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for gauge theories in a static spacetime

H. Arthur Weldon

Department of Physics and Astronomy West Virginia University,
Morgantown, West Virginia 26506-6315, USA

® (Received 17 February 2023; accepted 8 May 2023; published 21 June 2023)

The Hilbert energy-momentum tensor for gauge-fixed non-Abelian gauge theories, defined by the
variational derivative of the action with respect to the spacetime metric, is a tensor under general coordinate
transformations, symmetric in its indices, and BRST invariant. The canonical energy-momentum tensor has
none of these properties but the canonical Hamiltonian does correctly generate the time dependence of the
fields. It is shown that the Hilbert Hamiltonian f d3x\/§T8 is equal to the canonical Hamiltonian for a
general gauge theory coupled to spin-1/2 and spin-0 matter fields (including an R¢? term) in a static
background metric (dyg,, = 0 and gy; = 0). The equality depends on on the Gauss’s law constraint but not

on the dynamical Euler-Lagrange equations.

DOI: 10.1103/PhysRevD.107.125021

I. INTRODUCTION

The Hilbert energy-momentum tensor [1] in an arbitrary
background metric is determined from the Lagrangian
density for matter and radiation by

/d“ﬁ Y97 ).

where g = —det(g,s3) > 0. £ transforms as a scalar density
under general coordinate transformations (i.e. £/,/g is a
coordinate scalar) and is gauge invariant except for a gauge-
fixing term. T, transforms as a tensor under general
coordinate transformations, is symmetric in uv, and is
BRST invariant [2,3]. It is the source of the gravitational
field in the Finstein field equations. The covariant diver-
gence of the mixed tensor is

5g””( ] (1.1)

(%) S00)TP. (1)

'ﬂ_\/— ﬂ(\/_T )

If the fields that appear in £ are required to satisfy the field
equations then (7)., = 0 (see Sec. 94 of [4] or Sec. 12.3 of

[51); but it is not a true conservation law because of the
second term in (1.2).
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The so-called canonical energy-momentum tensor that
results from Noether’s first theorem [6] applied to the
invariance of £ under global spacetime translations is

oL

f@ﬁ:zsjmay = SL, (1.3)

where y, runs over all the fields: gauge bosons, ghosts, spin
1/2 fermions, and scalar bosons. Though ©, is not a
coordinate tensor it will be referred to as the canonical
energy-momentum tensor because when g,;(x) is replaced
by the Minkowski metric (17,5) = diag(1,—1,—1,-1) the
resulting quantity is a Lorentz tensor.

For fields obeying Fermi statistics the ordering in (1.3) is
not accurate. The ghost fields 7, and 7, are independent as
are the spin-1/2 fields y and w'; the correct statement of
the first term in (1.3) is

oL oL

701/’711 + atila 373 =\ 1.4
30 e+ O 507 14)
for ghosts and
oL oL
——— o,y + (O’ ———r 1.5
(0, ") (9.y") (13)

for spin 1/2 fermions. This is rather cumbersome to
repeatedly make explicit and so the simpler form (1.3)
will often be used.

a. ©) improvements in Minkowski spacetime: The
differences between T3 and @) when g,4(x) is replaced
by the Minkowski metric was resolved for electrodynamics
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by Belinfante and Rosenfeld [7,8]. In modern approaches
[9-15] an improved @) is obtained by using both global
translation invariance and global Lorentz invariance or with
Noether’s second theorem using local translation invari-
ance. This plus the field equations lead to an improved
Lorentz tensor that agrees with the Hilbert tensor in
Minkowski spacetime,

" = @" + 9, A%, (1.6)
where the superpotential satisfies A = —A**. Two
results follow from the antisymmetry:

T% = @% + 9; A/, (1.7)

9,(T") = 0,(&"). (1.8)
The first shows that

/d3xT0" = /d3x®0”; (1.9)

the second shows that the integrals (1.9) are time inde-
pendent. Both require imposing the field equations.

An interesting generalization is presented in Ref. [14]. If
L contains second derivatives, or higher, of the fields then
A" is not antisymmetric in the first two indices; never-
theless, A is a spatial divergence which adds another
term to (1.7) so that (1.9) is still valid and 0,0,A*" = 0 so
(1.8) holds which makes (1.9) time independent.

b. Derivations of T,, for an arbitrary metric: The
Hilbert energy-momentum tensor can be derived in a more
geometrical manner using the spacetime diffeomorphism
group [16] or fiber bundles [17]. Though it is natural to
expect that a canonical energy-momentum tensor satisfying
the requirements of gauge invariance, yv symmetry, and
covariant conservation would necessarily be equal to the
Hilbert tensor, [18] treats an example of spin-2 fields, the
linearized Gauss-Bonnet gravity model, in which this is
not true.

c. Static metric with field equations: A static metric
satisfies both dyg,s = 0 and gy; = 0. The Schwarzschild
and Reissner-Nordstrom metrics are of this type and the
geometry shares many features of Minkowski spacetime
[19-21]. The vanishing of g,; means that Lagrangian terms
like /99" (9,¢)(0,¢), and analogous terms for gauge
bosons and spin-1/2 fermions, do not violate time-reversal
invariance; the field equations allow separation of variables
(time vs three-space) and the propagators are invariant
under global time translation. If the field equations are
satisfied and the metric is static then d,(,/g®) = 0; thus
the canonical Hamiltonian is time independent,

d
= / P, /GO = 0. (1.10)

Under the same conditions (static metric plus field equa-
tions) the Hilbert tensor satisfies d,(,/gT%y) = 0 [4,5] and
the Hilbert Hamiltonian is time independent,

d
E/dBX\/gTOO == 0

It is plausible, but not guaranteed, that the two
Hamiltonians are equal; more importantly, the argument
gives no information about what happens when the field
equations are not satisfied, as is the case in the functional
integral formulation of field theory.

d. Outline:  This paper investigates what happens when
the metric is static and only the non-Abelian Gauss’s law is
imposed but none of the other field equations. It is assumed
throughout that the field decrease at spatial infinity is
sufficiently rapid as to allow spatial integration by parts
with no boundary terms.

Section II introduces the Lagrangian density £ for a
general non-Abelian gauge theory containing five parts:
gauge bosons, gauge fixing, ghosts, spin-1/2 fermions, and
scalar bosons,

(1.11)

(1.12)

The spin-1/2 fermions and the scalar bosons are in arbitrary
representations of the gauge group. The scalar bosons have
Yukawa couplings to fermions and a coupling £R¢? to the
Ricci scalar curvature. The variational derivative of each
action [ d*xL" gives the Hilbert energy-momentum tensor
T}, which is then evaluated for a static metric. The value of
V99T, + L" is computed for a static metric.
Section III employs Gauss’s law to obtain

5 5
/ d*x Z V9 go°TE, = / d*x [ZH@O)(S - Z L”] ,
n=1 K n=1
(1.13)

which shows the equality of the Hilbert and the canonical
Hamiltonians,

/d3x\/§gooT00 == /dSX\/§900®00. (114)

The dynamical Euler-Lagrange equations are not used. The
integrals (1.14) could be called proto-Hamiltonians since
they are time dependent.

At this point the equality of the two Hamiltonians could
be a special feature of non-Abelian gauge theories, par-
ticularly since the curvature appeared only in the term
ER¢?. To see if the Hamiltonian equality is more general a
term of the form

VIR (0,4)(0,) (1.15)
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is investigated. Explicit calculation shows that the Hilbert
energy density and the canonical energy density are very
different but the Hamiltonians are equal. This rather tedious
calculation is contained in Appendix D.

Section IV derives the Hamiltonian equality (1.14) in a
general manner in which the details of the Lagrangian
density are not specified except that it has only first
derivatives of the fields. The result is

aﬂ(\/ETl(;) = 0;4(\/@@8) - aij,

using Gauss’s law but not the dynamical field equations.
The spatial integral is

(1.16)

d [ . d
— % =— | & %. 1.1
dt/dx\/ﬁ 0 dt/dx\/§®0 (1.17)

Since the fields have arbitrary time dependence the inte-
grals must be equal, which confirms (1.14) in the more
general case.

II. EXPLICIT RESULTS FOR THE HILBERT
ENERGY-MOMENTUM TENSOR

This section will compute 7}, for n=1,...5 for a
general time-dependent metric and then catalog, for a static
metric, the combination /gg"T¢, + L" for gauge bosons,
ghosts, and spin-1/2 fermions (n =1, 3, 4) and the
integrated form [ d®x[,/gg™Tg, + L"] for the gauge-fixing
term and scalar bosons (n = 2, 5).

A. Gauge bosons

a. Gauge bosons in a general metric: The covariant

field-strength tensor

Fi, = 0,A% — 0,A% — ef* ALAS (2.1)
is independent of the metric tensor. (e will be used for the
gauge coupling since g is reserved for the absolute value of
the determinant of the metric.) To make the metric

dependence explicit £! is written in terms of the covariant
field strengths

g
L= \/T_FﬁaFfﬂg"”g“ﬂ. (2.2)
The variational derivative of the action gives
g
Tplw = _FZaFZﬁgaﬂ + %FgaFZﬁgKﬁgaﬁ’ (23)

b. Gauge bosons with a static metric: In this case

iy [
gOT}y = =S FFg; + - FO.F, (2.4)

2 4

and therefore

Vag Tl + L = —/gFJF,. (2.5)

B. Gauge fixing

a. Gauge fixing with general metric: The Lagrange

density
£ = S VAL, . (2:6)
(), = %aﬂ<ﬁ¢vAz>, 27)

results in BRST invariance [2,3]. Variation of the action
with respect to the metric gives for the energy-momentum
tensor

1
T2, = A|=A%,W, — ALO,W, + g, E(W‘l)z +A€aﬂwa”.

(2.8)

where for conciseness

1
Wa = (AZ);a = %aa[\@g"ﬂf\f;]-

b. Gauge-fixing with a static metric:
with 4 = v = 0 leads to

(2.9)

Equation (2.8)

Vg2 + L2 = 2\/g[=2A%, W, + (W,)2 + Aba,W,).
(2.10)

In the term (W,,)? if one factor of W,, is expressed in terms
of derivatives then a spatial integration by parts produces

[ @A Ty £ =1 [ e, -adoW,).

(2.11)

C. Ghost fields

a. Ghosts with general time-dependent metric: The
Lagrangian density for the ghost fields is

£3 = \/ggﬂy(aﬂﬁa)(l)yn)u (212)

where 7, and 7, obey Fermi statistics, transform in the
adjoint representation, are not conjugates of each other, and

(Du’//)a =0 Ng — efabcAlénc- (213)
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Varying the action with respect to the metric gives

Ty, = (0,71a)(Dyn) + (0,710) (D)4

- gyygaﬁ(aaﬁa)(Dﬁ")a' (2'14)

b. Ghosts with static metric: Equation (2.14) becomes

QOOTSO = ¢"(9o714) (Do), = gjk<aj77/a)<Dk’7)a (2.15)
which leads to
V99 Ty + L3 = 24/39% (o71a) (Dott) - (2.16)

D. Spin-1/2 fermions

a. Fermions with general metric:
density for fermions

The Lagrangian

i i .
Lt = @{iw‘hw‘vﬂw =5 (V) hr'y

~Whng + Vi | @17)

requires some explanation. First, m, is a Hermitian mass
matrix and Y; are Hermitian Yukawa couplings to the real
scalar fields that are discussed in Sec. I E. The spacetime-
dependent Dirac matrices satisfy

{r.r} =29"1

(y")t = hy*n™! (2.18)
where h' = h is the spin metric [22]. The spacetime-
independent Dirac matrices satisfy

The spacetime dependence of the y* is carried by vierbeins,

P = e’(‘a)y<") where 7% elyely = 9 and g, e(, ety = Nap.

The spin metric # = y%) is not a function of spacetime nor
is the matrix y°,

5

Y’ = —iGeapu v v r*v" A\ (2.20)

Consequently Vﬂys = 0 and no additional effort is required
if w; and wy are in different representations of the

gauge group.
The covariant derivative of the fermion field is
Vo =0y +T,w—ieA;T, (2.21)

where the spin connection is

1 (@
Ty =g (uely + Tely lrw-r7] (2:22)
The detailed calculation of T° ;4“, is presented in Appendix B
with the result
i T 2
T = 3 W' Vo + 9 hy, V)

l T .
-1 (Vo) "hyw + (V) hy,y)

- g/ll/£4/\/§'

b. Fermions with static metric:
(2.23) immediately gives

(2.23)

For a static metric

i,
5 W by Vow = (Voy) thy ).

(2.24)

VIg TG + L = /g

For the static metric ef)o) = /goo and ef)j) = 0; the spin
connection I’y simplifies to

Ty = ( (2.25)

ajgoo) [70, Vj]-

oo —

This satisfies (I'y)" = —hAloh~".
appears in (2.24) is

The combination that

hy’Ty — Tyhy® = h{y°, T} = 0. (2.26)
Thus, Vo in (2.24) can be replaced by
Doy = dgy — ieA§Ty (2.27)

so that

i .
3 [ hy" Doy — (Do) hyw].

(2.28)

\/§QOOT30 + LY = VY

E. Scalar bosons

a. Scalars with general metric:  For a set of real scalar

fields ¢; the Lagrangian density is

v 1
where the gauge covariant derivative is
(D) = 0,b; — ieA[(1°) ;6 (2.30)
with 7 imaginary and antisymmetric, U(¢) is a polynomial

in the fields invariant under local gauge transformations, R
is the Ricci scalar, and £ is an arbitrary parameter.

125021-4
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The presence of the Ricci scalar R causes some compli-
cations in varying the action with respect to the metric tensor.
It is convenient to separate the calculation into two parts:

5/d4x£5 /d“x\/—[TSA(Sg”’“ —£(6R)¢?], (2.31)
where Tﬁ’,‘,‘ results from varying everything except R,
T/Sté = (Dy¢)i(Du¢)i
1 1
g 3D D), - U W) - 6R47).
(2.32)

The variation of R required in (2.31) is available in Sec. 10.9
of [5],

5R = R”yagﬂy - (59#1’)””/ + gﬂl/(égﬂb)’e/)' (2'33)

The result of the variation is

——5 / d*x\/g(6R)p? = / dx\/gTEsg™,  (2.34)

where
T8 = E[=Rudi + (#7) o — 9 (07) 7). (2.35)
In summary
o 4 ps 1 5A 5B
W/d xL° = 5\/§[TW + Tﬂ,,}. (2.36)

Comment:
divergence is

T f;f has the property that its covariant

1
(9T, = 5 EOR)P? (237)
with no derivatives of the fields.
b. Scalars with static metric:
and a static metric gives

Eq. 2.32)withpy=v=0

\/EQOOTSQ +L= \/§gOO(DO¢),-(DO¢)i. (2.38)
For a static metric (2.37) is a true conservation law,

0,[v/99™T3§] = 0 and so

d

d3 OOTSB 0.
7 | dag

(2.39)

Since the spatial integral is constant and the fields have
arbitrary spacetime dependence, it is natural to expect that
the integral is zero. Appendix C confirms this,

/d3x\/§gOOT(5)g =0. (2.40)
This and (2.38) may be summarized as
[ astvageag+ 1) + o
= [ @x/a 0 D). 241)
Comment: T}, T3, Ty,. Ty, all agree with Table 1

of [17], which does not include gauge fixing.

III. EQUALITY OF [d’x,/gg"T,, AND THE
CANONICAL HAMILTONIAN

The results of the previous five subsections will now be
combined. All equations assume a static metric but allow
arbitrary spacetime dependence of the fields.

A. Assembly of the results

The spatial integral of (2.5), (2.16), and (2.28) when
added to the integrated results (2.11) and (2.41) give

[ @xivad T+ £)= [@xvaion ) G

where Q, comes from the gauge boson £' and Q, from the
gauge fixing, ghosts, spin-1/2 fermions, and scalars,

0j
Q = —FUFg,,

Q, = g[A(0AG) W, — AAG (00 W ) + 2(0071.) (Don) 4

(Do) i(Dogh);]-
(3.2)

i
+ 3 (w hyoDow — (Dow )" hyow) +

A more explicit expression of € is

VI = \A-F0,A + FU (DA, (33)

The spatial integral, after an integration by parts, is

/ dx\/gQ, = — / d3x[\/§F2j00A;‘ + [D;(/9F")] ,Ag].
(3.4)
Gauss’s law requires [

D;(y/9F")], = \/9J5, where

aﬁﬂ
JO = —1/q g% 0, W
\/f_] a \/_g 0 a +Z()AS

(3.5)

and therefore

125021-5
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/d3x\/§§2] = —/d3x\/§[F2j00A7 + JOAE.  (3.6)

The charge density is

Jg = 900 [_laOWa =+ e(aOFIb)fabcnc

+ €l//1-h}/0Tal,l/ - ie(D0¢)t 1/¢]] (37)

Using JY in (3.6) and adding this to the spatial integral of
\/9€, produces cancellations of some of the Af depend-
ence and results in

/ Px[\/gTy + L] = / dx\/g{—Fd 9y
+ 9% [A(00AG) W + (9p71a) (9011)
+ (9oiia) (Don) 4

+ % (" hrodoy — (dow) " hyow)
+ (Do) (00hi) }- (3.8)
B. Canonical momenta
There are seven canonical momenta:
m = 9(0 ai @y = VOFT ?
= iy~ VW
Pa= a(goﬂa) = /99"l
P = gy~ VI OO
= o S
= sy =L
= S = V(D). (3.9)

The rather cuambersome equation (3.8) is more recognizable
when expressed in terms of the canonical momenta,

/ dBx[\/gT) + L] = / dx{mhdyA? + 190,A¢
+ paa()rla + (007_711)1_70

+ 71'1,100‘// + (a()lrlﬂ-)”(//r + ”?aoﬁbi}-
(3.10)

Of the seven terms involving the canonical momenta the
fourth and the sixth have the canonical momenta on the
right, as they should be. Eq. (3.10) may be summarized as

/ dx\/gT0% = / dx [Znsaoxs —.c].

The right-hand side is the Legendre transform of the dyy,
dependence of the Lagrangian to the I1; dependence of the
canonical Hamiltonian. This proves the equality

(3.11)

/ P JGT0, = / P /560, (3.12)

using Gauss’s law but not the dynamical Euler-Lagrange

equations.
It is perhaps worth noting that the constraint
[D;(\/gF%], = \/gJ% may be written in terms of the

canonical momenta

[Djﬂj]a - ﬂgaOWa + efabcpbr]c

—ien, Ty — ien] tquﬁ], (3.13)
and this relation is independent of the metric.

As mentioned in the Introduction, Appendix D contains
another test of the equality with a Lagrangian density that

contains the Ricci tensor R*.

IV. GENERAL ARGUMENT

This section investigates a more general context in which
the form of the Lagrangian density is not specified, except
that it has only first derivatives of the fields. The equality of
the two Hamiltonians for a static background metric is
again demonstrated.

a. Divergence of the canonical EMT: The divergence
of the canonical tensor (1.3) is

-3l

The spacetime dependence of £ occurs in both the fields
and the metric,

oL
%l = Z[ (0;,)()

The last term requires differentiating the spacetime depend-
ence of the metric while keeping all the fields y, fixed.
Substitution above gives

x] —0,L. (4.1

= 9 ay;(s] —0,L| . (42)

X

9,(\/30",) ZM os)—0,L| .  (4.3)
X

125021-6
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oL oL
M, = ( ) oL
0(0ux5)) K
M vanishes if the Euler-Lagrange equations are imposed
but even then d,(,/g0}) # 0 for a general metric.

b. Divergence of the Hilbert EMT: The covariant
divergence of 7#, is computed from the fact that the action
is invariant under a coordinate transformation x* — x’*; see
Sec. 94 of [4] or Sec. 12.3 of [5]. The metric and the fields

(scalar, ghost, spin-1/2 fermion, and gauge) transform as
follows:

(4.4)

ox® oxP
G &) = == G (). (4.5)
@' (X') = ¢i(x),
Na(X') = n4(x),
w'(x) = w(x),
b A
Ala(x) = aj:,aAj{(x). (4.6)

(The covariant vierbein transforms the same as the covar-
iant gauge field but it will not be needed.) Invariance of the
action means that

[ L)) = [ d3L(g00200).
Relabeling of the integration variable gives
[ #5602 0) = [ dxL(g.00.20).

The action is invariant under a change in the functional
form of the metric and the fields at the same position x,

Agy(x) = g (x) = g (). (4.7)
Ay(x) = x5 (x) = xs(x). (4.8)

Let
X = x4+ & (x), (4.9)

where &(x) is an arbitrary, infinitesimal function. The
change in the metric is

Agpu = _(6;4);1/ - (51/);;4' (4'10)
For the scalars, ghosts, and spin-1/2 fermions
Ay, = _éyau 55 (411)

and for the vector potential there is an additional term

AAG = —£0,A% — (0,8")AY. (4.12)
Under these variations the action is invariant. The variation
with respect to covariant metric gives the contravariant
energy-momentum tensor but with the opposite sign

from (1.1),
_ 4 \/f_] v 4 v
0= [ d'x*"T"Ag,, + zs:/d XMy,
+ / d*x M (9,8 AL (4.13)

In the second term the sum on fields s includes a term for
the gauge potential; in the third term the explicit form is

M’Z=6,1< oL ) oL

) - 4.14
0(0,A4)) ~ oA (4.14)

An integration by parts in the first and third term yields

-3 [ ameoz,

- / d*x0,(MEAD)E.

/ dx /5T,
(4.15)

Since £“(x) is an arbitrary function, the integrands must be
equal,

VAT, = M(0,2,) — 0, (MhAL).  (4.16)

The first term in (4.14) is =0, (/gF**), which combines
with 0L!/0A% to give the gauge-covariant derivative
—[D,(\/gF**)],. The remaining terms from the gauge

fixing, ghosts, spin-1/2 fermions, and scalars define the
current density

I’l

5
V3% = =20,(\/3¢* W, +Z

(4.17)
=9
and so
= [Du(VaF" )], + V93 (4.18)
The constraint of Gauss’s law requires
MY =0. (4.19)

Therefore, the last term in (4.16) is really only a spatial
divergence 0;(M4A{) though the form 9, (MLAL) will at
times be used below.

c. Comparison of divergences of the Hilbert EMT and
the canonical EMT: The terms of the form M (d,y,)
in (4.16) also appear in the canonical divergence (4.3) and
so (4.16) can be expressed as

125021-7
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(\/_TM ) - \/§ (auga/})Taﬂ

= aﬂ(\@@”b) +0,L|, — 9,(MZAY). (4.20)
This holds for a general metric and arbitrary fields using
Gauss’s law but not the dynamical Euler-Lagrange
equations.

For simplicity suppose £ has only first and second
derivatives of the metric, as is the case for the general gauge
theory in Secs. II and III. The second and fourth terms of
Eq. (4.20) require the derivatives

O L a[az} aa[az]

2 agaﬂ agaﬂ i agaﬂ up
e oL n oL n oL
= Yap. Yap, > Yapupp-
v=ly agaﬁ apv aga/j# apvu agaﬁ.ﬂp ap.vup

The difference between these two is a total derivative;
Eq. (4.20) becomes

6ﬂ(\/§T"U) = 0/4(\/@@””) +0,2t, — 0”(A,‘f/\/l’§), (4.21)
where
oL . oL 3 ( oL )
v=5 Y90 T3 Yapup — 5 |Y9apu-
0Yap p 0 up " P\ Oap

The derivatives of the metric are not tensors and so ¥, is
not a tensor. (If £ has any number of metric derivatives of
the metric the form (4.21) still holds but ¥/, is more
complicated.) Because of Gauss’s law (4.19) the spatial
integral of (4.21) is

d
dx\/gT°, = o / &Ex[\/g0°, +20).  (4.22)

Since the time dependence of the fields and the metric is
arbitrary the integrals must be equal,

/ dPx/gT°, = / Bx[/g0°%, +39,].  (4.23)

Case 1: Minkowski metric. If the metric is chosen to be
(ap) = diag(1,—1,—1,-1), then ¥, = 0 in (4.23). The
resulting equality holds for arbitrary fields and thus is more
general than the usual result (1.9).

Case 2: Arbitrary time-dependent metric but L has no
derivatives of the metric. These conditions are satisfied
by the gauge boson £! and by the scalar boson £ if the
ER¢? term is omitted. Obviously ¥, = 0.

Case 3: Static metric. This includes the case of
principle interest since £ for a general gauge theory
contains first derivatives of the metric in the gauge-fixing
term and the spin connection Fﬂ for fermions, and second

derivatives of the metric in the £R¢? term. For a static
metric X%, = 0 and so

/d3x\/§T°O = /d3x\/§®oo. (4.24)
The dynamical field equations have not been used. This
agrees with the explicit calculations leading to (3.12) and
explains the miraculous cancellations for the example
considered in Appendix D.

APPENDIX A: CHRISTOFFEL SYMBOL AND
CURVATURE TENSOR FOR STATIC METRIC

A static metric is time independent and gy; = 0.
Christoffel symbols with an odd number of time compo-
nents vanish,

Fgo =T = th’ =0. (A1)
The Christoffel symbols with two 0’s are
Tl = — - gi*o A2
00 — _59 900> ( )
Y, = : 09 A3
k0 — 59 k9o0- (A3)

I',, is nonvanishing and independent of goy. Two useful
contractions are

jk = _ak\/_’ (A4)

7

¢ = —791(\/379’%)7
where | det(g,4)| = gooy- The Riemann-Christoffel tensor
with four spatial components is independent of g:
@Rijts = PRjpe. If there is one time component
Ryjre = 0. If there are two time components

(A5)

1 1 1(9;900) (9x900)
Rojor = _Eajakgoo += > ,kafgoo +4JT~ (A6)
The Ricci tensor with two spatial indices is
@R = g"Rojor + PR, (A7)

where gR,,;,x = R is independent of gq if there are
two time indices

@Roo = ¢ Rojox

_ 900 |:\/—gjkak900:|

f 9oo (AS)
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and if one time index R, = 0. The Ricci scalar is

@R = 2¢% ¢/ Ryjo + PR. (A9)

APPENDIX B: CALCULATION OF T ,‘:,,
FOR FERMIONS WITH ARBITRARY
TIME-DEPENDENT METRIC

This appendix contains the detailed calculation of T;‘,,,
displayed in Eq. (2.23). The fermion field y is not required
to satisfy the Dirac equation.

The Lagrangian density (2.17) may be written

L= \/E%[WT(KV/) + (Kw)'y],

K = ihy*V, — h(m; + Y ;). (B1)
The variation of £* with respect to the metric is
5L = —2 0,00 L4 13 /il (5Ky) + (5Kw)'u]. (B2)
In [22] the variations are shown to be
5K = % (6" )hy,V, + (5G)K + K(5G) + 5X.
5G = el lr,. vloet,,
BX = ¢ (T )l 1), (B3)

Because (6X)" = —5X it disappears from (B2) and so

1 i
OLY = =29, L409" + 7 /aly hy, oy — (Vo) hy,ylog™

1
+§[A1 + 4],

(B4)
A, contains derivatives of the vierbein because of K6G. To

simplify A, the following identity valid for arbitrary spinor
fields y; and y,, is useful

Vo (Kwy) = VoK) Ty = =0,(\/aw'|hy'ws).  (BS)

For the first term in A, take y; = w and y, = dGy and for
the second term in A, take y; = K6Gy and y, = . The
result is

Ay = Ay + i0,[/gy" hy'6Gy — \/9(6Gy) hy'y].  (B6)

Since (6G)" = —h(8G)h™" this is

Ay = Ay +i0,[\/ow" h{y*. 5G] (B7)

The variation of £* becomes

1 /9
OLY = =2 Gu b L* + l% ' by Vo = (Vow) hy,wlég™

+Valy" (6G)Ky + (Ky)'(6G) ]

+i0; (/g h{r*,6Gy. (B8)
The total derivative in the fourth line does not contribute to
the variation of the action. From (B3) the derivative of G
with respect to the vierbein is

oG 1

eup) 5o = 2 Vw70l
de(/j) 8

(B9)

and the derivative with respect to the metric tensor is

G 1 G n G
v -5 eﬂ(ﬂ) v e’/(ﬂ) H
dg" 2 0e(ﬂ) 6e(ﬂ>

—0. (B10)

Consequently the energy-momentum tensor is determined
by just the first two lines of (BS),

i _
Ty, = 1 ' hy, V. +w'hy,V

- i [(VDW)Thyul// + (V”I/I)T/’l}’yl//] - g;tuﬁ4/\/§_]'
(B11)

APPENDIX C: PROOF THAT [ d%,/gg"TE=0

The “extra” piece (2.35) in the energy-momentum tensor
for scalar bosons is

T35 = —R,Y+ Y, — 9.¥9, (C1)
where ¥ = £¢?. This came from the term — £, /G(6R)¢? in
(2.31). The following applies to any action of the form

—% / d*x\/g¥R, (C2)

where W is a coordinate scalar. A Lagrangian density of the
form /gX*d,R or \/gY*'R.,., has an action of the form
(C2) after an integration by parts.

Static metric: To analyze T35 for a static metric,
organize the y = v = 0 component as

125021-9
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VTS = A3+ B

Af = _LZ]ROO\Pv
Yoo
Bg = \/g[lP;O;O - ‘PJ;/I]- (C3)
From (AS8)
1 .0
A% =0, [\/gg-/k "900] p, (C4)
2 900

In BY, the time derivatives of the fields all cancel and leave

g .

B = ~YIrh o - o[ atiow).  (C3)
900

Using (A2) gives a more complicated looking result,

By =3 Vi Lo - [ i o). (Co)
but the sum with A%, gives another total derivative,
200+ 8% =30, Vg 00| - o[ o . (€7)
Consequently

/d3x\/§gOOT(5)g =0. (C8)

APPENDIX D: A COMPLICATED EXAMPLE

This appendix presents the details of the example
mentioned in Sec. I in which £ depends on the Ricci
curvature tensor R**. Despite the complications the result is
again that the Hilbert Hamiltonian is equal to the canonical
Hamiltonian for a static metric even without using the field
equation. The Lagrangian density is

L= /gR"(0,9)(0,9) (D1)
and could be added to the conventional Lagrangian density
for a scalar field if multiplied by a coefficient of mass
dimension M~2. The question is not whether this £ is a
physically acceptable addition but whether the resulting
Hamiltonians, Hilbert and canonical, are equal. The canoni-
cal energy-momentum pseudotensor (1.3) is

V9O, = 2,/gR"*(0,)(0,¢)

—&.L. (D)

For a static background metric

®%) = RY0ypdesp — RI*0,b0,. (D3)
The field equations have not been used.
a. Hilbert T,, for a general metric: The Hilbert

energy-momentum tensor for a general metric is more
complicated to compute. It is convenient to organize L as

L= @Raﬂgaﬂgﬁyq)ﬂw (D4)

where ®,, = (d,¢)(d,¢) is a tensor independent of the
metric. One needs the variation of the covariant Ricci tensor

with respect to the contravariant 6g"* given in Eq. (10.9.3)
of [5],

1 1 )
5Ra/3 = Eg;w (59/”);(1;/} + Egllyg/iv(égﬂy),l;ﬂ

1 1
- Egau(églw);/};y _Egﬁu(églw);a;,u' (DS)

The variational derivative of the action allows the covariant
derivatives of 6¢"* to be shifted to the fields and leads to
T, =2®,R" +20,,R", - gﬂyd)aﬂR“ﬁ
+ gﬂy(q)aﬂ);a;ﬂ + (q);w);l;i

- ((I)/m);u;a - ((I)ua);ﬂ;a~ (D6)

This holds for a general metric.

b. Hilbert Ty for a static metric: Specialize to a static
metric, set 4 = v = 0, and use Roj = R’y = 0 to obtain

Too = Poo + Qoos
Poo = goo [3R00‘D00 - Rjkq)jk],

000 = J00(Pap) ™ + (Pgo) 1 = 2(Pou).0™- (D7)

Note that P, contains a factor of 3 not present in . In
Qg all the double time derivatives cancel and leave

Q00 = Joo[(Por ) = (o) ]+ gk (Poo) 7 + goo (Pju) .

It is convenient to change contravariant derivatives to
covariant derivatives

000 = goo[(PY) 0= (D) ] + gjk(q)oo);j;k +900<q)jk);j;k‘

The term in square brackets may be evaluated in terms of
the curvature tensor

(®Y) .0 = (D) 0.0 = =R 420P™ + R o, @7
= —Roo®® + [Rjx — R j ] D

and therefore
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Poo + Qoo = 9002R™®gg — gooR” j /1 P
+ gjk(q)00>;j;k + gOO(q)jk);j;k' (D8)

The difference between the Hilbert energy density and the
canonical energy density is

ValT% = 8%] = \/g[RP Dy + R/ D]

+X + X + X, (D9)
X, = /99" (D%). s
X2 = \/g(q)jk);j;k’
X3 = —\/ngjfk(I)jk, (D]O)

c. Analysis of X1: To simplify X; use (A1) and (AS5) to

obtain
GH(@0).11 = 04 (%), ~ T, (@), ]

= @)+ AV @),

= AV @), (D11)
Therefore,

X\ = Vawdlyrg(@%), . (D12)

In the volume integral of X; a spatial integration by parts
gives

1 .0
/d3XX1 = —E/dSXﬁgjk&(q’oo);j'

D13
900 ( )

Since (®°, ), =0; ;@° another integration by parts gives

1
/d3xX1 /d3x0 [\/— Jk akgoo] @°,,.
Joo

From the identity (AS8) this is
/d3XX1 = _/d3x\/§R00¢)00
= —/d3x\/§ROO(I)00.

(D14)

(D15)

d. Analysis of X,: To simplify X, use (A4)

(q)jk);j;k = ak[((bjk);j] + Fi/(q)jf);j

_M@Mﬂ+%®w@@my

AN o]

Y. (D16)

Therefore,
X5 = /9000 [v/7(®7F) ;. (D17)

In the volume integral of X, a spatial integration by parts

yields
3 1 3 iy 9goo
d‘XXZ = —E d x\/g(q) ),]— (Dlg)
Joo
The necessary covariant derivative is
(@), = 9, + I, @ + TX, @/
0;[\/r®*] + F" /7, (D19)

\/— J
Substitution into (D18) and integration by parts gives

/ &PxX, = [ & xﬁ [ajakgoo _ ajgooakgoo] ik

900 2 4900
{ (0fg00)l“f Dk, (D20)
Comparison with (A6) shows that
/ dxX, = - / dx\/99"Rojor ®*.  (D21)
Combining this with X5 from (D10) gives
/d3X[X2 +X3] = - / dx\/gIR® jor + R jo1 ] D
- / d*x\/gR j ®'*. (D22)
e. Result: From (D15) and (D22)
/ dx[\/gRY Dy, + X,] = 0, (D23)
/ P IRy + Xy +X;] =0, (D24)
and so, from (D10)
/ P JG[T0 — 0%] = 0, (D25)

which shows that the Hilbert and canonical Hamiltonians
are equal.
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