”)
Xo1 = Sf 3 avay (35)
acys
_ m,szOO sin (—6+2ﬂk)
0o = il (36)

aN f
|

L[Xy, 00, 6] = —av e‘4f"0(¢9 5)% —

+ 2Um2X cos ¢ e~/ + 2PN pe=2% sin® ¢ —

and the corresponding EOMs:

oL _SL_8L oL _ oL _Q

=—=—=—=0, . (41)
éa O OSoy OO 5,u v

The main difference with the axionless case is expressed in
the equations for the a; and o:

ae % (0 - §)
[XE) Nfa (42)

— 2m?2 sin @; cos pe~ /7Y =0,

E7<<1 4/3 Q 3
v

+ Q2/3V1/3{C2/3R -

5 . 2(6+27k) 819272¢ 4/3N3 v°
3m; sm( N, )log( 770

0, = ,
1 32ac£/3

(37)

Xio=X11 =00 =0,0=0, (38)

where the value of k relevant for a given value of 6 has to be
taken in accordance with the previous discussion.

A. Ground state energy with the axion
In this section, we focus on the theory in the presence of
the axion field described by Eq. (16) and consider the
ansatz (18) for the ground state of X and [78§]
(N) = emlare (39)
for the axion field. This leads us to study the following
Lagrangian:

2

4o <A4 - M > —V(op)

162
Re™2f0
o o
5—0=0. (43)

These equations can be solved as 6 = 0 and a; = 0. Thus
the @ dependence disappears from the ground state energy
and there is no CP violation since (6 — §) = 0. In fact, by
construction the axion realizes the Peccei-Quinn solution of
the strong CP problem [2,3] and, as a consequence, the
classical solutions are equivalent to the ones at § = 0 which
are obtained by setting Xoo = Ny and Xy = 0y =0 in
Egs. (25)-(27). For instance, in the V,,_¢(c) case, one
obtains the results in [12]

2\ 2 2 32N 2.2 ‘72/3
”) {1—}’<§logQ—log< ke ”3C4/3 ))]}

1 9m
4712Nfc2/3 32

- 1672 y 9m2\2[ 5 9m2\2 -
~Vlo N, Zm2 — z ") —c¢,3RN; 44
g(Q){ J€2/3C43Y M 3 N7y 321/) |:87Z'26‘j/3 <32y> /3 f} } (44)
for the case of y <« 1, while for 1 —y < 1 we have
4/3 9(1 —y)miv 1 16 5
El-r<t = 74/31% + 62/3Q2/3RV1/3 ( r)mzV log O - —ﬂzm?,Nfcz/3c4/3z/2V log O. (45)

6402 /3 9

What differs from [12] is the presence in the spectrum of a light axion which we must take into account when considering

the second-order expansion.
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IV. SECOND-ORDER EXPANSION IN THE
NEAR-CONFORMAL REGIME

The spectrum of the theory in absence of the dilaton field
has been detailed in [10]. There, we observed that the
theory is characterized by the following symmetry-break-
ing pattern:

2N%2— Ny

SU(2N;) x U(1), ~~> Sp(2N;) = SU(N;)y x U(1),
sz—Nf
> S5p(Ny)y, (46)

where ~ and — denote, respectively, spontaneous and
explicit breaking. In fact, the axial symmetry is explicitly
broken by the anomaly, and therefore the would-be
Goldstone boson is massive. The further explicit breaking
is due to the introduction of a baryon charge while the last
spontaneous breaking is the superfluid transition. In the
absence of the dilaton, the spectrum of light modes is
composed of 3 N (N — 1) massless Goldstones with speed

vg = 1 that parametrizes the coset igégj )) . They arrange

themselves in the antisymmetric representation of the
unbroken Sp(N,) plus a singlet which we denote as 7.

In addition, we find N (N, —1) — 1 pseudo-Goldstone

from the would be spontaneous breaking of U(1), which
we call the S (singlet) mode. As mentioned above, the
U(1), symmetry is quantum mechanically anomalous, and
therefore the latter mode acquires a mass contribution
proportional to the scale of the anomaly, /a.

The rest of the spectrum is given by gapped modes with a
mass of order # which we will not consider here since they
decouple from the large-charge dynamics. It is interesting
to analyze how the spectrum changes when (near-)con-
formal dynamics is realized through the dilaton dressing. In
particular, conformal invariance dictates the existence of a
massless mode with speed v = ﬁ = % [11].

As we shall see, the latter arises from the mixing
between the singlet mode 7, with the dilaton that acts as
its “radial mode” and changes its speed from v; =1 to
vg = % In general, the infrared dynamics of this mode can

be described by using a conformally invariant four deriva-
tive action of the type Lyrsy = k4(6ﬂ;(5”;()2. In turn, the
latter can be seen as the heavy-dilaton limit of the two-
derivative action £, = 1*(9,x0"y) after we dress it with the
dilaton [11,47,76,77].

Having in mind the hierarchy of scales m,, m, <
Vva < u < 4nv, we focus on the spectrum of light modes,
i.e., the modes whose mass is smaller than the chemical
potential in the large- charge limit. To this end, we start by

with the dilaton and, therefore, thelr d1sper510n relation in

the near-conformal phase can be obtained by generalizing
the nonconformal expression of [10] to include the expect-
ation value of the dilaton as

mixze_zfﬂo (y_2>

2=k - , 47
0)1 /JZN} ( )
which matches Eq. (59) of [10] when f = O
For y = 2 this mode has squared mass 2 NZ’ whereas in

the limit y = 3 we have

27mf[X(2)0
5127[21/2N}ci/3

2

)
Wy =

O(Q7*7).  (48)

To study the remaining light modes, we expand around the
vacuum solution as follows:

T = e @5, (49)

where X is the classical solution (18) while the fluctuations
are organized in the matrix Q as

am (™ O Vips(v = 50
_<0 —7z">+ﬁ <o an>’ b=y OO

UN5)
_ Sp(Ny) 74

where 7 = Za 0
U(Ny)
Sp(N¢)®
generators is (T, T,) = 57‘ Using the results contained in

the Appendix, we find

T, belongs to the algebra of the

coset space The normalization condition on the

(0,£0"%") = 4sin® 9 9,707 + 8N ;f?0,S0"S,  (51)

(BL0yZ') = —2i /2N sin’ poyn°, (52)

(MZ + M) = 2N cos ¢ (Xcos (1 /NiS>
f
. 2
+ Z sin (1 /N—fS>>, (53)

Ny

(logZ —log=F) = 8iN ;S — Z a;, (54)

where we defined Z = Z ~, sin ¢;. Finally, by expanding
the dilaton field around its background solution as
6 - oo+ 6(t,x), we obtain the following quadratic
Lagrangian:
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N

£ 0 1 N
= 5 - 5 W@l l 55
4y28in2<pe*200f_(7r &6 S)D o + Z oHno,m (55)
S a=1
with the inverse propagator D~! defined as
o* - k* iopf /2Ny 0
2,4
o | = D=k g2 I B \/if,u my\/ N XyZ
D! = | —iouf /2Ny gage, —M; las : B X — NG 02 (56)
212
0 S
where the Lagrangian masses for the dilaton field are given by
(i) Vap-o(0)
22N o600 (L2mA X2 (12 — 2) 5700 + DAL N2e2fooH1) AN 2N o2 o0y
M%:_fu re 0 Wima X (" - 2) pNG WNed™) (57)

(i) Vg,=2(0)

202 (,u4N‘}2pezf"0<y_2) - mix?)

— i f00) 0 4 . 0 ¥ P
MZe fo‘oy( SfZefﬂov(zﬂZ(aU292+A4)+m4NfU2x2)+4f2m4Nf1}2x2y2€3fo- +ﬂ2efo'0(y+2)(8f2’u2Nf1}2+m2))

MZ=

(i) Va,4(0)

802 (it e —mix?)

12 (412 (42 (av?0® + A*) + miN ;12 X2(2 — y2e [0 =3)) — 24N (02 e¥0) — A fuPm2og + p’m?)

(58)

Mz =

while the mass of the S mode is the same for all three
potentials and reads

, a//l4N]3c€2fo—0(y_l>+2M2m2X26‘4f00
My = 2ﬂ4N12C62f00y —2mAx2eH o0

(60)

The z“ represents Goldstone modes with sound speed v =
1 transforming in the antisymmetric representation of
Sp(Ny) analogous to the ones found in absence of the

dilaton field in [10]. The =, field corresponds to the
‘;Z((,]C,’jf; that transforms as a
singlet of Sp(N ). For this reason, it mixes with the dilaton
and the S according to Eq. (56). At this point, one can
investigate whether Eq. (60) is in agreement with the
Witten-Veneziano relation [79,80]. The latter constrains
the mass squared of the S particle to be proportional to the

number of flavors and the topological susceptibility in the

Goldstone mode of the coset

8,02(mjlrx2 _ ’u462fo'0) ’

(59)

limit m, — 0. Indeed, this agrees with the following limit
of Eq. (60)*:

. , _ Ny
60_}1(}?”1”_)0(60) = M5 = 5 (61)
Additionally, for 6, — 0 we have
43 2,4 y2
ap Ny + 2u~m; X
; 2 _ f
01390(60) = M; = 2M4N]2c “omix? (62)

in agreement with Eq. (64) of [10]. The remaining
dispersion relations are obtained by solving the equation
det(D7') = 0. As a result, we have one massless degree of
freedom and two gapped modes. In what follows we
provide explicit expressions for the dispersion relations

*Our definition of M differs by a factor of 2 from the usual
conventions.

125024-9



BERSINI, D’ALISE, SANNINO, and TORRES PHYS. REV. D 107, 125024 (2023)

at the two extrema of the dimension of the fermion condensate y = 0 and y = 1 in the limit of small momenta and within the
large-charge expansion. For the sake of simplicity, we consider only the case A, — 0. For the massless mode we obtain

9f2m8 X2 72e=4/% — 2u* M2 MZN3sin®
y:(): (1)2:\/9 f 7040 W MMV @ ,’\—f—O(kz), (63)

fPmiX5ZGe 0 — 2p MENsin*p(2f 4> Ny + M7)

‘ 22mEN (X373 — y* MEMsin o , ,
r=1"w = 2 8Y272 _ 60 2cind e kT Ok), (64)
2f*N ;(ma X525 — u®Mgsin*g) — u* Mz Mgsin'g

where we expanded Z in y and 1 — y as for X in Eq. (29) and kept only the leading term. In the large-charge limit, the above
reduces to

1 V3X3 9m2 \2/V\2/3
=0: 0 =k|—+ % < > <—> +--}+Ok2, 65
d ? [\/§ (27%)*3¢; 3N7 \1287v) \Q (k) (65)
1 2583 ¢y 307 m 9v3m4 X2 V\4/3
=1:a,=k|l—=+1 °+ 0 )() +~~]+(’)k2. 66
! ’ [\@ < 3vVar3 T 128V321%¢} N3 \ 0 * (66)

These results agree with those in [12] for 6 = 0, i.e., Xo9 = N (see Sec. IVA for further details). At the conformal point
m, = m, = 0, Eqs. (65) and (66) describe the expected conformal phonon whose speed approaches the value v; = % as

Q - oo [11].
For the massive modes described by Eq. (56), we write the dispersion relations as an expansion for small momenta
C()3:M3+’l}3k2+"', (67)
Wy =M, + vk 4. (68)

In the y = 0 case, we have

m§X3Z3e=*% —l—/f‘N}sin“(p(M_zg —8L2(2f* PN+ M2))?

’

| 144772
My =—= | 8u%sin’@(2f*u* N+ MZ%) + M3sin*p +

V2

3/2
/42 Nf/

(69)

piNGe o0 (=2M3 ,sin’ (802 (f2 P Ny + M3) + M3) + 3M3 4 + 8L MoMjsin'p) — 36 f21°m3 X3 Z;
v = ’ ; ’
M 2M, N oo (812sin?p (Mising — 2M3 ) (212N + M2) — 2IM3 JMisin’p + 3M3 ) — T2M; 4 2P m3 X373

(70)
which in the large-charge limit yields
0 — 825/67r2/3fc4/31/, /Ny (g) 1/3 (64077.’2/(21\/?03/3 - 567f2mj‘,X%0) <K> 1/3 a1
V3 14 204825/5/3z853 fcf ,uNY? \Q
V3a (Q> 1/3 . {9\/§mj‘,X%O(9a +256m%c} 51%) . 25/3n1/3k2\/m1/] (v) 1/3 . )
4 422/371.1/3\/%1/ \% 4096 210/371.11/3\/5041‘%2”3]\7; ﬁ\/ﬁ 0

For the case y = 1, the mass and speed of the massive modes are given by
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: 2 2, 8%272 1 AN eind (M2 2(7 42,2 2\\2
sing ) 64121 my X5 Z5 + p*Nysintop(Ms — 80° (2f°p° Ny + M3))
M5, = 82 (2f2 >N ; + M> M? + sin? , 73
3.4 NG v (2f*u* Ny + M;) + M5 £ si 40\/ ,u4N;~SiIl8(p (73)
- pH(=2M3 4sin* (80 (2N + M2) + M3) + 3M3 , + 82 M M3sin'p) — 16f*2miN (X5 Z5 (74)
34 Den ’
Den = 2M3 ,u* (3M3, — 2M3sin’p) — 16M;5 4122 fN ¢ (u®sin*p(2M3 , — Msin*p)m3 XGZ5)
+ Wt Msin’ p (2M3 4 — Msin®g))., (75)
whose large-charge limit gives
8256723 fu, /Nc 173 5k? V173
on — Jvy/Nycays (Q) oy <_) g (76)
V3 14 162%/%V/37 Sfuy/Nypcys \Q
(O
YT 422BB e \V V3va 0

Notice that the y = 1 case leads to enhanced suppression of the € dependence in the large-charge limit compared to the
y = 0 case as already observed at the classical level.

A. Second-order expansion with the axion

Similar to the previous section, we parametrize the fluctuations of the X field as in (49) and we take into account the
fluctuations of the axion field that we write as [78]

N(x) = eia(x)/vpg (N) (78)

with (N) given by Eq. (39). Therefore, Eq. (16) gives another term to consider with respect to the previous section which is

—iaPQ(log N —log NT) = 9r0 4 6. (79)
2 Upg

As a consequence, we again have modes with dispersion relation (47) with Xy = N, while the remaining light fluctuations
are described by the Lagrangian below

L = 417 sin® goaﬂﬂ“@”ﬂ“e_z"f + 41/26”56"Se_2”f + 8V2Nur? sin? oy’ e 2" 4 202 u*N [ sin? pe~20/

2 - 2
+ 2N712m3 cos ¢ cos < NS) e — av? (6’ + /2N;S + are 5 5> et
\/ v,

2I/pQ

R 1
_ Age_‘“’f _ 12f2 e20f (dﬂadf‘&)e_z"f + E(aﬂga“a)e_z"f - V(G), (80)

from which we obtain the normalized quadratic Lagrangian as

) "\ )

(= & S a)D! + > o (81)
a=1

412 sin? p e—200f

SRS

where the inverse propagator D~! is given by
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o* — k? ia)ﬂf\/W 0 0
o —iouf\/2N; ek~ 0 0 ©)
0 0 v - M3 L '
0 0 % 4?22;54; - M%

The Lagrangian masses appearing in D~' are
(i) Va,-o(o)

f2 —2fo'0 )( Zm;ter(yZ _ Z)le'ao(y—Z) + 2/441/2Nf€4f60(y_2) _ 4A4’u2€2f0'0(2y—5))

M2 = —
2,2 (M4ezfao(y—2) _ m;‘:)

(83)

(i) Va,—2(0)

M2 — Af2PPmiNp(y* - 2) + ptefoolv- (sz,uzvaf + m2) — 16f2 A4yt e2/o0(=3) "
o 812 (200 (=2) — ) ' (84)

22PN (= 2) + 0 (m2(2f 0y = 1) = 82A%) + 42PN e 0=2)

412 (e 700=2) — )

for the dilaton and /N fay4ap Qe2fao(y—3)
i Isa =— 2\/§VP (/l4€2f60(y_2> _ m4) : (88)
MZ _ aIu4Nfezf60(y_l) _|_ 2}u2mie4f6() 86 0 s
ST 2utefor —omietoo 7 (86)
M2 — a“%Qe_szO (87) The inverse propagator (82) takes the form of a block
2=

matrix. The upper left 2 x 2 block represents the mixing
between 7, and the & in the absence of the 6 angle.
Diagonalizing it, we find both a massless and a gapped
mode with dispersion relations given by

4 —2/’(70 (}'—2) ’
1602 (1 = Mae =0~
PO ( I )

for the remaining modes. The interaction term between the
S particle and the fluctuation of the axion a is

2k2u® N pesc?
ws g = A| kK> + 41%sin’¢p <2f2,u2Nf + M2+ \/f—,u sz 4 + (2f*u*N; + M§)2> . (89)

The spectrum in the Ay — 0 case has been previously studied in [12]. In that case, the explicit expression of the
dispersion relation of the massless mode in the two extreme cases y = 0 and y = 1 reads

k V3 9m2 \2/V\2/3
—0: - 4k i _ e 90
PO = BT R Re N, (128nu) <Q> + (90)

k k222/3c2/31/ mZN 9v/3m? KV)W

=1 w5 =—=+ + —
d V] 33 256v2757c ) \@

o1

The above results correct a typo in Egs. (53) and (54) of [12]. The gapped mode arising from the mixing between 7 and the
dilaton has a mass of order O(p). The lower right 2 x 2 block describes the mixing between the S mode and the axion &, and
by diagonalizing it we obtain the dispersion relations of the propagating modes which read
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1
w15 =3 \/4k2 + 2sin’@(4° M2 + M%) + Vv

—2f0'

\/ZazyszaPQ + duppsinpet/o (M

M2—42M22.  (92)

For f = 0 the above reproduces the dispersion relations in the absence of the dilaton, which were computed in [10]. Finally,
we provide explicit results for these dispersion relations in the Ay, — 0 case. For y = 0 and in the large-charge expansion,

we have

3av

caaNy 0 1/3+ 3° Vamg, V/Ppo V\ 1/3
W =—— = —
! 82167 Bypou \V 16* 2233713y, ci}gzysNW 0
1/ vpolpo(5127°K° ¢ 5V Ny + 2Tmyg) + 2567 k2 ¢y vt apo| (VN 1/3 03
RNl o) T (93)
am’ ¢y 3ulpg
" \/ S128°k2¢y 5 N0 + 2Tmzapg 3 mbapo Ny (27ai? — 204872V o3 3 2N3) (K) 3
167¢3)3/20N 163 - 82 - 21/6713 3 acl) 17 5/2\/512;;21(%4/3ny+27m;*,a%,Q 0 ’
(94)
while for y = 1 we obtain
317 Q 1/3 4‘21/6T[l/3UPQk21/C4/3U\/Nf Vv 1/3
w7 = 1/6 13 v + = — +--, (95)
8-2 IJPQﬂ' 12 NfC4/3 |4 \Y4 3av Q
Cq/3 4 A4
o =k + otm? aPQ X 2/3 L (96) 2 - ﬂzf A (98)
RREETT R kel o \Q ’ 23

with U = ZU%QNf + a%Qlﬂ.

The upshot of this subsection is that the effect of
eliminating the € angle via the axion, in the large-charge
regime, is the introduction of a new light state affecting the
spectrum and dynamics of the theory expressed in the new
dispersion relations @, and wyg.

B. Conformal dimension and vacuum energy
of type I Goldstones

As Eq. (30) illustrates, in the conformal limit
m, = m, = 0, the scaling dimension of the lowest-lying
operator with baryon charge Q takes the form predicted by
the large-charge EFT [47,76]

Dy = ka30* + k307 + kolog Q + O(Q°),  (97)

where the coefficients that appear should not be confused
with ¢4/3 and ¢, ;3 introduced in Eq. (28). Instead, the latter
should be viewed as the leading order of a semiclassical
expansion of the former, generated by integrating out the
heavy degrees of freedom when building the large-charge
EFT. By inspection, we found out that the parameter
controlling the leading quantum correction to the classical
result (25) is

This can be traced back to the observations made in [11],
where the authors mapped a dilaton-dressed two-derivatives
action with U(1) symmetry (analogous to the 7, & subsector
of the present theory) to the familiar A¢* model with quartic
coupling A = f*A*. In fact, it is known that within this
model the Wilson coefficient of the large-charge EFT can be
computed as a semiclassical expansion in A by considering
the double-scaling limit Q — oo, 4 — 0 with "t Hooft-like
coupling A0 fixed [51,52]. The computation of the leading
quantum correction to A is lengthy and beyond the scope of
the present work. However, as observed in [81], the knowI-
edge of the spectrum of gapless modes is enough to compute
exactly the &, coefficient in Eq. (97), which is related to the
renormalization of their vacuum energy. In our case, the
massless spectrum described by the large-charge EFT is
composed of the § N(N; — 1) — 1 modes with dispersion
relation @, and the N +(N; — 1)z modes. In the conformal
limit, these are V' }2, — Ny — 1 type I Goldstone bosons of the
spontaneous symmetry breaking (see [10] for details and
transformation properties)

SU(Ns)p X SU(Ns)g x U(1)p x U(1),
A SP(Nf)L XSP(Nf)Rv (99)
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and all have sound speed v; = 1 with the exception of the
conformal mode 7, with vg5 = % We do not include the

singlet mode S since it decouples due to the axial anomaly.
Consider the action describing a type I Goldstone field y at
low energy

Sg = /M dtdx(%(a,;()er%(V;()z); (100)

its one-loop vacuum energy reads

1
ECasimir = ETr{log(—a% - sz)}
1 o

Vg
:—EE ,
22 (p)

where E(p)? are the eigenvalues of the Laplacian on the
sphere, i.e., V2f,(r) + E*(p)f,(r) = 0. Being this contri-
bution of order QO, in odd dimension it is not renormalized
by the classical vacuum energy and is, therefore, universal to
all the CFT whose large-charge dynamics realize the same
conformal superfluid phase [47,53]. Conversely, in the case
of an even number of spacetime dimensions, there is a
universal Q° log Q term arising from the renormalization of
the energy. In fact, as shown in [81], in dimensional
regularization E; has a pole for d — 4 which is linked to
a calculable logarithm of the charge with coefficient — Z—‘S
Hence, we obtain

da)z log(w? + v5E*(p))
P

(101)

Va,-0(0), r <1

ko = —% <%+ (N + (N, - 2)). (102)

This is a robust nonperturbative prediction of the large-
charge approach which would be interesting to test via lattice
simulations.

V. CONCLUSIONS AND OUTLOOK

In this work we investigated the impact of the 6
angle and axion physics in the large-charge limit of
near-conformal symplectic gauge theories with fermion
matter in the defining representation. The simplest
symplectic gauge theory is SU(2) with N, fermions
in the fundamental representation. We modeled the
underlying dynamics via an effective approach encap-
sulating the light degrees of freedom of the theory
augmented by a dilaton state and an etalike prime
state that ensures the axial-anomaly variation of the
underlying theory at the effective level. The large-
charge approach is then employed to access nonper-
turbative information of the (near-)conformal fixed
baryon-charge sector of the theory. Using the
state-operator correspondence we generalized the cor-
rections determined in [11,12] to the large-charge
quasi-anomalous dimension A as a function of the
dilaton, fermion mass, and background geometry to
include the impact of the € angle, axion physics, and
dilaton potential yielding:

3 2/3
A . om2\21 - y10g<16(27r2)]73c4/3b2Nf> cos? 0 + 2zk 1 \23
A* 32 4¢3 3Ny Ny 2m%p
. 2\ 2 .
y 0+ 20k (2Tmisin® (B5258) 5 (25 ) oo (U28E) ) 52203
+ 2 f F) 23
cg/3Nf Ny 256 a c?wNj% 603/3Nf 2 0
ImZ\Z/ 1 \#3 16 1 \43
~ — 1 - 2N m2 | —— 1 . 103
* (32711/) (2ﬂ2p> og 0 9 eV e <2ﬂ2p> og 0 (103)
Va,-o(0), (1-7) <1
A Om# 6 + 2xk 1 \43 16 1 \43
—=1- —(1- 2 — 1 —— 7’ 2N m2( —— 1 . 104
A* 646‘3/3( 7)COS < Nf > (2772,0) og Q 9 T=Co 3l IN pl (2712,0) og 0 ( )
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A 1 9m2\?
NS 32nv 404/3Nf Ny

21— ylog( oy —
4 0g(l6(27z )I/’§L4/';D2Nf) 2 <H + 27k
COS

)Gr)

_ C2/3 m?, 1 2/3
264/3 2ﬂ2p

4 qi002 (O4+21k 9mz N2 | 2 (0+21k
R 0 + 2xk\ (2Tmzsin’( N, ) 5(Gm) cos” (B N, )_% 27°p\? 9mZ\2/ 1 \*3 log 0.
3Ny N, 256aci/3N12c 6¢; /3Ny 2 0 32nv) \27%p
(105)
V(o). (1-p) <1
A 2/ 1 \?3  om} 0+ 27k [ 1 \*3
i P L1 <_2> — T (1-y) s2< + ”>< 2) log Q (106)
A 2¢43 \27%p 64c4/3 Ny 27°p
Va,-4(0), r <1
3
A e 5 4, ’ c§/3m2 3~ 8log VY !
A* 2567:203/31/2Nf 647zc4/3y3N3/2 2562 04/31/ Nf 647rc4/3y2N3/2 023
= log (s
_(9mz\* T 8\ 160227) Pey N, cos? 0 + 2rk 1 \2/3 (107)
32nv 4¢3 /3Ny Ny 27%p)
Vagealo). (1=7) < 1
3
A ca/3m; 3 c}3m 3./3 |
—=l-———5—5—13-4log 3 —8log . (108
A 2567120421/31/2Nf 647rc?£ 3N3/2 2567[263/3I/2Nf 6475(:2/31/3N3/2 %3 (108)

Here A* is the conformal dimension at the fixed point at
leading order in the semiclassical expansion and p = Q/V
is the charge density.

We summarize below our main results:

(a) We determined the effects coming from different values
of Ap of the underlying operator responsible for
conformal breaking. The first observation is that all
corrections are universally proportional to the dilaton
squared mass while the dependence on A is encoded
in both the coefficient and in the scaling dependence on
the charge (density) of the m2 term. For Ap — 0 the
leading conformal breaking term scales with
12p~*31og Q [11] while for Ap =2 and Ap = 4 we
have, respectively, p=*/3 and =2 log(p/1?) at fixed but
large-charge density.

(b) Conformal breaking due to the introduction of the =
mass, to the chiral and conformal Lagrangian order
that we are considering, yields an additive contribu-
tion to the deformed anomalous dimensions with
respect to the dilaton one. This contribution is

independent of the value of Ay, and it is universally
proportional to the fourth power of the pion mass (i.e.,
quadratic in the underlying fermion masses). Its
contribution depends, however, on the value of the
anomalous dimension of the fermion-antifermion
condensate operator controlled by y. In the Ay — 0
case the zero f-angle expression was determined in
[12] while here we provide, for the first time to our
knowledge, its #-angle dependence. For the Ay — 4
we also have these terms but they are subleading at
large-charge density with respect to the dilaton con-
tribution. Nevertheless, they are naturally there when
the dilaton mass vanishes.
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APPENDIX: DETAILS OF THE SECOND-ORDER EXPANSION

In this appendix, we provide details on the derivation of the dispersion relations of the fluctuations that we parametrize as

Y= eiQZOEiQt,

(A1)

where X, corresponds to homogeneous ground state (18) while Q has the form

- (" ° +BS T, 9
S \0 -7 0y

dim 79T, belongs to the algebra of the coset space

where 7 =

):U+5S“2Nf’ p=

1

V2N,

The normalization condition on the generators is

(A2)

U(Ny)
Sp(Nys)

(T,T,) =%. Writing £ = *PSU(a;)E, we have that £ can be written as

e'r 0

' 0 Ty,
- ") cosp +
0 e—m><(—m 0> ¢ (

02 ® Iy, 12 0 > . > <€iﬂ 0 )
sin L
0 oty ) ) o o

<ei” 0 > ( 0 ﬂN[> <ei”' 0 > <ei” 0 )(62 ® Ty, 2 0 > <ei”' 0 > .
= - ’ _Jcosg + - | sme
0 ein ~Iy, 0 0 e 0 e'# 0 6@ Iy, n/)\0O e

0 1 A
= ( N’)cosq)—l—ez’”Hz@az®1]N/zsin(p.
“1y, 0 i

Using this expression it is easy to show that (for simplicity
of notation, henceforth we indicate the trace operation with
the brackets)

dﬂi = 21'62"”6”1/1]2 ® 0 @ ly,j2sing, (A4)

aﬂi-‘- = —2”]2 ® () ® ﬂNf/zaﬂye_z"” sin Q,

. 0 -0, ® T]Nfaozzte_zi”t
S0, = .
—0) ® 1]Nf0071'e_2”’ 0

(AS)

X sin ¢ cos @ — 2idyusin’e, (A6)

which  implies  (0,Z0#*%") = 8sin?(¢)(d,7*x) and
(BZ9yZ') = —2isin*(¢)(dpz) where B =303 ® Ty,. Ad-
ditionally we have

(ME + ML) = 4N/ cos ¢, (A7)
(BEB'ET) = (BeTye Ble V' Ele )
= (BZ,B'L)), (A8)

since [B,v] = 0.
Making use of the above results, we obtain that the
matrix X satisfies

0,2 = P U(a,)(2if0,SZ + 9,%), (A9)

(A3)
0,27 = e2P5U(a,)(-2ip9,SE" +9,E7),  (A10)
20,2 = ~2if9,s + £9,5". (A1)

From this we can obtain the relevant traces as

(0,20"%F) = (9,ZEY) + 45%(0,50"S) + 2ipo*S(£9, L")
= 8sin’p(d,xd"x) + 8N ;$*0,S"S

= 4sinpd, n°dn¢ + 8N 520,50'S,  (A12)
<B26027> — <Bi@027>
= —2isin’g(dyr)
— 2i\/2N sintpapn®,  (Al3)

(ME + M) = (XPSMU(0;)E + e 2PSMTU (a;)TE)

[ 2
= 2Ny cosgo(X cos ( —S)
2
+Zsin< —S))
\/ Ny
Ny

(log = —log=F) = 8iN S — Za,-. (A15)

(Al14)

125024-16



CHARGING THE CONFORMAL WINDOW AT NONZERO ...

PHYS. REV. D 107, 125024 (2023)

Finally, by plugging these results into the Lagrangian (15), we arrive at

L = 4sin’ o, x 0 ne 2 + 4170,50"Se™2F + 8V 2N *sin oy’ e~/

+ 207 U*N gsin’pe ™2/ + 4N 12 m3 cos ¢

—av*(0 +

N, S)2e 2 — Nbeiof — —12f2

x<f\f >+Zsm<\/—[ ﬂ o

el 4~ (a cd'c)e > — V(o). (A16)

By expanding the above to the quadratic order in the fluctuations of the dilaton field, we obtain the quadratic Lagrangian

(55) considered in the main text.
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