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We study the partition function and entropy of U(1) gauge theories with multiple boundaries on the black
hole background. The nontrivial boundary conditions allow residual zero longitudinal momentum modes
and Wilson lines stretched between boundaries. Topological modes of the Wilson lines and other modes are
also analyzed in this paper. We study the behavior of the partition function of the theory in different
temperature limits, and find the transitions of dominances of different modes as we vary the temperature.
Moreover, we find two different area contributions plus logarithm corrections in the entropy—one being
part of the bulk fluctuation modes can be seen for finite-temperature black holes, and the other coming from
vacuum degeneracy can only be seen in the superlow temperature limit. We have confirmed the mechanism
and entropy found in the superlow temperature limit also persist for extremal black holes. The gauge
fluctuation on the black hole background might help us understand some fundamental aspects of quantum
gravity related to gauge symmetries.
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I. INTRODUCTION

It is well known that black holes are thermodynamic
systems as seen by outside observers [1–8], which might
reflect the properties of the underlying microscopic struc-
tures. The so-called central dogma [9] claims that the
number of the microscopic degrees of freedom of a black
hole should be the Bekenstein-Hawking entropy

S ¼ Area
4ℏGN

∝
Area
l2p

; ð1Þ

and the whole system unitarily evolves under time evolu-
tion. lp is the Planck length.
So, one of the most important questions in black hole

physics is “what is the theory that describes the micro-
scopic structure of a black hole?” Many different research
programs are trying to give a microscopic explanation and
reproduce the Bekenstein-Hawking entropy by counting
the microstates. Those research programs can be more or
less divided into two categories.

(i) The first train of thought is to add or find micro-
scopic states near the horizon. Usually, one expects

the quantum fields living close to the horizon or
entanglement pairs across the horizon would have
an entropy contribution proportional to the area
[10–18]. There aremore proposals, like loop quantum
gravity [19–24], that can also be categorized here.

(ii) The second set of ideas is to explain the Bekenstein-
Hawking entropy by finding hidden symmetries,
which are mainly used to understand the entropy
of (near-)extremal black holes. To reproduce the
universal coefficient 1=4 in the Bekentein-Hawking
entropy, one always needs to use a powerful tool:
symmetry. If there are hidden conformal symmetries
near the horizon, the density of states of two-
dimensional CFT is controlled by the Cardy formula

]25,26 ]. The universality of the Cardy formula can
be used to reproduce the Bekenstein-Hawking en-
tropy with the coefficient 1=4 [27–30]. Hidden
symmetries (can also be Bondi-Metzner-Sachs,
Carrollian, and others) and their relation with black
hole entropy are extensively studied in the literature
[31–44]. The holographic or stringy methods
[45–50] also heavily rely on the symmetries of
spacetime. However, those methods related to sym-
metries usually work only in (near-) extremal black
hole cases, and are difficult to be generalized to
finite-temperature black holes.

Despite completely different starting points, lots of
theories in both categories successfully reproduced the
Bekenstein-Hawking entropy. Is it a problem to have so
many different explanations for black hole microstates?
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There are two obvious responses to the above question.
(i) There are common structures that lie behind those
theories, and we may find a unified description that
explains why those different theories are able to count
the microscopic structures of black holes. (ii) Some of the
theories describe the wrong physics, and the corresponding
entropy was reproduced by counting fake microscopic
structures of the black hole. This paper aims to address
this problem using a toy model of gravitational fluctuations
on a black hole background. Our final conclusion tends to
say that the two categories of theories are both counting the
right microscopic structures of the black hole although they
are counting different things. Moreover, the microstates
that are used to explain the entropy of finite temperature
black holes are not the same ones for extremal black holes.
Gauge theories on a fixed background can be regarded as

good toy models of gravitational fluctuations around saddle
points of gravity theory. The one-loop correction around a
fixed saddle is captured by the linearized Einstein-Hilbert
action, which is a massless quadratic Fierz-Pauli action.
The massless Fierz-Pauli theory is a gauge theory with two
physical polarizations; thus, we can use gauge theories on
classical solutions of Einstein’s theory as toy models of
metric perturbations. The U(1) gauge theory has a simpler
structure to deal with and can properly capture the gauge
subtleties of the gravity theory, which is the theory we will
focus on in this paper.
As a brief summary of the main results, we study

the Euclidean path integral of U(1) gauge theory living
between two parallel boundaries. The system is put on a
black hole background with the boundaries perpendicular
to the radius direction of the black hole r. We allow residual
degrees of freedom of Ar on the boundaries. In the first
paper of the series [51], we studied the flat case with two
boundaries and found nonlocal effects due to the interplay
between the boundaries. Here, the analysis is generalized to
the curved spacetime, and we carefully study different
behavior of the gauge theory on the black hole background.
The physical variables of the theory are bulk fluctuation
modes, zero longitudinal momentum mods of Ar, Wilson
lines stretched between the two boundaries, and other
modes.1

The bulk fluctuation modes whose entropy scales as the
volume of the region are always dominant at high temper-
atures. The bulk part also contains a contribution propor-
tional to the area of the horizon plus logarithm corrections
due to the highly curved spacetime near the horizon. As the
temperature cools down, we would mainly see the fluc-
tuation modes of edge residual degrees of freedom and the
Wilson lines. The entropy of those modes scales as the area
of the boundaries multiplied by the temperature squared.
For superlow temperatures, there is a localization of modes
on ∂τϕ ¼ ∂τW ¼ 0. Performing the path integral, the

corresponding entropy of those modes scales as the horizon
area divided by the Planck length squared. The constant
modes and topological modes of the boundary-stretched
Wilson lines contribute logarithm corrections to the entropy
at superlow temperatures. So, we also get area contribution
plus logarithm corrections at superlow temperatures.
Now, we have seen that the Bekenstein-Hawking-like

entropies and logarithm corrections come from two differ-
ent places. The first contribution comes from the bulk
fluctuation modes, which agrees with the entropy found in
the “brick wall” model [10]. Those degrees of freedom
correspond to the degrees of freedom living very close to
the horizon. The second contribution is because the zero
longitudinal momentum modes of Ar and the boundary-
stretched Wilson linesW are localized in the phase space at
∂τϕ ¼ ∂τW ¼ 0, whose entropy is coming from the zero-
point energy. Those modes correspond to the vacuum
degeneracy near the horizon and can be explained by
symmetry-breaking patterns. Note that the fluctuation
modes dying off at superlow temperature was well studied
[52,53], so the extremal black hole entropy coming from a
different mechanism, like the zero-point energy discussed
in the current paper, is a reasonable way out.
It is interesting to notice that the first contribution only

appears in finite-temperature black holes, and the second
one only appears in the superlow temperature limit.
We thus infer that the two categories of theories might
correspond to different modes found in this calculation.
The attempts that are trying to add or find quantum
structure near the horizon are counting the same thing as
the contributions contained in the bulk fluctuation modes.
Furthermore, the attempts that are trying to find hidden
symmetries for extremal black holes and explaining the
black hole entropy from a symmetry-breaking viewpoint
are counting the same thing as the modes dominating at the
superlow temperatures. The black hole entropy for finite-
temperature black holes and extremal black holes might be
counting completely different things.
In this paper, we study the partition function of U(1)

gauge theories with multiple boundaries on a black hole
background. The paper is organized as follows. In Sec. II,
we briefly review the main results from the first paper of
this series, where we studied the flat case. The flat case can
be regarded as a guide for our black hole calculation. And
then, we analyze the allowed boundary conditions and
derive effective actions for different modes in Sec. III. We
perform the Euclidean path integral in Sec. IV, and discuss
different behavior of the fields at different temperatures.
The same mechanism is confirmed in the extremal black
hole case in Sec. V. Section VI is a summary of the whole
paper and we also provide some further physical discussion
there. Appendix A is devoted to studying a different but still
interesting set of boundary conditions. More details of
deriving the effective action are exiled to the Appendixes B
and C. The path integral of fluctuation modes in curved
spacetime is demonstrated in Appendix D.1Like the topological modes of the Wilson lines.
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II. A BRIEF REVIEW OF THE FLAT CASE

In the first paper of the series [51], we studied gauge
theories between two parallel boundaries with nontrivial
boundary conditions on a flat background. We allowed
residual degrees of freedom of Ar to survive on the
boundary, with the direction perpendicular to the boundary
denoted as r. Besides the residual modes due to the
boundary conditions, we also found Wilson lines stretched
between different boundaries because the interplay between
boundaries is an interesting mode of the system. The
symplectic form and the canonical commutation relations
were carefully studied, which helped us to confirm the
dynamical variables and measures in the phase space. It
was shown that there are bulk fluctuation modes, boundary
edge modes, Wilson lines, and other interesting modes in
the phase space. With the canonical analysis, we derived
the partition function and entropy via the Euclidean path
integral method, and studied the different behavior of those
modes by varying the temperature of the system.
The main results are shown in Fig. 1. At high temper-

atures, the partition function and entropy are the standard
ones for blackbody radiation at temperature T. The entropy
contains two copies of physical polarizations and is
proportional to the volume between the two boundaries
multiplied by T3. As the temperature becomes cooler than
before, the surviving zero longitudinal momentummodes ϕ
start to be the most important contribution. Also, boundary-
stretched Wilson lines W have similar behavior. ϕ and W
just behave like two lower-dimensional massless scalar
fields living on the boundary. At relatively high temper-
atures, the fluctuation modes of ϕ andW are dominant and
their entropies scale as the area of the boundary multiplied
by T2. At superlow temperatures, all the fluctuation
contributions die of,; and we are left with the constant
and winding modes of W, whose entropies more or less
scale as the logarithm of the length scales of the theory, as

shown in Fig. 1. Note that the winding modes of W arise
due to the map between the Euclidean time circle and U(1)
symmetry.
There are two transitions of dominance as can be seen

from Fig. 1. The bulk fluctuation modes always dominate
in the high-temperature limit, and the entropy scales as the
volume multiplied by temperature cubed. As lower temper-
ature comes, the area contribution starts to dominate. At
superlow temperatures, the fluctuation contribution is not
important anymore, and the only contribution is from the
constant modes and winding modes of the field W.
The flat case was regarded as a toy model of the more

general situation, for example, curved spacetime as the
background. With the canonical analysis and partition
function calculation of the flat case, we expect to see a
similar set of dynamical variables in the phase space.
Moreover, we can follow a similar logic in decomposing
the variables and calculating the partition function and
entropy.

III. GAUGE FIELDS ON SCHWARZSCHILD
BLACK HOLE

Black holes are systems associated with temperatures
and entropies, and the Euclidean method for finite temper-
ature systems also works for black holes. However, the
black hole system is special compared to the flat case
discussed, because the Bekenstein-Hawking entropy is
always proportional to the area of the horizon in units of
GN . As has been reviewed in the previous section, there are
interesting transitions of dominances of different modes
arising due to different reasons; one might speculate that a
similar phenomenon would also happen in black hole
systems, which might explain something deep in the black
hole mechanism.
The background we are interested in is a Euclidean

Schwarzschild black hole with metric

ds2 ¼
�
1 −

rs
r

�
dτ2 þ

�
1 −

rs
r

�
−1
dr2 þ r2dΩ2; ð2Þ

FIG. 1. Sketch of the entropy of gauge fields with different
temperatures in the flat case. The red line demonstrates the
dominant contribution, and the overall entropy is the sum of
different contributions.

FIG. 2. Geometry of a Euclidean black hole, where every point
on the cigar is an S2. We put two boundaries on this background,
at the stretched horizon (r ¼ rs þ ε) and distance L away from
the horizon (r ¼ rs þ L) separately.
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where the Schwarzschild radius is rs ¼ 2GNM. Note that
one important difference between the flat case and black
hole case is that we are using spherical coordinates rather
than Cartesian here. The inverse temperature of the system
(2) is identified with the periodicity of the Euclidean time β,
to avoid conical singularity at the horizon. The geometry
can be illustrated as the so-called “cigar” geometry, as
shown in Fig. 2. Following ’t Hooft [10], we put two
boundaries on this background and study different temper-
ature limits of the system, as shown in Fig. 3. The first
boundary is located at a very small distance ε away from the
horizon, known as the “stretched horizon” [54]. The other
boundary is at the distance L away from the horizon, which
is the surface of the box similar to the flat case.
We will mainly discuss two different limits of the black

hole system, as shown in Fig. 3. In the high-temperature
limit L ≫ rs, shown in the first panel, the situation is
supposed to be similar to the flat case because the existence
of the small black hole merely gives a periodicity to the
Euclidean time, i.e. a temperature T ¼ 1=β, to the system.
On the other hand, in the low temperature limit L ≪ rs, we
expect the results to be qualitatively different from the high-
temperature limit and share some similarities with the
extremal black hole case, the behavior of which was also
well studied in literature [45–47,55–59]. This means that
there will be transitions of different behaviors, which might
be explained by the symmetry-breaking pattern.
We can always redefine ρ ¼ r − rs and write the

metric as

ds2 ¼ ρ

ρþ rs
dτ2 þ ρþ rs

ρ
dρ2 þ ðρþ rsÞ2dΩ2: ð3Þ

Now the two boundaries are at ρ ¼ ε and ρ ¼ L separately.
In order to derive the lower-dimensional effective action by
dimensional reduction, it is convenient to define the proper
distance y along the radius direction

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρþ rs
ρ

r
dρ: ð4Þ

The proper distance y can be integrated out and read as

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðρþ rsÞ

p
þ rs arcsinh

ffiffiffiffi
ρ

rs

r
: ð5Þ

Inverting the above equation, one can express ρ as a
function of y and rewrite the black hole metric as

ds2 ¼ ρðyÞ
ρðyÞ þ rs

dτ2 þ dy2 þ ½ρðyÞ þ rs�2dΩ2; ð6Þ

which will be the metric we mainly work with. Note that y
takes value from y1 to y2, with

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðεþ rsÞ

p
þ rs arcsinh

ffiffiffiffi
ε

rs

r
;

y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ rsÞ

p
þ rs arcsinh

ffiffiffiffi
L
rs

s
: ð7Þ

Before moving to the gauge theory and boundary
conditions, let us briefly discuss issues related to the
stretched horizon. Here the stretched horizon can be
regarded as an auxiliary timelike surface, where we can
put boundary conditions on. There are different opinions
towards the stretched horizon2; for example, it is believed

FIG. 3. Different temperature limits of black holes in a box. Left: high temperature limit L ≫ rs, i.e. the small black hole case. The
temperature of the system is T ∝ 1=rs. The mere role of the black hole is to give a very high temperature T to the system. We expect the
final results to be similar to the high-temperature limit of the flat case. Right: low temperature limit of the system L ≪ rs, i.e. large black
hole case. We expect the fluctuation modes should be less important, but we still see Bekenstein-Hawking-like entropy.

2Mathematically, one can put boundaries at any location. The
original physics can be recovered by gluing the two sides along
the edge, which means one needs to integrate over the boundary
conditions along the boundary. So it is not strange to put a
boundary near the horizon. However, whether is it reasonable to
put a physical boundary near the horizon is unknown because any
object near the horizon would fall into the black hole. Although
we largely mimic the flat case calculation, one may need to keep
in mind that the black hole situation might not be the same as the
case of the parallel plates.
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that only the physics outside of the stretched horizon is well
described by local QFT. In this case, the stretched horizon
is a physical surface [60], and ε can be regarded as the UV
regulator of the QFT outside of the horizon and can be
taken to but not exceed the Planck scale lp. Whether the
stretched horizon is a physical surface or an auxiliary
surface does not make much difference for our calculations
here, and ε will be made very small either way. However,
one does need to pay attention to the order of taking
different limits of length scales. As we will see, in the low-
temperature limit β ≫ L, taking the ε → 0 limit would
introduce localizations on the spaces of some specific
modes, which is essential to get the area entropy contri-
bution. However, one may not see this phenomenon if the
order of taking the above limits is messed up.

A. Boundary conditions

Now, let us put U(1) gauge theories between the
boundaries, with Euclidean action

SE ¼ 1

4e2

Z
M

d4x
ffiffiffi
g

p
FμνFμν: ð8Þ

As analyzed in [51], to have a well-defined variation
principle, there are two sets of interesting boundary
conditions.
(1) The most interesting boundary condition for this

paper is the situation where we allow residual Ar
modes on boundaries

δAaj∂M ¼ 0; δArj∂M ¼ fðxaÞ; ð9Þ

where fðxaÞ can have local dependence of xa ¼
ðτ; θ;ϕÞ and Aaj∂M are fixed configurations.

(2) The other interesting boundary condition is
Neumann-like:

Fμνj
∂M ¼ 0: ð10Þ

There can be interesting physics as well, for exam-
ple, the would-be pure gauge modes on the boundary
are not fixed by the boundary condition. Although
this boundary condition is not the main focus of this
paper, we will briefly discuss the physics related to
(10) in Appendix A.

We are mainly going to focus on the boundary condition
(9) on the black hole background. To be precise, the
boundary condition Aa components are fixed to

Aajy¼yα ¼ 0; ð11Þ

where α labels different boundaries. As for the Ay compo-
nent, we can separate it as

AyðxμÞ ¼ ÂyðxμÞ þ
ϕðxaÞ
jyj ; ð12Þ

with ÂyðxμÞjy¼y1 ¼ 0 and jyj ¼ y2 − y1. So ϕðxaÞ more or
less captures the degrees of freedom at the left boundary
y ¼ y1. Besides ϕðxaÞ, there are residual modes at the
boundary y ¼ y2. Following a similar logic from the flat
case, the difference between the two boundaries can be
captured by Wilson lines stretched between the two boun-
daries

WðxaÞ ¼ i
Z

y2

y1

dyÂy. ð13Þ

The boundary-stretched Wilson lines capture the physical
nonlocal effects and will play an important role in our main
calculation. There is no constraint on the boundary configu-
rations of Ay, so we need to integrate all the boundary
configurations of Ay into the path integral.
One can work out the Hamiltonian formulation and

symplectic form to study the phase space of the theory with
the indicated boundary condition. The dynamical variables
in the phase space would be clear from the canonical
analysis, which tells us which degrees of freedom should be
included in the path integral formulation. We have done an
analog analysis for the flat case in paper [51], while we will
not go through all the canonical analysis here. Similar to the
flat case, we would also have bulk modes ÂμðxμÞ, zero
momentum modes along the y direction ϕðxaÞ, and Wilson
lines stretched between the two boundaries WðxaÞ on a
black hole background. We will justify that they are
physical by working out their effective actions.

B. The effective action

The partition function can be calculated by a Euclidean
functional integral over all the dynamical variables in the
theory. For the theory we are studying, we have bulk
fluctuation modes Âμ and the modes arise because of the
nontrivial boundary condition: ϕ and W. So the partition
function can be written as

Z ¼
Z

DÂμDϕDW exp f−SE½Âμ;ϕ;W�g: ð14Þ

The effective action SE is worked out in Appendix B, which
reads as

SE ¼ 1

4e2

Z
M

dτd3x
ffiffiffi
g

p
F̂μνF̂μν

þ 1

2e2jyj2
Z
M

dτd3x
ffiffiffi
g

p ½gab∂aϕ∂bϕ�

−
1

e2jyj
Z

dτd2x½ ffiffiffi
g

p
gab�y¼y2

y¼y1
i∂aW∂bϕ: ð15Þ
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The first part can be directly put into the path integral, so we
can write the partition function for the bulk fluctuation
modes as

ZÂ ¼
Z

DÂμ exp

�
−

1

4e2

Z
M

dτd3x
ffiffiffi
g

p
F̂μνF̂μν

�
: ð16Þ

We will discuss the bulk gauge fixing condition and
evaluate the above partition function in the next subsection.
The rest of the action is

S½ϕ;W� ¼ 1

2e2jyj2
Z
M

dτd3x
ffiffiffi
g

p ½gab∂aϕ∂bϕ�

−
1

e2jyj
Z

dτd2x½ ffiffiffi
g

p
gab�y¼y2

y¼y1
i∂aW∂bϕ: ð17Þ

Note that S½ϕ;W� contains three-dimensional and four-
dimensional parts, while the fields ϕðxaÞ and WðxaÞ only
depend on the transverse coordinates xa. In order to
perform the path integral, we are going to rewrite
S½ϕ;W� into a three-dimensional action

Sð3Þ½ϕ;W� ¼ 1

2e02

Z
dτd2x

ffiffiffi
h

p
½hab∂aϕ∂bϕ�

−
i

2e02

Z
dτd2x

ffiffiffi
h

p
½γ1hττ∂τW∂τϕ

þ γ2hθθ∂θW∂θϕþ γ3hφφ∂φW∂φϕ�: ð18Þ

e0, γ1, γ2, and γ3 are undetermined parameters, which will
be worked out soon. This is more or less like the Kaluza-
Klein reduction from a higher-dimensional action to a
lower-dimensional one.

Now we are going to work out all the parameters in
action (18). More details of the calculations can be found in
Appendix C. Before actually doing that, let us first assume
that the three-dimensional theory uses the same time
coordinate τ as the original one, and the three-dimensional
metric takes the following form:

hab ¼ diagðhττ; R2; R2 sin2 θÞ: ð19Þ
R2 is a parameter in the metric that we are going to fix by
dimensional reduction. With this assumption, we haveffiffiffi
h

p ¼ ffiffiffiffiffiffi
hττ

p
R2 sin θ. To match the first parts in actions

(17) and (18), we need to work out the following problem:

1

2e2jyj2
Z

dτd2x

�Z
y2

y1

dy
ffiffiffi
g

p
gab

�
∂aϕ∂bϕ

¼ 1

2e02

Z
dτd2x

ffiffiffi
h

p
½hab∂aϕ∂bϕ�: ð20Þ

The solution can be easily obtained and can be written as

hττ ¼
LR2

F
;

1

e02
¼ L

e2jyj2
ffiffiffiffiffiffi
hττ

p
¼ 1

e2jyj2
ffiffiffiffiffiffiffi
LF

p

R
; ð21Þ

with

F ≈ 3r2sLþ 3

2
rsL2 þ L3

3
þ r3s lnL=ε: ð22Þ

More details can be found in Appendix C. Now we have
obtained the three-dimensional metric hab and the effective
coupling constant e02. The next step is to calculate the
parameters γ1, γ2, and γ3 in the action (18). We need to
match the rest of the action in (17) and (18), i.e.

1

e2jyj
Z

dτd2x½ ffiffiffi
g

p
gττ�y¼y2

y¼y1
∂τW∂τϕ ¼ γ1

2e02

Z
dτd2x

ffiffiffi
h

p
½hττ∂τW∂τϕ�;

1

e2jyj
Z

dτd2x½ ffiffiffi
g

p
gθθ�y¼y2

y¼y1
∂θW∂θϕ ¼ γ2

2e02

Z
dτd2x

ffiffiffi
h

p
½hθθ∂θW∂θϕ�;

1

e2jyj
Z

dτd2x½ ffiffiffi
g

p
gφφ�y¼y2

y¼y1
∂φW∂φϕ ¼ γ3

2e02

Z
dτd2x

ffiffiffi
h

p
½hφφ∂φW∂φϕ�: ð23Þ

The solution of the Eq. (23) can be obtained as

γ1 ¼ −2jyj
ffiffiffiffi
rs
ε

r
r2s
F
; γ2 ¼ γ3 ¼

2jyj
L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L

Lþ rs

s
: ð24Þ

Now, all the undetermined parameters in the effective action (18) are worked out.
With the effective action (18) at hand, we can perform the path integral to calculate the partition function. The Gaussian

path integral for field ϕ can be easily worked out, and we get an effective action for field W in the meantime. The path
integral over ϕ gives detð∂2Þ−1=2. Then, the corresponding action for W can be expressed as

SW ¼ −
1

2e02

Z
dτd2x

ffiffiffi
h

p
ðγ21hττ∂τW∂τW þ γ22h

θθ
∂θW∂θW þ γ23h

φφ
∂φW∂φWÞ: ð25Þ
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One can always rewrite detð∂2Þ−1=2 as a path integral over field ϕ, and the overall partition function can be expressed as

Zϕ;W ¼
Z

DϕDW exp ½−Sϕ;W �; ð26Þ

with the effective action

Sϕ;W ¼ 1

2e02

Z
dτd2x

ffiffiffi
h

p
ðhab∂aϕ∂bϕþ γ21h

ττð∂τWÞ2 þ γ22h
θθð∂θWÞ2 þ γ23h

φφð∂φWÞ2Þ: ð27Þ

A different way of saying rewriting detð∂2Þ−1=2 as a path integral over fields ϕ is that the path integrals with effective actions
(18) or (27) are the same. The effective action (27) can be explicitly expressed as

Sϕ;W ¼ Sϕ þ SW ð28Þ

with

Sϕ ¼ L
2e2jyj2

Z
dτd2xR2 sin θ

�
F

LR2
∂τϕ∂τϕþ 1

R2
∂θϕ∂θϕþ 1

R2sin2θ
∂φϕ∂φϕ

�
;

SW ¼ 2

e2ðLþ rsÞ
Z

dτd2xr2s sin θ

�
rs
ε

Lr2s þ r3s
F

∂τW∂τW þ 1

r2s
∂θW∂θW þ 1

r2ssin2θ
∂φW∂φW

�
:

The two symbols F and jyj in the above actions are

F ¼ 3r2sLþ 3

2
rsL2 þ L3

3
þ r3s lnL=ε; ð29Þ

jyj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ rsÞ

p
þ rs arcsinh

ffiffiffiffi
L
rs

s
: ð30Þ

Equations (26) and (28) are the partition function and the
effective action that we will mainly focus on. With that at
hand, we can evaluate the partition functions of fields Âμ, ϕ,
and W by the path integral.
Note that it is important to keep the original Euclidean

time coordinate τ as the time coordinate for the three-
dimensional theory because the periodicity of coordinate
time τ is the physical inverse temperature for the observer
who uses the Schwarzschild metric. If one uses different
time coordinates, the physics would be difficult to discuss.
For example, the low-temperature limit for the coordinate
observer can be high temperatures for an observer using a
different coordinate system. So we would always keep τ as
our time coordinate.

IV. BEHAVIOR OF DIFFERENT MODES

In this section, we are going to evaluate the partition
function of the theory in different temperature limits. The
different temperature limits are illustrated in Fig. 3. The
partition function for W and ϕ will be treated separately,
and we will see different behavior in different temperature

limits. The overall partition function can be written as three
parts: bulk contribution ZÂ multiplied by Zϕ and ZW ,

Z ≔ ZÂ × Zϕ × ZW

¼
Z

DÂμe
− 1

4e2

R
M

dτd3x
ffiffi
g

p
F̂μνF̂μν ×

Z
Dϕe−Sϕ

×
Z

DWe−SW : ð31Þ

We are going to calculate the partition function for the bulk
fluctuation modes ZÂ in the next subsection. After that, we
will evaluate Zϕ and ZW in the high- and low-temperature
limits in Secs. IV B and IV C.

A. Bulk fluctuation modes

Now, let us evaluate the entropy of bulk fluctuation
modes. The details of the calculation are exiled to
Appendix D, to avoid being distracted from the main text.
This is the standard blackbody calculation on curved
spacetime. For electromagnetism, we have two physical
polarizations in the bulk, which are both bosonic and
massless. The bulk partition function reads as

lnZÂ ¼ −
4π3

45

1

β3
r4s
ε
−
16π3

45

r3s
β3

ln
L
ε

−
4π3

45

1

β3

�
−
r4s
L
þ 6r2sLþ 2rsL2 þ L3

3

�
; ð32Þ

and the corresponding entropy can be written as
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SÂ ¼ 16π3

45

1

β3
r4s
ε
þ 64π3

45

r3s
β3

ln
L
ε

þ 16π3

45

1

β3

�
−
r4s
L
þ 6r2sLþ 2rsL2 þ L3

3

�
: ð33Þ

Let us look at the first two terms:

S0 ¼
16π3

45

1

β3
r4s
ε
þ 64π3

45

r3s
β3

ln
L
ε
: ð34Þ

First of all, those contributions cannot be seen in the
extremal black hole (or superlow temperature) case where
we have β → ∞ while keeping the radius of the black hole
to be finite. For a finite temperature black hole, defining the
proper distance from the real horizon to the stretched
horizon as δ, we have

δ ¼
Z

rsþε

rs

ffiffiffiffiffiffi
grr

p
dr ≈ 2

ffiffiffiffiffiffi
εrs

p
: ð35Þ

Thus, we have δ2 ≈ 4εrs. For the finite temperature black
hole, with the inverse temperature

β ¼ 8πGNM; ð36Þ

the entropy (34) can be written as

S0 ∝
r2s
δ2

þ ln
Lrs
δ2

: ð37Þ

Those contributions arise because of the redshift between
the horizon and the coordinate observer sitting at infinity.
Any finite frequency modes near the horizon would have
zero frequency as seen by a coordinate observer. We have
an infinite number of states with zero energy, and summing
over all of those states with a UV cutoff would give us the
above result. Those very dense ground states mainly come
from the near-horizon region; thus we have an area
contribution and corrections [60]. This result was used
to understand the Bekenstein-Hawking entropy by some
authors, for example [10], and it was also interpreted as the
entanglement entropy across the stretched horizon [61].3

The other terms

SÂ ¼ 16π3

45

1

β3

�
−
r4s
L
þ 6r2sLþ 2rsL2 þ L3

3

�
∝ Volume × T3 ð38Þ

are entropy of the thermal fluctuation modes of gauge fields
living in the bulk, which can be regarded as the curved

spacetime analog of the blackbody result. SÂ is finite and
more or less proportional to the volume between the two
boundaries multiplied by T3.

B. Zero longitudinal momentum modes of Ar

In this section, we evaluate the partition function for ϕ,
which is zero longitudinal momentum modes of Ar. The
partition function Zϕ can always be written as

Zϕ ¼
Z

Dϕe−Sϕ ; ð39Þ

with the action

Sϕ ¼ L
2e2jyj2

Z
dτd2xR2 sin θ

�
F

LR2
∂τϕ∂τϕþ 1

R2
∂θϕ∂θϕ

þ 1

R2sin2θ
∂φϕ∂φϕ

�
; ð40Þ

with

F ¼ 3r2sLþ 3

2
rsL2 þ L3

3
þ r3s lnL=ε;

jyj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ rsÞ

p
þ rs arcsinh

ffiffiffiffi
L
rs

s
: ð41Þ

The action (40) has different behavior in different temper-
ature limits, and we will see how the entropy contribution
from ϕ changes as we vary the temperature of the system.
One obvious thing to notice is that there is a transition of
dominance in function F shown in Eq. (41) at different
temperatures. The L3 term is the dominant contribution for
high temperatures L ≫ rs, and the UV cutoff ε is absent in
Sϕ. While at low temperatures L ≪ rs, the most important
term is r3s lnL=ε, and we will see different behavior of the
corresponding entropy. We always assume that the short
distance cutoff ε is always much smaller than L and rs.

1. High-temperature limit

Let us first discuss the high-temperature limit rs ≪ L, as
shown in the first panel of Fig. 3. If

r3s ln
L
ε
≪ L3 ð42Þ

is satisfied, then L3 is the most important term in F. In this
case, F can be approximated as

F ≈
L3

3
: ð43Þ

Function arcsinhðxÞ is always much smaller than x for large
value of x, so jyj can be written as jyj ≈ L. Then, the

3However there are different opinions. For instance,
Susskind showed that the contribution should be absorbed by
the renormalization of Newton’s constant GN due to the loop
contribution [62].
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effective action in the high-temperature limit can be
expressed as

Sϕ ¼ 1

2e2L

Z
dτd2xL2 sin θ

�
1

3
∂τϕ∂τϕþ 1

L2
∂θϕ∂θϕ

þ 1

L2sin2θ
∂φϕ∂φϕ

�
: ð44Þ

The effective action for ϕ is just a scalar field living on a
S1 × S2, where the length scale of S1 is β, and the length
scale of S2 is L.
Equipped with the effective action (44), we can directly

calculate the partition function Zϕ shown in (39). We can
absorb the finite constant 1=3 in front of ∂τϕ∂τϕ term in the
action into the redefinition of τ to τ0. Let us suppose the
fluctuation modes of ϕ are

ϕðxaÞ ¼ N ϕ ·
X
ω

X
l;m

eiωτ
0
Ylmðθ;φÞϕ̃ðω; l; mÞ; ð45Þ

where N ϕ is a normalization constant. The partition
function for ϕ in the canonical ensemble can be written as

lnZϕ ¼ −
X
ω

lnð1 − e−β
0ωÞ: ð46Þ

The calculation is similar to the bulk fluctuation modes
calculation demonstrated in Appendix D. We can change
the summation of ω to integration by introducing density of
state gðωÞ, which gives out

lnZϕ ¼ −
Z

∞

0

gðωÞ lnð1 − e−β
0ωÞdω ¼ β0

Z
∞

0

ΓðωÞ
eβ

0ω − 1
dω:

ð47Þ

ΓðωÞ is defined by dΓ ¼ gðωÞdω. According to the disper-
sion relation in this background, ΓðωÞ can be counted as

Γ ¼
X
l;m

β0

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

L2

r
¼ β0

2π

X
l

ð2lþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

L2

r
: ð48Þ

The summation is from l ¼ 0 to the level with energy ω.
Putting everything back into Eq. (47) and changing the
summation of l into the integral, we can write the partition
function as

lnZϕ ¼ β02

2π
L2

Z
∞

0

dω

eβ
0ω − 1

Z
l
d

�
lðlþ 1Þ

L2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

L2

r
:

ð49Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ=L2

p
is exactly the energy carried by a particle

with angular momentum lðlþ 1Þ. Thus we can change a
variable and get

lnZϕ ¼ β02L2

2π

Z
∞

0

dω

eβ
0ω − 1

Z
ω2

0

dx
ffiffiffi
x

p

¼ β02L2

3π

Z
∞

0

ω3dω

eβ
0ω − 1

: ð50Þ

Then the above expression can be worked out, and the
logarithm of the partition function can be expressed as

lnZϕ ¼ π3

45

L2

β02
¼ π3

135

L2

β2
: ð51Þ

Then, the corresponding entropy can be written as

Sϕ ¼ π3

45

L2

β2
: ð52Þ

The above result can be compared with the entropy of ϕ in
the flat case in [51]. Thus, we can conclude that the zero
modes ϕ share similar properties with the flat case in the
high-temperature limit rs ≪ L.
So the high-temperature behavior of field ϕ is just like a

three-dimensional scalar field with inverse temperature β,
whose entropy is standard, as shown in Eq. (52). There is
not much difference with the flat case.

2. Low-temperature limit

As the temperature becomes superlow, rs can be larger
than L, and we arrive at the low-temperature limit of the
system with rs ≫ L, as shown in the second panel of Fig. 3.
As we can see, there is a transition of dominance between
different terms in F, and in the low-temperature limit F can
be approximated as

F ≈ r3s ln
L
ε
: ð53Þ

We also have jyj2 ≈ LðLþ rsÞ. Then, the effective action
for ϕ in the low-temperature limit can be written as

Sϕ ¼ 1

2e2ðLþ rsÞ
Z

dτd2xr2s sin θ

�
rs
L
ln
L
ε
∂τϕ∂τϕ

þ 1

r2s
∂θϕ∂θϕþ 1

r2ssin2θ
∂φϕ∂φϕ

�
: ð54Þ

As discussed before, the time of the three-dimensional
action should always be chosen as the coordinate time τ.
Doing so, the coefficient in front of ð∂τϕÞ2 is fixed and
always much larger than 1. Especially when we take the
real event horizon limit, i.e. the ε → 0 limit, the path
integral localizes on the space of zero energy modes
∂τϕ ¼ 0. Then the partition function of the field ϕ only
depends on the radius of S2.
Because of the localization discussed above, the loga-

rithm of the partition function for the zero-point energy is
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no longer linear in β but only depends on the radius of S2

and UV cutoff, which can be expressed as

lnZϕ ∝ r2s · Λ2: ð55Þ

Let us assume the UV cutoff is the Planck scale, then the
corresponding entropy is of Bekenstein-Hawking entropy
magnitude

S ∝
r2s
l2p
: ð56Þ

So, we can say that, in the low-temperature limit, the
entropy of ϕ can be written as the area of the horizon
divided by the Planck area l2p.
Now, let us summarize what we have got for the entropy

of zero longitudinal momentum modes ϕ. The entropy of
the whole system is illustrated in Fig. 4. At high temper-
atures, L ≫ rs, the entropy of ϕ is more or less like what
we have in the flat case, namely the area of the box times
temperature squared L2 × T2. Hence, the presence of a
small black hole merely gives a temperature to the system.
This amount of entropy then has competition with the bulk
fluctuation modes. At very high temperatures, the volume
times temperature cubed wins, and the area times temper-
ature squared wins at relatively lower temperatures. This is
more or less the same story told in [51], reviewed in Sec. II.
The difference starts to show up at superlow temperatures;
one can compare Figs. 1 and 4 to see the difference. In the
black hole case, the entropy for ϕ is shown in Eq. (56) at
superlow temperature, which is reminiscent of the
Bekenstein-Hawking entropy. In comparison, this phe-
nomenon cannot be seen in the flat case, where the entropy
has a logarithm behavior as shown in Fig. 1.

C. Boundary-stretched Wilson lines

Now, let us also discuss the different behavior of fieldW
in different temperature limits in this subsection. The
effective action for W is

SW ¼ 2

e2ðLþ rsÞ
Z

dτd2xr2s sin θ

�
rs
ε

Lr2s þ r3s
F

∂τW∂τW

þ 1

r2s
∂θW∂θW þ 1

r2ssin2θ
∂φW∂φW

�
ð57Þ

with

F ¼ 3r2sLþ 3

2
rsL2 þ L3

3
þ r3s lnL=ε: ð58Þ

The infinite coefficient introduces a localization on the zero
energy modes ∂τW ¼ 0, and the entropy of the boundary-
stretched Wilson lines W is more or less

S ∝
r2s
l2p
; ð59Þ

for the same reason discussed in the previous subsection.
Only when the size of the box L is extremely large

compared to rs, namely the high-temperature limit, some
power of rs=L may overcome rs=ε, and we get a finite
coefficient. Then, the corresponding entropy can be
expressed as

S ∝ r2s × T2; ð60Þ

which is a finite constant. In this limit, the entropy from W
can always be ignored, because the entropy of fluctuation
modes always plays the dominant role at high temperatures.
There can also be constant modes, and topological

modes due to the map between the Euclidean time circle
and the U(1) group. The entropy of the constant modes and
winding modes of W are never comparable with (59) but
contribute as logarithm corrections. We have

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2βðLþ rsÞ

Area

r
; Zw ¼

X
n

e0 ¼ ζð0Þ; ð61Þ

which contribute as logarithms of the temperature T, the
coupling constant e, and other length scales. Note that the
constant modes always contribute a logarithm term in
entropy, but the winding modes tend to be less important
as can be seen from (61). This is because for superlow
temperatures we can only see the mode of the zero winding
number. The winding modes contribution in relatively high
temperatures is more or less the same as the flat case [51],
which is not expatiated here because those modes are not
comparable with the fluctuation modes at high temper-
atures. The overall logarithm correlation from constant and

FIG. 4. Sketch of the entropy of the gauge theory as we vary the
temperature of the black hole. The high-temperature behavior is
qualitatively like the flat case as shown in Fig. 1. At superlow
temperatures, the entropy is proportional to the area of the
horizon, multiplied by the UV cutoff Λ squared.
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winding modes is an important aspect of the entropy but is
small compared which other contributions. So, we can say
that the entropy ofW follows the same qualitative pattern as
the entropy behavior shown in Fig. 4.
Let us briefly summarize this section. Basically, we have

three different phases. At high temperatures, the bulk
fluctuation modes shown in Sec. IVA are the most
important contribution. The entropy is proportional to
the volume of the box multiplied by the temperature cubed,
as shown by the right part of the curve in Fig. 4. We also
have a contribution (37) scale as the area of the horizon plus
logarithm correction, contained in the bulk fluctuation
contribution. As the temperature cools down, the boundary
area contribution dominates over other contributions. The
corresponding entropy is shown in Eq. (52). At superlow
temperatures, we have an entropy of Bekenstein-Hawking
magnitude

S ∝
r2s
l2p
; ð62Þ

coming from both the zero modes ϕ and the Wilson lines
W. This contribution will not die off at zero temperature. So
we expect the behavior would persist for the extremal black
holes. It is interesting to further verify this point for the
extremal black hole case.

V. EXTREMAL BLACK HOLE

The entropy in the superlow temperature limit of finite
temperature black holes is because of the localization of
modes on a specific region in the phase space. Although we
inferred that the mechanism should be responsible for the
entropy of extremal black holes, a calculation on an
extremal black hole background is vital for the story.
The main task of this section is to show the same
localization mechanism also works for the extremal black
hole case. We are going to evaluate the partition function
and entropy of U(1) gauge theory with nontrivial boundary
conditions on multiple boundaries on a (near-)extremal
black hole background.
To get an extremal black hole, we start with the

Euclidean Reissner-Nordström metric, which can be writ-
ten as

ds2 ¼ fðrÞdτ2 þ fðrÞ−1dr2 þ r2dΩ2
2; ð63Þ

with

fðrÞ ¼ 1 −
2GNM

r
þ GNQ2

r2
: ð64Þ

The horizon is a null surface, which can be obtained by
solving grr ¼ 0. The inner and outer horizons can be
written as

r� ¼
�
GNM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGNMÞ2 − GNQ2

q �
: ð65Þ

The extremal limit is the limit where we have a double zero,
which means

rþ ¼ r− ¼ GNM: ð66Þ

Thus, the metric of an extremal black hole can be written as

ds2 ¼
�
1 −

rH
r

�
2

dt2 þ
�
1 −

rH
r

�
−2
dr2 þ r2dΩ2

2; ð67Þ

with

rH ¼ GNM: ð68Þ

We can give this black hole system a very tiny temperature
by replacing the double zero at the horizon with two single
zeros r� ¼ rH � ε with the short distance cutoff ε. The
inverse temperature of the near extremal black hole can be
expressed as

β ¼ 2πr2H
ε

; ð69Þ

which is infinity in the limit ε → 0.
Now, let us put U(1) gauge theory with boundaries at the

stretched horizon and at location rH þ L in spacetime (67).
The original Euclidean action can be written as

SE ¼ 1

4e2

Z
M

d4x
ffiffiffi
g

p
FμνFμν: ð70Þ

We are going to focus on the first boundary condition (9),
where we allow residual Ar modes on boundaries

δAaj∂M ¼ 0; δArj∂M ¼ fðxaÞ: ð71Þ

fðxaÞ can have local dependence of xa ¼ ðτ; θ;ϕÞ on
different boundaries. Aaj∂M are fixed configurations, which
can be set to zero.
Following the same logic as the finite temperature case,

we shift the radius direction by rH

ρ ¼ r − rH; ð72Þ

and then define the proper distance y along the radius
direction as

dy ¼ ρþ rH
ρ

dρ: ð73Þ

Solving the above equation, the proper distance y can be
expressed as
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y ¼ ρþ rH ln
ρ

rH
: ð74Þ

y takes value from y1 to y2, with

y1 ¼ εþ rH ln
ε

rH
; y2 ¼ Lþ rH ln

L
rH

: ð75Þ

We have lnð0Þ ¼ −∞ and thus y1 → −∞.4 So jyj can be
approximated as

jyj ¼ y2 − y1 ≈ Lþ rH ln
L
ε
: ð76Þ

On the stretched horizon, the residual degrees of freedom
of Ay are set to ϕðxaÞ=L, and the field Ay can be
decomposed as

AyðxμÞ ¼ ÂyðxμÞ þ
ϕðxaÞ
jyj ; ð77Þ

the difference between the two boundaries is captured by
the Wilson lines stretched between the two boundaries at
y ¼ y1 and y ¼ y2,

WðxaÞ ¼ i
Z

y2

y1

dyÂy: ð78Þ

Thus, we have divided our gauge fields into three different
parts: the bulk fluctuation modes Ây that vanish on both
boundaries, zero longitudinal momentum modes ϕðxaÞ,
and boundary-stretched Wilson lines WðxaÞ. The symplec-
tic form and commutation relations of those modes were
worked out by carefully analyzing the phase space of the
theory in [51]. So one can just put those modes in the
Euclidean path integral to calculate the corresponding
partition function and entropy of them.
The partition function can be formally written as

Z ¼
Z

DÂμDϕDW exp f−SE½Âμ;ϕ;W�g: ð79Þ

The action SE can be separated into

SE ¼ SÂ þ S½ϕ;W�; ð80Þ

where

SÂ ¼ 1

4e2

Z
M

dτd3x
ffiffiffi
g

p
F̂μνF̂μν: ð81Þ

The bulk fluctuation modes reviewed in the previous
section will not survive, because of the finite rH and the

tiny temperature T ¼ 1=β ∝ ε. So we will mainly focus on
fields ϕ and W to see the behavior of those modes.
Actually, all of the fluctuation mode contributions whose
entropy is proportional to the temperature will not play any
role in the final result, and we expect to see entropy
contributions that look like the Bekenstein-Hawking
entropy for extremal black holes.
Ignoring the bulk fluctuation modes, we are going to

focus on fields ϕ and W, whose action can be written as

S½ϕ;W� ¼ 1

2e2jyj2
Z
M

dτd3x
ffiffiffi
g

p ½gab∂aϕ∂bϕ�

−
i

e2jyj
Z

dτd2x½ ffiffiffi
g

p
gab�y¼y2

y¼y1
∂aW∂bϕ: ð82Þ

Note that the action S½ϕ;W� contains four-dimensional and
three-dimensional integrations, while ϕðxaÞ and WðxaÞ
only depend on transverse directions along the boundaries.
So we can dimension reduce the action S½ϕ;W� to three-
dimensional and work out an effective action for ϕ and W.
Following a similar dimensional reduction procedure in the
previous section, we obtain the three-dimensional effective
action for fields ϕ and W,

Sϕ;W ¼ Sϕ þ SW; ð83Þ

with

Sϕ ¼ L
2e2jyj2

Z
dτd2xr2H sin θ

�
r2H
εL

∂τϕ∂τϕþ 1

r2H
∂θϕ∂θϕ

þ 1

r2Hsin
2θ

∂φϕ∂φϕ

�
; ð84Þ

SW ¼ 2L
e2ðrH þ LÞ2

Z
dτd2xr2H sin θ

�ðrH þ LÞ2
εL

∂τW∂τW

þ 1

r2H
∂θW∂θW þ 1

r2Hsin
2θ

∂φW∂φW

�
: ð85Þ

Note that one of the important ingredients in the above
procedure is to keep the original coordinate time τ as the
time coordinate for the three-dimensional effective actions.
This is because we always need to stick to the observer with
the inverse temperature (69), otherwise, the physics can be
completely different.
As we can see from the effective actions (84) and (85),

for finite rs and L, the coefficients in front of terms ð∂τϕÞ2
and ð∂τWÞ2 are proportional to 1=ε. Taking the ε → 0 limit,
the coefficients are divergent, which introduces a locali-
zation on the space of ∂τϕ ¼ ∂τW ¼ 0 in the path integral
(79). The localization is similar to what we discussed in the
low-temperature limit of the finite-temperature black hole
case, as reviewed in the previous section. Then the entropy
of those modes can be calculated as

4This is different with the finite temperature case. In the finite
temperature case, the left boundary is localized at y1 → 0 because
of arcsinhð0Þ ¼ 0.
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S ∝
r2H
l2p

; ð86Þ

which is the same result as the superlow temperature
entropy (62) in the finite-temperature black hole case.
The partition functions of the constant modes and winding
modes ofW can be calculated, which is the logarithm of the
length scales in the theory. One thing worth noticing is that
the entropy of constant modes proportional to

S0 ∝ ln jyj ð87Þ

can be a large contribution.
Note that in the (near-)extremal black hole case, the

localization of ∂τϕ ¼ ∂τW ¼ 0 space in the path integral is
very straightforward as shown in the actions (84) and (85).
This is different from the finite-temperature black hole case
where we have to take different temperature limits and the
localization only shows up in the superlow temperature
limit. So the localization mechanism and the entropy (86)
and logarithm corrections are intrinsic for the (near-)
extremal black hole and only capture the low-temperature
properties of the black hole system. So the localization in
∂τϕ ¼ ∂τW ¼ 0 space should be used as a general mecha-
nism to explain the entropy of the extremal black hole in a
box. Moreover, one of the surprising properties of entropy
is that the modes are effectively living near the horizon
rather than the other boundary. So the entropy (86) only
depends on rH. There might be redshift-related arguments,
but we do not have a good explanation here.
As for where the entropy (86) comes from, the zero-point

energy of boundary modes contributes as

βArea × Λ3 ∈ lnZ ð88Þ

in the logarithm of the partition function. This part has no
contribution to the entropy because it is linear in β. ∂τϕ ¼
∂τW ¼ 0 means there is no β dependence in this part and
correspondingly this part contributes to the entropy as
Area × Λ2. There must be fundamental explanations of
those modes from symmetry-related arguments. And, the
microscopic derivations for the Bekenstein-Hawking
entropy of extremal black holes [27–50] might give the
right physical explanation of those modes.
So, we have confirmed that the localization on ∂τϕ ¼

∂τW ¼ 0 space in the path integral discovered in the
superlow temperature limit discussed in the previous
section persists in the (near-)extremal black hole case.
The mechanism is the main reason we get Bekenstein-
Hawking-like entropies from (near-)extremal black holes.

VI. CONCLUSION AND DISCUSSION

This paper evaluates the partition function and entropy of
U(1) gauge theory on a black hole background with
nontrivial boundary conditions, using the Euclidean path

integral method. The allowed physical degrees of freedom
are the bulk fluctuation modes, the zero longitudinal
momentum modes of Ar, and the boundary-stretched
Wilson lines. The effective actions for different modes
are derived, and we can separately calculate the entropy
contributions from different modes.
The high-temperature limit of the black hole is fairly

similar to the flat case reviewed in Sec. II, where the
presence of the black hole merely gives a temperature to the
system. The dominant contribution comes from the bulk
fluctuation modes, whose entropy is shown in Eq. (33).
Most of the entropy of the fluctuations is proportional to the
volume of the region where the semiclassical fields live,
multiplied by the temperature cubed. There is also a
contribution from the modes living very close to the
horizon, whose entropy is proportional to the area of the
horizon plus logarithm corrections. Interesting phenomena
start to happen at relatively lower temperatures. As we
gradually decrease the temperature, bulk fluctuation modes
became less important, and the entropy of the zero modes ϕ
andWilson linesW behave as the area of the box multiplied
by the temperature squared are the most important con-
tribution as shown in Fig. 4. For superlow temperature, the
entropy of ϕ andW scale as the area of the horizon divided
by UV cutoff squared. This is because the coefficients
in front of ð∂τϕÞ2 and ð∂τWÞ2 in the effective actions
diverge, introducing localizations in the space of zero-
energy modes ∂τϕ ¼ ∂τW ¼ 0 in the Euclidean path
integral. Then entropy of those modes naturally is propor-
tional to the horizon area divided by the Planck area. We
also have extra logarithm corrections from the constant
modes and topological modes of W. The localization
mechanism of the U(1) gauge theory is also confirmed
for the extremal black holes. The overall behavior of the
entropy is depicted in Fig. 4, and we can see the transitions
of dominances between the low-temperature black hole and
high-temperature ones clearly.
Now, the question is how to understand the large entropy

(56) we have gotten for the low-temperature black hole. Let
us take ϕ as an example to show where this large entropy
comes from. The finite temperature partition function for a
three-dimensional massless bosonic field can be written as

lnZϕ ∝ βArea · Λ3 þ Area
Z

d2p lnð1 − e−βpÞ; ð89Þ

where Λ is the UV cutoff and p ¼
ffiffiffiffiffi
p⃗2

p
. The first part

proportional to the volume of the whole spacetime divided
by the smallest volume unit is the zero-point energy of the
field theory, which is a constant piece in the free energy.
Constant free energy does not contribute to entropy, and
thus can be ignored. The second part is finite and gives out
the Area × T2 contribution in entropy. However, the finite
contribution cannot be seen at superlow temperatures. Now
because of the localization, the zero-point energy of the

GAUGE THEORIES WITH NONTRIVIAL BOUNDARY … PHYS. REV. D 107, 125022 (2023)

125022-13



field is not a constant free energy anymore. The logarithm
of the partition function only depends on the area of the
boundary because ϕ only depends on the spatial coordi-
nates on the boundary. So the partition function of the zero-
point energy can be written as

lnZϕ ∝ Area · Λ2 ¼ Area
l2p

; ð90Þ

if we suppose the UV cutoff is at the Planck scale. The
corresponding entropy is of Bekenstein-Hawking entropy
magnitude. There are also constant modes and winding
mode contributions at superlow temperatures, whose
entropy scales as the logarithm of the coupling constant
and other length scales. It is interesting to notice that the
area shown in Eq. (90) only contains the area of the horizon
not the area of the other boundary.
The above argument suggests that the low-temperature

Bekenstein-Hawking entropy might come from the zero
modes ϕ and boundary-stretched Wilson lines W. For the
transitions of dominances for the finite temperature black
hole, especially at the low temperature, there should be
some symmetry-breaking pattern to explain them. As
shown in Fig. 1, the low-temperature entropy of the flat
case scales as a logarithm because the degeneracy manifold
is a circle in the symmetry-breaking phase of U(1) global
symmetry. This can be seen from the bottom of the
“Mexican hat” potential. In such a sense, the low-temper-
ature Bekenstein-Hawking-like entropy

S ∝
Area
l2p

can also be explained from a symmetry-breaking view-
point. We are sitting in a global symmetry-breaking phase
at low temperature with degeneracy expS. Note that those
amounts of entropy come from the modes in the limit

lim
ω→0

ϕ̃ðω; x2; x3Þeiωτ ð91Þ

because of the localization on ∂τϕ ¼ 0 space. This might
can be thought of as calculating the entropy of the soft hair
of the black hole system [63–70]. The exact relation
between our story and the soft hair of black holes needs
further studies.
Note that we have gotten two Bekenstein-Hawking-like

entropies in this paper. The original point of this paper is
that the zero modes ϕ and the Wilson lines W have an
entropy proportional to the horizon area divided by the
Planck area for superlow temperature black holes, which
might be used to understand the Bekenstein-Hawking
entropy because of the right magnitude. Note that there
is also part of the entropy (37) in the bulk fluctuation modes
for the finite temperature black hole system, which is also
proportional to the area divided by the UV cutoff squared.

This entropy was used to understand the microscopic
degrees of freedom of finite-temperature black hole sys-
tems [10], and was interpreted as the entanglement entropy
across the stretched horizon [61]. If we accept the above
argument, we might tend to interpret that the finite-temper-
ature Bekenstein-Hawking entropy comes from some extra
microscopic structure near the horizon-like entanglement
across the horizon, but the (near-)extremal black hole
entropy comes from different places as the finite-
temperature black hole. The (near-)extremal black hole
entropy only appears in low temperatures and comes from
the breaking of global symmetries. Thus, we have two
different types of Bekenstein-Hawking-like entropies for
finite-temperature and (near-)extremal black holes, and
they both behave like the area of the horizon divided by
the UV cutoff squared. We leave the symmetry-breaking
explanation of the phase transitions and other related topics
for further study.
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APPENDIX A: WOULD-BE GAUGE DEGREES
OF FREEDOM

In this appendix, let us briefly discuss the physics
related to the Neumann-like boundary condition (10),
where the boundary would-be gauge degrees of freedom
are allowed.5

The boundary configurations that respect (10) are the flat
boundary configurations. We can find bulk modes Bμ that
correspond to those boundary configurations and integral
over those modes in the Euclidean path integral to evaluate
the partition function. So, the main task in this appendix is
to find a solution to the bulk equation of motion on the
Euclidean Schwarzschild background. To avoid complicat-
ing the story, we can solve the problem using the original
metric (3)

ds2 ¼ ρ

ρþ rs
dτ2 þ ρþ rs

ρ
dρ2 þ ðρþ rsÞ2dΩ2: ðA1Þ

After getting the solutions, we can perform a coordinate
transformation from xμ ¼ ðτ; ρ; θ;φÞ to xμ0 ¼ ðτ; y; θ;φÞ to
obtain the solutions on the infalling coordinate system.

5A more careful analysis of those modes can be found in
Appendix A of [51].
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In coordinate system (3), the problem reads as

∇μF
μν
ðBÞ ¼ 0;

Bajρ¼ε ¼ fðlÞa ðxaÞ;
Bajρ¼L ¼ fðrÞa ðxaÞ: ðA2Þ

Now, we use fαaðxaÞ with α ¼ ðrÞ or (l) to denote the
boundary configuration of Ba. Bρ should change accord-
ingly. We will fix the boundary configurations to be flat
later. The bulk equation of motion can be further written as

∇μF
μν
ðBÞ ¼ ∂μF

μν
ðBÞ þ Γμ

μλF
λν
ðBÞ þ Γν

μλF
μλ
ðBÞ

¼ ∂μF
μν
ðBÞ þ Γμ

μλF
λν
ðBÞ

¼ 1ffiffiffi
g

p ∂μð
ffiffiffi
g

p
Fμν
ðBÞÞ ¼ 0: ðA3Þ

We may find a solution that satisfies the following
equations separately:

1ffiffiffi
g

p ∂ρð
ffiffiffi
g

p
Fρν
ðBÞÞ ¼ 0; ðA4Þ

1ffiffiffi
g

p ∂að
ffiffiffi
g

p
Faν
ðBÞÞ ¼ 0: ðA5Þ

First of all, let us look at the ν ¼ 2 component of (A4)

1ffiffiffi
g

p ∂ρð
ffiffiffi
g

p
Fρ2
ðBÞÞ ¼ 0 ðA6Þ

which is satisfied if

FðBÞ
ρ2 ¼ ∂ρB2 − ∂2Bρ ¼

D1ðxaÞ
ðρþ rsÞ2

: ðA7Þ

Supposing B2 takes the form

B2 ¼ −
D1ðxaÞ
ρþ rs

þD2ðxaÞ; ðA8Þ

the boundary condition fixes the coefficients D1 and D2

B2jρ¼ε ¼ −
D1

rs þ ε
þD2 ¼ fðlÞ2 ðxaÞ;

B2jρ¼L ¼ −
D1

rs þ L
þD2 ¼ fðrÞ2 ðxaÞ: ðA9Þ

We can get that

D1 ¼
ðrs þ εÞðrs þ LÞ

L − ε
ðfðrÞ2 − fðlÞ2 Þ;

D2 ¼
rs þ L
L − ε

fðrÞ2 −
rs þ ε

L − ε
fðlÞ2 : ðA10Þ

ε is much smaller than rs and L, so we can write rs ≈ rs þ ε
and L ≈ L − ε. Thus the solution for B2 can be written as

B2 ¼ −
rsðrs þ LÞ
ðρþ rsÞL

ðfðrÞ2 − fðlÞ2 Þ þ rs þ L
L

fðrÞ2 −
rs
L
fðlÞ2 :

ðA11Þ

For a similar reason, we can get the solution for other
components of Ba and the solution of Ba can be written as

Ba ¼ −
rsðrs þ LÞ
ðρþ rsÞL

ðfðrÞa − fðlÞa Þ þ rs þ L
L

fðrÞa −
rs
L
fðlÞa :

ðA12Þ

With the solution Ba, one can then further fix Bρ such that
the field strength satisfies the bulk equation of motion. We
have

∂ρBa ¼
1

ðρþ rsÞ2
rsðrs þ LÞ

L
ðfðrÞa − fðlÞa Þ;

∂aBρ ¼
1

ðρþ rsÞ2
rsðrs þ LÞ

L
ðfðrÞa − fðlÞa Þ:

Note that the field strength is set to be zero here. Assuming
flat boundary configurations,

fðrÞa ¼ CðrÞ
a − ∂aλ

ðrÞ; fðlÞa ¼ CðlÞ
a − ∂aλ

ðlÞ: ðA13Þ

We can get the solution for Bρ by integrating ∂aBρ over xa

Bρ ¼
1

ðρþ rsÞ2
rsðrs þ LÞ

L

× ½xa · ðCðrÞ
a − CðlÞ

a Þ þ ðλðrÞ − λðlÞÞ�: ðA14Þ

As a double check, one can put the solutions (A11), (A12),
and (A14) into Eq. (A2) to check if it is satisfied or not.
Now, we can perform the coordinate transformation and

transfer everything into coordinate (6). We have

dρ
dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ

ρþ rs

r
; ðA15Þ

thus By can be written as

By ¼
ffiffiffi
ρ

p
ðρþ rsÞ5=2

rsðrs þ LÞ
L

× ½xa · ðCðrÞ
a − CðlÞ

a Þ þ ðλðrÞ − λðlÞÞ�: ðA16Þ

GAUGE THEORIES WITH NONTRIVIAL BOUNDARY … PHYS. REV. D 107, 125022 (2023)

125022-15



So, the solutions can be summarized as

Ba ¼ −
rsðrs þ LÞ
ðρþ rsÞL

½CðrÞ
a − CðlÞ

a þ ∂aðλðrÞ − λðlÞÞ�

þ rs þ L
L

ðCðrÞ
a þ ∂aλ

ðrÞÞ − rs
L
ðCðlÞ

a þ ∂aλ
ðlÞÞ; ðA17Þ

By ¼
ffiffiffi
ρ

p
ðρþ rsÞ5=2

rsðrs þ LÞ
L

× ½xa · ðCðrÞ
a − CðlÞ

a Þ þ ðλðrÞ − λðlÞÞ�: ðA18Þ

Then, we need to add those modes in the Euclidean path
integral of the U(1) gauge theory. Correspondingly, there
would be new contributions to the partition function and
the thermal entropy. Those bulk modes corresponding to
the bulk would-be pure gauge configurations. It would be
interesting to see the relationship among those modes, the
soft hair of black holes [63–70], and Barnich’s nonproper
gauge degrees of freedom [71–74].

APPENDIX B: EFFECTIVE ACTION
FOR FIELDS ϕ AND W

In this appendix, we derive the effective action (15) from
the original action of the U(1) gauge theory. The Euclidean
action for Maxwell’s theory on a curved Euclidean back-
ground can be written as

SE ¼ 1

4e2

Z
M

dτd3x
ffiffiffi
g

p
FμνFμν: ðB1Þ

Now we are going to work out the above Euclidean action
in terms of fields Âμ, ϕ, and W. Working on the Euclidean
Schwarzschild black hole background (3), the action can be
separated into two parts with regard to (3þ y) decom-
position as

SE ¼ 1

4e2

Z
M

dτd3x
ffiffiffi
g

p
FabFab þ

1

2e2

Z
M

dτd3x
ffiffiffi
g

p
FyaFya:

ðB2Þ

Putting the field decomposition (77) into the action, the
above effective action can be further written as

SE ¼ 1

4e2

Z
M

dτd3x
ffiffiffi
g

p
F̂μνF̂μν þ

1

2e2jyj2
Z
M

dτd3x
ffiffiffi
g

p ½gab∂aϕ∂bϕ�

−
1

e2jyj
Z
M

dτd3x
ffiffiffi
g

p ½gabð∂yÂa − ∂aÂyÞ∂bϕ�: ðB3Þ

Denoting the first part in the above action as Ŝ0, the above effective action can be further written as

SE ¼ Ŝ0 þ
1

2e2jyj2
Z
M

dτd3x
ffiffiffi
g

p ½gab∂aϕ∂bϕ� −
1

e2jyj
Z
M

dτd2xdy
ffiffiffi
g

p ½gabð∂yÂa − ∂aÂyÞ∂bϕ�; ðB4Þ

which can be further simplified as

SE ¼ Ŝ0 þ
1

2e2jyj2
Z
M

dτd3x
ffiffiffi
g

p ½gab∂aϕ∂bϕ� −
i

e2jyj
Z

dτd2x½ ffiffiffi
g

p
gab�y¼y2

y¼y1
∂aW∂bϕ

þ 1

e2jyj
Z
M

dτd3x∂yð
ffiffiffi
g

p
gabÞ

�
Âa − ∂a

�Z
dyÂy

��
∂bϕ:

Note that the last term in the above expression can be set to zero by gauge choice. So we are going to ignore the last term and
only focus on the following Euclidean action as shown in Eq. (15):

SE ¼ 1

4e2

Z
M

dτd3x
ffiffiffi
g

p
F̂μνF̂μν þ

1

2e2jyj2
Z
M

dτd3x
ffiffiffi
g

p ½gab∂aϕ∂bϕ� −
i

e2jyj
Z

dτd2x½ ffiffiffi
g

p
gab�y¼y2

y¼y1
∂aW∂bϕ: ðB5Þ

APPENDIX C: DIMENSIONAL REDUCTION

This appendix performs the dimensional reduction in Sec. III B, which is to reduce the higher dimensional action S½ϕ;W�
to three-dimensional action Sϕ;W shown below. We have

S½ϕ;W� ¼ 1

2e2jyj2
Z
M

dτd3x
ffiffiffi
g

p ½gab∂aϕ∂bϕ� −
i

e2jyj
Z

dτd2x½ ffiffiffi
g

p
gab�y¼y2

y¼y1
∂aW∂bϕ ðC1Þ
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and

Sϕ;W ¼ 1

2e02

Z
dτd2x

ffiffiffi
h

p
½hab∂aϕ∂bϕ� −

i
2e02

Z
dτd2x

ffiffiffi
h

p
½γ1hττ∂τW∂τϕþ γ2hθθ∂θW∂θϕþ γ3hφφ∂φW∂φϕ�: ðC2Þ

We are going to divide the problem into two steps. The first
is to solve the low dimensional metric hab and coupling
constant e0. Then we are able to solve γ1, γ2, and γ3 with the
results from the first step.

1. Metric and coupling constant e0

As discussed in the main context, we assume the three-
dimensional metric takes the following form

hab ¼ diagðhττ; R2; R2 sin2 θÞ; ðC3Þ

with topology S1 × S2. The radius of S1 is β and radius of
S2 is R. We just need to solve the following equations:

1

2e2jyj2
Z

dτd2x

�Z
y2

y1

dy
ffiffiffi
g

p
gab

�
∂aϕ∂bϕ

¼ 1

2e02

Z
dτd2x

ffiffiffi
h

p
½hab∂aϕ∂bϕ�:

The above equations can be simplified as

1

2e2jyj2
Z

L

ε
dρ

∂y
∂ρ

ffiffiffi
g

p
gab ¼ 1

2e02
ffiffiffi
h

p
hab: ðC4Þ

We are left with two independent components

1

e2jyj2
�
3r2sLþ 3

2
rsL2 þ L3

3
þ r3s ln

L
ε

�
¼ 1

e02
ffiffiffiffiffiffi
hττ

p
R2;

ðC5Þ

L
e2jyj2 ¼

1

e02
ffiffiffiffiffiffi
hττ

p
: ðC6Þ

There are three unknown variables and only two indepen-
dent equations. So we are going to write hττ and coupling
constant e02 as a function of radius R. The solution can be
written as

hττ ¼
LR2

3r2sLþ 3
2
rsL2 þ L3

3
þ r3s lnL=ε

; ðC7Þ

1

e02
¼ L
e2jyj2

ffiffiffiffiffiffi
hττ

p
¼

ffiffiffiffi
L

p

e2jyj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2sLþ 3

2
rsL2þ L3

3
þ r3s lnL=ε

q
R

:

ðC8Þ

2. γ couplings

The next step is to calculate γ1, γ2, and γ3. To do that we
just need to match the rest of the actions (C1) and (C2),
which read as

1

e2jyj
Z

dτd2x½ ffiffiffi
g

p
gab�y¼y2

y¼y1
∂aW∂bϕ

¼ 1

2e02

Z
dτd2x

ffiffiffi
h

p
½γ1hττ∂τW∂τϕþ γ2hθθ∂θW∂θϕ

þ γ3hφφ∂φW∂φϕ�: ðC9Þ
The useful information from the above equation is

1

e2jyj ½
ffiffiffi
g

p
gττ�y¼y2

y¼y1
¼ γ1

2e02
ffiffiffi
h

p
hττ; ðC10Þ

1

e2jyj ½
ffiffiffi
g

p
gθθ�y¼y2

y¼y1
¼ γ2

2e02
ffiffiffi
h

p
hθθ; ðC11Þ

γ2 ¼ γ3: ðC12Þ

Writing everything explicitly, we have

1

e2jyj

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðyÞ þ rs

ρ

s
ðρðyÞ þ rsÞ2

#y¼y2

y¼y1

¼ γ1
L

2e2jyj2 h
ττR2;

ðC13Þ

1

e2jyj

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðyÞ

ρðyÞ þ rs

s #y¼y2

y¼y1

¼ γ2
L

2e2jyj2 ; ðC14Þ

γ2 ¼ γ3: ðC15Þ

The above equations can be solved as

γ1 ¼ −2jyj
ffiffiffiffi
rs
ε

r
r2s

3r2sLþ 3
2
rsL2 þ L3

3
þ r3s lnL=ε

;

γ2 ¼ γ3 ¼
2jyj
L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L

Lþ rs

s
: ðC16Þ

APPENDIX D: BULK PARTITION FUNCTION

In this appendix, we give a detailed analysis of the
partition function of the bulk fluctuation modes. The gauge
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fixing condition can be imposed by inserting the following
identity in the path integral:

1 ¼
Z

Dλ det
�
∂G
∂λ

�
δðG − 0Þ; ðD1Þ

with gauge fixing conditionG. After gauge fixing, there are
only two polarization degrees of freedom for Maxwell’s
theory in the bulk, which can be simulated by two massless
scalar fields. One can repeat the calculation using the
standard Faddeev-Popov method. Here we would just
assume that on a black hole background, the gauge fields
Aμ are also left with two massless bosonic components after
gauge fixing.
The metric of Schwarzschild is shown in (2). For one free

massless particle living on this background, the motion for
geodesics can be expressed as

gμν
dxμ

dλ
dxν

dλ
¼ 0; ðD2Þ

with λ the parameter along the trajectory. For a
Schwarzschild black hole (see Sec. 5.4 in [75] for more
details), the Killing vector associated with energy can be
written as

Kμ ¼ ð∂τÞμ ¼ ð1; 0; 0; 0Þ�
or Kμ ¼

�
1 −

2GNM
r

; 0; 0; 0

��
: ðD3Þ

And the Killing vector associated with angular momentum is

Rμ ¼ ð∂φÞμ ¼ ð0; 0; 0; 1Þ ðor Rμ ¼ ð0; 0; 0; r2sin2θÞÞ:
ðD4Þ

There are two conserved charges energy and angular
momentum on the equatorial plane because of the Killing
vectors. The conserved quantities can be expressed as

E ¼ −Kμ
dxμ

dλ
¼ −

�
1 −

2GNM
r

�
dτ
dλ

;

L ¼ Rμ
dxμ

dλ
¼ r2

dφ
dλ

: ðD5Þ

On the other hand, we have

pμ ¼ gμν
dxν

dλ
: ðD6Þ

Then expression (D2) can be expressed by the conserved
energy and angular momentum as

−
�
1−

2GNM
r

�
−1
E2þ

�
1−

2GNM
r

�
p2
r þ

L2

r2
¼ 0; ðD7Þ

which can be rewritten as

p2
r ¼

�
1 −

2GNM
r

�
−1
��

1 −
2GNM

r

�
−1
E2 þL2

r2

�
: ðD8Þ

For a massless scalar field with mode expansion

Āðτ; r; θ;φÞ ¼
X
ω

X
l;m

e−iωτYlmðθ;ϕÞÃðω; l; m; rÞ; ðD9Þ

with

∂rÃ ¼ iprÃ; ðD10Þ
the above expression (D8) can be written as the dispersion
relation for A

p2
r ¼

�
1 −

2GNM
r

�
−1
��

1 −
2GNM

r

�
−1
ω2 þ lðlþ 1Þ

r2

�
:

ðD11Þ
This expression can also be obtained from different methods,
for example from the equation of motion of massless field on
curved space time [10].
Let us study the statistical properties of those bulk

fluctuation modes. Because of the boundary conditions on
r ¼ rs þ ε and r ¼ rs þ L, we have a standing-wave con-
dition along the radius direction, which can be written as

nπ ¼
Z

rsþL

rsþε
prðr;ω; lÞdr; ðD12Þ

with n ∈ Zn. The partition function of bulk fluctuation
modes can always be written as

lnZĀ ¼ −2
X
ω

lnð1 − e−βωÞ; ðD13Þ

where the factor 2 means we have two polarizations, and we
ignored the zero-point energy in the above expression. Now
we can change the summation of ω into integration by
introducing density of state gðωÞ and regarding the spectrum
to be continuous. We obtain

lnZF ¼ −2
Z

∞

0

gðωÞ lnð1 − e−βωÞdω

¼ −2
Z

∞

0

lnð1 − e−βωÞdΓðωÞ

¼ −2 lnð1 − e−βωÞΓðωÞj∞0 þ 2

Z
∞

0

ΓðωÞe−βω
1 − e−βω

βdω;

ðD14Þ
where ΓðωÞ defined by dΓ ¼ gðωÞdω is the number of state
not exceeding ω. The first part is zero when ω → 0 and
ω → ∞, so the final result for our partition function can be
written as

lnZF ¼ 2β

Z
∞

0

ΓðωÞ
eβω − 1

dω: ðD15Þ
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ΓðωÞ is the number of states that have energy lower than ω, and we have

ΓðωÞ ¼ 1

π

X
l

ð2lþ 1Þ
Z

rsþL

rsþε
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2GNM
r

�
−1
��

1 −
2GNM

r

�
−1
ω2 þ lðlþ 1Þ

r2

�s

≈
1

π

Z
l
ð2lþ 1Þdl

Z
rsþL

rsþε

dr

1 − 2GNM
r

�
ω2 þ

�
1 −

2GNM
r

�
lðlþ 1Þ

r2

�
1=2

: ðD16Þ

Note thatwe have changed the summation of l into an integral assuming the area of the boundary is big enough. The summation
or integration is from l ¼ 0 to the state with energyω. Nowwe can put (D16) into Eq. (D15), and the logarithm of the partition
function can be written as

lnZF ¼ 2β

π

Z
∞

0

dω
eβω − 1

Z
d½lðlþ 1Þ�

Z
dr

1 − 2GNM
r

�
ω2 þ

�
1 −

2GNM
r

�
lðlþ 1Þ

r2

�
1=2

:

Now, let us redefine x ¼ ð1 − 2GNM
r Þ lðlþ1Þ

r2 . We obtain

d½lðlþ 1Þ� ¼ r2

1 − 2GNM
r

dx; ðD17Þ

thus we can rewrite the integral as

lnZF ¼ 2β

π

Z
∞

0

dω
eβω − 1

Z
r2dr�

1 − 2GNM
r

�
2

Z
ω2

0

dx½ω2 þ x�1=2

¼ −
4β

3π

Z
∞

0

ω3dω
eβω − 1

Z
r4dr

ðr − 2GNMÞ2 : ðD18Þ

Those integrals are straightforward to work out; we have

Z
∞

0

ω3dω
eβω − 1

¼ π4

15

1

β4
ðD19Þ

and

Z
rsþl

rsþε

r4dr
ðr − 2GNMÞ2 ≈

r4s
ε
þ 4r3s ln

L
ε
−
r4s
L
þ 6r2sLþ 2rsL2 þ L3

3
: ðD20Þ

All in all, the logarithm of the partition function can be written as

lnZF ¼ −
4π3

45

1

β3
r4s
ε
−
16π3

45

r3s
β3

ln
L
ε
−
4π3

45

1

β3

�
−
r4s
L
þ 6r2sLþ 2rsL2 þ L3

3

�
: ðD21Þ

The corresponding entropy SF ¼ ð1 − β∂βÞ can be calculated as

SF ¼ 16π3

45

1

β3
r4s
ε
þ 64π3

45

r3s
β3

ln
L
ε
þ 16π3

45

1

β3

�
−
r4s
L
þ 6r2sLþ 2rsL2 þ L3

3

�
: ðD22Þ
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