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The construction of black hole spacetimes that are regular (singularity-free) is plagued by the “mass
inflation” instability, a classical perturbation instability induced by the surface gravity at the inner horizon
and characterized by exponentially diverging stress energy there. Recently, a class of “inner-extremal”
regular black holes was proposed that possesses a vanishing inner horizon surface gravity and therefore
avoids mass inflation, while still maintaining a horizon separation and a nonzero outer-horizon surface
gravity. However, when semiclassical effects are taken into account, it is found that an inner-horizon
instability remains for generic inner-extremal regular black holes formed from collapse. This semiclassical
divergence is analyzed from the perspective of both the effective Hawking temperature and the
renormalized stress-energy tensor, and its origin and genericity are examined in detail.
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I. INTRODUCTION

A. Classical instabilities

In 1965, Penrose detailed the conditions under which a
black hole must possess within its horizon a spacetime
curvature singularity, where the laws of general relativity
break down and demand a more complete theory of
quantum gravity [1]. Subsequently, proposals for so-called
“regular” black holes attempted to circumvent the con-
ditions of the singularity theorem so that no appeal to
higher theories of gravity would be needed. A common
path to doing so is the violation of global hyperbolicity
through the presence of a Cauchy horizon (which will be
subsequently referred to as an “inner horizon;” the tech-
nical distinction between the two terms is irrelevant here).
In the case of spherical symmetry, an inner horizon is in fact
required of any regular black hole solution [2–4].
The problem with the presence of an inner horizon

within a regular black hole, as first pointed out by Penrose
just a few years after arriving at his singularity theorem, is
that the inner horizon is a surface of infinite blueshift [5,6].
Any external perturbations to the spacetime will produce
ingoing radiation that an outgoing observer approaching
the inner horizon will detect with exponentially diverging
energy. Subsequent perturbation models from Poisson-
Israel [7], Ori [8], and Hamilton [9] analyzed different
facets of this effect (known as the mass inflation instability)
in more detail, finding that the inner horizon becomes
singular whenever its surface gravity is nonzero due to
interactions between ingoing and outgoing perturbations.
In order to circumvent the mass inflation problem, a

number of regular black hole solutions have been recently

developed that possess an inner horizon with zero surface
gravity, first in the spherical case [10] and subsequently in
the rotating case [11]. For a static, spherically symmetric
black hole with line element

ds2 ¼ −ΔðrÞdt2 þ dr2

ΔðrÞ þ r2ðdθ2 þ sin2 θdφ2Þ; ð1Þ

the horizon function ΔðrÞ contains zeros at the locations
of the horizons (at r ¼ rþ for the outer horizon and r ¼ r−
for the inner horizon) and asymptotes to unity as r → ∞
(assuming the spacetime is asymptotically flat). The (gen-
eralized) surface gravity κ at any radius r in this spacetime
is defined by

κðrÞ≡ 1

2

dΔ
dr

; ð2Þ

so in order for κ to vanish at the inner horizon, the horizon
function must contain a degenerate root at that horizon.
Such a condition is satisfied for extremal black holes,
where the inner horizon coincides with the outer horizon
(rþ ¼ r−), but if one wishes to keep the outer horizon
sufficiently separated from any exotic quantum gravita-
tional physics modifying the inner horizon (and indeed,
neither have extremal black holes been observed in nature
nor should be they theoretically possible by the third law of
black hole thermodynamics), the next-simplest choice for
the horizon function is a triple root at r−:

ΔðrÞ ¼ ðr− rþÞðr− r−Þ3
ðr− rþÞðr− r−Þ3þ 2Mr3þða2− 3r−ðrþ þ r−ÞÞr2
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[10]. Here, M is the mass of the black hole and a2 is a real
parameter that must satisfy

a2 ≳ 9

4
rþr− ð4Þ

in order for the horizon function to contain no poles along
the real axis. The authors of Ref. [10] additionally assume
that rþ lies in the vicinity of 2M, while r− lies in the
vicinity of 0. With these choices, we thus have an inner-
extremal regular black hole that behaves approximately
like Schwarzschild outside the outer horizon but contains a
regular de Sitter core within, fine-tuned so that κðr−Þ ¼ 0.
In particular, near r ¼ 0, the spacetime possesses a
cosmological constant:

Λ ¼ 3
a2 − 3r−ðrþ þ r−Þ

rþr3−
; ð5Þ

while all remaining stress-energy contributions to the
spacetime curvature vanish.
The story for the case of rotating inner-extremal regular

black holes [11] is similar to the spherical case, except that
the authors of Ref. [11] include an additional conformal
factor to maintain regularity at r ¼ 0 so that the horizon
function can be fine-tuned independently from the addi-
tional regularity constraint (more details are provided in
Sec. II C). The conclusion of the matter for both models is
that the black holes remain classically stable to perturba-
tions that would otherwise cause mass inflation at the inner
horizon. It should also be mentioned that these black holes
are marginally stable to the classical kink instability [12],
which generally applies to black holes with κðr−Þ < 0.

B. Semiclassical instabilities

Despite the classical stability of inner-extremal regular
black holes, far more dangerous instabilities present them-
selves when semiclassical effects are taken into account.
The most recognizable semiclassical effect one may wish to
include is the evaporation of the black hole due to Hawking
radiation from the outer horizon. Such an evaporation has
been incorporated into regular black hole models like the
Hayward metric in Refs. [13,14] by adding a time depend-
ence to the mass parameter. In these models, the influence of
Hawking radiation dominates that of the mass inflation
Price tail at asymptotically late times, leading to one of three
results: as the outer horizon shrinks to meet the inner
horizon, either the black hole will evaporate entirely (the so-
called “sandwich” model [15]) and leave an unphysically
large burst of energy from the inner horizon, or the black
hole will form a cold, stable, extremal remnant where mass
inflation either vanishes or is tamed to a power law instead
of the usual exponential divergence.
However, a first-order mass loss from Hawking evapo-

ration is not the only possible semiclassical effect, and

especially close to the inner horizon, backreactions from
quantum fields there play a much more crucial role in the
geometry’s dynamical evolution. A common approach to
analyzing semiclassical perturbations self-consistently is to
construct an additional covariant term hTμνiren contributing
to the stress-energy of the Einstein equations,

Gμν ¼ 8πðTclass
μν þ hTμνirenÞ; ð6Þ

where hTμνiren represents the renormalized vacuum expect-
ation value of the stress-energy tensor for some quantum
field. The calculation of hTμνiren is generally not an easy
task, but it has been shown numerically that the flux
components of hTμνiren physically diverge at the inner
horizon of Reissner-Nordström [16,17] and Kerr [18,19]
black holes, leading to an even stronger singularity at the
inner horizon than that imposed by mass inflation.
The conclusion that the semiclassical inner-horizon

instability leads to a strong singularity relies on the
assumption that the inner horizon remains sufficiently static
in comparison to the timescale at which the divergent
semiclassical flux precipitates. What if such a condition
is not met when a dynamical backreaction is included?
Classically, dynamical mass inflation tends to push the inner
horizon inward until it is close enough to r ¼ 0 and moving
slowly enough that a singularity can form (though certain
regular black hole models may lead to asymptotically finite
internal mass parameters) [20,21]. But semiclassically, an
analysis of the initial tendencies of Eq. (6) indicate that the
inner horizon should evaporate outward to meet the outer
horizon on very rapid timescales [20,22]. If this semi-
classical inflation is strong and quick enough to overcome
classical inflation and reach equilibrium before higher-order
quantum gravity takes over, the perturbed, collapsing body
may stabilize into either an extremal black hole or a compact
horizonless object.
The question that may now be asked is whether models of

regular black holes that are not subject to the classical mass
inflation instability will also be stable to semiclassical
perturbations. As will be seen throughout the course of
this analysis, the answer is a resounding no. Any relevant
semiclassical quantity one might evaluate at the inner
horizon will contain at least one component that diverges,
since such quantities depend not only on the inner horizon’s
surface gravity, but also on the outer horizon’s surface
gravity and on the general causal structure of the spacetime.
Importantly, it will be found that in a collapse state, any
semiclassical, nonextremal black hole model with an inner
horizon will feature a divergence at that horizon. The effect
of this divergence is that these inner-extremal regular black
holes (along with any other classically consistent models)
will either evolve to form a singularity at the inner horizon
or else will be subject to the same transient effects discussed
in Refs. [20].
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The two relevant semiclassical quantities that will be
analyzed here are the effective Hawking temperature
κeff and the renormalized stress-energy tensor hTμνiren.
Section II focuses on the analysis of κeff , which tracks
the semiclassical effect of particle creation observed at the
inner horizon (akin to the Hawking effect observed asymp-
totically far away), while Sec. III analyzes the renormalized
stress-energy tensor both analytically in the Polyakov
approximation and numerically with pragmatic mode-sum
renormalization. Finally, the paper concludes in Sec. IV
with a discussion of the implications and outlook of these
calculations.

II. EFFECTIVE HAWKING TEMPERATURE

Consider the semiclassical effect of particle production,
governed by the Bogoliubov coefficients between the
modes from a vacuum state and those of an observer,
within inner-extremal regular black holes. The calculation
of this effect turns out to be feasible enough that it can be
performed analytically for an observer at any point in the
spacetime, and while it has not been explicitly proven that
the perceived radiation will feed back into the geometry’s
evolution, its Lorentz covariance in the radial case [23] and
its effectiveness at reproducing and clarifying known
results offer every indication that its effects are genuine,
especially in light of its qualitative agreement with the
calculations of hTμνiren in Sec. III (in fact, hTμνiren can be
directly associated with the effective temperature and its
first derivatives [24]).
Additionally, note that while the effective temperature

does not make use of any response function or renormal-
ization condition, a full calculation for an Unruh-DeWitt
detector (linearly coupled to the proper time derivative of a
massless scalar field) approaching the inner horizon has
been carried out for a general spherically symmetric black
hole in 1þ 1 dimensions [25], with identical conclusions to
what is given in Sec. II B: both the detector’s transition rate
and observed energy density in the Unruh state always
diverge at the right leg of the inner horizon (regardless of
the surface gravity at either horizon), while they diverge at
the left leg of the inner horizon except in the special case
κðr−Þ ¼ κðrþÞ (which can never happen in the proposed
inner-extremal regular models).

A. Formalism

In what follows, attention will be restricted to the
behavior of a quantized Klein-Gordon massless scalar field
(a similar analysis can in principle be performed for higher-
spin fields). When such a field is placed over a fixed
black hole spacetime formed from gravitational collapse,
Hawking [26] showed that a characteristic exponential
peeling relation between incoming modes from past null
infinity and outgoing modes at future null infinity implies

the detection of particles by an asymptotically distant future
observer from an asymptotically distant past vacuum state.
At the heart of Hawking’s calculation is the idea that an

exponential rate of redshift between two vacuum states
connected by null geodesics leads to a Planck-distributed
Bogoliubov coefficient probability jβωω0 j2 for those states.
While Hawking only considered observers asymptotically
far from the black hole, one may in principle choose any
observer at any location in the spacetime and use the
vacuum state defined by their local frame of reference.
Such a formalism was developed in Refs. [27,28], in which
an effective temperature function was defined as

κeffðuÞ≡ −
d
du

ln

�
dU
du

�
; ð7Þ

governing the exponential rate of change between an
observer’s outgoing null coordinate u and the null coor-
dinate U of an emitter used to define the vacuum state,
where the function UðuÞ described the null geodesic
connecting the two worldlines parametrized by the coor-
dinatesU and u. As long as this effective temperature κeff is
suitably adiabatic,1 via the condition

ϵðuÞ≡ 1

κ2eff

���� dκeffdu

���� ≪ 1; ð8Þ

Hawking’s exact Bogoliubov coefficient calculation will
fall into place and a thermal spectrum will be detected by
the observer at the temperature

THðuÞ ¼
κeffðuÞ
2π

: ð9Þ

Two modifications to the above formalism will help to
simplify the calculation of particle production and make it
possible to calculate for both inner-extremal regular black
hole models below. First, instead of beginning with a
Minkowski vacuum state at past null infinity and connect-
ing null rays through a dynamical collapse geometry, it is
common to consider a stationary metric of an eternal black
hole (like the Schwarzschild metric, or in this case, a static,
regular black hole) and place boundary conditions at the
past horizon to mimic the exponential redshifting of the
collapsing body’s apparent horizon. Such a choice of
boundary conditions is referred to as the (past) Unruh
vacuum state [29] and consists of modes that are positive
frequency with respect to the timelike Killing vector ∂=∂t at
past null infinity and with respect to the canonical affine
Killing field ∂=∂U along the past horizon.

1Note that even if the adiabatic condition is not satisfied for
some nonzero effective temperature, the Bogoliubov coefficients
are still expected to yield a nonzero detection of particles; the
only difference is that the spectral distribution of produced
particles will generally be nonthermal (see, e.g., Ref. [23]).
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Secondly, instead of using null coordinates, since both
the observer and emitter can naturally use their proper times
τob and τem to label the different null rays they encounter
throughout their journey, Eq. (7) can be recast in a more
intuitive form:

κeff ¼ −
d

dτob
ln

�
ωob

ωem

�
; ð10Þ

where the frequency ω (with either subscripts “ob” for an
observer or “em” for an emitter, which will be dropped
hereafter when either label could apply), defined by

ω≡ −kμ _xμ; ð11Þ

is the temporal component of a null particle’s coordinate
4-velocity kμ ≡ dxμ=dλ, measured in the frame of an
observer or emitter with coordinate 4-velocity _xμ≡dxμ=dτ.
The Unruh state can then be encoded by the proper time of
an emitter if that emitter is taken to be in free fall from rest at
infinity and is placed at either rem → ∞ (for ingoing modes)
or rem → rþ (for outgoing modes). For more details on
calculations within this formalism, see, e.g., Ref. [23].
In what follows, the above formalism will be applied first

to spherical inner-extremal regular black holes [10] in
Sec. II B, and then to rotating inner-extremal regular black
holes [11] in Sec. II C.

B. Spherical regular black holes

For the static, spherically symmetric metric encoded by
Eq. (1), the frequency ω of Eq. (11) measured in the frame
of an observer (≡ωob) or emitter (≡ωem) with energy E,
normalized to the frequency ω∞ seen at rest at infinity, is

ω

ω∞
¼ E�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − Δ

p

Δ
; ð12Þ

where the upper (lower) sign applies to outgoing (ingoing)
null rays. The effective temperature κ can then be calculated
with the help of the chain rule [30]:

κeff ¼ −
d

dτob
ln

�
ωob

ωem

�

¼ −ωob

�
_rob
ωob

∂ lnωob

∂rob
−

_rem
ωem

∂ lnωem

∂rem

�

¼∓ 1

2

ωob

ω∞

�
dΔob

drob
−
dΔem

drem

�
: ð13Þ

As mentioned in Sec. II A, for outgoing modes (upper
sign), the Unruh emitter must be placed at the outer horizon
(rem → rþ), and for ingoing modes (lower sign), the Unruh
emitter resides at infinity (rem → ∞). The result is the
sensation of two independent effective temperatures cor-
responding to the outgoing (κhoreff ) and ingoing (κskyeff )

Hawking modes originating from the past horizon below
and the sky above the observer, respectively. These
effective temperatures for an inertial observer at radius r
looking in a radial direction take on the following forms,
consisting of a Doppler factor multiplied by an observer-
dependent surface gravity and a state-dependent surface
gravity:

κhoreff ðrÞ ¼
−E −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − ΔðrÞ

p
ΔðrÞ ðκðrÞ − κðrþÞÞ; ð14aÞ

κskyeff ðrÞ ¼
E −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − ΔðrÞ

p
ΔðrÞ κðrÞ; ð14bÞ

where κðrÞ is the generalized surface gravity defined
by Eq. (2).
For an observer at rest far away from the black hole, if the

spacetime is asymptotically flat, the outgoing effective
temperature κhoreff of Eq. (14a) approaches κðrþÞ, while the
ingoing effective temperature κskyeff of Eq. (14b) vanishes, as
predicted by Hawking. But for an observer near one of the
black hole’s horizons, Eqs. (14) warrant closer examination.
First, consider the effective temperatures seen at the

outer horizon rþ. An observer crossing the event horizon
must have E > 0, so that in the limit Δ → 0, the outgoing
and ingoing effective temperatures simplify to

lim
r→rþ

κhoreff ðrÞ ¼ −
Eκ0ðrþÞ
κðrþÞ

; ð15aÞ

lim
r→rþ

κskyeff ðrÞ ¼
κðrþÞ
2E

; ð15bÞ

where a prime denotes differentiation with respect to r.
Equation (15a) makes the same assumption as Ref. [10]
that the surface gravity κðrþÞ of the spherical inner-
extremal regular black hole’s outer horizon is nonzero; if
on the contrary the outer horizon is degenerate, the out-
going effective temperature κhoreff will depend heavily on the
choice of how limits are taken: if the collapse occurred far
enough into the past that the Unruh emitter’s position can
be treated as fixed at rþ, the outgoing effective temperature
κhoreff will diverge as a power law when the outer horizon is
degenerate, but once the observer reaches and passes below
rþ, the effective temperature will instantaneously drop
to zero.
While the outer horizon’s ingoing effective temperature

seen from the sky above is always positive, the sign of the
outer horizon’s outgoing effective temperature originating
from the past horizon below depends on the radial gradient
of the outer horizon’s surface gravity. Assuming κðrþÞ
takes on a positive, nonzero value, if the horizon function is
concave down at the outer horizon, Δ00ðrþÞ < 0, then the
effective temperature from the horizon will be positive just
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like that of the sky. But if Δ00ðrþÞ > 0, as occurs for
Reissner-Nordström black holes with a charge-to-mass
ratio Q=M >

ffiffiffiffiffiffiffiffi
8=9

p
and for the inner-extremal regular

black holes of Eq. (3) with sufficiently large a2, the
outgoing effective temperature will become negative.
Such a sign change coincides with the change in sign of
the radial tidal force at the outer horizon from geodesic
deviation [31] and is a commonly found semiclassical
feature (see, e.g., Ref. [23] and sources therein).
At the inner horizon, the effective temperatures depend

strongly on the sign of the observer’s energy—note that
ingoing (E > 0) and outgoing (E < 0) observers passing
through the inner horizon will enter into causally separated
sectors of the spacetime. For an ingoing, positive-energy
observer passing through the left leg of the inner horizon,

lim
r→r−;E>0

κhoreff ðrÞ ¼
En!

ðr − r−Þn
�
κðrþÞ − κðr−Þ
κðn−1Þðr−Þ

�

þO
�

1

ðr − r−Þn−1
�
; ð16aÞ

lim
r→r−;E>0

κskyeff ðrÞ ¼
κðr−Þ
2E

; ð16bÞ

where n denotes the lowest nonzero order of the Taylor
expansion for the horizon function ΔðrÞ about the inner
horizon; if ΔðrÞ can be expanded close to a horizon r� as

ΔðrÞ ≈ Δ0ðr�Þðr − r�Þ þ
1

2
Δ00ðr�Þðr − r�Þ2

þ 1

6
Δð3Þðr�Þðr − r�Þ3 þ � � � ; ð17Þ

then, e.g., the Reissner-Nordström inner horizon corre-
sponds to n ¼ 1, while the horizon function of Eq. (3)
corresponds to n ¼ 3, since for that inner-extremal regular
black hole, the first derivative Δ0ðr−Þ ¼ 0, the second
derivative Δ00ðr−Þ ¼ 0, but the third derivative

Δð3Þðr−Þ ¼ −
6ðrþ − r−Þ

2Mr3− þ ða2 − 3r−ðrþ þ r−ÞÞr2−
: ð18Þ

Conversely, an outgoing, negative-energy observer pass-
ing through the right leg of the inner horizon has

lim
r→r−;E<0

κhoreff ðrÞ ¼
κðrþÞ − κðr−Þ

2E
; ð19aÞ

lim
r→r−;E<0

κskyeff ðrÞ ¼
En

r − r−
þOððr − r−Þ0Þ: ð19bÞ

Finally, in the special case E ¼ 0, where the observer passes
through the central intersection of the ingoing and outgoing

portions of the inner horizon, κhoreff always diverges, while
κskyeff vanishes when n > 2, remains finite when n ¼ 2, and
diverges when n ¼ 1.
The conclusion of the above asymptotic forms of the

inner-horizon effective temperatures is that at least one
component of κeff will always diverge for any choice of
inertial observer at the inner horizon. This occurs even
when the inner horizon’s surface gravity κðr−Þ vanishes—
the divergence is a direct result of the Penrose blueshift
singularity (the divergence of ωob=ωem for an outgoing
observer watching ingoing modes while crossing a horizon
withΔ → 0), which does not depend on the surface gravity.
For an inertial observer falling in from infinity, even if they
reach an inner horizon with zero surface gravity, they will
still encounter diverging semiclassical radiation because
the surface gravity of the outer horizon (which governs the
exponential peeling of modes from the initial collapse and
can be regarded in some sense as the “source” of Hawking
radiation) is nonzero.
The semiclassical instability of the inner horizon is thus

seen to be an even stronger effect than the classical mass
inflation instability, since the effective temperature in the
Unruh vacuum from quantum radiation at the inner horizon
depends not only on the inner horizon’s surface gravity, but
also on the outer horizon’s surface gravity. Even if κðr−Þ
vanishes, a nonzero κðrþÞwill prevent an ingoing observer’s
effective temperature from vanishing at the inner horizon;
instead, the observer’s modes will become ultraviolet
divergent. The only feasible way to prevent such a diver-
gence for an ingoing observer is to require κðr−Þ ¼ κðrþÞ,
and a quick parity check shows that this can only occur if
both surface gravities are identically zero.

C. Rotating regular black holes

For a rotating inner-extremal regular black hole, the
authors of Ref. [11] considered two modifications to the
Kerr line element in Boyer-Lindquist [32] coordinates:
first, a conformal factor is included so that the metric is
regular at r ¼ 0, and second, the radial horizon function
ΔðrÞ ¼ r2 þ a2 − 2mðrÞr is modified from its vacuum
Kerr value (mðrÞ ¼ M) in order to fine-tune the inner
horizon’s surface gravity. The line element can be written in
the same form as the standard Kerr line element [33] times a
conformal factor Ψðr; θÞ:

ds2 ¼ Ψ
�
1

Δ
dr2 þ dθ2 þ sin2 θ

Σ2
ððr2 þ a2Þdφ − adtÞ2

−
Δ
Σ2

ða sin2 θdφ − dtÞ2
�
; ð20Þ

where the zeros of the function

Σðr; θÞ≡ r2 þ a2 cos2 θ ð21Þ
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give the location of the Kerr ring singularity, which
becomes regularized when the conformal factor

Ψðr; θÞ≡ Σðr; θÞ þ b
r2z

ð22Þ

contains positive, nonzero constants b and z such that
z ≥ 3=2. The horizon function ΔðrÞ now has dimension
½M�2 and in the minimal case contains a degenerate root at
the inner horizon:

ΔðrÞ ¼ ðr − rþÞðr − r−Þ3
FðrÞ ; ð23Þ

where

FðrÞ≡ r2 þ rð2M − rþ − 3r−Þ þ
rþr3−
a2

: ð24Þ

Though the exact positions of the inner and outer horizons
will not directly affect the results of the present analysis, for
completion’s sake, the following forms are assumed in
Ref. [11] for the outer- and inner-horizon radii:

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; r− ¼ a2

M þ ð1 − eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ;

ð25Þ

such that the outer-horizon radius rþ coincides with its
standard Kerr value while the inner-horizon radius r− is
modified by the parameter e, which must satisfy

−3 −
3Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p < e < 2 ð26Þ

to maintain regularity. If e is negative, the inner-horizon
radius will lie below its Kerr value of M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
,

while if e is positive, the inner-horizon radius will lie above
its Kerr value.
If a test particle has Killing energy per unit mass E,

Killing angular momentum along the axis of rotation per
unit mass L, and Carter constant K ¼ Qþ ðaE − LÞ2 [33],
its 4-velocity will take the form

_t ¼ 1

Ψ

�
r2 þ a2

Δ
Pr þ aPθ

�
; ð27aÞ

_φ ¼ 1

Ψ

�
aPr

Δ
þ Pθ

sin2 θ

�
; ð27bÞ

_r2 ¼ 1

Ψ2

�
P2
r −

�
K þ

�
r2 þ b

r2z

�
δ

�
Δ
�
; ð27cÞ

_θ2 ¼ 1

Ψ2

�
K − a2 cos2 θδ −

P2
θ

sin2 θ

�
ð27dÞ

[11], where

PrðrÞ≡ ðr2 þ a2ÞE − aL; ð28aÞ

PθðθÞ≡ L − aE sin2 θ; ð28bÞ

and where δ ¼ 1 for massive particles while δ ¼ 0 for
massless particles (which will be denoted with scripted
constants of motion E, L, K in contrast to the massive
particle’s constants E, L, K).
For simplicity, consider an infalling (_r < 0) equatorial

(θ ¼ π=2, _θ ¼ 0) observer, whose Carter constant must
satisfy

K ¼ P2
θ ¼ ðL − aEÞ2: ð29Þ

Additionally, as a natural generalization from the spherical
case, assume the observer is looking at a photon which is
purely radial in the zero angular momentum frame
(L=E ¼ 0, K=E2 ¼ a2). Such a photon will be detected
by the observer with a frequency given by Eq. (11), which
when normalized to the frequency ω∞ ¼ E seen by an
observer at rest at infinity can be written as

ω

ω∞
¼ aPθ

Ψ

þ r2 þ a2

Ψ
·

Pr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP2

r − ðKþΨÞΔÞ
�
1− a2Δ

ðr2þa2Þ2

�s

Δ
;

ð30Þ

where outgoing (ingoing) null geodesics are given by the
upper (lower) sign.
The effective temperature of Eq. (10) can then be

calculated with the same chain-rule expansion as in
Eq. (13):

κeff ¼ −ωob

�
_rob
ωob

∂ lnωob

∂rob
−

_rem
ωem

∂ lnωem

∂rem

�
: ð31Þ

The above form of κeff assumes that the photon’s impact
parameters L=E and K=E2 remain constant as the observer
moves along their trajectory, which may induce additional
noninertial radiative effects as the observer rotates their
field of view, as first discussed in Ref. [30]. However, the
presence or absence of such effects will not significantly
change the asymptotic behavior of κeff as the observer
approaches a horizon, nor will the particular choice of the
(inertial) observer’s conserved angular parameters L andK.
A more exhaustive analysis of all these effects will be
presented elsewhere. For the present study, assume a freely
falling zero angular momentum observer (ZAMO), with
constants of motion L ¼ 0, K ¼ a2, and E ¼ 1 or −1
(ingoing or outgoing, respectively).
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A useful intermediate result with the above simplifica-
tions (suppressing factors of ω∞) is

∂ lnω
∂r

¼ ω ∓ 1=2
ω ∓ 1

��
1 −

a2Δ
ðr2 þ a2Þ2

�−1

×

�
4r

r2 þ a2
−
Δ0

Δ

�
−
Ψ0

Ψ

�
; ð32Þ

where primes denote differentiation with respect to r and
the upper (lower) sign applies to an ingoing (outgoing)
observer with positive (negative) energy E.
Just as in the spherical case, the Hawking modes

contributing to the effective temperature can be divided
into two sectors, the ingoing modes originating from an
Unruh emitter at rem → ∞ in the sky above the observer,
and the outgoing modes originating from an Unruh emitter
at r → rþ seen at the past horizon below the observer. In
the ingoing case (κskyeff ), the subtracted term in Eq. (31) [i.e.
the limit of Eq. (32) as an emitter’s position r ¼ rem
asymptotically tends to infinity] vanishes, just as it does
for spherically symmetric black holes. In the outgoing case
(κhoreff ), the subtracted term in Eq. (31) simplifies to

lim
rem→rþ

_rem
ωem

∂ lnωem

∂rem
¼ κðrþÞ; ð33Þ

where κðrÞ is the black hole’s generalized surface gravity
analogous to Eq. (2), which for a rotating black hole with
Boyer-Lindquist radius r takes the form

κðrÞ≡ 1

2ðr2 þ a2Þ
dΔ
dr

: ð34Þ

Though the full expression for the effective temperature
κeff for an arbitrary observer is too complicated to be
presented in a meaningful way here, some useful limits can
be shown. As the observer’s position is taken asymptoti-
cally far from the black hole, the observer’s frequency ωob
tends to unity while the first term in the parentheses of
Eq. (31) vanishes. As a result,

lim
r→∞

κhoreff ðrÞ ¼ κðrþÞ; ð35aÞ

lim
r→∞

κskyeff ðrÞ ¼ 0; ð35bÞ

i.e., the Hawking effect is exactly reproduced for this
particular choice of observer and Unruh emitter. When this
observer is taken to the event horizon at r ¼ rþ, assuming
the outer horizon is not degenerate,

lim
r→rþ

κhoreff ðrÞ ¼ −
r2þ þ a2

ΨðrþÞ
·
κ0ðrþÞ
κðrþÞ

; ð36aÞ

lim
r→rþ

κskyeff ðrÞ ¼
κðrþÞ
2

; ð36bÞ

in exact analog to the spherical case [compare Eqs. (15)].
The conformal factor here is defined as ΨðrÞ≡Ψðr; π=2Þ
from Eq. (22).
The effective temperatures seen at the inner horizon

then follow suit. The choice of whether an observer enters
the ingoing or outgoing portion of the inner horizon
depends on the sign of the Hamilton-Jacobi parameter
Pr, which for a ZAMO is equivalent to the sign of the
observer’s energy E. For an observer with positive energy,
with the horizon function Δ and quadratic function F from
Eqs. (23) and (24), respectively, the inner-horizon effec-
tive temperatures are

lim
r→r−;E>0

κhoreff ðrÞ ¼ −
r2− þ a2

Ψðr−Þ
·
Fðr−Þðr2− þ a2Þðrþ − r−Þ2
FðrþÞðr2þ þ a2Þðr − r−Þ3

þO
�

1

ðr − r−Þ2
�
; ð37aÞ

lim
r→r−;E>0

κskyeff ðrÞ ¼ 0; ð37bÞ

while for an observer with negative energy, the inner-
horizon effective temperatures are

lim
r→r−;E<0

κhoreff ðrÞ ¼ −
ðrþ − r−Þ3

4ðr2þ þ a2ÞFðrþÞ
; ð38aÞ

lim
r→r−;E<0

κskyeff ðrÞ ¼−
r2−þa2

Ψðr−Þ
·

3

r− r−
þOððr− r−Þ0Þ: ð38bÞ

Thus, an inertial, zero angular momentum observer
approaching the classically stable inner horizon of a
rotating regular black hole will experience a diverging,
negative effective Hawking temperature in at least one
direction, just as in the spherical case. If the observer is
ingoing, the divergence will be seen from the past horizon
below them, and if the observer is outgoing, the diver-
gence will be seen from the sky above them.
One may wonder about the generality of these results

when different choices for observers and photon trajecto-
ries are used, especially since Eq. (31) does not guarantee
the constant phase condition that usually warrants a
numerical treatment as in Refs. [23,30]. But as it turns
out, it can be proven that regardless of the choice of
observer or emitter, if the effective temperature seen at the
outer horizon is finite, then the effective temperature seen at
the inner horizon must diverge somewhere in the observer’s
field of view. To see why this is the case, a sketch of the
proof is given below for an ingoing observer with positive
Hamilton-Jacobi parameter Pr (a similar argument can be
made for an outgoing observer, mutatis mutandi).
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The form of the effective temperature κeff can be written
in the form

κeff ¼ −ωob

�
_ωob

ω2
ob

−
_ωem

ω2
em

�
; ð39Þ

where an overdot denotes differentiation with respect to
proper time; compare Eq. (13). The precise assumptions
about the differentiation (e.g. keeping the emitter’s affine
distance or the observer’s viewing angles on the sky fixed)
can be left arbitrary. There may in general be extra terms in
the parentheses of Eq. (39) that nontrivially couple the
observer’s and emitter’s motions, but one may assume that
such terms (e.g. ones involving derivatives of the emitted
photon’s impact parameters with respect to the observer’s
position) can always be chosen to vanish or cancel out by a
suitable choice of viewing direction in the observer’s sky
(e.g. in the spherical case this choice is radially inwards or
outwards). The remaining terms in Eq. (39) will then be
separable in the observer’s and emitter’s coordinates.
For an Unruh emitter sending outgoing modes from the

outer horizon to the observer, assume that the effective
temperature in the direction the observer is looking will be
finite when the observer reaches the outer horizon:

lim
rob→rþ

κeff ¼ OðΔðrobÞ0Þ: ð40Þ

The key assumption one must make is that the observer’s
frequency ωob for outgoing modes classically diverges at
either horizon when normalized to the rest frequency at
infinity. At the inner horizon, such a divergence manifests
as the Penrose blueshift singularity [5,6], while at the outer
horizon, the emitter’s modes will be infinitely redshifted
with respect to the observer. In both cases, the effect can be
attributed to the fact that the observer can pass through a
horizon in finite proper time while an emitter’s tortoise
coordinate becomes infinite, which is a feature of any black
hole spacetime regardless of the surface gravities at the
horizons. The divergence of ωob, governed by the timelike
component of the line element, asymptotically behaves
as ΔðrobÞ−1.
Thus, if the frequencies of Eq. (39) are expressed as

ratios to the rest frequency at infinity, then Eqs. (39)
and (40) imply that

lim
rob→rþ

_ωob

ω2
ob

¼ _ωem

ω2
em

þOðΔðrobÞÞ: ð41Þ

Now, if the observer is taken to the inner horizon, the
normalized frequency ωob will still diverge as ΔðrobÞ−1,
and the emitter’s contribution to the effective temperature
will remain unchanged. Substituting the emitter’s contri-
bution to the effective temperature from Eq. (41) back into
Eq. (39) then reveals that the effective temperature at the
inner horizon will always diverge unless the value of

_ωob=ω2
ob for an infalling observer at the outer horizon is

the same as that of the inner horizon:

lim
rob→r−

κeff ¼ −ωobðr−Þ
�

lim
rob→r−

_ωob

ω2
ob

− lim
rob→rþ

_ωob

ω2
ob

�
; ð42Þ

since ωobðr−Þ is of order ΘðΔðrobÞ−1Þ. For both spherical
and rotating inner-extremal regular black holes, the term
_ωob=ω2

ob corresponds precisely to the black hole’s surface
gravity at each horizon, and this quantity is assumed to be
nonzero at the outer horizon. As argued for the spherical
case, the only way for these quantities to be equal at the
outer and inner horizons is if the black hole is extremal, so
that the outer horizon is degenerate and both surface gravity
terms vanish. But more generally, the sign of _ωob=ω2

ob at the
outer horizon will always be opposite to the sign of
_ωob=ω2

ob at the inner horizon—since the observer’s nor-
malized frequency at the outer horizon diverges asΔðrobÞ−1
(which is positive as the infaller approaches rþ and, more
importantly, has a positive slope), the rate of change of this
frequency with respect to the observer’s proper time will
also be positive at the outer horizon. But at the inner
horizon,ΔðrobÞ is negative and further has a negative slope,
so that the rate of change of the frequency will always be
negative. Thus, the only way that _ωob=ω2

ob will match at
both the outer and inner horizons is if it identically vanishes
at both hypersurfaces, which necessarily assumes that both
horizons are degenerate.

III. RENORMALIZED STRESS-ENERGY TENSOR

Although the results of Sec. II give clear evidence for the
inevitability of divergent semiclassical behavior at the inner
horizon of inner-extremal regular black holes, one may gain
further intuition and confirmation by analyzing the behav-
ior of the vacuum expectation value of the renormalized
stress-energy tensor hTμνiren. This quantity is not only free
of assumptions about adiabaticity and eikonality, but it is
also more directly tied to the effects of quantum back-
reaction on the underlying spacetime geometry [via the
semiclassical Einstein field Eq. (6)] and therefore is better
suited to addressing the question of black hole stability in
the semiclassical regime.
As mentioned in Sec. I, the analytic calculation of

hTμνiren is difficult if not impossible for a general spacetime,
unless that spacetime possesses a high degree of symmetry.
The focus of this analysis will therefore be placed on the
evaluation of hTμνiren for spherical inner-extremal regular
black holes, with every expectation (motivated by the results
of Sec. II) that the same tendencies will also be seen in the
rotating case.
As a primer, consider the trace anomaly, which helped

form the foundations of semiclassical gravity in the early
days of quantum-field theory in curved spacetimes [34].
While the trace of the stress-energy tensor for a classical
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field with conformal invariance must vanish, the trace of the
expectation value of the renormalized stress-energy tensor
for a quantum theory with an ultraviolet regulator is
generically nonzero—for a conformal field in four space-
time dimensions, this trace anomaly can be written as

hTμ
μi ¼ αFF þ αEEþ αR□R ð43Þ

[34], where F is the squared Weyl tensor, E is the squared
Riemann dual tensor (known as the Euler density), and□R
is the d’Alembertian of the Ricci scalar R. These quantities
can be expressed in terms of the Riemann tensor Rμνρσ and
the Ricci tensor Rμν as

F ¼ RμνρσRμνρσ − 2RμνRμν þ 1

3
R2; ð44aÞ

E ¼ RμνρσRμνρσ − 4RμνRμν þ R2: ð44bÞ

The coefficients αF, αE, and αR depend only on the number
of fields and their spins, so that the entire trace anomaly is
independent of the vacuum state in which the renormalized
stress-energy tensor is evaluated. The form of Eq. (43) may
also contain additional additive terms if the massless fields
are coupled to additional background gauge fields.
For a Reissner-Nordström black hole, the Ricci scalar

and its d’Alembertian vanish everywhere, but the squared
Weyl tensor and Euler density remain nonzero, so that at
the inner horizon, the trace anomaly becomes

hTμ
μiRNðr−Þ ¼ ðαF þ αEÞ

12ðrþ − r−Þ2
r6−

− αE
8r2þ
r6−

: ð45Þ

For a spherical inner-extremal regular black hole, while the
Ricci scalar does not vanish (at the inner horizon,
R ¼ 2=r2−), both □R and E do vanish at the inner horizon,
so that the trace anomaly simplifies to

hTμ
μiIEðr−Þ ¼ αF

4

3r4−
: ð46Þ

Note that a finite, nonzero conformal anomaly does not
necessarily imply that individual components of a physically
realizable renormalized stress-energy tensor will remain well
behaved—for example, for a Reissner-Nordström black
hole, though hTμ

μi from Eq. (45) is finite and nonzero at
the inner horizon, the flux components (as well as the trace)
of hTμνiren are well known to exhibit an inner-horizon
divergence when a physically realistic vacuum state is used
in place of the conformal vacuum [16,17].
In principle, one may use the trace anomaly to derive an

effective action for a set of auxiliary fields that can be used
to define the full covariantly conserved stress-energy tensor
hTμνiren [35]. However, since inner-extremal regular black
holes are not Ricci flat, the resulting fourth-order differential

equations to define hTμνiren this way do not have analytic
solutions in closed form. Further, if the quantum field ϕ over
the spacetime is not conformally invariant, an additional
□hϕ2iren term must be included in the calculation of the
renormalized stress-energy tensor’s trace [36]. Thus,
instead, the renormalized stress-energy tensor will be
evaluated two different ways here: first, integrating over
the angular degrees of freedom allows for hTμνiren to be
calculated exactly in 1þ 1 dimensions via the so-called
Polyakov approximation (Sec. III A), and secondly, a
pragmatic mode-sum analysis allows for hTμνiren to be
calculated numerically at the inner horizon in the full 3þ 1
dimensions (Sec. III B).

A. Polyakov approximation

If the static, spherically symmetric black hole spacetime
described by Eq. (1) is restricted to the ðt; rÞ sector, the
stress-energy tensor of a quantized field in the resulting
1þ 1D spacetime can be uniquely renormalized to yield an
exact expression, since the equations of motion for the field
are conformally invariant [37]. If one converts to a set of
double-null coordinates ðu; vÞ that define the vacuum state,
so that the line element becomes

ds2 ¼ −Cðu; vÞdudv ð47Þ

for some conformal factor C, the vacuum expectation value
of the renormalized stress-energy tensor for a massless,
scalar quantum field will be

hTuuiren ¼
1

24π

�
1

C
∂
2C
∂u2

−
3

2C2

�
∂C
∂u

�
2
�
; ð48aÞ

hTvviren ¼
1

24π

�
1

C
∂
2C
∂v2

−
3

2C2

�
∂C
∂v

�
2
�
; ð48bÞ

hTuviren ¼
1

24π

�
1

C2

∂C
∂u

∂C
∂v

−
1

C
∂
2C

∂u∂v

�
: ð48cÞ

The contribution made by Polyakov (working in the
context of bosonic string theory) was that an effective action
for a higher-dimensional theory can be reduced to a two-
dimensional, renormalizable, completely integrable theory
by performing an averaging sum over all the remaining
surfaces [38]. In the present context, Polyakov’s approxi-
mation manifests by averaging over the 2-sphere so that the
renormalized stress-energy tensor in 3þ 1 dimensions is
simply given by the expressions of Eqs. (48), each divided
by the factor 4πr2. While such a choice implies that hTμνiren
will behave in a singular fashion at r ¼ 0, this r ¼ 0
singularity at least in the rotating case can only be reached
in an infinite proper time [11], but more importantly, it is
understood that the renormalized stress-energy tensor in the
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Polyakov approximation should be further regularized at
small r [39].

1. Boulware vacuum

The calculation of hTμνiren depends heavily on the choice
of vacuum state, which, as mentioned, is dictated by the
specification of the conformal factor Cðu; vÞ of Eq. (47).
One simple choice is to set C ¼ Δ from Eq. (3), so that the
double-null coordinates ðu; vÞ coincide with the usual static
Eddington-Finkelstein coordinates. The corresponding vac-
uum state j0iB is known as the Boulware vacuum, which
describes an asymptotically radiation-free black hole as
viewed by a static observer in the exterior (and a similar
state can be defined for a zero-energy observer in the black
hole interior). As a result, the state is not well defined for an
observer at either horizon, and an infaller will see a
diverging stress-energy flux at the outer horizon:

hTuuirenB ¼ hTvvirenB ¼ 1

192π2r2
ðκ0ðrÞΔðrÞ − κðrÞ2Þ; ð49aÞ

hTuvirenB ¼ hTvuirenB ¼ 1

192π2r2
κ0ðrÞΔðrÞ; ð49bÞ

where κðrÞ is the generalized surface gravity given by
Eq. (2). While these null components of hTμνiren do not
diverge at either horizon, the coordinate system does.
Changing to a coordinate system that behaves regularly
at the horizons, such as the Kruskal-Szekeres coordinates
ðU;VÞ defined by

dU
du

¼ e−κðrþÞu;
dV
dv

¼ eκðrþÞv; ð50Þ

reveals that as long as hTuuirenB is nonzero at the outer
horizon, hTUUirenB will diverge as e2κðrþÞu as the horizon at
u → ∞ is approached. At the outer horizon, the surface
gravity κðrþÞ contributing to Eq. (49a) remains nonzero, so
the Boulware vacuum stress energy will always diverge in
that limit. In accordance with the Fulling-Sweeny-Wald
theorem [40], since any Hadamard state should yield finite
quantities at the outer horizon, a more astrophysically
relevant vacuum state must be sought after.
The two vacuum states that will be used here to find

the renormalized stress-energy tensor at the inner horizon
are the “in” Minkowski vacuum j0iin and the Unruh
vacuum j0iU.

2. Minkowski in vacuum

The in vacuum state assumes that asymptotically far into
the past, the spacetime is completely flat, with the standard
Minkowski vacuum. Then, at a time v ¼ v0, an ingoing
null shell forms a black hole so that the conformal factor of
Eq. (47) transitions from Cðuin; vinÞ ¼ 1 in the in region
(v < v0) to Cðuout; voutÞ ¼ Δ in the “out” region (v > v0).

The corresponding conformal factor of the in vacuum state
to be substituted into Eq. (48) is

C ¼ duout
duin

Δ; ð51Þ

where the relation between the in and out coordinates can
be found by matching metrics through the collapsing null
shell, as detailed below.
The authors of Ref. [22] performed such a matching with

sufficient generality by focusing on the asymptotic behav-
ior of hTμνirenin at the inner and outer horizons. By expanding
the horizon function Δ about either horizon at r� via the
series of Eq. (17), the stress-energy tensor at r� reduces to

hTuuirenin ≈
1

96π2r2�

κ00ðr�Þ
8κðr�Þ

ðe2κðr�Þðv−v0Þ − 1Þ þOðr − r�Þ;

ð52aÞ

hTvvirenin ≈ −
1

96π2r2�

κðr�Þ2
2

þOððr − r�Þ2Þ; ð52bÞ

hTuvirenin ¼hTvuirenin ≈
1

96π2r2�

κ0ðr�Þ
2

eκðr�Þðv−v0Þ þOðr−r�Þ:

ð52cÞ

For the inner-extremal regular black holes in which
κðr−Þ ¼ 0, the modified series expansion and subsequent
matching procedure lead to the same form for the stress-
energy tensor components as that inferred from Eqs. (52).
In particular, the uu component of the stress-energy tensor
at the inner horizon diverges as κ00ðr−Þðv − v0Þ, while the
vv component vanishes. Converting to a set of regular
coordinates across the horizon (such as hTrrirenin ) yields a
similar divergence in v. However, as the authors of
Ref. [22] note, higher-order terms in the series expansion
also contain similar time-dependent divergent factors
(except in the expansion of hTvvirenin ), so that the truncated
series expansion about the inner horizon becomes less and
less of a good approximation as v increases. The opposite
happens at the outer horizon, where higher-order time-
dependent terms are exponentially damped in accordance
with the change in sign of the surface gravity.
To alleviate this problem, instead of performing a series

expansion about a general horizon function Δ, consider
the exact form of the in-vacuum stress-energy tensor for
the specific case of the horizon function of Eq. (3). At the
null-shell boundary, outgoing null geodesics in the in
region satisfy

r ¼ v0 − uin
2

; ð53Þ

while outgoing null geodesics in the out region satisfy
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v0 − uout
2

¼ rþ A
ðr − r−Þ

þ B
ðr − r−Þ2

þ C ln

���� r − r−
r−

����þD ln

���� r − rþ
rþ

����; ð54Þ

where the constants A, B, C, and D define a tortoise
coordinate (via dr=dr� ¼ Δ); their exact form in terms of
the parameters rþ, r−, a2, andM is not too enlightening and
will not be given here. After matching these solutions at the
null boundary, the resulting stress-energy tensor can then
be calculated through Eqs. (48) and (51). Instead of
calculating the full u- and v dependence of the conformal
factor C, one may note that each term on the right-hand side
of Eq. (51) will contribute a separate additive term to the
total stress-energy tensor: the contribution from the horizon
function Δ has already been calculated as the static
Boulware term of Eqs. (49), and the second state-dependent
term will approximately equal the Schwarzian derivative of
uinðuoutÞ, divided by −24π [41].
The result for the normal stress components (for sim-

plicity the shear stress components are ignored in what
follows, since they will generally vanish in the horizon
limit) of the renormalized stress-energy tensor in the in-
vacuum state, evaluated at the outer horizon (where uin ¼
v0 − 2rþ and r ¼ rþ), is

lim
r→rþ

hTuuirenin ¼ 0; ð55aÞ

lim
r→rþ

hTvvirenin ¼ −
1

96π2r2þ

κðrþÞ2
2

; ð55bÞ

while the same components evaluated at the left leg of the
inner horizon (where uin ¼ v0 and r ¼ r−) simplify to

lim
r→r−

hTuuirenin ¼ 1

96π2r2−

a2 − 3r−ðrþ þ r−Þ
2rþr3−

; ð56aÞ

lim
r→r−

hTvvirenin ¼ 0: ð56bÞ

The outer-horizon value of hTuuirenin vanishes because the
state-dependent term is proportional to κðrþÞ2, which
exactly cancels the same factor in the Boulware term of
Eq. (49a), while the inner-horizon value of hTvvirenin
vanishes because both the state-dependent and Boulware
terms are identically zero.
At the outer horizon, the interpretation of Eqs. (55) is that

a steady negative ingoing flux counters the outgoing
Hawking radiation at infinity and causes the outer horizon
to shrink over time, while no outgoing flux is observed at
the outer horizon (otherwise, the stress energy would
diverge there when written in coordinates that are regular
across the horizon).
At the left leg of the inner horizon, the interpretation of

Eqs. (56) is that the vanishing surface gravity removes any

ingoing flux that might shift the position of the inner
horizon, but the outgoing flux from the collapse vacuum is
nonzero and therefore causes divergent, singular behavior
when switching over to Kruskalized coordinates that are
regular across the inner horizon.

3. Unruh vacuum

The final vacuum state that will be considered here is the
(past) Unruh vacuum j0iU [29], which is the late-time
(u → ∞) limit of the in Minkowski state. This state
describes the steady-state collapse dynamics of a black
hole by replacing the past horizon of an eternal black hole
spacetime (such as the inner-extremal regular black hole
model) with a semiclassically singular surface that sources
exponentially redshifting modes.
The appropriate conformal factor for the Unruh state is

C ¼ du
dU

Δ; ð57Þ

where u is the standard outgoing Eddington-Finkelstein
coordinate and U is the outgoing Kruskal-Szekeres coor-
dinate of Eq. (50). The resulting components of the
renormalized stress-energy tensor are

hTuuirenU ¼ 1

192π2r2
ðκ0ðrÞΔðrÞ − κðrÞ2 þ κðrþÞ2Þ; ð58aÞ

hTvvirenU ¼ 1

192π2r2
ðκ0ðrÞΔðrÞ − κðrÞ2Þ; ð58bÞ

hTuvirenU ¼ hTvuirenU ¼ 1

192π2r2
κ0ðrÞΔðrÞ: ð58cÞ

Consider the behavior of Eqs. (58) for the horizon function
of Eq. (3). At the outer horizon, the only nonzero double-
null component of hTμνirenU is the usual ingoing vv term
contributing to the shrinking of that horizon. However, at
the inner horizon, the only nonvanishing component is the
uu component, which is proportional to the square of the
outer horizon’s surface gravity. As a result, conversion to a
set of coordinates that are regular across horizons will yield
a physical divergence in hTμνirenU along the left leg of the
inner horizon. This divergence is of the exact same form as
that found in the effective temperature calculations of
Eq. (16a)—even though the inner horizon’s surface gravity
may vanish, the semiclassical flux diverges at the inner
horizon because the surface gravity of the outer horizon
(which determines the quantum modes’ exponential peel-
ing rates) is nonzero.

B. Pragmatic mode-sum renormalization

One may wonder whether the divergence of the renor-
malized stress-energy tensor at the inner horizon is simply
an artifact of the Polyakov restriction to 1þ 1 dimensions,
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which does not account for the backscattering of angular
modes. To test whether this is the case, the inner-horizon
limit of the 3þ 1D renormalized stress-energy tensor will
be calculated numerically using a prescription developed
by Levi and Ori known as pragmatic mode-sum renorm-
alization (PMR) [42–44].
In the PMR prescription, hTμνi is renormalized with

covariant point splitting, where the stress-energy tensor is
built out of the field’s two-point function and its deriva-
tives. The resulting quantity will formally diverge when the
coincidence limit is taken, but it will remain finite when a
geometrically constructed counterterm is subtracted from
the bare stress-energy tensor. Covariant point-splitting
renormalization usually has the numerical difficulty that
both the bare stress energy and the subtracted counterterm
formally diverge, so that a finite result can only be obtained
when both quantities are regularized to yield analytic
closed forms that can be subtracted. The way PMR over-
comes this obstacle is by bringing both the bare term and
the counterterm under the same mode sum, so that the
subtraction can be carried out in a finite fashion mode
by mode.
If a massless, minimally coupled scalar field ϕ is placed

over the spherically symmetric spacetime of Eq. (1) with
the inner-extremal regular horizon function of Eq. (3), that
field will obey the wave equation □ϕ ¼ 0. Decomposing
the field into a sum of modes via

ϕðxÞ ¼
X∞
l¼0

Xl
m¼−l

Z
∞

0

dωe−iωtYlmðθ;φÞψωlðrÞ ð59Þ

leads to the following wave equation for the radial mode
functions ψωl:

dψωl

dr�2
þ
�
ω2 −

�
lðlþ 1Þ

r2
þ 2κ

r

�
Δ
�
ψωl ¼ 0; ð60Þ

where r� is the tortoise coordinate defined by dr=dr� ¼ Δ
as in Eq. (54), and κðrÞ is the generalized surface gravity
of Eq. (2).
The Unruh state for this field ϕ is specified by the

following boundary conditions on the set of ingoing modes
ϕin
ωl ≡ e−iωtψ in

ωl and outgoing modes ϕup
ωl ≡ e−iωtψup

ωl:

ϕin
ωl →

�
0; past null infinity

e−iωU; past horizon
; ð61aÞ

ϕup
ωl →

�
e−iωv; past null infinity

0; past horizon
; ð61bÞ

with the Kruskal-Szekeres coordinate U of Eq. (50), the
Eddington-Finkelstein coordinate u≡ t − r� (both in the
interior and the exterior), and where the “past horizon”

denotes the surface for which r� → −∞ and t → −∞ (both
in the interior and the exterior).
In this vacuum state, renormalization of the stress-energy

tensor by θ-splitting PMR yields the following formulas for
the normal stress components evaluated at the inner
horizon:

hTuuirenU ðr−Þ ¼
X∞
l¼0

2lþ 1

8π

�Z
∞

0

dωÊU
ωl − β

�
; ð62aÞ

hTvvirenU ðr−Þ ¼ hTuuirenU ðr−Þ −
1

4πr2−

X∞
l¼0

LU
l ð62bÞ

[16], where

ÊU
ωl ¼ ω

4πr2−
ðjAωlj2ð1þ ðcoth ω̃ − 1Þjρupωlj2Þ

þ cschω̃ReðρupωlAωlBωlÞÞ; ð63aÞ

LU
l ¼ 2lþ 1

4π

Z
∞

0

dωωðcoth ω̃ − 1Þjτupωlj2; ð63bÞ

where ω̃≡ πω=κðrþÞ, and where ρupωl, τ
up
ωl, Aωl, and Bωl

are scattering coefficients described in more detail below.
The above expressions for the components of the

renormalized stress-energy tensor at the inner horizon were
originally derived for Reissner-Nordström black holes, but
the derivation was carried out with sufficient generality so
that it also can be applied to the present case of spherical
inner-extremal regular black holes with minimal changes.
The most noticeable difference aside from the alternative
specification of the horizon function Δ is in the form of
the blind-spot counterterm β in Eq. (62a), which represents
the asymptotic large-l plateau value of the integral
immediately preceding it. In Reissner-Nordström, one
has β ¼ ðκðr−Þ2 − κðrþÞ2Þ=ð24πr2−Þ [16], but the deriva-
tion of this analytic expression (in particular, the large-l
forms of the scattering coefficients derived in Ref. [36])
rely on the Reissner-Nordström form of the horizon
function in several crucial ways. When the inner-extremal
horizon function of Eq. (3) instead is used in the radial
wave Eq. (60), the relevant asymptotic solutions can no
longer be written in terms of Bessel functions near the inner
horizon (nor any other well-understood special functions).
An analytic form for β may still be possible for the inner-
extremal case through a form of Frobenius matching;
however, here it suffices to compute β numerically, since
the sum of Eq. (62a) quickly reaches a plateau value within
the desired precision after only a few of the lowest-l terms
are included. Regardless, as will be seen, the divergence of
at least one component of hTμνiren can be shown without
making any assumptions about β.
The scattering coefficients ρupωl, τ

up
ωl, Aωl, and Bωl are

computed by numerically integrating the radial wave
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Eq. (60) for a set of Eddington-Finkelstein modes propa-
gating between the asymptotic boundaries for both the
exterior and interior black hole sectors. In the exterior
sector, the reflection coefficient ρupωl gives the fraction of
outgoing waves emitted from the outer horizon in the
asymptotic past that reflect back to the outer horizon, while
the transmission coefficient τupωl gives the remaining portion
of waves that reach infinity:

ψup
ωl →

(
eiωr

� þ ρupωle
−iωr� ; r� → −∞

τupωle
iωr� ; r� → ∞

: ð64Þ

The reflection coefficient ρupωl is related to the transmission
coefficient τupωl through the condition jρupωlj2 þ jτupωlj2 ¼ 1

resulting from Wronskian conservation of solutions for the
radial wave Eq. (60).
In the interior sector, where r� becomes a timelike

coordinate, free incoming waves at the outer horizon scatter
into a superposition of ingoing and outgoing waves at the
inner horizon with the corresponding reflection and trans-
mission coefficients Aωl and Bωl:

ψup
ωl →

(
e−iωr

�
; r� → −∞

Aωleiωr
� þ Bωle−iωr

�
; r� → ∞

: ð65Þ

For these interior scattering coefficients, which need not
remain bounded, the Wronskian condition implies that
jBωlj2 − jAωlj2 ¼ 1.
Once these scattering coefficients are computed numeri-

cally for each set of modes specified by ω and l, the
quantity ÊU

ωl from Eq. (62a) can be integrated over a
sampled set of frequencies with the help of third-order
Hermite interpolation built into the software package
Mathematica. In practice, instead of sampling points all
the way out to ω → ∞, computations of the integrand ÊU

ωl
are terminated once it enters deep into the regime in which
it decays as ω · e−ω=k for some positive k, after which the
integrand is analytically extended to infinity with the
appropriate extrapolation. The values of this integrand
for the l ¼ 0 and l ¼ 1 modes are shown in the left panel
of Fig. 1.
For numerical computations, the outer and inner hori-

zons are chosen to lie at the following radii:

rþ ¼ 2M; r− ¼ l

�
1þ α

l
M

þO
�

l2

M2

��
; ð66Þ

where M is the mass of the black hole, α is an order-unity
parameter, and l is a regularization length scale often
identified as the Planck length, where semiclassical gravity
breaks down (though it should be noted that for the present

FIG. 1. Left panel: numerically computed values of the integrand ÊU
ωl from Eq. (62a) for the l ¼ 0 (blue) and l ¼ 1 (orange) modes.

The area under each of these curves (which approaches the constant β as l → ∞) is used to calculate the Unruh-state renormalized
stress-energy component hTuuirenU evaluated at the inner horizon. Right panel: numerically computed values of luminosity l-modes LU

l
from Eq. (63). The sum of all these values from l ¼ 0 to l ¼ ∞ yields the Hawking outflux 4πr2−ðhTuuirenU − hTvvirenU Þ of Eq. (62). All
modes are positive and drop to zero exponentially as l increases. The fact that the sum over all these points yields a nonzero value
indicates that at least one (Kruskalized) component of the renormalized stress-energy tensor diverges at the inner horizon of spherical
inner-extremal regular black holes. The constants used for both the left and right panels are α ¼ 1, l=M ¼ 1=100, and a2=M2 ¼ 1=10.
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choice of constants such an identification cannot be upheld
as it would imply that the black hole weighs less than a
single grain of sand). The numerical computations done
here use the same choices for these constants as in
Ref. [10]: α ¼ 1 and M=l ¼ 100.
In the left panel of Fig. 1, though the spectra for only the

lowest two angular modes (l ¼ 0 and l ¼ 1) are shown, all
higher-l modes appear visually similar to the l ¼ 1
spectrum on that plot, as the integrated spectrum quickly
plateaus to the value β as l is increased. This constant is
numerically found to equal approximately 1.4 × 104M−4,
which is consistent with the parameter range one might
expect from an analysis of Reissner-Nordström black holes
(in particular, the inner-extremal β for this choice of
parameters coincides with the Reissner-Nordström β for
a black hole with charge-to-mass ratioQ=M ≈ 0.427). As a
result, the uu component of the Unruh-state renormalized
stress-energy tensor at the inner horizon from Eq. (62a) is
calculated to be 8.9 × 105M−4. Since this value is nonzero,
the corresponding stress-energy component for a set of
coordinates that are regular through the inner horizon, such
as the Kruskal coordinates of Eq. (50), will diverge.
Since the inner-extremal regular black hole spacetime

under consideration here is spherically symmetric and static,
energy-momentum conservation implies that in spherically
symmetric, static quantum states like the Unruh state, the
quantity

4πr2ðhTuuirenU − hTvvirenU Þ ð67Þ

must be conserved everywhere in the spacetime [16]. For
some vacuum states like the Hartle-Hawking state, this
constant trivially vanishes, but for the Unruh state, it can be
evaluated at the inner horizon as the sum

P∞
l¼0 L

U
l from

Eqs. (62b) and (63b). For the Unruh state, this luminosity
coincides precisely with the Hawking outflux. For the choice
of inner-extremal parameters used throughout this section,
the computed Hawking outflux equals 6.81142 × 10−5M−2.
To obtain this value, similar to the methodologies described
above, the external scattering coefficient is sampled for a set
of frequencies and extrapolated with the knowledge that at
high frequencies, the integrand of Eq. (63b) behaves as
ω · e−2ω̃, while at low frequencies, it behaves as a power
law in ω. Then, the spectrum is integrated over all
frequencies and summed over larger and larger values of
l until convergence is reached, as shown in the right panel
of Fig. 1.
The fact that the Hawking outflux does not vanish at the

inner horizon indicates that hTuuirenU and hTvvirenU can never
simultaneously equal zero and therefore that at least one
component (in coordinates that are regular across the inner
horizon) of the renormalized stress-energy tensor will
always diverge there. The remarkable aspect of this result
is that the semiclassical divergence occurs regardless of
anything happening in the interior, such as a vanishing

surface gravity at the inner horizon or some anomalous
scattering governed by Aωl and Bωl. Rather, from
Eq. (63b), this divergence depends only on the external
portion of the spacetime, characterized by the outer
horizon’s surface gravity κðrþÞ and the external trans-
mission coefficient τupωl.

IV. OUTLOOK

In the absence of a full theory of quantum gravity, one
may hope that using an effective-field theory to describe the
semiclassical behavior of gravity (valid up the Planck
energy) would be enough to provide a complete model
of astrophysical black holes formed from collapse. If this
were true, one should be able to write down a completely
classical, singularity-free metric to describe the black hole,
with some contributions from both classical and semi-
classical sources via Eq. (6). The inner-extremal regular
black hole metrics of Eqs. (1) and (20) are two potential
classes of such models, especially promising due to their
avoidance of the classical mass inflation instability.
The key takeaway of the present analysis is that for black

holes formed from astrophysical collapse, no regular black
hole models with an inner horizon will be semiclassically
stable and regular, regardless of whether or not the inner
horizon is fine-tuned so that its surface gravity vanishes
(like in the inner-extremal models). An Unruh-state semi-
classical divergence at the inner horizon is driven by both
the inner and outer horizons’ surface gravities, so that the
only singularity-free black holes models that can avoid the
semiclassical instability are extremal black holes.
The semiclassical divergence present at the inner horizon

of inner-extremal regular black holes has here been dem-
onstrated with the calculation of several different important
semiclassical quantities. First, the effective Hawking tem-
perature κeff was calculated for inertial ingoing and outgoing
observers passing through the inner horizon, for both
spherical (Sec. II B) and rotating (Sec. II C) inner-extremal
regular black holes. The effective temperature was found to
diverge as ðr − r−Þ−1 for outgoing observers at the inner
horizon looking up at the sky above and as ðr − r−Þ−3 for
ingoing observers at the inner horizon looking down at the
horizon below (the factor of 3 corresponds to the number of
degenerate inner horizons, equal to the lowest nonzero order
in a local expansion of the horizon function Δ).
Second, the renormalized stress-energy tensor for a

massless, scalar field in the spherical inner-extremal geom-
etry has been calculated in Sec. III A using the Polyakov
approximation (i.e. averaging over the angular degrees of
freedom so that an exact answer can be obtained in 1þ 1
dimensions). The normal stress component of this tensor in
outgoing Eddington-Finkelstein coordinates (hTuuiren)
remains nonzero at the inner horizon in both the Unruh
and Minkowski in-vacuum states, which indicates that the
physical stress energy will diverge when one transforms to
a set of coordinates that are regular across that surface.
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Finally, to confirm that the 1þ 1D calculations of
Sec. III A are not missing any crucial information from
the scattering of higher-l angular modes in the full 3þ 1
dimensions, the renormalized stress-energy tensor has been
calculated numerically for a specific choice of parameters in
Sec. III B using pragmatic mode-sum renormalization. To
do so requires finding the exterior and interior scattering
coefficients for free waves traveling from infinity to the
outer horizon and from the outer horizon to the inner
horizon, respectively. The result is the same as in the 1þ 1D
case: the renormalized stress energy in outgoing Eddington-
Finkelstein coordinates does not vanish at the inner horizon,
so that a semiclassical singularity will emerge there if the
spacetime remains static. This divergence will always occur
for at least one leg of the inner horizon, since the difference
hTuuirenU − hTvvirenU in the Unruh state is always proportional
to the nonzero Hawking outflux.
It would thus appear that any semiclassically self-

consistent model of a regular black hole one may come

up with cannot have an inner horizon that is spatially
separated from the outer horizon, no matter how degenerate
it may be. It would be interesting to analyze how the
semiclassical backreaction dynamically affects the inner-
extremal geometry if the constraints of staticity are relaxed
—the inner horizon may evaporate outward to meet the
outer horizon and perhaps evolve to a new geometry without
a black hole, for example. However, the vanishing of
hTvviren in Eqs. (56) and (58) at the inner horizon offers
an indication that forcing the inner horizon’s surface gravity
to vanish only strengthens the semiclassical divergence,
since it is precisely this surface gravity that would cause the
inner horizon to evaporate. Instead, it is likely that the
semiclassical inflation near the inner horizon will occur too
rapidly for the geometry to have time to react, so that a
curvature singularity forms. One must then appeal to higher-
order theories of quantum gravity to understand how
spacetime evolves further [45].
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