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Carroll symmetry is a very powerful characteristic of generic null surfaces, as it replaces the usual
Poincaré algebra with a vanishing speed of light version thereof. These symmetries have found universal
applications in the physics of null manifolds as they arise in diverse situations ranging from black hole
horizons to condensed matter systems with vanishing Fermi velocities. In this work, we concentrate on
fermions living on two-dimensional (2d) null manifolds and explore the Carroll invariant structure of the
associated field theories in a systematic manner. The free massless versions of these fermions are shown to
exhibit 2d conformal Carroll or, equivalently the 3d Bondi-Metzner-Sachs (BMS) algebra as their
symmetry. Due to the degenerate nature of the manifold, we show the presence of two distinct classes of
Clifford algebras. We also find that in two dimensions, there are two distinct fermion actions. We study
discrete and continuous symmetries of both theories and quantise them using the highest weight
representation of the vacuum. We also discuss how the symmetries of 2d free fermion conformal field
theories can be continually deformed by infinite boosts or degenerate linear transformations on coordinates,
leading to the corresponding BMS invariant theory at singular points.
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I. INTRODUCTION

The road to quantum gravity is an uphill one, no matter
how many rewards it promises at the summit. Various
approaches towards it exist, and some are more useful than
others. Although most of the studies in quantum gravity
revolve around Lorentzian (or Euclidean) structures, it
makes complete sense that non-Lorentzian symmetries
would be as important in a fully consistent theory of
quantum gravity. One of the most fascinating non-
Lorentzian geometric structures of physical interest turns
out to be that of a null surface. These are the manifolds on
which our well-known and beloved pseudo-Riemannian
structures break down, forcing us to refresh our geo-
metric point of view. These null structures could include
event horizons of generic black holes, the boundary
of causal diamonds, and null infinity of asymptotically

flat spacetimes. But not only in the theory of quantum
gravity but the physics of null surfaces also keep appearing
in diverse situations, including those as unrelated as
cosmology, fluid dynamics and even spin chain systems
in condensed matter physics. However, they all share one
universal characteristic, they all possess some form of
inherent Carrollian symmetries that replace good old
Poincaré invariance.
The whimsically named Carroll group [1,2] (after Lewis

Carroll and a quote by the Red Queen in his famous book)
is obtained by a seemingly bizarre Inönu-Wigner contrac-
tion of the Poincare group, where the speed of light of a
system is taken to zero i.e., c → 0. This group turns out to
be the symmetry associated with theories living on null
hypersurfaces. The associated manifolds are termed as
Carrollian manifolds [3–6], as opposed to Newton-
Cartan manifolds [5,7], which are associated to physics
in the c → ∞ limit. These Carrollian manifolds have a fiber
bundle structure, that keeps spatial and temporal sym-
metries separate. However weird the idea of zero speed of
light sounds, it turns out that Carrollian limits bring out
larger amounts of symmetry from relativistic parent theo-
ries, and are incredibly useful to characterize physical
systems defined at highly ultrarelativistic (UR) regimes. In
a general sense, these symmetries could arise in any theory
where a characteristic notion of an effective velocity goes to
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zero, for example, vanishing Fermi velocity in condensed
matter systems should also suffice.
The most well-known application of Carroll symmetries,

or more specifically the conformal version thereof, comes
in the form of holography in asymptotically flat spacetimes.
The asymptotic symmetry group for such spacetimes at
null infinity is the famous Bondi-Metzner-Sachs (BMS)
group [8,9], which in dimensions three [10] and four is
promoted to infinite-dimensional structures. As mentioned
before, since this is a situation where the physics of null
surfaces comes in handy, there should be no surprise
that conformal Carroll algebras are isomorphic to BMS
algebras in one higher dimension [6,11]. This has paved
the way for focused research along the directions now
known as Carrollian holography, which in the true spirit of
the hologram postulates a duality between gravity in flat
spacetime and a Carrollian conformal field theory (CCFT)
or a BMS invariant field theory (BMSFT) living on the
null boundary [11,12]. This approach has found resounding
success dealing with a 3d version thereof, where the puta-
tive boundary theory is a 2d CCFT [11]. See for example
[13–21] for a nonexhaustive list of literature along this
direction. On the other hand, the other avenue to the flat-
space hologram, known as celestial holography [22] has
found incredible use in computing scattering amplitudes in
the flat bulk.1 A very recent exciting bridge between these
two approaches has been established in [25], which again
uses a particular branch of a CCFT living in one less
dimension.2 This makes it very clear, CCFTs are something
extremely useful to study, however deeply mysterious
to fathom.
Inspired by recent advances, many authors have looked

into various aspects of CCFTs in diverse dimensions. Most
notably in two dimensions, where CCFT2 shares another
interesting duality with Galilean conformal field theories
(GCFT2) [27], numerous discussions have appeared in the
literature. In a parallel development, Carroll symmetries
have also been shown to arise on null (or tensionless) string
world sheets, where they replace two copies of Virasoro as
the residual symmetry algebra [28,29]. This has found
recent and intriguing use in the study of string theory near
black hole horizons [30] and the explicit counting of BTZ
black hole microstates [31]. Despite the impressively long
list, the intrinsic approach towards Carroll invariant theo-
ries as defined on a null hypersurface has only recently
gained momentum. Carrollian conformal scalar field the-
ories have been systematically studied from the geometric
point of view in [32–34]. Covariant formulation of the same
has appeared in a few recent works [35–38]. Similarly,
intrinsic constructions of Carrollian gauge theories [39–43],

fluid dynamics [32,44–47], and gravity [48–54] has received
widespread attention in recent times.
In this work, we will aim to fill a gap in this spectrum, by

studying Carrollian fermions in two dimensions from an
intrinsic point of view. Like its scalar counterpart, the
Lagrangian formulation of a Carrollian fermion was also
studied first following exciting results in (supersymmetric)
null string theories [55–57]. In the rest of this paper, we
discuss variants of Carroll fermions arising out of the first
principles of symmetry. A companion paper [58] will focus
on the details of Carroll fermions in general dimensions and
also discuss intriguing applications to flat-band physics in
condensed matter systems.
We will make Carroll invariance our guiding principle

and geometry of Carroll manifolds our beacon, thereby
going ahead with introducing the representations of Carroll
Clifford algebras. Due to the nature of null hypersurfaces
with degenerate metrics, these Clifford elements will also
be manifestly degenerate structures. We will then system-
atically elucidate the discrete and continuous symmetries
enjoyed by a Carroll fermion in close comparison to the
relativistic counterpart, at the end leading us to explicitly
Carroll invariant set of Dirac actions. Depending on
inequivalent representations of degenerate Clifford matri-
ces, we recover two distinct classes of fermions, known as
the homogeneous and the inhomogeneous ones. We then
move on to study the conformal versions of these two
classes of Fermionic theories by switching off the Carroll
boost-invariant mass terms. We discuss the appearance of
2d Carroll conformal algebra (or BMS3 algebra) for
charges associated with relevant stress tensors.
We then focus our attention on a rather interesting

description of how Carroll objects can be found by continu-
ally deforming relativistic ones to some degenerate points. In
a recent paper [59], the authors have shown certain degen-
erate transformations (“null boosts”) acting on CFT2 turns it
into aBMS3 invariant theory at the extremeandnoninvertible
points. Various (anti)holomorphic CFT quantities were
shown to “flow” with the deformation induced by such a
transformation, and it turns out this deformation effectively
becomes a marginal current-current (JJ̄) deformation to the
CFTHamiltonian,which for a particular singular value of the
coupling constant makes the symmetries jump to corre-
sponding Carrollian ones. This turns out to be a picture
commensurate with the idea of adding a

ffiffiffiffiffiffiffi
TT̄

p
deformations

heuristically to CFT2 as explored in [60]. Using these ideas,
we will also work out how the relativistic spinors can be
gradually deformed into Carroll ones as the ambient speed of
light is dialed to zero.
The rest of this paper is organized in the following way.

In Sec. II, we introduce the notion of a Carroll Clifford
algebra. Based on the two kinds of Carroll metrics, we
define gamma matrices with upper and lower indices. Then
we identify two classes of representations in two dimen-
sions, based on whether one of the gamma matrices is
purely null or not. In Sec. III we talk about the Carroll boost

1See the excellent reviews [23,24] along this direction. For
more details, the keen reader is directed to the references in these
reviews.

2See [26] for other related approaches towards bridging the
two ideas.
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symmetry of fermions that replaces Lorentz symmetries in
two dimensions. We also systematically derive structures
associated with Dirac conjugation, charge conjugation and
parity transformation for Carrollian fermions. Once that is
done, in Sec. IV, we write down and describe the nature of
massive Dirac actions for various representations of Carroll
gamma matrices. Sections Vand VI contain the bulk of the
main results in the paper, where we talk about 2d massless
fermions in inhomogeneous and homogeneous representa-
tions from a CFT point view, deriving stress tensors,
algebra of charges, correlation functions and central exten-
sions. In Sec. VII, we derive the degenerate Clifford repre-
sentations and Carroll invariant actions starting from their
CFT2 counterpart and flowing with ‘boosts’ to a noninver-
tible point. Finally, in Sec.VIII, we concludewith a summary
and future objectives that lay before us. The Appendix
contains some further details on homogeneous spinors.

II. CARROLL CLIFFORD ALGEBRAS

Let us first remind ourselves quickly of the basics of
Carroll geometry.3 As we mentioned in the introduction,
Carroll group appears as a c → 0 limit of the relativistic
symmetry. The kinematical structure associated with this
group ensures we can describe Carrollian manifolds in
the vein of their Riemannian cousins. Intrinsically,
d-dimensional Carrollian manifolds can be described by
a fiber-bundle structure with a (d − 1)-dimensional base
space, complemented by the temporal direction forming a
one-dimensional fiber. Specifically, flat Carroll geometries
[48], a particular class we are interested in, are defined
using a nondegenerate metric and a nowhere vanishing
vector field that defines the clock form,

ds2 ¼ hμνdxμdxν ¼ δijdxidxj; τ ¼ ∂

∂t
: ð2:1Þ

These structures are then invariant under Carroll trans-
formations, where space and time change asymmetrically
under local transformations. Since the usual notion of the
metric is degenerate on a Carroll manifold, one cannot raise
and lower indices with the metric and these two structures
ðτ; hÞ step up effectively for the same role.
In this section we consider two different kinds of Clifford

algebras based on whether the Gamma matrices have an up
or a down index. Since in the case of Carroll manifolds, one
could define two kinds of metrics, τμτν and hμν, we could
have two separate classes of Clifford algebras:

fγ̂μ; γ̂νg ¼ 2τμτν; fγ̃μ; γ̃νg ¼ 2hμν: ð2:2Þ

These two kinds of gamma matrices (denoted by a hat and a
tilde) are not a priori related to each other, and give rise to

different theories living on a null manifold. For the flat
Carroll case, we can choose our fundamental objects
without a loss of generality as

τμτν ¼ Θμν ¼ diagð1; 0; 0…Þ; hμν ¼ diagð0; 1; 1…Þ;
ð2:3Þ

where the orthogonality of these two imply Θμνhμν ¼ 0. As
the name of this paper suggests, we will be concentrating
on the two-dimensional case, i.e., where both of these
objects are 2 × 2 square matrices. The definitions given in
(2.2) will determine the representation of our Carrollian
gamma matrices. In [58], higher-dimensional analogs of
these representations will be described.

A. Representation of upper gamma matrices

Consider the case of d ¼ 1þ 1, i.e., one spacelike
direction and one null direction. The Clifford algebra of
the first kind, i.e., with up indices, in component form,
leads to the matrix equations,

ðγ̂0Þ2 ¼ I; ðγ̂1Þ2 ¼ O; fγ̂0; γ̂1g ¼ O: ð2:4Þ
This clearly a degenerate Clifford algebra, since it involves
nilpotent matrices. We then look for the smallest nontrivial
representations for these in two dimensions, in terms of
2 × 2 matrices. The solutions of these equations (2.4) can
be separated into two types. The first class of solutions is
called a homogeneous solution, deriving its name from the
eponymous super-BMS3 algebra [55,56,61], where γ̂1 is
taken to be identically zero and we can choose

γ̂0 ¼
�
1 0

0 1

�
: ð2:5Þ

More interestingly, since the γ̂1 is identically zero in
this case, this representation can be labeled by just the
condition that ðγ̂0Þ2 ¼ I and that would suffice for us. As a
consequence any matrix with a unit square, e.g., any of the
Hermitian Pauli matrices ðσ1; σ2; σ3Þ or certain linear
combinations can do the job. For example, consider the
linear combination

γ̂0 ¼ a0Iþ aiσi; ai ∈ R: ð2:6Þ
Then we get

ðγ̂0Þ2 ¼ ða0Iþ aiσiÞða0Iþ ajσjÞ

¼
�
a20 þ

X
i

a2i

�
Iþ 2a0aiσi: ð2:7Þ

In the Carroll Clifford perspective, this leads us to two
distinct choices for gamma matrices for the homo-
geneous case:
(a) Case I: a0 ¼ 1 and ai ¼ 0 → γ̂0 ¼ I.
(b) Case II: a0 ¼ 0 and

P
i a

2
i ¼ 1 → γ̂0 ¼Pi aiσi.

3The reader is directed to, for example, [48] for a more detailed
introduction to this subject.
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It is easy to verify that different choices corresponding
to case II are related to each other by similarity trans-
formations and we can work with any one of the Pauli
matrices by setting other coefficients to zero. However case
I is an entirely distinct solution as mentioned in (2.5) and
can not be obtained by a similarity transformation starting
from case II. These substructures associated with the
homogeneous representation have intriguing and subtle
differences, which we will return to later in this paper.
The other family of solution to the degenerate Clifford

algebra is the inhomogeneous case, again named after the
eponymous cleverly named super-BMS3 algebra [56,61],
where a class of the solutions look like,

γ̂1 ¼
�
0 a

0 0

�
or

�
0 0

a 0

�
; γ̂0 ¼

�
1 0

0 −1

�
: ð2:8Þ

Here a is an arbitrary constant that can be fixed to �1
without the loss of any generality, and as we will see later,
purely imaginary values are also admissible. We will
mention a couple of subtleties related to this value when
they arise. The two classes of matrices viz. the inhomo-
geneous and homogeneous representations are not related
to each other via similarity transformations due to the
degenerate nature of the matrices involved. One could now
go ahead and write more varied solutions to Eq. (2.4), e.g.,

γ̂1 ¼
�

1 1

−1 −1

�
; γ̂0 ¼

�
0 1

1 0

�
; ð2:9Þ

but they can be related to the earlier set of matrices by a
straightforward similarity transformation4 using the matrix,

S ¼
�
2 2

1 −1

�
; ð2:10Þ

so that we seemingly have just two independent classes of
representations for this version of the degenerate Clifford
algebra, which exhausts the choices inferred from (2.4). In
this paper we will mostly be interested in dealing with the
upper gamma representations. The implications of the
lower gamma representations become more important in
higher dimensions, and those will be discussed elsewhere
[58]. However, for completeness, we offer a brief glimpse
into those in what follows.

B. Representation of lower gamma matrices

The Clifford algebra of the second kind, with down
indices, leads us to the algebraic relations:

ðγ̃0Þ2 ¼ O; ðγ̃1Þ2 ¼ I; fγ̃0; γ̃1g ¼ O: ð2:11Þ

Interestingly, as in the previous section with up indices, this
leads us to one trivial solution where γ̃0 ¼ O and γ̃1 ¼ I
and one set of nontrivial solutions which read

γ̃0 ¼
�
0 a

0 0

�
or

�
0 0

a 0

�
; γ̃1 ¼

�
1 0

0 −1

�
: ð2:12Þ

It is then straightforward to see that the upper and lower
Carroll gammamatrices are isomorphic to each other in two
dimensions as there is an implicit relationship between the
representations in the form γ̂1 ¼ γ̃0 and γ̂0 ¼ γ̃1 for both
homogeneous and inhomogeneous sets of representations.
Once we have fixed our representation of gamma matrices,
we can go forward and define our spinor structure.

III. STRUCTURE OF CARROLL SPINORS

Let us, for completeness, briefly remind ourselves of the
structure of relativistic Dirac fermions in d ¼ 2 (in 1þ 1
signature) before we move on to the Carroll case. In these
dimensions, a faithful real representation of gamma matri-
ces belonging to Clð1; 1Þ½R� can be given in terms of the
Pauli matrices, where

γ0 ¼ σ1; γ1 ¼ −iσ2: ð3:1Þ

The charge conjugation relations for this case read,

γ̂μ
T ¼ −ηCγ̂μC−1; CT ¼ −ϵC ð3:2Þ

for η ¼ �1 and ϵ ¼ �1, which depends on spacetime
dimensions, as in even dimensions both signs may work
while in odd dimensions only one would be present. Both
choices would generate charge conjugation operation on
the spinors, given by ψ ↦ ψc ¼ Cψ̄T. These choices
would also need to satisfy C2 ¼ I. In an even dimension,
it is a safe bet to choose a C which allows for Majorana
spinors to exist. A simple choice pertaining to these two
cases is given by

Cþ ¼ σ1; C− ¼ iσ2: ð3:3Þ

Both of these are real under complex conjugation, and
the first choice corresponds to purely real Majorana
spinors. Similarly, the Dirac adjoint for the fermion is
defined as

Ψ̄ ¼ Ψ†γ0: ð3:4Þ

In the relativistic case with purely real spinors the charge
conjugation matrix and the adjoint matrix turn out to be
the same. But these matrices are representation depen-
dent, and one needs to be careful dealing with these in
the degenerate Clifford case. In this section, we will see
how this works out for the Carroll case, by approaching
the situation from first principles.

4Actually any nonzero 2 × 2 nilpotent matrix is similar to the
(Jordan block) form of γ̂1 in (2.8).
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A. Defining the Carrollian Dirac adjoint

We would go in analogy with the route one would take
for Lorentzian fermions, and consider the commutators of
the upper-index gamma matrices defined in (2.2),

Σ̂μν ≔
1

4
½γ̂μ; γ̂ν�: ð3:5Þ

As in the case of Lorentz generators, one could show that
the commutator algebra of these Σ̂ matrices generates a
Carroll algebra, which in two dimensions is nothing but
Carroll boosts. It is clear from our degenerate representa-
tion of gamma matrices that only Σ̂01 or Σ̂10 has compo-
nents that are nonzero, at least in the inhomogeneous case.
One can then write the action of the Carroll boost on a two-
component spinor Ψ ¼ ðψ0;ψ1ÞT as

Σ̂Ψ ¼ 1

2
γ̂1Ψ ¼

�
0 0
a
2

0

��
ψ0

ψ1

�
: ð3:6Þ

Note that the action of the boost in this case is again in the
form of a Jordan block, which justifies the nilpotency of the
Carroll algebra. Since there are no rotations in 2d, these are
the basic transformation laws we will be interested in. Note
that we have not yet fixed the value of the parameter a to
either �1 or any other constant value. As a matter of fact,
we will show later in the paper that the value of a does not
matter, and can be connected to a special automorphism of
the Carroll conformal algebra.
For the homogeneous class, since the nilpotent gamma

matrix γ̂1 identically vanishes, all generators of the Carroll
algebra follow suit. Homogeneous fermions basically map
to themselves under a Carroll transformation, i.e., invari-
ance, in this case, is trivial.
As in the relativistic case, where we need a Lorentz

invariant bilinear form to construct the Dirac action for
fermions, here also in Carroll sense, we need a similar kind
of bilinear form which has to be invariant under the
Carrollian boosts. Following relativistic analogy we write
down an ansatz for our bilinear

Ψ†ΛΨ; ð3:7Þ

where Λ is a square, invertible matrix yet to be found by the
symmetries, and dagger denotes the usual adjoint operation
for matrices. We demand that Carrollian invariance requires

Σ̂μν†Λþ ΛΣ̂μν ¼ 0: ð3:8Þ

We will further choose Λ to be a Hermitian matrix so that
the bilinear form is real. It is easy to check that (3.8) is
satisfied if we can find Λ such that

γ̂μ† ¼ �Λγ̂μΛ−1; ðeither þ or−Þ ð3:9Þ

Σ̂μν† ¼ −ΛΣ̂μνΛ−1: ð3:10Þ

The last relation is merely (3.8) in disguise. We will then
turn to discuss the nature of the Λ matrix next. Following
the structure of the proposed invariant bilinear will help us
to define the Dirac adjoint by

Ψ̄ ¼ Ψ†Λ: ð3:11Þ

So the invariant bilinear becomes Ψ̄Ψ, which also means
that we have explicitly put in the mass term in a Dirac
Lagrangian which stays invariant (i.e., transforms as a
scalar) under the global symmetries of the fermions.5 This
is a nontrivial statement for Carrollian fermions. In what
follows, we discuss the various representations of Λ for the
cases we discussed in the last section.

1. Adjoint for inhomogeneous representations

Representation with real ‘a’.—In this case, we take the
parameter ‘a’ in the inhomogeneous γ̂0 (2.8) to be real, and
without the loss of generality let us put a ¼ 1. Here a little
algebra leads us to the representation of the adjoint matrix

ΛR ¼
�

0 i

−i 0

�
ð3:12Þ

which satisfies ΛR ¼ Λ−1
R ¼ Λ†

R and Λ2
R ¼ 1. It can be

shown that for the representation, we have

γ̂μ
† ¼ −ΛRγ̂

μΛ−1
R ðμ ¼ 0; 1Þ ð3:13Þ

and consequently, the Carroll boost generators transform
using the following:

Σ̂01† ¼ −ΛRΣ̂01Λ−1
R : ð3:14Þ

Representation with imaginary ‘a’.—We can also take ‘a’
in γ̂0 to be purely complex,6 and one can choose a ¼ i.
Here, for consistency, we can find another choice

ΛI ¼
�
0 1

1 0

�
ð3:15Þ

which satisfies ΛI ¼ Λ−1
I ¼ Λ†

I and Λ2
I ¼ 1. It can be

shown similarly in the real representation,

γ̂μ
† ¼ −ΛI γ̂

μΛ−1
I ðμ ¼ 0; 1Þ ð3:16Þ

5One can similarly show that the components of Ψ̄γ̂μΨ
change as a Carroll vector under boosts, with our choice of
Dirac conjugate.

6To comply with (3.9), the parameter in γ̂0 has to be either real
or purely imaginary.
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and also for the nonzero generators,

Σ̂01† ¼ −ΛIΣ̂01Λ−1
I : ð3:17Þ

B. Map between representations with real
and imaginary ‘a’

As the reader remembers, our ultimate goal is to
construct well-defined Dirac-like actions for our Carroll
fermions. Consider a generic massive Dirac Lagrangian of
the form

L ¼ Ψ̄γ̂μ∂μΨ −mΨ̄Ψ ¼ Ψ†Λγ̂μ∂μΨ −mΨ†ΛΨ: ð3:18Þ

The Lagrangian has to be equivalent for both real/imagi-
nary values of a in our representation, labeled above by the
subscripts R/I. So there has to exist a similarity trans-
formation matrix S such that

SðΛRðIÞγ̂
μ
RðIÞ∂μ −mΛRðIÞÞS−1 ¼ ΛIðRÞγ̂

μ
IðRÞ∂μ −mΛIðRÞ:

ð3:19Þ

After solving the equations one can get the explicit form of
the similarity transformation matrix in d ¼ 2,

S ¼
�
1 0

0 i

�
: ð3:20Þ

Also, it can be shown that

Sγ̂μRðIÞS
−1 ¼ γ̂μIðRÞ; ð3:21Þ

SΣ̂01
RðIÞS

−1 ¼ Σ̂01
IðRÞ: ð3:22Þ

Some comments are in order at this point. Looking at the
structure of the transformation matrix in (3.20) and
reminding ourselves that the transformation acts on the
two-component spinor like ψ → Sψ , we deduce that the
real and imaginary ‘a’ value representations are related by
map of spinor components

ψ0 → ψ0; ψ1 → iψ1; ð3:23Þ

where ψ0;1 can be thought of as purely real numbers. We
can note from (3.6) that an imaginary value of ‘a’ means a
purely real fermion does not stay real under Carroll boosts,
and hence we will mostly be concerned about the real case
and dropping the subscripts R/I for the rest of the paper.

1. Adjoint for homogeneous representations

The structure of adjoints in the homogeneous case
cannot really be inferred just from Carroll algebra. Since
these fermions do not change under boosts, all bilinears of
spinor components would transform as scalars. The reader

is reminded that we had a trivial homogeneous representa-
tion with γ̂0 ¼ I, γ̂1 ¼ 0, while there is a more nontrivial
one having γ̂0 ¼ a · σ, γ̂1 ¼ 0, jaj ¼ 1. The structure of
(3.9) suggests that for the trivial case there is no discernible
constraint on Λ.
Let us now concentrate on the case of the nontrivial

homogeneous representation. Although the γ̂1 does not give
us any constraints, let us examine the γ̂0 case, and since we
have freedom in the choice of the matrix provided by a
similarity transformation, let us choose γ̂0 ¼ σ2. Still, the
space of choice of Λ is distinctly large due to the freedom
given by γ̂1 ¼ 0. A bit of algebra shows that choosing Λ to
be any of the Pauli matrices or a combination thereof, will
satisfy (3.9) with either sign on the rhs. This makes our life
very complicated when it comes to the homogeneous
spinors, and we will address this at pertinent places going
forward.

C. Defining Carrollian charge conjugation

Let us move to the definition of the charge conjugation
operation in the Carroll case. Since we know the transposed
matrices γ̂μ

T
also satisfy the same Clifford algebra, there

exists a charge conjugation matrix which has the property

γ̂μ
T ¼ −Cγ̂μC−1; C†C ¼ I: ð3:24Þ

Since we have already fixed a representation of the adjoint
operators from the Carroll algebra generators, we can plug
that in as the following:

γ̂μ
† ¼ �Λγ̂μΛ−1

⇒ γ̂μ
� ¼ �Λγ̂μTΛ−1 ¼ �ðΛCÞγ̂μðΛCÞ−1; ð3:25Þ

where note that C coincides with �Λ matrix for real
representation, since Λ2 ¼ I. We can now discuss the
charge conjugation matrices for our representations
coupled with the conjugation condition Ψ ↦ Ψc ¼ CΨ̄T .
In two dimensions for real values of the parameter a, in

the case of inhomogeneous representation, we can see a
choice for the charge conjugation matrix

C ¼
�
0 −i
i 0

�
; ð3:26Þ

such that it fits completely with our choice of the adjoint
ΛR, which we will just call Λ in the rest of the paper. We
will use this to define real spinors in the later sections.
One can also explicitly check that ðΨcÞc ¼ Ψ, indicating
the reality of inhomogeneous spinors.
The problem with Homogeneous representations is the

same as in the case of the previous section, we effectively
lose constraints since one of the gamma matrices is
explicitly zero. However, note there is a subtle difference
between the two classes of homogeneous representations
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when it comes to the sign in the conjugation relation of
(3.24). One can show that the trivial and nontrivial
homogeneous representations change with different signs
under generic classes of Λ and C matrix. Some details on
this can be found in the Appendix.
Once the charge conjugation is put in place, a nice

exercise is to look at the number current, a Noether current
associated with the Dirac Lagrangian, and the conjugation
thereof. This is given by Qμ ¼ iΨ̄γ̂μΨ where we have
∂μQμ ¼ 0. For the inhomogeneous case, the currents are
given by

Q0 ¼ ψ1ψ
�
0 þ ψ0ψ

�
1; ð3:27Þ

Q1 ¼ −ψ0ψ
�
0: ð3:28Þ

Now noting the fact that Ψc ¼ −ΨTC, one can show that
ðQμÞc ¼ −Qμ i.e., the currents change sign under our
charge conjugation operation. Again, one of the currents
is clearly zero for the homogeneous representation, render-
ing this discussion futile in that case.

D. A parity transformation operator

Continuing on our discussion of discrete symmetries
of fermions, let us first try to guess the Parity operator
from the first principles. Our main focus again would
be the inhomogeneous representations, due to the nontrivial
structure it puts forth. A convenient definition of the action
of parity reads

Ψðt; xÞ → Ψ0 ¼ PΨðt;−xÞ; P2 ¼ I: ð3:29Þ

We demand that the parity transformation operator is also a
solution of the massive Dirac equation, and the P passes
through the Dirac operator accordingly,

ðiγ̂0∂t þ iγ̂1∂1 −mÞPΨðt;−xÞ
¼ Pðiγ̂0∂t − iγ̂1∂1 −mÞΨðt;−xÞ ¼ 0; ð3:30Þ

where the change in sign in the spatial derivative accounts
for the mirror transformation on the spinor. A bit of algebra
identifies the obvious choice for such an operator

P ¼ γ̂0 ¼
�
1 0

0 −1

�
: ð3:31Þ

Note that this is the same as the relativistic choice for the
parity operator. Once this is fixed, we would like to find out
how generic Dirac bilinears change under such a trans-
formation in the Carroll case, bearing in mind that Carroll
boost dictates the adjoint structure of spinors. Let us start
with the parity-transformed mass term

Ψ̄0Ψ0 ¼ Ψ†γ̂0Λγ̂0Ψ ¼ −Ψ̄γ̂0γ̂0Ψ ¼ −Ψ̄Ψ; ð3:32Þ

that is, the usual relativistic scalar transforms with odd
parity in the Carroll case, like a pseudoscalar. This is
brought about by the fact that Λ and γ̂0 anticommute in this
case. Similarly, for the well-known Lorentzian vector under
parity, we can see

Ψ̄0γ̂μΨ0 ¼ Ψ†γ̂0Λγ̂μγ̂0Ψ ¼ −Ψ̄γ̂0γ̂μγ̂0Ψ ¼ −Ψ̄γ̂μΨ μ ¼ 0;

¼ Ψ̄γ̂μΨ μ ¼ 1; ð3:33Þ

i.e., this transforms rather like a relativistic pseudovector.
This brings us to the next order of business, choosing a
‘third’ gamma matrix for our 2d representation. In rela-
tivistic case, this ‘third’ gamma would be defined as a
multiplication of all other gamma matrices, i.e.,

γ̂2 ¼ iγ̂0γ̂1; ð3:34Þ

and would commute with all Lorentz generators. However,
in the Carroll case, the above would simply boil down to
γ̂2 ¼ −iγ̂1, which would clearly commute with the only
nonzero Carroll generator Σ̂ in (3.6). But there is a problem,
since this choice is degenerate as ðγ̂2Þ2 ¼ 0, and not
idempotent as one would expect from relativistic situation.
To circumvent this choice for now, let us try to constrain the
structure of this matrix via the parity transformation
properties of the bilinears otherwise known as pseudoscalar
and pseudovector in the relativistic case,

Ψ̄0γ̂2Ψ0 → Ψ̄γ̂2Ψ; ð3:35Þ

Ψ̄0γ̂2γ̂μΨ0 → Ψ̄γ̂2γ̂μΨ μ ¼ 0; ð3:36Þ

→ −Ψ̄γ̂2γ̂μΨ μ ¼ 1: ð3:37Þ

This holds up our earlier observation that Lorentzian parity
odd and even quantities are interchanged in the Carroll
case. This also constrains the structure of the third gamma
matrix

γ̂2 ¼
�
0 b

c 0

�
; b; c ∈ C: ð3:38Þ

The extra constraint ðγ̂2Þ2 ¼ I gives rise to bc ¼ 1. It
means that γ̂2 ¼ σ1 is a very reasonable choice, one that we
will come back to later in this work, when we discuss parity
of the inhomogeneous action.7 Note carefully that γ̂2 ¼
−iγ̂1 could also have been a perfect choice from the above
equation had it not been for the demand of idempotence.
Since we do not have a clear notion of a Carroll cousin of
Weyl spinors, this degeneracy does not create much of a

7Note that this choice of γ̂2 does not commute with the Carroll
generators due to the degenerate structure.
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problem as we do not need to have chiral projection
operators.
The take-home message of this subsection is the parity

operation seems to be exactly opposite the relativistic
one for the Carroll case. Most importantly, parity even
scalars, in this case, require the presence of a γ̂2, contrary
to Lorentzian parlance. One can trace the roots of this
revelation by noting that Λ ¼ iγ̂0γ̂2, which being omni-
present in the Dirac bilinears, actively change their parity
properties.8 This will be important going forward, as one
would usually want the Dirac action to be parity even,
which may not be accurate in the Carroll world.

IV. ACTIONS IN DIFFERENT REPRESENTATIONS

Having elucidated the representations of degenerate
gamma matrices pertaining to Carroll algebra, we now
move on to write down explicit two-component spinor
actions for the same. Owing to the degenerate nature of the
gamma matrices, we can already assume that these actions
will not be symmetric in space and time derivatives.

A. Inhomogeneous action with real spinors

Let us remind ourselves of the rules of the game first.
The gamma matrices corresponding to the inhomogeneous
representation we will be using are

γ̂0 ¼
�
1 0

0 −1

�
; γ̂1 ¼

�
0 0

1 0

�
: ð4:1Þ

As we described before, one can also check the adjoint
structure

γ̂μ† ¼ −Λγ̂μΛ−1; Λ ¼
�

0 i

−i 0

�
; Ψ̄ ¼ Ψ†Λ: ð4:2Þ

We consider the action of the Dirac form with an invariant
mass term,

S ¼
Z

d2σΨ̄ðγ̂0∂0 þ γ̂1∂1 −mÞΨ: ð4:3Þ

Note that there is no explicit i in the action to make the
action Hermitian. This is because of the manifest negative
sign in (4.2). In terms of the two components, the action
takes an asymmetrical form,Z

d2σi½−ðψ�
1 _ψ0 þ ψ�

0 _ψ1 − ψ�
0ψ

0
0Þ −mψ�

0ψ1 þmψ�
1ψ0�:

ð4:4Þ

As before, we define the charge conjugate of spinor Ψ as

ΨðcÞ ¼ −ΛCΨ�: ð4:5Þ

We know that under Carroll transformation a generic spinor
Ψ transforms as Ψ → S½Σ�Ψ. We can say that (4.5) is a
suitable definition if ψ ðcÞ transforms in a similar way under
Carroll transformations. One can then go ahead and show

ΨðcÞ→ ð−ΛCÞS½Σ��Ψ� ¼ S½Σ�ð−ΛCÞΨ� ¼ S½Σ�ΨðcÞ: ð4:6Þ

Now if we impose reality condition on the spinor i.e.,
ΨðcÞ ¼ Ψ, and that gives us the reality condition of spinor
components

ψ�
0 ¼ ψ0; ψ�

1 ¼ ψ1; ð4:7Þ

which is precisely the charge conjugation operation cor-
responding to purely real components.9

The equations of motion can be obtained by varying the
Lagrangian (4.4) with respect to ψ�

0 and ψ�
1. These turn out

to be completely decoupled equations for the two spinor
components,

_ψ0 −mψ0 ¼ 0; ψ 0
0 − _ψ1 −mψ1 ¼ 0: ð4:8Þ

Which is the same set of equations one gets by varying the
same action with respect to ψ0 and ψ1. A little algebra
yields the solution to these equations,

ψ0ðt;xÞ ¼ ψ0ðxÞexpðmtÞ;

ψ1ðt;xÞ ¼
�
ψ1ðxÞexpð−mtÞþ 1

2m
ψ 0
0ðxÞexpðmtÞ

�
: ð4:9Þ

Notice the weird decaying/growing exponential structure of
these solutions. These can be traced back to the Hermitian
structure of the Dirac operator in this case. In the massless
case, these boil down to simpler forms,

ψ0ðt; xÞ ¼ ψ0ðxÞ; ψ1ðt; xÞ ¼ ψ1ðxÞ þ tψ 0
0ðxÞ: ð4:10Þ

This set of solutions will transform like a multiplet under
the Carroll conformal algebra, something which we will
come back to in a later section.

B. On parity-odd and parity-even actions

The attentive reader may have noted that we have been
talking about a form of the Dirac equation which is odd
under parity due to the structure of the parity operation. We
can also go ahead and write down a parity-even action,
which simply reads

8One can also see that γ̂2 ¼ σ2 is another valid choice, for
which we will get the ΛI mentioned in (3.15).

9Note that if we had chosen imaginary ‘a’ in γ̂1, and used the
definition of adjoint accordingly, we would have found the
alternate reality condition ψ�

0 ¼ ψ0, ψ�
1 ¼ −ψ1, which reflects

the map mentioned in (3.23).
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Seven ¼
Z

d2σðiΨ̄γ̂2γ̂μ∂μΨ −mΨ̄γ̂2ΨÞ: ð4:11Þ

Here we will be choosing γ̂2 ¼ σ1 without any loss
of generality.10 As we discussed before, this insertion
of γ̂2 basically boils down to changing the adjoint matrix
by Λ ¼ iγ̂0 in our case. In component form, this can be
written as

−
Z

d2σ½iðψ�
0 _ψ0 þ ψ�

1 _ψ1 − ψ�
1ψ

0
0Þ − imψ�

1ψ1 þ imψ�
0ψ0�:

ð4:13Þ

An action of this form has also been used in the context of
supersymmetric null strings in [56]. We can simply see that
since the charge conjugation matrix will have changed for
this case, the reality conditions are reflected by ‘skewed’
transformations,

ψ�
0 ¼ −ψ1; ψ�

1 ¼ −ψ0; ð4:14Þ

upon which the above action will be the same as the odd-
parity action (4.4) under a ‘straight’ reality condition in
(4.7). So by all means, we can safely work with the odd-
parity action in our case, guaranteeing purely real spinors.

C. Homogeneous action

In the case of Homogeneous spinors, we saw that the
Clifford algebra allows for some freedom in γ̂0, since
γ̂1 ¼ 0 identically for this case. To begin with, let us
explicitly write the spinors as a two-component complex
object Ψ ¼ ðψ0;ψ1ÞT . A generic action for these homo-
geneous spinors in 2d will read

S ¼
Z

d2σ½Ψ̄γ̂0∂0Ψ −mΨ̄Ψ�; ð4:15Þ

i.e., only temporal derivatives will appear in the action.
Both the choices we call a trivial and a nontrivial one, do
not constrain the structure of the Dirac adjoint, and neither
do these fermions transform under Carroll boosts. So, we
would fix γ̂0 ¼ σ2 and put Λ as the Dirac adjoint operator,
upon which the final action in component form readsZ

d2σið−ψ�
0 _ψ0 − ψ�

1 _ψ1 −mψ�
0ψ1 þmψ�

1ψ0Þ: ð4:16Þ

In the massless limit this action explicitly matches up with
the spinorial action obtained from tensionless string the-
ories as discussed in [55].11 In the usual way, the equations
of motion can be obtained by varying the Lagrangian (4.16)
with respect to ψ�

0 and ψ�
1. These are found to be coupled

first-order differential equations (or decoupled second-
order),

_ψ0 þmψ1 ¼ 0; _ψ1 −mψ0 ¼ 0: ð4:17Þ

The solutions to these equations are

ψ ð0;1Þðt; xÞ ¼ ψ ð0;1ÞðxÞ expð�imtÞ: ð4:18Þ

Note that these solutions are explicitly oscillatory in time,
as opposed to the inhomogeneous fermions.

D. Hamiltonians

The Hamiltonian densities for our fermions can be
written as

H ¼ Πψα
_ψa − L; α ¼ 0; 1: ð4:19Þ

For the inhomogeneous spinors as given by (4.4), this can
be written in a component form,

HI ¼ iψ�
0ψ

0
0 þ imðψ�

0ψ1 − ψ�
1ψ0Þ: ð4:20Þ

We can see for the massless case, the Hamiltonian reduces
down to H ¼ iψ�

0ψ
0
0. Similarly for the homogeneous case,

using the action (4.16) leads us to

HH ¼ imðψ�
0ψ1 − ψ�

1ψ0Þ; ð4:21Þ

i.e., just the mass term in the action.12 These homogeneous
fermions have the intriguing feature that the Hamiltonian
vanishes when one puts the mass to zero. One is reminded
here of the well-known fact that topological field theories
have vanishing Hamiltonian and the spectrum reduces
down to zero-energy states only. However the conse-
quences of this vanishing Hamiltonian in the present case
requires further investigation.
Given these two Hamiltonians, we should note a few

things. It has been shown [43] that in the kinematical sense,
Carroll covariance is directly implied by the following
condition on the Hamiltonian densities,

½HðxÞ; Hðx0Þ� ¼ 0: ð4:22Þ

One can explicitly check that this condition is satisfied
for both the densities mentioned above. In the massless

10Note that choosing γ̂2 ¼ −iγ̂1 as we discussed earlier, leads
to the simplified chiral action

S ¼
Z

d2σψ�
0ði∂0 −mÞψ0 ð4:12Þ

which is parity even and also Carroll boost invariant solely based
on the fact that ψ0 does not transform under Carroll.

11Also see for example [62–64].
12Note that the homogeneous and inhomogeneous mass terms,

while having the same form, are not actually the same since ψ0

and ψ1 anticommute in different ways in these two cases.
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homogeneous case, we have further the whole density
vanishing completely. In the study of Carroll representa-
tions, one can see the Hamiltonian appears as a central term
in the algebra. Due to this, there are two distinct repre-
sentations of the Carroll algebra, labeled by H ¼ 0 and
H ≠ 0 [32]. One can see for our massless Hamiltonians, we
also have such two distinct classes. However, how this
classification affects the dynamics of associated fields for
our spinors, will be discussed elsewhere.

V. INHOMOGENEOUS FERMION
AS CARROLLIAN CFT

In this section, we discuss the inhomogeneous fermionic
CFT example, a theory which can be recovered starting
from (4.4) and putting the mass to zero. As we know, the
gamma matrices used to construct this action, fall into
the inhomogeneous representation of Clifford algebra in the
Carrollian sense. In this section, we will show how the
symmetry generators associated with this action give rise to
the Carroll conformal algebra in two dimensions, i.e., the
BMS3 algebra.

A. Stress tensor and BMS charges

We start with the massless action for inhomogeneous
fermions defined on a cylinder parametrized by ðσ; τÞ

Sinhomo ¼
Z

d2σi½−ðψ�
1 _ψ0 þ ψ�

0 _ψ1 − ψ�
0ψ

0
0Þ�: ð5:1Þ

Under spacetime translations, the generic spinor compo-
nents in our actions transform as

δψα ¼ ξμ∂μψα: ð5:2Þ

The action in (5.1) is clearly invariant under such trans-
formations. This would allow us to use Noether’s formula
to compute the stress tensor directly,

Tα
β ¼ κ

�
∂L
∂αψa

∂βψa − δαβL
�
: ð5:3Þ

Here we have allowed an overall normalization factor κ in
the Canonical expressions of the energy-momentum tensor,
which we shall fix later. In components, the stress tensor
can be written out as

Tτ
τ ¼ iκψ�

0ψ
0
0; Tτ

σ ¼ iκðψ�
1ψ

0
0 þ ψ�

0ψ
0
1Þ; and

Tσ
τ ¼ −iκψ�

0 _ψ0; Tσ
σ ¼ −iκðψ�

1 _ψ0 þ ψ�
0 _ψ1Þ: ð5:4Þ

The stress tensor is conserved when the fields satisfy the
equations of motion. Upon using the massless equations of
motion ( _ψ0 ¼ 0 and _ψ1 ¼ ψ 0

0) the stress tensor components
become

Tτ
τ ¼ iκψ0ψ

0
0 ¼ −Tσ

σ; Tτ
σ ¼ −iκðψ1ψ

0
0 þ ψ0ψ

0
1Þ;

and Tσ
τ ¼ 0: ð5:5Þ

This particular structure of the stress tensor components
is a typical signature of Carrollian CFTs or BMSFTs. The
tracelessness, as usual, implies the presence of scale
symmetry and the Tσ

τ ¼ 0 equation indicates Carroll boost
invariance of the theory. In two dimensions these two
conditions suffice to ensure the theory is invariant under the
infinite-dimensional CCA2 or equivalently BMS3.

B. Algebra from charges

We can evaluate all the charges associated with the
infinite-dimensional conformal Carroll symmetries using
the stress tensors as computed above. The conformal killing
vector fields for 2d Carroll spacetime are given by

ξ0 ¼ f0ðσÞτ þ gðσÞ; ξ1 ¼ fðσÞ; ð5:6Þ

where f and g are arbitrary functions of σ. Now the currents
associated with these symmetries can be constructed as

Jα ¼ Tα
βξ

β: ð5:7Þ
Corresponding charges are obtained by integrating J0 over
a spatial slice,

Qξ ¼
Z

dσT0
αξ

α

¼
Z

dσ½T1ξ
1 þ T2ξ

0�

¼
Z

dσ½ðT1f0ðσÞ þ T2fðσÞÞτ þ T2gðσÞ�: ð5:8Þ

In the above equations, we have renamed Tτ
σ as T1 and

Tτ
τ as T2 and shall continue to follow this convention for the

rest of the paper. Now expanding f and g in terms of
Fourier modes, we get

fðσÞ ¼
X
n

aneinσ gðσÞ ¼
X
n

bneinσ: ð5:9Þ

In terms of these Fourier modes, the charges can be
written as

Q ¼
X
n

anLn þ bnMn; with

Ln ¼
Z

dσ½T1 þ inτT2�einσ; Mn ¼
Z

dσ T2einσ:

ð5:10Þ
For this inhomogeneous example at hand, we have

T1 ¼ −iκðψ1ψ
0
0 þ ψ0ψ

0
1Þ; T2 ¼ iκψ 0

0ψ0: ð5:11Þ
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The massless version of the equations of motion (4.17) are
solved by the following mode expansions

ψ0ðτ; σÞ ¼
X
r

βreirσ; ψ1ðτ; σÞ ¼
X
r

½γr − irτβr�eirσ:

ð5:12Þ

The equal-time anticommutation relations are given by

fψðσ0Þ;ΠψðσÞg ¼ δðσ − σ0Þ: ð5:13Þ

In terms of the oscillators, this translates to

fβr; βsg ¼ 0 ¼ fγr; γsg fβr; γsg ¼ δrþs;0: ð5:14Þ

Using these expressions along with the modes expansions
given in (5.12), these charges would be written as bilinears
of the modes

Ln ¼ κ
X
r

ð2rþ nÞβ−rγrþn and Mn ¼
κ

2

X
r

rβ−rβrþn:

ð5:15Þ

At this point, we fix the overall normalisation to be
κ ¼ 1

2
. We consider this input demanding the closure of the

charge algebra. for κ ¼ 1
2
, using (5.14) we get the standard

form of the BMS3 algebra, i.e.,

½Ln; Lm� ¼ ðn −mÞLmþn;

½Ln;Mm� ¼ ðn −mÞMnþm; ½Mn;Mm� ¼ 0: ð5:16Þ

This is however the centerless part of the algebra. Later on,
we shall show nonzero central charges appear when we
quantize the theory.

C. Highest-weight representation
and primary operators

In this subsection, we shall review the highest-weight
representation of BMS3 and comment on the operators of
this theory that fits into this representation. The highest-
weight representation for this algebra is defined by labeling
the primary operators with the eigenvalues of the L0 and
M0. As L0 and M0 commute, it is possible to go to a basis
where they are simultaneously diagonalizable. The action
of positive integer-valued Ln and Mn would lower the
eigenvalue of L0, thus to make the spectrum bounded from
below, Ln and Mn, ∀ ni0 are chosen as annihilation
operators,

½L0; Oð0; 0Þ� ¼ ΔOð0; 0Þ; ½M0; Oð0; 0Þ� ¼ ξOð0; 0Þ;
½Ln;Oð0; 0Þ� ¼ 0; and ½Mn;Oð0; 0Þ� ¼ 0 ∀ n > 0:

ð5:17Þ

Then the L−n and M−n acting on Oð0; 0Þ would create the
descendent operators associated with those primaries.
However, very recently this construction was generalized
to the so-called multiplet highest-weight representation
[33,34], where it has been shown that the previous
representation is a special singlet version of a more general
multiplet representation. In this novel representation
although the action of L0 still remains diagonal but M0

acts as a nondiagonal Jordan matrix,

½L0;Oð0; 0Þ� ¼ ΔOð0; 0Þ; ½M0;Oð0; 0Þ� ¼ ξOð0; 0Þ;
together with ½Ln;Oð0; 0Þ� ¼ 0;

½Mn;Oð0; 0Þ� ¼ 0; ∀ n > 0: ð5:18Þ

HereO≡ ðO0; O1; ::Or−1Þ is a multiplet primary of rank
r and ξ is ðr × rÞ Jordan matrix with diagonal entries ξ and
subdiagonal entries 1. For example, for a rank-3 primary,
the matrix would look like

ξ ¼

0
B@

ξ 0 0

1 ξ 0

0 1 ξ

1
CA: ð5:19Þ

For a local primary operator of rank-r, this representation
would induce the following transformation rules under the
conformal Carroll or BMS transformation:

½Ln;Oa� ¼ −ið∂σ þ inu∂uÞOaeinσ þ nðΔIþ inξÞOaeinσ;

½Mn;Oa� ¼ ð−i∂uOa þ nξOaÞeinσ: ð5:20Þ

Returning back to our example of inhomogeneous
fermionic field theory we now derive the transformation
properties of the fermionic fields ψ0ðτ; σÞ and ψ1ðτ; σÞ by
taking brackets with the BMS charges constructed pre-
viously and show that the fields transform as a multiplet of
rank-2 in this novel BMS representation. Using the mode
expansions (5.12) and the anticommutation relations of the
oscillators (5.14) the following relations can be easily
verified:

½Ln;ψ0ðτ;σÞ� ¼
X
r

½Ln;βr�e−irσ ¼−
1

2

X
r

ð2rþnÞβrþne−irσ

¼
�
−i∂σψ0ðτ;σÞþ

1

2
ψ0ðτ;σÞ

�
einσ: ð5:21Þ

Similarly, one can work out,

½Ln;ψ1ðτ; σÞ� ¼ ½−ið∂σ þ inτ∂τÞψ1ðτ; σÞ�einσ

þ n

�
1

2
ψ1ðτ; σÞ þ inτ

1

2
ψ0ðτ; σÞ

�
einσ;

ð5:22Þ
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and also transformations generated by the action of the
supertranslation charges are given by

½Mn;ψ0ðτ;σÞ� ¼ 0;

½Mn;ψ1ðτ;σÞ� ¼
�
−i∂τψ1ðτ;σÞþ

n
2
ψ0ðτ;σÞ

�
einσ: ð5:23Þ

Now if we take the doublet to be fψ0ðτ; σÞ; 2ψ1ðτ; σÞg,
these relations clearly agree with the transformation rules of
BMS rank-2multiplet withΔ ¼ 1

2
and ξ ¼ 0. Herewewould

like to point out that the relative factor in the primary
components is 2, and this turns out to be a consequence
of our choice of gamma matrices in (2.12). We have chosen
the parameter a ¼ 1 previously. However, in principle, it is
possible to choose an arbitrary number therewithout spoiling
the Clifford algebra. Keeping a generic number would then
scale the stress tensor componentT2. This scaling introduces
an overall factor in the expression of the supertranslation
chargesMn. Owing to its off-diagonal nature of action on the
primary components this choice of the arbitrary parameter
would show up as a relative factor in the primary fields. This
transformation of thegenerators preserves the structure of the
symmetry algebra and hence can be identified as an
automorphism.

D. Correlation functions

Next in this section, we shall compute the two-point
functions of these primary fields. The symmetry algebra is
powerful enough to fix the two-point functions like its
relativistic counterparts. Demanding invariances under the
global part of the algebra (spanned byL0;�1,M0;�1) the two-
point functions of these multiplet primaries have been
derived in [33]. For this example, we explicitly compute
the two-point function of primary operators via canonical
quantization and assume the highest-weight conditions on
the vacuum. The following condition defines the highest
weight vacuum for our theory:

Lnj0i ¼ 0 Mnj0i ¼ 0 ∀ n ≥ −1: ð5:24Þ
These conditions can bemet if we define thevacuum in terms
of the fermionic oscillators in the following way:

βrj0i ¼ 0 γrj0i ¼ 0 ∀ r > 0: ð5:25Þ
As of now, we have not used any boundary conditions
yet but whether the fermionic index r runs over integral or
half-integral values depends on the boundary conditions
imposed on the fermionic fields. For a fermionic field theory
defined on a plane, periodic boundary conditions allow only
half-integer modes, whereas antiperiodic boundary condi-
tions allow only the integer modes. However, this scenario
flipswhen the theory is defined on a cylinder. Herewe restrict
ourselves with the half-integer modes only (NS sector,
r ∈ Zþ 1

2
) because the vacuum state of the Ramond sector

does not respect the desired symmetries and thus spoils the

structure of the two-point function indicated by the symmetry
algebra.13 Hence from now onwards, we shall assume the
indices run over half-integer values only. The oscillators in
this case satisfy the following anticommutation relations as
before,

fβr; βsg ¼ 0 ¼ fγr; γsg; fβr; γsg ¼ δrþs;0: ð5:26Þ

Now using the mode expansions in (5.12), we can write

hψ0ðτ; σÞψ1ðτ0; σ0ÞÞ ¼
X
r;s

hβrβsie−iðrσþsσ0Þ ¼ 0: ð5:27Þ

As βs anti commute, it can be shifted to a side where it
annihilates the vacuum at the cost of a sign, hence the cor-
relator vanishes. Also, we can further compute the following:

hψ0ðτ; σÞψ1ðτ0; σ0Þi ¼
X
r;s

½hβrγsi − isτ0hβrβsi�e−iðrσþsσ0Þ

¼
X

r>0;s<0

hβrγsie−iðrσþsσ0Þ

¼
X

r>0;s<0

δrþs;0e−iðrσþsσ0Þ

¼ −
i
2
csc

�
σ − σ0

2

�
: ð5:28Þ

Similarly,

hψ1ðτ; σÞψ1ðτ0; σ0Þi
¼
X
r;s

hðγr − irτβrÞðγs − isτ0βsÞie−iðrσþsσ0Þ

¼
X

r>0;s<0

− i½rτhβrβsi þ sτ0hγrβsi�e−iðrσþsσ0Þ

¼ i
4
ðτ − τ0Þ csc

�
σ − σ0

2

�
cot

�
σ − σ0

2

�
: ð5:29Þ

In these previous expressionswe have assumed τ > τ0, but the
correlators are antisymmetric under the exchangeof thepoints.
Hence we can call these time-ordered correlation functions.

1. A cylinder to plane map

It is possible to take these correlation functions on a
cylinder and map it to a plane. For Carrollian manifolds, the
mapping that does the job is given by

t ¼ iτeiσ; x ¼ eiσ: ð5:30Þ
Here (t, x) denotes the coordinates on plane and ðτ; σÞ on
cylinder. Now in the previous section, we have shown
that ψ0 and ψ1 transform like a rank-2 primary operator
with Δ ¼ 1

2
and ξ ¼ 0 under the conformal Carroll

13See, however, [65,66] for some interesting discussions on the
Ramond sector.
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transformations. For this particular plane to cylinder map,
the transformation rules of such objects are

ψ0ðt; xÞ ¼ e−
iσ
2ψ0ðτ; σÞ;

ψ1ðt; xÞ ¼ e−
iσ
2

�
ψ1ðτ; σÞ −

i
2
τψ0ðτ; σÞ

�
: ð5:31Þ

Using these transformation rules we can map the correla-
tors on cylinder to correlators on plane. They are given by

hψ0ðt; xÞψ0ðt0; x0Þi ¼ 0; hψ0ðt; xÞψ1ðt0; x0Þi ¼
1

x − x0
;

hψ1ðt; xÞψ1ðt0; x0Þi ¼ −
ðt − t0Þ
ðx − x0Þ2 : ð5:32Þ

These expressions agree with the correlators derived from
the symmetry argument.

E. Central charge

In conformal field theories, the singular terms in stress
tensor one-pion exchanges (OPEs) are entirely fixed by the
symmetry algebra. A centrally extended BMS3 algebra can
then be shown to be equivalent to the following OPEs:

T2ðt; xÞT2ðt0; x0Þ ∼ 0;

T1ðt; xÞT1ðt0; x0Þ ∼
�

cL
2ðΔxÞ4 −

2cMðΔtÞ
ðΔxÞ5

�

þ
�
2T1ðt0; x0Þ
ðΔxÞ2 −

4ΔtT2ðt0; x0Þ
ðΔxÞ3

�

þ
�
∂x0T1ðt0; x0Þ

Δx
−
Δt∂t0T2ðt0; x0Þ

ðΔxÞ2
�
;

T1ðt; xÞT2ðt0; x0Þ ∼
cM

2ðΔxÞ4 þ
2T2ðt0; x0Þ
ðΔxÞ2 þ ∂t0T2ðt0; x0Þ

Δx
:

ð5:33Þ

Using (5.32) and (5.11) it is possible to explicitly evaluate
these OPEs by Wick contraction. We have already verified
the closure of the centerless part of the charge algebra in the
previous section which accounts for the less singular terms
in the OPEs. What remains to be seen is the value of central
charges cL and cM. We evaluate these by computing the
fully contracted terms in the OPEs,

T1ðt; xÞT1ðt0; x0Þ

∼
1

2
∶ðψ1ψ

0
0 þ ψ0ψ

0
1Þðt; xÞ∶∶

1

2
ðψ1ψ

0
0 þ ψ0ψ

0
1Þðt0; x0Þ∶

∼
1

2

�
∂x

�
1

x − x0

�
∂x0

�
1

x − x0

�
−

1

x − x0
∂x∂x0

�
1

x − x0

��

∼
1

2ðx − x0Þ4 þ � � � : ð5:34Þ

and similarly,

T1ðt;xÞT2ðt0;x0Þ∼
1

2
∶ðψ1ψ

0
0þψ0ψ

0
1Þðt;xÞ∶∶

1

2
ψ 0
0ψ0ðt0; x0Þ∶

∼0þ� � � : ð5:35Þ
We have mapped the stress tensor components from
cylinder to plane before performing the Wick contractions.
Here ψ 0

0;1ðt; xÞ indicates derivative with respect to the
spatial coordinate x and ‘…’ accounts for less singular
terms in the OPE. As the correlator of ψ0 with itself
vanishes, the fully contracted terms in T1ðt; xÞT2ðt0; x0Þ also
vanish. This would imply cM ¼ 0. This can also be read off
in the expressions of T1ðt; xÞT1ðt0; x0Þ as well, along
with cL ¼ 1.

VI. HOMOGENEOUS FERMION
AS CARROLLIAN CFT

It is clear from the last few sections that inhomogeneous
fermions are the more interesting Carroll objects. But
homogeneous ones have the distinct feature that any spatial
derivative is absent from their actions. In this section, we
briefly discuss the theory of homogeneous fermionswhenwe
switch off the mass term. The action in this case becomes

Shomo ¼
Z

d2σ ið−ψ�
0 _ψ0 − ψ�

1 _ψ1Þ: ð6:1Þ

Remember, homogeneous fermions are insensitive to Carroll
boost, hence these classes of massless actions can just be
thought of as two copies of the action for chiral fermions. The
single versions of these chiral fermions appear from lower
gamma actions and have been studied in detail [58]. It has
also been argued that theories with no spatial derivative in
real space Hamiltonian and hence having a nondispersive
Hamiltonian in corresponding Fourier space, should have
Carrollian symmetry by construction.Hence these are no less
important than Carrollian theories.
The massless equations of motion for the spinor com-

ponents read,

_ψ0 ¼ 0; _ψ1 ¼ 0: ð6:2Þ

The equations of motion are solved by the following mode
expansions in terms of half-integer modes,

ψ ð0;1Þðτ; σÞ ¼
X
r∈Zþ1

2

βð0;1Þr eirσ: ð6:3Þ

It is evident from the mode expansions that all the dynamics
of the system are lost and the theory essentially lives on
the spatial circle. As a consequence, the action of super-
translations on the space of solution would also be trivial
and the BMS3 that we started off with would be truncated to
one copy of Virasoro only. We can more explicitly show
this by computing the charges.
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The canonical stress tensor components for this theory
would be

Tτ
σ ¼ −

i
2
ðψ�

0ðσÞψ 0
0ðσÞ þ ψ�

1ðσÞψ 0
1ðσÞÞ;

Tσ
τ ¼ 0; Tτ

τ ¼ 0 ¼ Tσ
σ: ð6:4Þ

Note that Tσ
τ is identically zero in this case, a telltale sign of

Carroll symmetry. Using the previous construction applied
for the inhomogeneous case we can immediately identify
the symmetry generators

T1 ¼ −
i
2
ðψ�

0ðσÞψ 0
0ðσÞ þ ψ�

1ðσÞψ 0
1ðσÞÞ and T2 ¼ 0:

ð6:5Þ
Vanishing of T2ðτ; σÞ indicates all the supertranslation
charges Mn drop off causing a symmetry truncation. But
we shall still have the superrotation charges that would
form one copy of Virasoro algebra. Hence this homo-
geneous action would effectively behave like a 1d CFT.
Because of this symmetry truncation, the Carroll boost acts
on the field components ψ0;1ðτ; σÞ trivially, as we have seen
before. As the spin part in the field transformation vanishes,
these objects effectively behave like a scalar, although they
are still Grassmannian in nature. The Viarasoro charges
would just be the Fourier modes of the stress tensor
component T1ðσÞ

Ln ¼ −
i
2

Z
dσðψ0ðσÞψ 0

0ðσÞÞ þ ψ1ðσÞψ 0
1ðσÞÞeinσ

¼ 1

2

X
r

ð2rþ nÞ½β0−rβ0rþn þ β1−rβ
1
rþn�: ð6:6Þ

In a previous section, we discussed that the choice of the
charge conjugation matrix remains arbitrary owing to
the fact one of the gamma matrices is identically equal
to zero. Here then we have the freedom to work with purely
real spinor components, i.e., ψ�

0;1ðσÞ ¼ ψ0;1ðσÞ. Canonical
commutation relations after implementing this reality con-
dition would become

fψ0ðσÞ;ψ0ðσ0Þg ¼ fψ1ðσÞ;ψ1ðσ0Þg ¼ δðσ − σ0Þ: ð6:7Þ

In terms of the oscillators, this breaks down to

fβ0r ; β0sg ¼ δrþs;0 fβ1r ; β1sg ¼ δrþs;0: ð6:8Þ

This would straightforwardly imply the algebra,

½Ln; Lm� ¼ ðn −mÞLnþm; ð6:9Þ

i.e., just a single centerless Virasoro, as predicted. Now we
go ahead and define a highest-weight vacuum in terms of
these oscillators,

β0r j0i ¼ 0; β1r j0i ¼ 0; ∀ r > 0: ð6:10Þ

Using the anticommutation relations of the oscillator modes
one can easily find out the correlation functions on the
cylinder

hψ0ðτ; σÞψ0ðτ0; σ0ÞÞ ¼
X
r;s

hβ0rβ0sie−iðrσþsσ0Þ

¼ i
2
csc

�
σ − σ0

2

�
; ð6:11Þ

hψ1ðτ; σÞψ1ðτ0; σ0ÞÞ ¼
X
r;s

hβ1rβ1sie−iðrσþsσ0Þ

¼ i
2
csc

�
σ − σ0

2

�
; ð6:12Þ

hψ0ðτ; σÞψ1ðτ0; σ0ÞÞ ¼ 0: ð6:13Þ

Again, the central extensions of the algebra remain to be
found. One can evaluate these charges by calculating
the fully contracted terms in the OPEs as in (5.33). This
requires one to map cylinder correlators to the plane as
before, and eventually leads to

T1ðt; xÞT1ðt0; x0Þ

∼
1

2
∶ðψ0ψ

0
0 þ ψ1ψ

0
1Þðt; xÞ∶∶

1

2
ðψ0ψ

0
0 þ ψ1ψ

0
1Þðt0; x0Þ∶

∼
1

2

�
∂x

�
1

x − x0

�
∂x0

�
1

x − x0

�
−

1

x − x0
∂x∂x0

�
1

x − x0

��

∼
1

2ðx − x0Þ4 þ � � � ; ð6:14Þ

T1ðt; xÞT2ðt0; x0Þ ∼ 0: ð6:15Þ

One can easily read off from here the values cL ¼ 1
and cM ¼ 0.
It is interesting to note here that for both classes of

fermionic theories, we have found the same central charges,
i.e., cL ¼ 1 and cM ¼ 0. But these arevery different theories,
even in terms of underlying symmetries. In the inhomo-
geneous case, the BMS3 is intact while in the case we have
discussed above, the homogeneous one, BMS3 reduces to its
Virasoro subalgebra with the explicit vanishing of the
supertranslation charges. So it is clear that just the central
term does not determine the representation theory and the
chiral truncation is not immediatewith cM ¼ 0. This cM ¼ 0
mayormaynot lead to a chiral truncation and this depends on
the multiplet structure of the underlying Carrollian CFT.
We note another curious feature before we conclude

this section. When we consider supersymmetry, the homo-
geneous version of the super BMS3 [55], which arises from
putting together the Carroll boson and the homogeneous
fermion as we have discussed above, is given by
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½Ln; Lm� ¼ ðn −mÞLnþm þ cL
12

ðn3 − nÞδnþm;0;

½Ln;Mm� ¼ ðn −mÞMnþm þ cM
12

ðn3 − nÞδnþm;0;

½Ln;Qα
r � ¼

�
n
2
− r

�
Qα

nþr;

fQα
r ; Q

β
sg ¼ δαβ

�
Mrþs þ

cM
6

�
r2 −

1

4

�
δrþs;0

�
: ð6:16Þ

Here Qα; α ¼ ð0; 1Þ are the supercharges and all other
brackets are zero. Notice that this does not contain a super-
Virasoro subalgebra and hence if one attempts a truncation by
turning off the supertranslations, one needs to set the con-
formal supercharges to zero. The truncation then leads to
turning off supersymmetry aswell. The inhomogeneous super
BMS on the other hand, obtained by putting together the
inhomogeneous fermions andCarroll bosons, as shown for the
tensionless inhomogeneous superstring [56], is given by

½Ln; Lm� ¼ ðn −mÞLnþm þ cL
12

ðn3 − nÞδnþm;0;

½Ln;Mm� ¼ ðn −mÞMnþm þ cM
12

ðn3 − nÞδnþm;0;

½Ln;Gr� ¼
�
n
2
− r

�
Gnþr; ½Ln;Hr� ¼

�
n
2
− r

�
Hnþr; ½Mn;Gr� ¼

�
n
2
− r

�
Hnþr;

fGr;Gsg ¼ 2Lrþs þ
cL
3

�
r2 −

1

4

�
δrþs;0; fGr;Hsg ¼ 2Mrþs þ

cM
3

�
r2 −

1

4

�
δrþs;0: ð6:17Þ

Again G, H are the supercharges in this case. This does
have a super-Virasoro subalgebra and one can truncate the
theory down to this superchiral sector [67]. So, evidently,
supersymmetrization changes the notion of a chiral trun-
cation in these two cases.

VII. “BOOSTING” TO CARROLL FERMIONS

In the last few sections, we have been talking about
looking at Carroll fermions from an intrinsic point of view,
i.e., using Carroll structures to define spinors attached to
the covering space of a Carrollian manifold. In this section
we will take an alternative viewpoint, i.e., to define
‘flowed’ representations for fermions as they gradually
go from relativistic to the ultrarelativistic (c → 0) regime.
The heart of this procedure lies in using linear trans-
formations (or special “boosts”) that effectively change the
characteristic speed of light associated with the physical
system. Although finite transformations would not change
the nature of physics for such systems, one could show [59]
that for certain singular limits of such transformations, one
can interpolate from a relativistic CFT regime to the
ultrarelativistic BMS counterpart thereof.14 In this sense,
these singular transformations are equivalent to the Inönü-
Wigner contraction procedures but give one a better handle
on consistently defining the theory away from both the
extremal points.

For the 2d scalar field case in [59], this procedure was
materialized by transforming the holomorphic coordinates
using a SLð2Þ transformation (which would be a Lorentz
boost had it has been used on physical coordinates, say τ, σ
on a cylinder) and showing that BMS symmetries arise
when the transformation matrix degenerates in certain
limits of the “boost” parameter. Basically, this transforma-
tion continually dials the speed of light until the lightcone
closes unto itself. Unless the actual closure happens, one
can always undo this transformation and a CFT remains
one. We would be taking a slightly different path here since
not all fermion representations are defined on a chiral basis.
But generically we will still be looking at quantities as the
speed of light is being dialled up to the singular point where
Carroll structures, already discussed in previous sections,
effectively emerge.

A. “Flowed” representations of the Clifford algebra

Let us start with the explicit realisation of the relativistic
Clifford algebra again,

fγμ; γνg ¼ −2c2ημν ¼ 2diagð1;−c2Þ: ð7:1Þ

Here this scaling with c2 is important to keep in the sense
that we would be taking the c → 0 expansion of the
Minkowski metric, which reads

ημν ¼ −
1

c2
τμτν þ hμν þ � � � ; ð7:2Þ

which clearly demands that the leading-order representa-
tion in this expansion will come from the τμτν term, as we

14See also [60] for a related idea for deforming Virasoro
symmetries into BMS one with a term added ad hoc to the
Hamiltonian.

CARROLL FERMIONS IN TWO DIMENSIONS PHYS. REV. D 107, 125020 (2023)

125020-15



have already witnessed before in (2.2). Now we want to
find out a representation of the gamma matrices which
remain valid as c dials down to zero. One such flowed
representation will read

fγμF; γνFg ¼ 2diagð1;−α2Þ: ð7:3Þ

where α is some dimensionless quantity that interpolates
between 1 and 0 corresponding to a relativistic and Carroll
theory, respectively. This means the gamma matrices have
to satisfy the following relations:

ðγ0FÞ2 ¼ I; ðγ1FÞ2 ¼ −α2I; fγ0F; γ1Fg ¼ O: ð7:4Þ

A simple way to solve this set of equations is to fix
γ0 ¼ γ0F, and thereby try to solve for the components of
γF1 using the ansatz by expanding it with Pauli matrices
and unity i.e., γF1 ¼ λ · σ þ βI. So we could say, fixing
the γ0 fixes our flowed representation. Let us, for
instructive purposes, start with the Majorana representa-
tion in two dimensions, instead of the usual Majorana-
Weyl. In this representation the relativistic gamma
matrices are given by

γ0 ¼ σ3; γ1 ¼ iσ2: ð7:5Þ

Solving the conditions in (7.4) consistently, we arrive at a
solution,

½γ1FðαÞ�2 ¼ ðλ21 þ λ22ÞI; λ3; β ¼ 0: ð7:6Þ

Since σ2 imaginary, we have λ22 < 0 here. This equation
could have two classes of consistent solutions. In the first
case we can compare it to (7.4), and for finite values of
the speed of light, we see both λ1 and λ2 can just be
proportional to α, making sure the right-hand side of
(7.6) goes to zero in the extreme limit of α ¼ 0, making
all entries of the matrix zero. Clearly, at the extreme limit
these sets of matrices reproduce the homogeneous rep-
resentation since γ1 is identically zero for this case, and
as we have discussed any γ0 with a unit square along
with a zero γ1 will boil down to the homogeneous
representation [see (2.6)].
The other class of solution is much more interesting, the

parameters are not proportional to the speed of light
parameter and a simple solution indicates

λ1 ¼
1 − α2

2
; λ2 ¼ i

1þ α2

2
: ð7:7Þ

Combining everything, this leads to a flowed representation
of the gamma matrices along the worldline where the speed
of light varies along the light cone,

γ0F ¼ γ0; γ1FðαÞ ¼ λ1σ1 þ λ2σ2 ¼
1þ α2

2
γ1 þ 1− α2

2
γ0γ1;

ð7:8Þ
where we assume all gamma matrices are purely real. It is
now very clear that

γ1FðαÞ ¼
�

0 1

−α2 0

�
ð7:9Þ

which makes perfect sense since this representation gives
one the Majorana γ1 for α ¼ 1, but flows to the Carroll
degenerate γ̂1 for α ¼ 0.15

We of course could have chosen any non-degenerate
representation in two dimensions to start with, like the
Majorana-Weyl representation with γ0 ¼ σ1, γ1 ¼ −iσ2. As
before, taking the ansatz γ0 ¼ γ0F and γF1 ¼ λ · σ þ βI we
could find (in this case),

½γ1FðαÞ�2 ¼ ðλ22 þ λ23ÞI; λ1; β ¼ 0: ð7:10Þ

So, as before, we can still have a homogeneous represen-
tation by choosing λ2;3 proportional to α, or we could
choose analogs of the solutions in (7.7) to write the flowed
representations,

γ0F ¼ γ0; γ1FðαÞ ¼ λ2σ2 þ λ3σ3 ¼
 

1−α2
2

1þα2

2

− 1þα2

2
− 1−α2

2

!
:

ð7:11Þ

As we can see, this gives the Majorana-Weyl choice of γ1

for α ¼ 1, but for α ¼ 0 this remarkably boils down to the
choice of inhomogeneous representations we mentioned in
(2.9). As a consequence, the flowed inhomogeneous
versions of the Majorana-Weyl and Majorana representa-
tions are related to each other via similarity transforma-
tions. It is of course better to reiterate for completeness,
these are in no way related to the homogeneous class of
representations via any transformations, since γ1 ¼ 0 in
that case.

B. Degenerate transformations on the spinors

From the last section, we saw how the Clifford elements
change under a change of the speed of light. Now the point
is, we explicitly want transformations of gamma matrices
that read

γ0 → S−1ðαÞγ0SðαÞ; γ1 → S−1ðαÞγ1SðαÞ: ð7:12Þ

15Note that one could have deduced γ1FðαÞ ¼ ð 0
−1

α2

0
Þ using

λ1 ¼ − 1−α2
2
, which is another consistent choice. This justifies the

other choice of γ̂1 as mentioned in (2.8).
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So that these transformations equivalently act as a boost on
the spinors

ψ → SðαÞψ : ð7:13Þ

And this is a transformation that remains smoothly valid
over the range 1 ≥ α ≥ 0. Note that, this is in general how a
Lorentz boost acts on a spinor; however, in this case we
demand a worldline where the α keeps changing. As
mentioned earlier, in two-dimensional conformal systems,
one can always re-orient the system to restore the Lorentz
frame, unless we go to a singular limit of such ‘boosts’. We
then demand that the Dirac equation remains invariant
under such a finite transformation, i.e.,

ψ̄ γ̃μðαÞ∂μψ ¼ ψ̄ðαÞγμ∂μðαÞψðαÞ: ð7:14Þ

To show how this can be packaged into the degenerate
boost paradigm, let us start with the relativistic action with
Majorana representation,

SðMÞ
F ¼

Z
d2σ iðψ1 _ψ0 þ ψ0 _ψ1 − ψ0ψ

0
0 − ψ1ψ

0
1Þ: ð7:15Þ

We need to find a transformation that boosts this action into
our inhomogeneous action. Let us first write down this
lagrangian in the suggestive form

LðMÞ
F ¼ i

2
ðψ z̄∂zψ z̄ − ψ z∂z̄ψ zÞ; ð7:16Þ

where on a cylinder z; z̄ ¼ τ � σ and ψ z;z̄ ¼ ψ0 � ψ1. Now
following [59] we define the transformations that mix
holomorphic and antiholomorphic coordinates,

�
zL
zR

�
¼
�

coshϕ − sinhϕ

− sinhϕ coshϕ

��
z

z̄

�
: ð7:17Þ

Let us use a parametrization where coshϕ ¼ 1ffiffiffiffiffiffiffi
1−λ2

p and

sinhϕ ¼ λffiffiffiffiffiffiffi
1−λ2

p and λ ∈ R. This is a perfectly well-defined

SLð2; RÞ transformation when λ ≠ �1, and basically acts
as a Lorentz boost on the holomorphic coordinates.
Similarly, we can define a transformation for the spinors
on this basis

�
ψL

ψR

�
¼
�
coshϕ sinhϕ

sinhϕ coshϕ

��
ψz

ψ z̄

�
: ð7:18Þ

Note that at the level of the original spinors ψ0;1 this could
have been written as a direct boost transformation with

SðαÞ ¼
� 1ffiffi

α
p 0

0
ffiffiffi
α

p
�
; α ¼ e−2ϕ: ð7:19Þ

While for the physical coordinates ðτ; σÞ this is precisely an
inhomogeneous relative scaling τ → e−ϕτ and σ → eϕσ.
And indeed at the degenerate point λ → 1 (i.e., α → 0), the
action boils down to16

S̃ðMÞ
F ¼

Z
d2σ iðψ1 _ψ0 þ ψ0 _ψ1 − ψ0ψ

0
0Þ; ð7:21Þ

where we have absorbed the extra overall scaling by
S̃ ¼ eϕS, which could also be absorbed into a coupling
constant. The above equation is exactly the inhomogeneous
action we mentioned in (5.1).
We could also do a similar procedure starting with the

Majorana-Weyl representation of relativistic fermions.
Recall the Lagrangian written in the chiral basis reads

LðMWÞ
F ¼ i

2
ðψ z̄∂zψ z̄ þ ψ z∂z̄ψ zÞ: ð7:22Þ

A similar scaling of the spinor components and an extra
overall scaling by e3ϕ leads one to

L̃ðMWÞ
F ¼ iψ0 _ψ0: ð7:23Þ

This is exactly the class of actions discussed in [58], albeit
in higher dimensions, and are Carroll invariant trivially. So
one could heuristically call these a cousin of Weyl actions
in the relativistic case, although no such notion exists when
we go to the Carrollian regime of the theory.
Note that the difference between the overall scaling

factors for these two classes of flowed actions represents
that they appear at different orders when one expands
relativistic spinors actions in powers of 1=c. This may
remind one of the ‘electric’ and ‘magnetic’ branches of the
Carroll actions that appear in leading and next-to-leading
orders of a small c expansion of relativistic actions [32].
Incidentally, the electric kind of actions are said to contain
only time derivative and magnetic ones are described as
containing both time and space derivatives of fields.
However it may be too soon to comment on these
distinctions, and we will come back to this discussion
elsewhere.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we set out to specifically understand
Carrollian fermions in two dimensions, and we have done

16Note that using S−1ðαÞ as the transformation matrix, i.e.,
taking the negative sign of sinhϕ in (7.18), would lead us to

S̃F ¼
Z

d2σiðψ1 _ψ0 þ ψ0 _ψ1 þ ψ1ψ
0
1Þ; ð7:20Þ

which corresponds to taking the other choice of γ̂1 as mentioned
in (2.8).
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so in a thoroughly systematic way throughout. The degen-
erate nature of Carroll spacetimes allows for degenerate
representation of Clifford matrices, and their structures
are far more nontrivial than their relativistic cousins.
After classifying these representations, we have clarified
the continuous and discrete symmetries associated with
Carroll spinors. We then wrote down explicitly Carroll boost
invariant actions for these spinors, in line with previous
explorations into null superstrings. The massless versions of
these theories are shown to be invariant under Carroll
conformal symmetries (or BMS symmetries) generated by
the conserved charges.We then explored the quantizations of
these theories assuming the highest-weight representation of
the vacuum, which leads to a clear multiplet structure for the
inhomogeneous spinors, and a chiral truncation to a single
Virasoro for the homogeneous one.
We also concentrated on the formalism of arriving at

Carroll structures under infinitely boosted CFT counter-
parts. We defined interpolating representations of gamma
matrices that flow from relativistic representations to BMS
representations as the associated light cones close upon
themselves. Starting from Majorana or Majorana-Weyl
representations in two dimensions and following through
with this procedure leads us to a web of degenerate Clifford
representations.We alsowrote down the transformed actions
in both representations. At the BMS point, Majorana
representations give rise to our inhomogeneous action, while
Majorana-Weyl paves the way to a chiral spinor action.
However, this is just a first step into a very intricate

regime where Carroll fermions offer a glimpse of exotic
physics, and this step mainly helps us to set up our basic
structures and tools. Once that is done, there is a bunch of
ways we can go ahead and study intriguing systems where
Carroll fermions would appear. One immediate extension
that comes to mind is to extend these structures to super-
symmetric Carroll actions. Although some work has been
done from a worldsheet point of view [55–57] (see also
[66,68] for field-theoretic discussions), there is still a lot to
learn about these theories. For example, the quantization
and vacuum structures of such theories, even from the
string theory point of view, are not clear at all. One would
imagine there is a systematic way to classify possible
consistent vacua for a super-BMS theory on the worldsheet,
in line with what was done for pure bosonic strings in [69],
but that discussion has not materialized yet. After all, we
would be interested to establish some version of flat holog-
raphy embedded into Carrollian structures, and it goes
without saying that laying the foundations of Carroll super-
conformal theories would be invaluable progress in that
direction.
Another important direction would be to find Carrollian

fermions in ‘real’systems. The companion paper to thiswork
[58] has already made a major and unexpected stride along
this direction in terms of finding emergent Carroll sym-
metries in flat-band physics, i.e., physics of strongly corre-
lated dispersionless electrons. It can then be expected that

generic spin chain or lattice systems in one spatial dimension
would showCarrollian behavior in some exotic points on the
dispersion curve where the Dirac cones are flattened. Flat-
band physics in one and higher-spatial dimension(s) encom-
passes various other intriguing phenomena including spin
liquids and fractional quantum hall systems. It would be
exciting to link these table-top physical phenomena to the
emergence of a guiding Carroll symmetry, thereby making it
the true “One symmetry to rule them all”. We hope to come
back to these questions with immediate effect.
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APPENDIX: ADJOINT AND CHARGE
CONJUGATION FOR HOMOGENEOUS

SPINORS

We discussed earlier that since one of the gamma
matrices in the homogeneous case is identically null, fixing
the discrete structures for this case is actually troublesome.
Moreover, the two subclasses of homogeneous spinors
have very different characteristics under Dirac and charge
conjugation operation. Let us discuss their structures case
by case in what follows. For γ̂0 ¼ I, γ̂1 ¼ 0, we have γ̂μ† ¼
þΛγ̂μΛ−1 and γ̂μ

T ¼ þCγ̂μC−1, so that the adjoint matrices
and relevant reality conditions become

Λ¼
�
0 b

c 0

�
C¼

�
0 1=b

1=c 0

�
⇒ ψ�

0 ¼ ψ0; ψ�
1 ¼ ψ1:

ðA1Þ
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On the other hand, for the nontrivial case, γ̂0 ¼ σk, γ̂1 ¼ 0,
we have γ̂μ† ¼ ð−1ÞkΛγ̂μΛ−1 and γ̂μ

T ¼ −Cγ̂μC−1, so that
we have

Λ¼
�

0 b

−b 0

�
C¼

�
0 1=b

−1=b 0

�
⇒ψ�

0¼ψ0; ψ�
1¼ψ1:

ðA2Þ

In both these cases b; c ∈ C. These are still fairly general and
unconstrained to be fair. But the factwe learn here iswhenwe
put γ̂0 ¼ σk, γ̂1 ¼ 0 in the homogeneous case,we can use our
Λ to define the Dirac adjoint, which we have done while
writing down the homogeneous action with real spinors
in (4.16).

[1] L. Leblond, Une nouvelle limite non-relativiste du group de
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