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In this paper, the Casimir energy density, loop corrections, and generation of topological mass are
investigated for a system consisting of two interacting real and complex scalar fields. The interaction
considered is the quartic interaction in the form of a product of the modulus square of the complex field and
the square of the real field. In addition, it is also considered the self-interaction associated with each field. In
this theory, the scalar field is constrained to always obey periodic condition, while the complex field obeys
in one case a quasiperiodic condition and in the other case mixed boundary conditions. The Casimir energy
density, loop corrections, and topological mass are evaluated analytically for the massive and massless
scalar fields considered. An analysis of possible different stable vacuum states and the corresponding
stability condition is also provided. In order to better understand our investigation, some graphs are also
presented. The formalism we use here to perform such investigation is the effective potential, which is
written as loop expansions via path integral in quantum field theory.
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I. INTRODUCTION

Since its prediction in 1948, the Casimir effect is
considered one of the most interesting physical phenome-
non. This effect, which is of pure quantum nature, was
predicted by H. Casimir [1]. In its standard form, the
Casimir effect consists in a force of attraction that arises in a
system of two neutral parallel and perfectly conducting
plates, placed in a classical vacuum, near to each other. This
force of attraction is described in the framework of
quantum field theory and is due to modifications in the
vacuum fluctuations associated with the quantized electro-
magnetic field, as a consequence of the imposition of
Dirichlet boundary condition on the plates. The phenome-
non of the Casimir effect, in the case of the electromagnetic
field, has been confirmed by several high accuracy experi-
ments [2–8]. Currently, it is also known that not only
the electromagnetic field presents the Casimir effect, but
other fields as well, such as scalar and fermion fields.
Additionally, the Casimir effect may also arise from
different boundary conditions. For instance, the Casimir

effect associated with a real scalar field subjected to a helix
boundary condition with temperature corrections is con-
sidered in Ref. [9], subjected to Robin boundary conditions
in Ref. [10], and in Ref. [11], the Casimir energy for a real
scalar field and the Elko neutral spinor field in a field theory
at a Lifshitz fixed point is obtained. Moreover, in Ref. [12],
a complex scalar field theory has been considered and the
corresponding Casimir energy density in compact space-
times investigated. A review on the Casimir effect can be
found in Ref. [13] (see also [14,15]).
As we have mentioned, boundary conditions play a

crucial role in the investigation of the Casimir effect. Avery
interesting condition is the quasiperiodic one. In Ref. [16],
a scalar field under a quasiperiodic condition, inspired by
nanotubes, is considered in order to investigate the corre-
sponding Casimir effect. It is found that the Casimir force
can be attractive or repulsive depending on the value of the
phase related to the quasiperiodic condition. Another
interesting boundary condition that modifies the quantum
vacuum fluctuations of a field is the one known as mixed
boundary condition (Dirichlet-Neumann). The Casimir
energy arising as a consequence of the imposition of mixed
boundary conditions on a real self-interacting scalar field
has been considered in Ref. [17] and in Ref. [18], where a
Lorentz violation scenario is also taken into account. In
Ref. [19], it is studied a scalar field with a quartic self-
interaction restricted to obey a helix boundary condition.
Also, the Casimir effect considering extra dimensions is
investigated in Refs. [20–22].
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The investigation of interacting quantum fields is impor-
tant since fields found in nature are always interacting. The
interaction mostly considered in the previous mentioned
works is a quartic self-interaction. In the framework of
two interacting quantum fields, using the effective potential
approach, Toms in Ref. [23] has considered two real
scalar fields, one twisted and the other untwisted, interacting
via the so-called quartic interaction, i.e., the product between
the square of the two fields in a Euclidean spacetime, in order
to investigate the symmetry breaking and mass generation
as a consequence of the nontrivial topology produced by
the periodic and antiperiodic conditions used. The quartic
interaction between two real fields is also considered
in Ref. [24] for the study of the phenomenon of particle
production from oscillating scalar backgrounds in a
Friedmann-Lemaître-Robertson-Walker universe using non-
equilibrium quantum field theory. In this type of calculation
the renormalization procedure is of particular importance. In
this sense, Ref. [25] presents a detailed discussion about the
renormalization scheme present in quantum field theory
comprising two interacting scalar fields.
In order to investigate the Casimir energy density, loop

corrections, and generation of topological mass, in the
present paper, we consider a system consisting of two real
and complex scalar fields interacting with each other via
quartic interaction, in addition to the self-interactions that
are normally present. The real field is always subject to a
periodic condition, while the complex field is restricted to
obey a quasiperiodic condition, as well as mixed boundary
conditions used on two identical and perfectly reflecting
parallel planes separated by a distance L. Hence, we shall
analyze separately two scenarios, one where a periodic real
scalar field interacts with a complex scalar field obeying a
quasiperiodic condition, and the other where a periodic real
scalar field interacts with a complex scalar field obeying
mixed boundary conditions. These two scenarios general-
ize previous results found in the literature where it has been
considered self-interacting real scalar fields under periodic
[26,27] and quasiperiodic [28] conditions, and also under
mixed boundary conditions [17,18]. In this regard, we
extend the analysis performed in Ref. [23] to the complex
scalar field and considering other conditions.
The choice of boundary conditions has to be mathemati-

cally consistent, and the choice of mixed boundary
conditions is natural, for instance, in the case of quantum
gravity, spinor field theory, and supergravity [29].
Furthermore, the quasiperiodic condition plays an impor-
tant role when one considers nanotubes or nanoloops for a
quantum field [16]. For example, if the phase angle is zero
(the periodic case), we have a corresponding system
describing metallic nanotubes, while the values � 2π

3
for

the phase angle correspond to semiconductor nanotubes.
In our investigation, we shall use the path integral formal-
ism and construct the effective potential in terms of loop
expansions. This formalism was developed by Jackiw [30]

and allows us to obtain the Casimir energy density and loop
corrections. The formalism also allows us, in principle, to
calculate loop corrections to the mass of the fields as a
consequence of the nontrivial topology of the spacetime. In
our case, we consider only one-loop correction to the mass,
which is enough to see generation of topological mass at
first order.
This paper is organized as follows: in Sec. II, we review

the main aspects of the path integral formalism to obtain the
effective potential in the case of two interacting quantum
fields, one real and the other complex. The interaction
considered is the quartic interaction, that is, a product
between the modulus square of the complex field and the
square of the real field. In addition, we also consider self-
interaction contributions for each field. In Sec. III, we
consider the real and complex fields interacting with each
other, where the real scalar field is subjected to a periodic
condition, while the components of the complex field obey
a quasiperiodic condition. By using the Riemann zeta
function technique, we evaluate the effective potential of
the system, the Casimir energy density, and the one-loop
correction to the mass. We also discuss the conditions for
the stability of the vacuum states, which leads to conditions
for a positive topological mass. In Sec. IV, the components
of the complex field will now be subjected to mixed
boundary conditions. The Casimir energy density, topo-
logical mass, and the vacuum stability are also investigated.
In Sec. V, we present our conclusions. Through this paper,
we use natural units in which both the Planck constant and
the speed of light are given by ℏ ¼ c ¼ 1.

II. EFFECTIVE POTENTIAL FOR INTERACTING
REAL AND COMPLEX SCALAR FIELDS

In this section, we consider a real scalar field, ψ ,
interacting with a complex scalar one, that is, ϕ. The
interaction term is in the form of a product of the modulus
square of the complex field and the square of ψ . This choice
of interaction satisfies the discrete symmetry ψ → −ψ, as
well as the global symmetry ϕ → eiαϕ. The existence of
symmetries in particle physics is crucial for the predicabil-
ity of a given model and for a better fitting with exper-
imental data [31], making it important to consider this type
of interactions in the investigation of the Casimir effect, for
instance. Note that it is also considered the quartic self-
interaction for each field. In the path integral approach for
the evaluation of the effective potential, it is usual to work
with the Euclidean spacetime coordinates, with imaginary
time [32]. Moreover, the complex field ϕ can be decom-
posed in terms of its real components as

ϕ ¼ 1ffiffiffi
2

p ðφ1 þ iφ2Þ; ϕ� ¼ 1ffiffiffi
2

p ðφ1 − iφ2Þ:

The model associated with the system described above, in
Euclidean coordinates, is given by the following action:

JUNIOR and MOTA PHYS. REV. D 107, 125019 (2023)

125019-2



SE½ψ ;φi� ¼
1

2

Z
d4x

�
ψ□ψ þ

X2
i¼1

φi□φi

�
−
Z

d4xUðψ ;φÞ;

Uðψ ;φÞ ¼m2þC2

2
ψ2þμ2

2
φ2þ g

2
φ2ψ2þ λφ

4!
φ4

þ λψ þC1

4!
ψ4þC3; ð1Þ

where m is the mass of the real field ψ , μ is the mass of
the complex field ϕ, λψ , and λϕ are the coupling constants
of self-interaction for the real and complex fields, respec-
tively, and g is the coupling constant of the interaction
between the fields. The parameters Ci’s are the renormal-
ization constants, and their explicit form will be obtained
in the renormalization process of the effective potential
for each case considered in the next sections. We also
make use of the notation φ2 ¼ φ2

1 þ φ2
2. Furthermore, the

d’Alembertian operator, □, is written in Euclidean space-
time coordinates as

□ ¼ ð∂2τ þ∇2Þ; ð2Þ
where τ ¼ it is the imaginary time.
The construction of the effective potential using the

path integral approach is described in detail in Refs. [26,33]
(see also [18,28]). Here, we present only the main steps
necessary to our purposes. Thus, the action in Eq. (1) is
now expanded about a fixed background Ψ and Φi that is,
ψ ¼ Ψþ χ, φi ¼ Φi þ ϱ, with χ and ϱ representing quan-
tum fluctuations. Since we are interested in the real field,
we seek to obtain the effective potential as a function only
of Ψ, i.e., VeffðΨÞ. Then it is unnecessary to shift the
components of the complex field ϕ, which amounts to set
Φi ¼ 0 [30]. Hence, we do not need to include counter-
terms proportional to powers of φ in Eq. (1). A note here is
in place: If we try to carry out the shift in ϕ, i.e., setting
Φi ≠ 0, a cross term will appear in the exponential on the
r.h.s. of Eq. (5), which turns the calculations needed for
the analysis extremely cumbersome. For this reason, the
simplification Φi ¼ 0, is justified in the calculations. In the
next sections, we will in fact impose on the components of
the complex field a quasiperiodic condition as well as
mixed boundary conditions. This requires that we set the
value Φi ¼ 0, the only possible choice for a constant field
to be compatible with the imposed conditions. In these
cases, the use of Eq. (5) without cross terms becomes more
accurate. Therefore, in the next sections, we shall be
interested in analyzing the influence of the complex scalar
field, subjected to a quasiperiodic and mixed conditions, on
both the Casimir energy density and topological mass
arising due to the real scalar field subjected to a periodic
condition.
The expansion of the effective potential in powers of ℏ,

up to order ℏ2, can be written as

VeffðΨÞ ¼ Vð0ÞðΨÞ þ Vð1ÞðΨÞ þ Vð2ÞðΨÞ: ð3Þ

The zero order term, Vð0ÞðΨÞ, describes the classical
potential, i.e., the tree-level contribution,

Vð0ÞðΨÞ ¼ UðΨÞ ¼ m2 þ C2

2
Ψ2 þ λψ þ C1

4!
Ψ4 þ C3: ð4Þ

The next term, Vð1ÞðΨÞ, is the one-loop correction to
the classical potential and, in terms of the path integral
approach, takes the following form [23]:

Vð1ÞðΨÞ ¼ −
1

Ω4

ln
Z

DψDφ1Dφ2 exp

�
−
1

2
ðψ ; ÂψÞ

−
1

2
ðφ1; B̂φ1Þ −

1

2
ðφ2; B̂φ2Þ

�
; ð5Þ

where Ω4 is the four-dimensional volume of the Euclidean
spacetime, which depends on the conditions imposed on
the fields. Note that we have introduced the notation,

ðψ ; ÂψÞ ¼
Z

d4xψðxÞÂψðxÞ; ð6Þ

with the self-adjoint operators Â and B̂ defined as

Â ¼ −□þm2 þ λψ
2
Ψ2; B̂ ¼ −□þ μ2 þ gΨ2: ð7Þ

The one-loop correction to the effective potential can be
written in terms of the eigenvalues of the operators Â and B̂,
using the generalized zeta function [9,26]. Let us denote by
αn and βn, the eigenvalues of the operators Â and B̂,
respectively. Then, one can construct the generalized zeta
function ζðsÞ as follows:

ζαðsÞ ¼
X
σ

α−sσ ; ζβðsÞ ¼
X
ρ

β−sρ ; ð8Þ

where σ and ρ stand for the set of quantum numbers
associated with the eigenfunctions of the operators Â and B̂,
respectively. The summation symbol denotes sum or
integration of the quantum numbers, depending on whether
they are discrete or continuous. It is possible to show that
the one-loop correction, (5), can be written in terms of the
generalized zeta functions, (8), as [26,34]

Vð1ÞðΨÞ ¼ Vð1Þ
α ðΨÞ þ Vð1Þ

β ðΨÞ; ð9Þ

where

Vð1Þ
α ¼ −

1

2Ω4

½ζ0αð0Þ þ ζαð0Þ ln ν2�;

Vð1Þ
β ¼ −

1

Ω4

½ζ0βð0Þ þ ζβð0Þ ln ν2�: ð10Þ
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In the above expressions, ζα;βð0Þ and ζ0α;βð0Þ denote the
generalized zeta function and its derivative with respect to
s, evaluated at s ¼ 0, respectively. Note that the parameter
ν stands for an integration measure in the functional space
and is to be removed via renormalization of the effective
potential [26]. In addition, for practical reasons, the two-
loop correction, Vð2ÞðΨÞ, of the effective potential is
calculated from the two-loop graphs. This correction can
also be written in terms of the generalized zeta function if
one is interested in calculating the vacuum contribution
[18,19,28]. We postpone the explicit form of Vð2ÞðΨÞ for
later on, when we investigate it.
After one obtains the explicit form of the effective

potential with its corrections, it is required to renormalize
it. The renormalization process is achieved by means of a
set of renormalization conditions. The first one is written in
analogy to Coleman-Weinberg. It allows us to fix the
constant C1 in Eq. (1) and also the coupling constant λψ ,
[35]. This condition is expressed as

d4VeffðΨÞ
dΨ4

����
Ψ¼M

¼ λψ ; ð11Þ

where M is a parameter with dimension of mass, which, in
the case the model is massive, we can take it as being zero
[18,19,28]. The next renormalization condition that fixes
the constant C2 in Eq. (1) is written as follows:

d2VeffðΨÞ
dΨ2

����
Ψ¼v

¼ m2; ð12Þ

where v is the value that minimizes the effective potential.
It is pertinent to point out that the above expression also
provides the topological mass when we use the renormal-
ized effective potential instead of VeffðΨÞ. Note that Ψ ¼ v
in Eq. (12) is the value of the field that minimizes the
potential as long as the extremum condition is obeyed

dVeffðΨÞ
dΨ

����
Ψ¼v

¼ 0: ð13Þ

In Sec. III C, we discuss the vacuum stability and present
the values of the field that satisfy the condition above. The
last condition one should use to renormalize the effective
potential, fixing the constant C3, is written in the form [18]

VeffðΨÞjΨ¼0 ¼ 0; ð14Þ

which is relevant only if the model is massive [18,19,28].
It should be clear that the conditions presented in
Eqs. (11), (12), and (14) are taken in the limit of
Minkowski spacetime.
We are now ready to study the loop expansion of the

effective potential of the real scalar field and the generation
of topological mass, imposing a periodic condition for

the real field, and a quasiperiodic condition for the com-
ponents of the complex field, along with mixed boundary
conditions. We shall consider the components of the
complex field, φ1 and φ2, obeying the same boundary
conditions.

III. PERIODIC AND QUASIPERIODIC
CONDITIONS

We are considering a real field ψ , interacting with a
complex field ϕ via quartic interaction. The action of the
system is presented in Eq. (1). Note that the system takes
into consideration the quartic self-interaction terms as well.
In this section, the conditions that the fields must obey are
the periodic, for the real field, and quasiperiodic for the
components of the complex field.
The real field being subjected to the periodic condition

means it must satisfy the following relation:

ψðτ; x; y; zþ LÞ ¼ ψðτ; x; y; zÞ; ð15Þ

where L is the periodic parameter. In fact, the condition
above leads to the compactification of the z coordinate into
a length L, as show the illustration in Fig. 1. Hence, the
eigenvalues equation of the operator Â, presented in Eq. (7),
is well known in the literature and is written as

ασ ¼ k2τ þ k2x þ k2y þ
4π2

L2
n2 þM2

λ ; M2
λ ¼ m2 þ λψ

2
Ψ2;

ð16Þ

where n ¼ 0;�1;�2;…, and the subscript σ stands for the
set of quantum numbers ðkτ; kx; ky; nÞ. For the components
of the complex field, φi, we apply the quasiperiodic
condition [16,28], i.e.,

φiðτ; x; y; zþ LÞ ¼ e2iπθφiðτ; x; y; zÞ: ð17Þ

This condition also compactifies the z-coordinate into a
length L, but now there exists the influence of the phase θ,
that is, the quasiperiodic parameter that assumes values
in the range 0 ≤ θ < 1. In this sense, the quasiperiodic
condition recovers the periodic one for θ ¼ 0. The case for

FIG. 1. Illustrative representation of a four-dimensional space-
time with a compactified spatial dimension. The spacetime is
composed by the compactified spatial dimension z, S1, and a
tridimensional space R3 of coordinates t, x, y.
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θ ¼ 1=2 recovers the well-known antiperiodic condition.
Thereby, under the quasiperiodic condition, the eigenvalues
of the operator B̂, presented in Eq. (7), take the form

βρ ¼ p2
τ þ p2

x þ p2
y þ

4π2

L2
ðnþ θÞ2 þM2

g;

M2
g ¼ μ2 þ gΨ2; ð18Þ

where n ¼ 0;�1;�2;…, and ρ stands for the set of the
quantum numbers ðpτ; px; py; nÞ. The values θ ¼ 0 and
θ ¼ 1=2 are also known as the cases for the untwisted and
twisted scalar fields, respectively.
Knowing the explicit form of the eigenvalues ασ and βρ,

given in Eqs. (16) and (18), respectively, one can construct
the generalized zeta function from Eq. (8) and obtain a
practical expression for the first order correction to the
effective potential in Eq. (10). We shall do that next, also
obtaining the topological mass.

A. One-loop correction

Starting from the eigenvalues presented in Eq. (16),
which are associated with the real scalar field ψ , we
construct the generalized zeta function from Eq. (8) as

ζαðsÞ ¼
Ω3

ð2πÞ3
Z

dkτdkxdky

×
Xþ∞

n¼−∞

�
k2τ þ k2x þ k2yþ

�
2πn
L

	
2

þM2
λ

�
−s
; ð19Þ

where Ω3 stands for the three-dimensional volume asso-
ciated with the Euclidean spacetime coordinates τ, x, y,
necessary to make the integrals dimensionless. In order to
obtain an expression for the generalized zeta function (19),
we shall follow similar steps as the ones presented in
[19,28]. We keep most of the calculation for the conven-
ience of the reader. Thus, by using the identity,

w−s ¼ 2

ΓðsÞ
Z

∞

0

dττ2s−1e−wτ
2

; ð20Þ

in Eq. (19) and performing the resulting Gaussian integrals
in kτ, kx, and kz, one obtains the generalized zeta function
in the form

ζαðsÞ ¼
Ω3

ð2πÞ2
π

1
2

ΓðsÞ
Xþ∞

n¼−∞

Z
∞

0

dττ2s−4

× exp

�
−τ2
��

2πn
L

	
2

þM2
λ

��
: ð21Þ

The expression obtained in Eq. (21) is suited for the use of
the well-known integral representation of the gamma
function ΓðzÞ [36]

ΓðzÞ ¼ 2

Z
∞

0

dμμ2z−1e−μ
2

; ð22Þ

which allows us to rewrite the generalized zeta function
(21) in terms only of the summation in n, i.e.,

ζαðsÞ ¼
Ω4π

3
2
−2s

22sL4−2s
Γðs − 3

2
Þ

ΓðsÞ
Xþ∞

n¼−∞

�
n2 þ

�
MλL
2π

	
2
�3

2
−s
: ð23Þ

The quantity Ω4 stands for the four-dimensional volume
in Euclidean spacetime, which takes into account the space-
time topology S1 × R3 as a consequence of the periodic
condition imposed on the field. In the case under con-
sideration, the four-dimensional volume is written as
Ω4 ¼ Ω3L. In order to perform the sum in Eq. (23), we
use the following analytic continuation of the inhomo-
geneous generalized Epstein function [16,19,37]:

Xþ∞

n¼−∞
½ðnþ ϑÞ2 þ κ2�−z ¼ π

1
2κ1−2z

ΓðzÞ
�
Γ
�
z −

1

2

	

þ 4ðπκÞz−1
2

X∞
j¼1

jz−
1
2 cosð2πjϑÞKð1

2
−zÞð2πjκÞ

�
; ð24Þ

where KγðxÞ is the modified Bessel function of the second
kind or, as it is also known, the Macdonald function [36].
After the use of Eq. (24), the generalized zeta function in
Eq. (23) is presented in the form

ζαðsÞ ¼
Ω4M4−2s

λ

24π2ΓðsÞ
�
Γðs − 2Þ þ 24−s

X∞
j¼1

fð2−sÞðjMλLÞ
�
;

ð25Þ

where we have defined the function fμðxÞ as

fγðxÞ ¼
KγðxÞ
xγ

: ð26Þ

By evaluating the generalized zeta function in Eq. (25)
and its derivative with respect to s, in the limit s → 0, one
finds from Eq. (10) the one-loop contribution to the
effective potential as

Vð1Þ
α ðΨÞ ¼ M4

λ

64π2

�
ln

�
M2

λ

ν2

	
−
3

2

�
−
M4

λ

2π2
X∞
j¼1

f2ðjMλLÞ:

ð27Þ

The expression above is the first order correction, that is,
the one-loop correction to the effective potential due to the
periodic condition. It remains to be evaluated the contri-
bution due to the complex field for the one-loop correction,
which we shall analyze below.
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For the components of the complex scalar field, the
eigenvalues are presented in Eq. (18), allowing us to
construct the associated generalized zeta function in the
form

ζβðsÞ ¼
Ω3

ð2πÞ3
Z

dpτdpxdpy

Xþ∞

n¼−∞

�
p2
τ þ p2

x þ p2
y

þ 4π2

L2
ðnþ θÞ2 þM2

g

�
−s
: ð28Þ

The expression for the generalized zeta function,
ζβðsÞ, arising due to a real scalar field has been obtained
in detail in [28] and, of course, for our case, is very
similar since the componentes of the complex field
considered are real. Therefore, we present only the final
result, i.e.,

ζβðsÞ ¼
Ω4M4−2s

g

16π2ΓðsÞ
�
Γðs − 2Þ

þ 24−s
X∞
j¼1

cosð2πjθÞfð2−sÞðjMgLÞ
�
: ð29Þ

From Eq. (10) and using the generalized zeta function
presented above, one is able to write the first order
correction to the effective potential due to the complex
field as

Vð1Þ
β ðΨÞ ¼ M4

g

32π2

�
ln

�
M2

g

ν2

	
−
3

2

�

−
M4

g

π2
X∞
j¼1

cos ð2πjθÞf2ðjMgLÞ: ð30Þ

Collecting the results presented in Eqs. (27) and (30), we
can write the first order correction to the effective potential
associated with the interacting real and complex scalar
fields in the following form:

Vð1ÞðΨÞ ¼ M4
λ

64π2

�
ln

�
M2

λ

ν2

	
−
3

2

�
þ M4

g

32π2

�
ln

�
M2

g

ν2

	
−
3

2

�

−
M4

λ

2π2
X∞
j¼1

f2ðjMλLÞ

−
M4

g

π2
X∞
j¼1

cos ð2πjθÞf2ðjMgLÞ: ð31Þ

Therefore, from Eq. (9), the nonrenormalized effective
potential up to one-loop correction reads

VeffðΨÞ ¼
m2 þ C2

2
Ψ2 þ λψ þ C1

4!
Ψ4 þ C3

þ M4
λ

64π2

�
ln

�
M2

λ

ν2

	
−
3

2

�
þ M4

g

32π2

�
ln

�
M2

g

ν2

	
−
3

2

�

−
M4

λ

2π2
X∞
j¼1

f2ðjMλLÞ

−
M4

g

π2
X∞
j¼1

cos ð2πjθÞf2ðjMgLÞ: ð32Þ

It is clear that the one-loop corrections in Eqs. (27) and (30)
for the cases of real and complex fields, respectively, differ
by a factor of two when θ ¼ 0, the periodic condition
particular case. This is justified since the complex field has
two components. Note that the masses are also, in general,
different. That is, for the real scalar field, it is m and for the
complex scalar field is μ.
Once we obtain the effective potential VeffðΨÞ in

Eq. (32), our task is now to renormalize it. Hence, by
following the renormalization procedure, from the con-
ditions presented in Eqs. (11), (12), and (14), in the limit of
Minkowski spacetime L → ∞, one obtains the renormal-
ization constants as

C1 ¼
3λ2ψ
32π2

ln

�
ν2

m2

	
þ 3g2

4π2
ln

�
ν2

m2

	
;

C2 ¼
λψm2

32π2

�
ln

�
ν2

m2

	
þ 1

�
þ gμ2

8π2

�
ln

�
ν2

μ2

	
þ 1

�
;

C3 ¼
m4

64π2

�
ln

�
ν2

m2

	
þ 3

2

�
þ μ4

32π2

�
ln

�
ν2

μ2

	
þ 3

2

�
: ð33Þ

Furthermore, by substituting the renormalization constants
above into the nonrenormalized effective potential given in
Eq. (32), we are able to write the renormalized effective
potential in the following form:

VR
effðΨÞ¼

m2

2
Ψ2þλψ

4!
Ψ4þ μ4

32π2
ln

�
M2

g

μ2

	
þ m4

64π2
ln

�
M2

λ

m2

	

þgμ2Ψ2

16π2

�
ln

�
M2

g

μ2

	
−
1

2

�
þ λ2ψΨ4

256π2

�
ln

�
M2

λ

m2

	
−
3

2

�

þλψm2Ψ2

64π2

�
ln

�
M2

λ

m2

	
−
1

2

�
þg2Ψ4

32π2

�
ln

�
M2

g

μ2

	
−
3

2

�

−
M4

λ

2π2
X∞
j¼1

f2ðjMλLÞ

−
M4

g

π2
X∞
j¼1

cosð2πjθÞf2ðjMgLÞ: ð34Þ

The explicit form of the renormalized effective potential
presented in Eq. (34) makes it possible to evaluate the
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Casimir energy density and also the topological mass, up to
first order correction.
In order to proceed and calculate the vacuum energy

density, let us consider Ψ ¼ 0 as the stable vacuum state
of the theory, although there are other possible stable
vacuum states, as analyzed in Sec. III C. Thus, from the
renormalized effective potential VR

effðΨÞ in Eq. (34), one
can evaluate the Casimir energy density in a straightfor-
wardly way since the vacuum state is obtained by setting
Ψ ¼ 0. Hence, the Casimir energy density is found to be

EC ¼ VR
effðΨÞjΨ¼0

¼ −
m4

2π2
X∞
n¼1

f2ðnmLÞ − μ4

π2
X∞
j¼1

cos ð2πjθÞf2ðjμLÞ:

ð35Þ

Note that the first term on the r.h.s. of Eq. (35) is the
contribution to the Casimir energy density from the real
scalar field ψ subjected to a periodic condition, while the
second term is the contribution from the complex field
subjected to a quasiperiodic condition [28]. In the particular
case, θ ¼ 0, this contribution is twice the one from the real
scalar field if the masses are equal. In order to show the
influence of the complex field, under a quasiperiodic
condition, on the Casimir energy density of the real field,
we have plotted the expression in Eq. (35) as a function of
mL, which is shown on the left side of Fig. 2 for different
values of θ and taken μ ¼ m. The black solid line is the
Casimir energy density free of interaction with the complex
field, only with the effect of the real field self-interaction. It
is clear that depending on the value of the quasiperiodic
parameter θ, the Casimir energy density can be bigger or
smaller than the free case, including the possibility of
assuming positive or negative values. Note that the curves
tend to repeat their behavior for values such that θ > 0.5.

For instance, the curve represented by the green dot-dashed
line for θ ¼ 0.3 is the same as the one for θ ¼ 0.7, and so
on. Furthermore, all the curves end in their corresponding
massless field constant value cases at mL ¼ 0, as it can be
checked from Eq. (38). Also, in the regime mL ≫ 1, the
Casimir energy density in Eq. (35) goes to zero for all
curves, as revealed by the plot on the left side of Fig. 2. This
a consequence of the exponentially suppressed behavior of
the Macdonald function for large arguments [36].
It is interesting to consider the case of massless scalar

fields, i.e., the limit m, μ → 0 of Eq. (35). For the massless
scalar field case, we can make use of the limit for

small arguments of the Macdonald function, i.e., KμðxÞ ≃
ΓðμÞ
2
ð2xÞμ [36]. Hence, from Eq. (35), we obtain the Casimir

energy density for interacting massless scalar fields as

EC ¼ −
π2

90L4
−

2

π2L4

X∞
j¼1

j−4 cos ð2πjθÞ; ð36Þ

where we have used the following result for the Riemann
zeta function ζð4Þ ¼ π4

90
[37,38], on the first term on the

r.h.s. of Eq. (36). This term is the already known Casimir
effect result for a free massless scalar field subjected to a
periodic condition [26]. In addition, the second term on the
r.h.s. of Eq. (36) can be rewritten in terms of the well known
Bernoulli polynomials,

B2kðθÞ ¼
ð−1Þk−12ð2kÞ!

ð2πÞ2k
X∞
n¼1

cos ð2πnθÞ
n2k

: ð37Þ

Hence, the expression for the Casimir energy density, in the
massless scalar fields case, is found to be

EC ¼ −
π2

90L4
þ 2

π2

3L4

�
θ4 − 2θ3 þ θ2 −

1

30

	
; ð38Þ

FIG. 2. Plot of the dimensionless Casimir energy density, EðmLÞ ¼ 2π2L4EC, defined from Eq. (35), as a function ofmL, is shown on
the left. The plot on the right shows the dimensionless two-loop contribution to the Casimir energy density, EcðmLÞ ¼ 32π4L4ΔEC,
defined from Eq. (48), as a function of mL and considering λψ ¼ 10−2, λφ ¼ 10−2, and g ¼ 10−3. For both cases, we have taken μ ¼ m
and different values of θ.
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where we have made use of the Bernoulli polynomial of
fourth order, that is, B4ðθÞ ¼ ðθ4 − 2θ3 þ θ2 − 1

30
Þ. As one

should expect, the first term on the r.h.s. of Eq. (38) is
consistent with the result found in [26], while the second
term is consistent with the result found in [16,28] (taking
into account the two components of the complex field). The
latter also provides the right expressions for the periodic
(θ ¼ 0) and antiperiodic ðθ ¼ 1

2
Þ cases, also known as

untwisted and twisted cases, respectively.
We wish now to investigate the influence of the con-

ditions in the mass m of the real scalar field, i.e., the
generation of topological mass at one-loop level. From
the condition presented in Eq. (12) and making use of
the renormalized effective potential (34), one obtains the
following expression for the topological mass of the real
scalar field ψ :

m2
T ¼ m2

�
1þ λψ

4π2
X∞
n¼1

f1ðnmLÞ

þ μ2

m2

g
π2
X∞
j¼1

cosð2πjθÞf1ðjμLÞ
�
: ð39Þ

Note that the topological mass m2
T does not present any

divergencies, making it possible for us to consider the
massless field limit, that is, m, μ → 0. Hence, by using the
same approximation for the Macdonald function as the one
applied to obtain Eq. (36) from Eq. (35), we find the
topological mass as

m2
T ¼ λψ

24L2
þ g
L2

�
θ2 − θ þ 1

6

	
: ð40Þ

In the expression above, we have used the Riemann zeta
function ζð2Þ ¼ π2

6
[37,38] and also the Bernoulli poly-

nomials presented in Eq. (37), with B2ðθÞ ¼ θ2 − θ þ 1
6
.

As one can see, the mass correction comes from the

self-interaction term, which is proportional to λψ , and also
from the interaction between the fields, which is pro-
portional to the coupling constant g. Note that the first term
on the r.h.s. of Eq. (40) has been previously obtained
in Ref. [26] in a real scalar field theory with only self-
interaction.
Another interesting aspect associated with the topologi-

cal mass is that if λψ < g, Eq. (40) may become negative
depending on the value of θ, which would in principle
indicate vacuum instability. Had we, for instance, consid-
ered a complex scalar field theory with only self-interaction
(no interaction between the fields), this would be a problem
since it does not make sense to consider a constant complex
field, Φi ≠ 0, compatible with the quasiperiodic condition
for θ ≠ 0. The case θ ¼ 0 is not problematic in this regard,
and that is why we have made the real scalar field to obey
the periodic condition. Nevertheless, this problem is solved
by taking into account an interaction theory as the one
considered here (see also [23]). Within this theory, it is
possible to study the vacuum stability, which in fact is made
in Sec. III C by considering for simplicity a massless scalar
field theory. The analysis indicates that the vacuum Ψ ¼ 0
is stable only if λψ > −24gB2ðθÞ; otherwise, it is necessary
to consider the two other possible stable vacuum states,Ψ�,
in Eq. (55).
In Fig. 3 we have plotted the dimensionless mass

squared, M2ðmLÞ ¼ m2
TL

2, defined from Eq. (39), as a
function of mL, for different values of θ and taken μ ¼ m.
On the left of Fig. 3, the plot shows the curves for λψ ¼
10−2 and g ¼ 10−3, which satisfies the condition λψ >
−24gB2ðθÞ in order Ψ ¼ 0 be a stable vacuum. This plot
provides positive values in Eq. (40) for all values of the
quasiperiodic parameter θ, as we should expect. In contrast,
the plot on the right shows the curves for λψ ¼ 10−3 and
g ¼ 10−2, which satisfies the condition λψ < −24gB2ðθÞ.
In this case, there exist negative values of Eq. (40) for
θ ¼ 0.3 and θ ¼ 0.5, showing that Ψ ¼ 0 is in fact an
unstable vacuum state. However, in a massive scalar field

FIG. 3. Plot of the dimensionless topological mass squared, M2ðmLÞ ¼ m2
TL

2, defined from Eq. (39), as a function of mL, for
different values of θ and taken μ ¼ m. On the left, the plot shows the curves for λψ ¼ 10−2 and g ¼ 10−3, while on the right, the plot
shows the curves for λψ ¼ 10−3 and g ¼ 10−2.
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theory, Ψ ¼ 0, becomes stable for larger values ofmL even
if λψ < g, as indicates the plot on the right. Note that all
curves, at mL ¼ 0, end in their corresponding constant
massless scalar field values for the topological mass in
Eq. (40). For large values ofmL, the Macdonald function is
exponentially suppressed, and the curves are dominated by
the first term on the r.h.s. of Eq. (39). Note also that the
curves tend to repeat themselves for θ > 0.5.
The one-loop correction analysis is now done, so one can

proceed to the two-loop correction contribution by still
considering Ψ ¼ 0 as the stable vacuum state. As we now
know, it means that we have to consider the restric-
tion λψ > −24gB2ðθÞ.

B. Two-loop correction

We want now to analyze the loop correction to the
Casimir energy density obtained in Eqs. (35) and (36). This
can be done by considering the second order correction to
the effective potential, which can be obtained from the two-
loop Feynman graphs. Since we have more than one
contribution, we evaluate all the two-loop contributions
from each Feynman graph separately. Hence, we write

Vð2ÞðΨÞ ¼ Vð2Þ
λψ
ðΨÞþVð2Þ

λφ
ðΨÞþVð2Þ

g ðΨÞþVð2Þ
2λφ

ðΨÞ; ð41Þ

where Vð2Þ
λψ

is the contribution from the self-interaction

term, λψ
4!
ψ4, of the real field, Vð2Þ

λφ
is the contribution from

the self-interaction of the complex field, that is, λφ
4!
φ4
1 and

λφ
4!
φ4
2, V

ð2Þ
g is associated with the interaction between the

real and complex fields g
2
φ2
1ψ

2 and g
2
φ2
2ψ

2 and, finally, Vð2Þ
2λφ

is associated with the cross terms of the components of the

complex field λφ
4!
2φ2

1φ
2
2.

Let us first consider the contribution from the self-

interaction term associated with the real field, Vð2Þ
λψ
ðΨÞ.

Since we are interested in the vacuum state where Ψ ¼ 0,
the only nonvanishg contribution comes from the graph
exhibited in Fig. 4. With the help of this Feynman graph,
one can write the two-loop contribution in terms of the
generalized zeta function presented in Eq. (25) in the
following form [19,28]:

Vð2Þ
λψ
ð0Þ ¼ λψ

8

�
ζRα ð1Þ
Ω4

�
2
����
Ψ¼0

: ð42Þ

The zeta function ζRα ðsÞ is defined as the nondivergent part
of the generalized zeta function given by Eq. (25), at s ¼ 1
[19,28], i.e.,

ζRα ðsÞ ¼ ζαðsÞ −
Ω4M4−2s

λ

16π2
Γðs − 2Þ
ΓðsÞ : ð43Þ

Note that the term that is being subtracted in the above
equation is independent of the parameter L, when divided
by Ω4, characterizing the conditions and, as usual, should
be dropped. Explicitly, one obtains the following result for
the two-loop contribution due to the self-interaction term of
the real field:

Vð2Þ
λψ
ð0Þ ¼ λψm4

32π4

�X∞
j¼1

f1ðjmLÞ
�
2

: ð44Þ

The above result shows that the two-loop contribution is
proportional to the coupling constant λψ , as it should.

The second contribution, Vð2Þ
λφ
ðΨÞ, to the total two-loop

correction in Eq. (41) can be read from the same graph as
the one in Fig. 4. We can construct the function ζRβ ðsÞ from
the generalized zeta function (29), subtracting the divergent
part at s ¼ 1, and then obtain the contribution from the self-
interaction of the complex field, that is,

Vð2Þ
λφ
ð0Þ ¼ 2

λφμ
4

32π4

�X∞
j¼1

cos ð2πjθÞf1ðjμLÞ
�
2

; ð45Þ

which is proportional to λφ. The factor of two accounts for
the two components of the complex field, that is, φ1 and φ2

that give rise to equal contributions.
Next we analyze the contributions from the interaction,

Vð2Þ
g ðΨÞ, between the fields. This correction can be read

from the graph shown in Fig. 5 and calculated, at s ¼ 1, by
using the nondivergent part of the zeta functions in
Eqs. (25) and (29). Hence, one finds the contribution from
the interaction between the fields as

Vð2Þ
g ð0Þ ¼ 2

gm2μ2

8π4

�X∞
n¼1

f1ðnmLÞ
�

×

�X∞
j¼1

cos ð2πjθÞf1ðjμLÞ
�
: ð46Þ

Since the expression (46) comes from the interaction term,
it is proportional to the coupling constant g.

Finally, the last contribution, Vð2Þ
2λφ

ðΨÞ, comes from the

interaction of the components of the complex field (also a

FIG. 4. Feynman graph representing the only nonvanishing
self-interaction contribution to the two-loop correction calculated
at Ψ ¼ 0.
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self-interaction). The contribution from this term is
obtained from the graph in Fig. 5, considering the solid
line as representing the propagator associated with the
field φ1 and the dashed one associated with the field φ2.
Then, by using again the nondivergent part of the zeta
function (29), calculated at s ¼ 1, the result is written as

Vð2Þ
2λφ

ð0Þ ¼ λφμ
4

48π4

�X∞
j¼1

cos ð2πjθÞf1ðjμLÞ
�
2

: ð47Þ

Note that, likewise the result presented in Eq. (45), the
above expression is proportional to λφ.
Collecting all the results obtained in Eqs. (44)–(47), one

can write the total two-loop correction to the effective
potential in Eq. (41), at the vacuum state Ψ ¼ 0, as

ΔEC ¼ Vð2ÞðΨÞjΨ¼0

¼ λψm4

32π4

�X∞
j¼1

f1ðjmLÞ
�
2

þ λφμ
4

12π4

�X∞
j¼1

cos ð2πjθÞf1ðjμLÞ
�
2

þ gm2μ2

4π4

�X∞
n¼1

f1ðnmLÞ
��X∞

j¼1

cos ð2πjθÞf1ðjμLÞ
�
:

ð48Þ

Therefore, combining the results presented in Eqs. (35) and
(48), one obtains a correction to the Casimir energy density
in Eq. (35), which is first order in all coupling constants of
the theory. As we can notice, while the first order correction
to the effective potential gives the Casimir energy density
associated with a free scalar and complex fields theory, the
second order correction to the effective potential in Eq. (48)
provides a contribution to the Casimir energy density that is
linearly proportional to all coupling constants.

Moreover, one can also consider the massless scalar
fields limit of Eq. (48), that is, μ; m → 0. This gives

ΔEC ¼ λψ
1152L4

þ λφ
12L4

�
θ2 − θ þ 1

6

	
2

þ g
24L4

�
θ2 − θ þ 1

6

	
: ð49Þ

Hence, the expression above is the first order correction, in
all coupling constants of the theory, to the massless Casimir
energy density in Eq. (38). Note that the first term on
the r.h.s. of Eq. (49) has been obtained in Ref. [26], while
the second term is consistent with the result obtained in
Ref. [28] in a real scalar field theory considering only self-
interaction. In contrast, the third term is a new one arising
from the interaction between the fields.
In Fig. 2, the plot on the right shows the influence of

the complex field, under a quasiperiodic condition, on the
correction (48) to the Casimir energy density. Thus, the
expression in Eq. (48) has been plotted as a function ofmL,
for different values of θ and taken μ ¼ m. We also have
considered λψ ¼ 10−2, λφ ¼ 10−2, and g ¼ 10−3. The black
solid line is the correction free of interaction with the
complex field, only with the effect of the real field self-
interaction. It is clear that the curves for θ ≠ 0 increase the
correction when compared to the black solid line. Note that
the curves here also tend to repeat their behavior for values
such that θ > 0.5. For instance, the curve represented by
the orange dot-dashed line for θ ¼ 0.3 is the same as the
one for θ ¼ 0.7. Furthermore, all the curves tend to their
corresponding massless field constant value cases at
mL ¼ 0, as it can be checked from Eq. (49). Also, in
the regime mL ≫ 1, the correction in Eq. (48) goes to
zero for all curves, as revealed by the plot on the right side
of Fig. 2. This a consequence of the exponentially sup-
pressed behavior of the Macdonald function for large
arguments [36].
Next, we shall analyze the vacuum stability of the theory,

since the state Ψ ¼ 0 is not the only possible vacuum state,
as we have already anticipated.

C. Vacuum stability

We want to analyze here the stability of the possible
vacuum states associated with the effective potential, up to
first order loop correction, of the theory described by the
action in Eq. (1). For simplicity, we consider the case where
the fields are massless, i.e., m, μ → 0. It is import to point
out again that, for the complex scalar field obeying the
condition in Eq. (17), the only constant field that can satisfy
such a condition is the zero field; hence, we set Φi ¼ 0.
This fact also turns the approximation discussed below
Eq. (2) into an exact expression, namely, the one in Eq. (5),
which does not consider cross terms.

FIG. 5. Feynman graph representing the only nonvanishing
contribution to the two-loop correction, calculated at Ψ ¼ 0, due
to the interaction between the real and complex fields. This graph
also provides the only nonvanishing contribution due to the
interaction of the components of the complex field. In this case,
the solid line represents the propagator associated with the
component φ1 while the dashed line represents the propagator
associated with the component φ2.
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By following the same steps as the ones to obtain
Eq. (32), the nonrenormalized effective potential for the
massless scalar fields case is written as

VeffðΨÞ ¼
λψ þ C

4!
Ψ4 þ λ2ψΨ4

256π2

�
ln

�
λψΨ2

2ν2

	
−
3

2

�

þ g2Ψ4

32π2

�
ln

�
gΨ2

ν2

	
−
3

2

�

−
λ2ψΨ4

8π2
X∞
j¼1

f2

�
j

ffiffiffiffiffiffiffiffiffiffiffi
λψ
2
Ψ2

r
L

	

−
g2Ψ4

π2
X∞
j¼1

cos ð2πjθÞf2


j
ffiffiffiffiffiffiffiffi
gΨ2

q
L
�
: ð50Þ

Furthermore, the condition which takes care of the renorm-
alization constant C, is given by Eq. (11). Thereby, by
applying this condition on the effective potential of
Eq. (50), in the Minkowski limit L → ∞, one finds that
the constant C is given by

C¼ 3λ2ψ
32π2

ln

�
2ν2

λψM2

	
þ 3g2

4π2
ln

�
ν2

gM2

	
−

λ2ψ
4π2

−
2g2

π2
: ð51Þ

Next, by substituting C in the effective potential (50), we
obtain the renormalized effective potential for the massless
scalar fields theory, i.e.,

VR
effðΨÞ ¼

λψ
4!

Ψ4 þ
�
λ2ψ
8
þ g2

�
Ψ4

32π2
ln

�
Ψ2

M2

	

−
�
λ2ψ
8
þ g2

�
25Ψ4

192π2

−
λ2ψΨ4

8π2
X∞
j¼1

f2

 
j

ffiffiffiffiffiffiffiffiffiffiffi
λψ
2
Ψ2

r
L

!

−
g2Ψ4

π2
X∞
j¼1

cos ð2πjθÞf2


j
ffiffiffiffiffiffiffiffi
gΨ2

q
L
�
: ð52Þ

Let us now investigate the possible vacuum states of the
above renormalized effective potential, up to first order in
the coupling constants λψ and g, which is more than enough
since we have considered corrections to the Casimir energy
density as well as to the mass of the scalar field only up to
first order in the coupling constants. Thus, expanding the
renormalized effective potential given by Eq. (52) in
powers of λψ and g [23], up to first order, results in the
following expression:

VR
effðΨÞ ≃ −

π2

90L4
þ 2π2

3L4
B4ðθÞ þ

λψ
4!

Ψ4

þ Ψ2

48L2
½λψ þ 24gB2ðθÞ�; ð53Þ

where B4ðθÞ and B2ðθÞ are the Bernoulli polynominals
defined in Eq. (37). The minimum of the potential, which
corresponds to the vacuum state, is obtained as usual by
taking its derivative and equating the resulting expression
to zero; that is,

λψ
6
Ψ3 þ Ψ

24L2
½λψ þ 24gB2ðθÞ� ¼ 0: ð54Þ

The roots of Eq. (54) represent possible vacuum states and
are given by

Ψ ¼ 0; Ψ� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

4λψL2
½λψ þ 24gB2ðθÞ�

s
: ð55Þ

In order to know which solution above may be a physical
vacuum state, one has to analyze the stability of the
effective potential (53). This is achieved by means of its
second derivative, i.e.,

d2VR
effðΨÞ
dΨ2

¼ λψ
2
Ψ2 þ 1

24L2
½λψ þ 24gB2ðθÞ�: ð56Þ

For the vacuum state to be stable, the second derivative of
the potential, evaluated at (55), must be greater than zero.
In this sense, we investigate for which values of the
parameter θ of the quasiperiodic condition and of the
coupling constants the stability is achieved.
Let us then first consider the vacuum state,Ψ ¼ 0, which

is the case considered previously in the analysis of the
Casimir energy density, its loop correction and the topo-
logical mass. Hence, from Eq. (56), one sees that Ψ ¼ 0 is
stable only if the following condition is satisfied:

λψ > −24gB2ðθÞ: ð57Þ

As we can see, the parameter θ plays a crucial role in
determining whether or not this vacuum state is stable.
Additionally, the coupling constants has also a great
influence in the vacuum stability. Thus, by taking the
coupling constants, λψ and g, to be positive, and for B2ðθÞ
also positive, the condition above is always satisfied.
However, if B2ðθÞ is negative, the condition in Eq. (57)
may be violated if λψ < g. In Fig. 6, we have plotted the
Bernoulli polynomial B2ðθÞ, from where we can see its
positive and negative values.
By using the explicit form of the Bernoulli polynomial,

that is, B2ðθÞ ¼ θ2 − θ þ 1
6
, one finds that its negative

values are provided for values of θ in the interval

1

2
−

ffiffiffi
3

p

6
< θ <

1

2
þ

ffiffiffi
3

p

6
: ð58Þ

Of course, the values of θ for which B2ðθÞ is positive reside
out of the above interval.
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As an example, let us consider the particular case where
θ ¼ 0.5. Hence, the condition of stability written in
Eq. (57) becomes

λψ > 2g: ð59Þ
The above condition is in agreement with the one found in
[23]. Note, however, that we are considering a complex
scalar field. The topological mass, in this case, takes the
following form:

m2
T ¼ ðλψ − 2gÞ

24L2
; ð60Þ

which agrees with the result obtained in Eq. (40) for
θ ¼ 0.5. Note also that if the interaction between the fields
is not present, that is, g ¼ 0, we recover the previous known
result found in Refs. [26,27].
According to Eq. (55) it is also possible to consider,

Ψ ¼ Ψ�, as the vacuum states, instead of Ψ ¼ 0. In this
case, evaluating the second derivative of the potential in
Eq. (56), at Ψ ¼ Ψ�, and setting the result to be greater
than zero, one obtains the vacuum stability condition as

λψ < −24gB2ðθÞ: ð61Þ
For positive coupling constants, the above condition is
satisfied only if the Bernoulli polynomial, B2ðθÞ, is
negative. This is in fact possible for values of θ in the
interval (58). By considering the same example as before,
that is, θ ¼ 0.5, we obtain the stability condition for a
twisted scalar field as

λψ < 2g: ð62Þ
Consequently, the topological mass for this case reads

m2
T ¼ 2g − λψ

12L2
: ð63Þ

Note that the above result for the topological mass
differs from the one presented in Eq. (40) for θ ¼ 0.5.

This difference arises from the fact that the considered
stable vacuum state for Eq. (63), that is, Ψ ¼ Ψ�, is not the
same as the one in Eq. (40), that is, Ψ ¼ 0. For the latter to
be stable, as we have seen above, it is necessary to consider
the restriction in Eq. (57). The result in Eq. (63) is in
agreement with the one found in Ref. [26].
The Casimir energy density can also be obtained by

taking, Ψ ¼ Ψ�, as the stable vacuum state. Thus, from
Eq. (55), the effective potential given by Eq. (53) provides
the following expression for the Casimir energy density:

EC ¼ VR
effðΨÞjΨ�

≃ −
π2

90L4
þ 2

π2

3L4
B4ðθÞ −

1

384λψL4
½λψ þ 24gB2ðθÞ�2:

ð64Þ
Note that the first two terms on the r.h.s. of Eq. (64) are in
agreement with the Casimir energy density presented in
Eq. (38). However, the third term presents a dependency
on the coupling constants λψ and g, which does not appear
in the case where the stable vacuum state is Ψ ¼ 0. It is
important to point out that Eq. (64) is only an approxi-
mation, up to first order in the coupling constants, since we
are taking into account the expansion of the effective
potential presented in Eq. (53). The first and third terms
are always negative, while the second term can be positive
or negative, depending on the value of the Bernoulli
Polynomial B4ðθÞ, shown in Fig. 6.
In order to calculate the two-loop correction contribution

to the Casimir energy density in Eq. (64), it would be
necessary to consider additional Feynman graphs other
than the ones shown in Figs. 4 and 5. These additional
Feynman graphs come from the second term on the r.h.s. of
Eq. (24) in Ref. [26], which vanishes in the case Ψ ¼ 0 is
the stable vacuum state. The consideration of the two-loop
contribution, of course, would make our problem extremely
difficult so we restrict our analysis only to the one-loop
correction that provides the Casimir energy density
in Eq. (64).
From Eqs. (57) and (61), we can conclude that the

stability of the vacuum states is determined by the values of
the coupling constants λψ and g, as well as by the value
of the parameter θ of the quasiperiodic condition for the
complex field. However, there is no dependency on the
parameter L.
In the next section, we consider the same system as the

one considered in this section, but the complex field is now
subjected to mixed boundary conditions.

IV. PERIODIC CONDITION AND MIXED
BOUNDARY CONDITIONS

In this section, we consider the real scalar field obeying
periodic condition as before, but now the complex scalar
field is subject to mixed boundary conditions. In practice,

FIG. 6. Bernoulli polynomials B2ðθÞ, solid line, and B4ðθÞ,
dashed line, as functions of the quasiperiodic parameter θ.

JUNIOR and MOTA PHYS. REV. D 107, 125019 (2023)

125019-12



the first order loop correction to the effective potential
associated with the real scalar field is the same as in
Eq. (27), differently from the complex field, which yields a
different contribution since it obeys a different condition. In
this case, it is sufficient to evaluate only the correction
associated with the complex field. We will also assume that
Ψ ¼ 0 is the stable vacuum state for the analysis below,
although a discussion of other possible stable vacuum states
is given in Sec. IV C.
The complex field real components are subject to the

following mixed boundary conditions applied on the planes
shown in Fig. 7 [17,18,39]:

φiðwÞjz¼0 ¼
∂φiðwÞ
∂z

����
z¼L

;
∂φiðwÞ
∂z

����
z¼0

¼ φiðwÞjz¼L;

ð65Þ

where w ¼ ðτ; x; y; zÞ. By taking into account the boundary
conditions above, the eigenvalues of the operator B̂ given in
Eq. (7), take the form [17,18]

βρ ¼ k2τ þ k2x þ k2y þ
�
nþ 1

2

	
2 π2

L2
þM2

g;

M2
g ¼ μ2 þ gΨ2; ð66Þ

where n ¼ 0; 1; 2;…, and the subscript ρ stands for the set
of quantum numbers ðkτ; kx; ky; nÞ. It is worth pointing out
that, from Eq. (65), two configurations are possible on the
parallel planes in Fig. 7. For the plane at z ¼ 0, we can have
Dirichlet boundary condition, while for the plane at z ¼ L,
we can have the Neumann one. Conversely, for the plane at
z ¼ 0, we can have Neumann boundary condition, while
for the plane at z ¼ L, we can have the Dirichlet one.
However, both configurations provide the same eigenvalues
in Eq. (66).
Having the eigenvalues obtained in Eq. (66), we can now

proceed to the investigation of the first order correction,
that is, the one-loop correction to the effective potential

associated with the complex scalar field subjected to mixed
boundary conditions on the planes shown in Fig. 7.

A. One-loop correction

The required steps for the obtention of the generalized
zeta function for the case under consideration go in a
similar way as the one presentend in the previous sections
and also in [18]. Therefore, we present only the main steps
for the reader’s convenience. Constructing the generalized
zeta function with the eigenvalues presented in (66)
requires the use of the identity in Eq. (20) which, after
the integration of the momenta, one can use the integral
representation of the gamma function, (22), finding the
expression

ζβðsÞ ¼
Ω4π

3
2
−2s

8L4−2s
Γðs − 3

2
Þ

ΓðsÞ
Xþ∞

n¼0

��
nþ 1

2

	
2

þ
�
MgL

π

	
2
�3

2
−s
;

ð67Þ
where Ω4 is the four-dimensional volume written as
Ω4 ¼ Ω3L, with Ω3 being the three-dimensional volume
associated with the Euclidean spacetime coordinates τ, x, y.
In order to perform the sum in Eq. (67), we write it as a sum
of two terms [13,18], i.e.,

Xþ∞

n¼0

��
nþ 1

2

	
2

þ ϑ2
�3

2
−s

¼ 1

23−2s

�X∞
n¼1

½n2 þ ð2ϑÞ2�32−s

− 23−2s
X∞
n¼1

½n2 þ ϑ2�32−s
�
:

ð68Þ
Each sum on the r.h.s. of Eq. (68) can be written in terms of
the Epstein-Hurwitz zeta function [40]

ζEHðz; κÞ ¼
Xþ∞

n¼1

ðn2 þ κ2Þ−z

¼ −
κ−2z

2
þ π

1
2

2

Γðz − 1
2
Þ

ΓðzÞ κ1−2z

þ 21−zð2πÞ2z−1
2

ΓðzÞ
X∞
n¼1

n2z−1fðz−1
2
Þð2πnκÞ: ð69Þ

Hence, with the help of the Eq. (69), one obtains the
generalized zeta function as

ζβðsÞ ¼
Ω4

16π2ΓðsÞ
�
M4−2s

g Γðs − 2Þ

þ 2s

L4−2s

X∞
n¼1

n2s−4½22s−3fðs−2Þð4nMgLÞ

− fðs−2Þð2nMgLÞ�
�
: ð70Þ

FIG. 7. Two identical and perfectly reflecting parallel planes
placed at z ¼ 0 and z ¼ L, confining the field modes of a
complex scalar field. On the planes, the mixed boundary
conditions in Eq. (65) are applied.
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Evaluating the above expression and its derivative in the
limit s → 0, one finds the complex field contribution to the
first order loop correction to the effective potential from
Eq. (10), i.e.,

Vð1Þ
β ðΨÞ ¼ M4

g

32π2

�
ln

�
M2

g

ν2

	
−
3

2

�

−
M4

g

π2
X∞
n¼1

½2f2ð4nMgLÞ − f2ð2nMgLÞ�: ð71Þ

Taking into consideration the contribution from the real
field, Eq. (27), along with the contribution above of the
complex field, the effective potential, up to one-loop
correction, is presented in the form

VeffðΨÞ ¼
m2 þ C2

2
Ψ2 þ λψ þ C1

4!
Ψ4 þ C3

þ M4
λ

64π2

�
ln

�
M2

λ

ν2

	
−
3

2

�
þ M4

g

32π2

�
ln

�
M2

g

ν2

	
−
3

2

�

−
M4

λ

2π2
X∞
j¼1

f2ðjMλLÞ

−
M4

g

π2
X∞
n¼1

½2f2ð4nMgLÞ − f2ð2nMgLÞ�: ð72Þ

Knowing the effective potential expressed in Eq. (72),
one needs to renormalize it. Hence, by applying the
renormalization conditions given by Eqs. (11), (12), and
(14), we find the renormalization constants Ci as the same
as the ones obtained in Eq. (33), as it should be. After
the substitution of these constants Ci’s in the effective
potential, (72), one can write the renormalized effective
potential as

VR
effðΨÞ ¼

m2

2
Ψ2þ λψ

4!
Ψ4þ μ4

32π2
ln

�
M2

g

μ2

	
þ m4

64π2
ln

�
M2

λ

m2

	

þ gμ2Ψ2

16π2

�
ln

�
M2

g

μ2

	
−
1

2

�
þ λ2ψΨ4

256π2

�
ln

�
M2

λ

m2

	
−
3

2

�

þ λψm2Ψ2

64π2

�
ln

�
M2

λ

m2

	
−
1

2

�
þ g2Ψ4

32π2

�
ln

�
M2

g

μ2

	
−
3

2

�

−
M4

λ

2π2
X∞
j¼1

f2ðjMλLÞ

−
M4

g

π2
X∞
n¼1

½2f2ð4nMgLÞ−f2ð2nMgLÞ�: ð73Þ

Once we obtain the renormalized effective potential
found in Eq. (73), the Casimir energy density is written
in a straightforwardly way by setting Ψ ¼ 0, i.e.,

EC ¼ VR
effðΨÞjΨ¼0 ¼ −

m4

2π2
X∞
j¼1

f2ðjmLÞ

−
μ4

π2
X∞
n¼1

½2f2ð4nμLÞ − f2ð2nμLÞ�: ð74Þ

The first term on the r.h.s. of Eq. (74) is the contribution
from the real field which is equal to the one in Eq. (35) as it
should, since the boundary condition applied to the real
field is the same. However, the second term on the r.h.s. of
Eq. (74) is the contribution from the complex field and
differs from the case of quasiperiodic condition presented
in Eq. (35). This contribution is consistent with the result
shown in Ref. [17] where the authors considered a self-
interacting real scalar field.
The massless scalar field case is obtained by taking the

limit for small arguments of the Macdonald function [36].
This yields the following Casimir energy density:

EC ¼ −
π2

90L4

�
1 −

7

64

�

¼ 57

64
×

�
−

π2

90L4

	
; ð75Þ

where we can see that the effect of the interaction with the
complex field subjected to mixed boundary conditions is to
increase the Casimir energy density of the real scalar field
under a periodic condition.
In Fig. 8, we have plotted the Casimir energy density in

Eq. (74) as a function of mL and taken m ¼ μ, showing it
on the left side. The latter shows how the curve for the free
real scalar field (black solid line) differs from the curve
when considering the influence of the interaction (blue
dotted line). In fact, the interaction increases the value of
the Casimir energy density, as shown the curves. This plot
also shows that the Casimir energy density goes to zero for
large values of mL. This a consequence of the exponen-
tially suppressed behavior of the Macdonald function for
large arguments [36]. Also, the two curves end in their
corresponding massless field constant value cases at
mL ¼ 0, as it can be checked from Eq. (75).
Let us now investigate how the topological mass

associated with the real field changes under the influence
of mixed boundary conditions imposed on the complex
field. Thus, applying the renormalization condition (12),
with the renormalized effective potential in Eq. (73),
provides the topological mass written as

m2
T ¼ m2

�
1þ λψ

4π2
X∞
j¼1

f1ðjmLÞ

þ μ2

m2

g
π2
X∞
n¼1

½2f1ð4nμLÞ − f1ð2nμLÞ�
�
: ð76Þ
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Of course, the difference between the above result and the
topological mass found in Eq. (39), relies in the third term
on the r.h.s. of Eq. (76). Furthermore, by considering the
massless scalar fields case, m, μ → 0, one obtains the
topological mass as follows:

m2
T ¼ 2λψ − g

48L2
: ð77Þ

Note that the topological mass above coincides with the
particular cases of quasiperiodic condition in Eq. (40), for
θ ¼ 1=4; 3=4, which are in the range of Eq. (58).
Similarly to the discussion presented in the previous

section, here the topological mass squared can also become
negative depending on whether λψ is bigger or smaller than
g. For instance, if 2λψ < g, Eq. (77) becomes negative,
indicating vacuum instability. Again, had we considered a
complex scalar field theory with only self-interaction (no
interaction between the fields) this would be a problem
since it does not make sense to consider a constant complex

field, Φi ≠ 0, compatible with mixed boundary condi-
tions. This problem is solved by taking into account an
interaction theory as the one considered in the present
section (see also [23]). Within this theory, it is possible to
study the vacuum stability, which here is made in Sec. IV C
for massless scalar fields. The analysis indicates that the
vacuum Ψ ¼ 0 is stable only if 2λψ > g; otherwise, it is
necessary to consider the two other possible vacuum states,
Ψ�, in Eq. (86).
In Fig. 9, we have plotted the dimensionless mass

squared, M2ðmLÞ ¼ m2
TL

2, defined from Eq. (76), as a
function of mL, taken μ ¼ m. On the left of Fig. 9, the
plot shows the curves for λψ ¼ 10−2 and g ¼ 10−3, which
satisfies the condition 2λψ > g in order Ψ ¼ 0 be a stable
vacuum. In contrast, the plot on the right shows the curves
for λψ ¼ 10−3 and g ¼ 10−2, which satisfies the condition
2λψ < g. In this case, Eq. (77) becomes negative, showing
that Ψ ¼ 0 is in fact an unstable vacuum state. Note that in
an interacting massive scalar field theory, Ψ ¼ 0 may still
be a stable vacuum state even if 2λψ < g for large values of

FIG. 9. Plot of the dimensionless topological mass squared, M2ðmLÞ ¼ m2
TL

2, defined from Eq. (76), as a function of mL, taken
μ ¼ m. On the left, the plot shows the curves for λψ ¼ 10−2 and g ¼ 10−3, while on the right, the plot shows the curves for λψ ¼ 10−3

and g ¼ 10−2.

FIG. 8. Plot of the dimensionless Casimir energy density, EðmLÞ ¼ 2π2L4EC, defined from Eq. (74), as a function of mL is shown
on the left, while the plot on the right shows the dimensionless two-loop contribution to the Casimir energy density,
EcðmLÞ ¼ 32π4L4ΔEC, defined from Eq. (81), as a function of mL and considering λψ ¼ 10−2, λφ ¼ 10−2 and g ¼ 10−3. For both
cases, we have taken μ ¼ m.
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mL, as shown in the plot on the right side. Note also that the
curves, at mL ¼ 0, end in their corresponding constant
massless scalar field values for the topological mass in
Eq. (77). For large values ofmL, the Macdonald function is
exponentially suppressed and the curves are dominated by
the first term on the r.h.s. of Eq. (76).
The one-loop correction analysis is now done, so one can

proceed to the two-loop correction contribution by still
considering Ψ ¼ 0 as the stable vacuum state. As we now
know, it means that we have to consider the restriction
2λψ > g. The vacuum stability analysis for the present case
we postpone until Sec. IV C.

B. Two-loop correction

Now we wish to evaluate the two-loop correction to the
effective potential. We use the same graphs as the ones used
in the case of quasiperiodic condition in Figs. 4 and 5, and
also a similar notation as the one used in Sec. III B. The first
correction comes from the self-interaction term of the real

scalar field, that is, λψ
4!
ψ4. Since we are interested in the

vacuum state, Ψ ¼ 0, the only nonvanishing contribution is
the same as the one obtained in Eq. (44).
The second contribution comes from the self-interaction

of the complex scalar field, i.e., λφ
4!
φ4
i . For the case under

consideration, this contribution reads

Vð2Þ
λφ
ð0Þ ¼ 2

λφ
8

�
ζRγ ð1Þ
Ω4

�
2
����
Ψ¼0

¼ 2
λφμ

4

32π4

�X∞
n¼1

½2f1ð4nμLÞ − f1ð2nμLÞ�
�

2

: ð78Þ

Note that in the above expression, ζRβ ð1Þ, stands for the
nondivergent part of ζβðsÞ given by Eq. (70), at s ¼ 1, and
the factor of 2 in front of the constant λφ is to remind
ourselves that we are taking into account the two compo-
nents of the complex field.
Next we obtain the contribution from the interaction

between the fields, that is, from the term g
2
φ2
iψ

2. Hence, this
term yields the following correction to the effective
potential:

Vð2Þ
g ð0Þ ¼ 2

gm2μ2

8π4

�X∞
j¼1

f1ðjmLÞ
�

×

�X∞
n¼1

½2f1ð4nμLÞ − f1ð2nμLÞ�
�
: ð79Þ

The last correction to the effective potential comes from
the interaction between the real components of the com-
plex field (also a self-interaction), that is, from the term
λφ
4!
2φ2

1φ
2
2. Thus, one is able to write it as

Vð2Þ
2λφ

ð0Þ ¼ λφμ
4

48π4

�X∞
n¼1

½2f1ð4nμLÞ − f1ð2nμLÞ�
�

2

: ð80Þ

Therefore, from the results obtained in Eqs. (44), (78),
(79), and (80), we may write the Casimir energy density, up
to second order correction, that is, up to two-loop correc-
tion, as follows:

ΔEC ¼ Vð2ÞðΨÞjΨ¼0

¼ λψm4

32π4

�X∞
j¼1

f1ðjmLÞ
�
2

þ λφμ
4

12π4

�X∞
n¼1

½2f1ð4nμLÞ − f1ð2nμLÞ�
�

2

þ gm2μ2

4π4

�X∞
j¼1

f1ðjmLÞ
�

×

�X∞
n¼1

½2f1ð4nμLÞ − f1ð2nμLÞ�
�
: ð81Þ

Note that the expression above is proportional to the
coupling constants λψ , λφ, and g, representing the self-
interaction of each field and also the interaction between
the fields. Moreover, from the correction to the Casimir
energy density presented in Eq. (81), one can consider the
massless scalar fields limit,m, μ → 0. Recalling the limit of

small arguments for the Macdonald function, i.e., KμðxÞ ≃
ΓðμÞ
2
ð2xÞμ [36], one finds the correction in Eq. (81) for the

massless fields in the form

ΔEC ¼ λψ
1152L4

þ λφ
27648L4

−
g

1152L4
: ð82Þ

As we can see, the corrections proportional to the coupling
constants λψ and λφ, which come from the self-interaction
of the fields, increase the Casimir energy density in
Eq. (75), while the term coming from the interaction
between the fields, codified by the coupling constant g,
has the effect of decrease the Casimir energy density. Note
that the contribution proportional to λφ present in Eq. (82)
is not the same as the one obtained in Ref. [17] for the self-
interacting real scalar field. In fact, our result for the second
term on the r.h.s. of Eq. (82) is 8=3 bigger than the one
obtained in Ref. [17]. This is due to the fact that, besides the
contribution in Eq. (78), we also have an additional
contribution proportional to λφ coming from the interaction
between the components of the complex field in Eq. (80).
The same is valid for the massive contribution on the
second term on the r.h.s. of Eq. (81). Note also that, in order
to compare our results with the ones present in Ref. [17],
we need to define the Casimir energy correction, ΔEC, per
unit area, A, of the planes as ΔEC

A ¼ LΔEC.
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In Fig. 8, the plot on the right shows the influence of the
complex field, under mixed boundary conditions, on the
correction (81) to the Casimir energy density of a massive
real scalar field. The expression in Eq. (81) has been plotted
as a function ofmL, taken μ ¼ m. We also have considered
λψ ¼ 10−2, λφ ¼ 10−2 and g ¼ 10−3. The black solid line is
the correction free of interaction with the complex field,
only with the effect of the real field self-interaction, while
the blue dotted line is the correction (81) taking into
account the interaction with the complex field subjected
to mixed boundary conditions. The effect of the latter is to
increase the correction, as revealed by the plot in Fig. 8.
Note that the two curves tend to their corresponding
massless field constant value cases at mL ¼ 0, as it can
be checked from Eq. (82). Also, in the regime,mL ≫ 1, the
correction in Eq. (81) goes to zero. This is once again a
consequence of the exponentially suppressed behavior of
the Macdonald function for large arguments [36].
Next, we shall analyze the vacuum stability of the theory,

since the state Ψ ¼ 0 is not the only possible vacuum state,
as we have already mentioned. For simplicity, we shall
consider a massless scalar field theory.

C. Vacuum stability

Let us analyze here the stability of the possible vacuum
states associated with the effective potential, up to first
order loop correction, of the theory described by the action
in Eq. (1). For simplicity, we consider the case where the
fields are massless, i.e., μ; m → 0. It is important to point
out again that, for the complex scalar field obeying the
boundary conditions in Eq. (65), the only constant field that
can satisfy such a condition is the zero field; hence, we set
Φi ¼ 0. As mentioned before, this fact also turns the
approximation discussed below Eq. (2) into an exact
expression, namely, the one in Eq. (5), which does not
consider cross terms.
By following the same steps as the ones to obtain

Eq. (32), the nonrenormalized effective potential for the
massless scalar fields case is written as

VeffðΨÞ¼
λψ þC

4!
Ψ4þ λ2ψΨ4

256π2

�
ln

�
λψΨ2

2ν2

	
−
3

2

�

þg2Ψ4

32π2

�
ln

�
gΨ2

ν2

	
−
3

2

�

−
�
λψ
2

	
2 Ψ4

2π2
X∞
j¼1

f2

 
j

ffiffiffiffiffiffiffiffiffiffiffi
λψ
2
Ψ2

r
L

!

−
g2Ψ4

π2
X∞
n¼1

h
2f2


4n

ffiffiffiffiffiffiffiffi
gΨ2

q
L
�
−f2



2n

ffiffiffiffiffiffiffiffi
gΨ2

q
L
�i

:

ð83Þ
Now it is required to renormalize the effective potential
in Eq. (83). In this sense, by applying the renorma-
lization condition given by Eq. (11), one obtains the

renormalization constant C as the same as the one in
Eq. (51). Thus, substituting this renormalization constant
into the effective potential presented in Eq. (83) yields the
renormalized effective potential, i.e.,

VR
effðΨÞ¼

λψ
4!
Ψ4−

�
λ2ψ
8
þg2

�
25Ψ4

192π2

þ
�
λ2ψ
8
þg2

�
Ψ4

32π2
ln

�
Ψ2

M2

	

−
�
λψ
2

	
2 Ψ4

2π2
X∞
j¼1

f2

 
j

ffiffiffiffiffiffiffiffiffiffiffi
λψ
2
Ψ2

r
L

!

−
g2Ψ4

π2
X∞
n¼1

h
2f2


4n

ffiffiffiffiffiffiffiffi
gΨ2

q
L
�
−f2



2n

ffiffiffiffiffiffiffiffi
gΨ2

q
L
�i

:

ð84Þ
In order to analyze the vacuum stability, the renormalized
effective potential, (84), can be expanded in terms of the
coupling constant λψ ; g, keeping the terms only to first
order. This results in the following expression:

VR
effðΨÞ ≃ −

19π2

30L4
þ λψΨ4

4!
þ λψΨ2

48L2
−

gΨ2

96L2
: ð85Þ

The possible vacuum states are obtained as the value
of Ψ, which corresponds to the minimum of the expanded
effective potential in Eq. (85). Therefore, deriving the
effective potential in Eq. (85) with respect to Ψ and
equating it to zero gives the following values of Ψ, which
correspond to the possible vacuum states:

Ψ ¼ 0; Ψ� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g − 2λψ
8λψL2

s
: ð86Þ

Whether the vacuum states presented in Eq. (86) are stable
or not is decided from the second derivative of the
expandend effective potential given in Eq. (85).
Let us first consider the vacuum state asΨ ¼ 0. Then, by

taking the second derivative of the expanded potential in
Eq. (85), evaluated at Ψ ¼ 0, one finds that the condition
for the vacuum stability is presented as

2λψ > g: ð87Þ
For this vacuum state, the Casimir energy density is given
by the same expression as the one in Eq. (75). Moreover, it
is straightforward to see that the topological mass also does
not change; that is, it gives the same result as the one
in Eq. (77).
From Eq. (86), on the other hand, one can also consider

the vacuum state as Ψ ¼ Ψ�. By evaluating the second
derivative of the expanded effective potential at the vacuum
states Ψ ¼ Ψ�, we learn that the stability condition reads

g > 2λψ : ð88Þ
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Hence, the topological mass for the case under consid-
eration takes the following form:

m2
T ¼ g − 2λψ

24L2
; ð89Þ

which is also a consistent quantity since it is strictly
positive, in accordance with Eq. (88). Besides, the
Casimir energy density, considering Ψ ¼ Ψ� as the vac-
uum states, is obtained by the substitution of Ψ� on the
expanded effective potential in Eq. (85), providing the
Casimir energy density

EC ¼ VR
effðΨÞjΨ�

≃ −
19π2

30L4
−
ðg − 2λψÞ2
1536λψL4

: ð90Þ

We emphasize that the above result is an approximation
since we are considering the expansion of the effective
potential in Eq. (85) up to first order in the coupling
constants. Note that the first term on the r.h.s. of Eq. (90) is
the Casimir energy density obtained in Eq. (75), while the
second term brings coupling constant corrections.
The discussion presented at the end of Sec. III C also

applies here. That is, the calculation of the two-loop
correction contribution to the Casimir energy density in
Eq. (90) requires additional Feynman graphs other than the
ones shown in Figs. 4 and 5. The consideration of the two-
loop contribution, of course, would make our problem
extremely difficult so that we restrict our analysis only to
the one-loop correction that provides the Casimir energy
density in Eq. (90).
From the results presented in Eqs. (87) and (88), one can

conclude that the stable vacuum state is determined by the
values of the coupling constants λψ and g and not on the
value of the parameter L characterizing the boundary
condition.

V. CONCLUDING REMARKS

Loop correction to the Casimir effect and generation of
topological mass have been investigated. Both the Casimir
energy density and the topological mass arise from the
nontrivial topology of the Minkowski spacetime, which
takes place in the form of periodic and quasiperiodic
conditions. These physical quantities also arise from mixed
boundary conditions considered. More specifically, the
system that has been taken into consideration consists of
real and complex scalar fields interacting by means of a
quartic interaction in addition to the self-interactions of
the fields.

The real scalar field has been subjected to a periodic
boundary condition, while the complex scalar field has
been assumed to satisfy quasiperiodic condition, and also
mixed boundary conditions. The Casimir energy density,
up to one-loop correction to the effective potential, has been
obtained in Eq. (35) for massive fields, and in Eq. (36), for
massless fields, considering the case where the complex
field obeys quasiperiodic condition. In this context, the
topological mass has also been obtained in Eqs. (39) and
(40) for the massive and massless cases, respectively. The
two-loop correction contributions to the Casimir energy
density, considering both massive and massless fields
cases, have been presented, respectively, in Eqs. (48)
and (49), which turn out to be proportional to the coupling
constants λψ , λφ, and g. Moreover, it has also been
investigated the possible stable vacuum states and the
stability conditions for such states. These vacuum states
have been presented in Eq. (55) and the corresponding
stability conditions expressed in Eqs. (57) and (61), which
depend on the values of the coupling constants λψ , g and on
the parameter θ of the quasiperiodic condition.
Furthermore, by assuming that the complex field sat-

isfies mixed boundary conditions, the Casimir energy
density, up to one-loop correction to the effective potential,
for both massive and massless field cases have been
presented in Eqs. (74) and (75), respectively. The topo-
logical mass analysis for such a system has been performed
as well and the results are given by Eqs. (76) and (77) for
massive and massless fields, respectively. In this case, the
two-loop correction contribution to the Casimir energy
density has also been presented in Eqs. (81) and (82), for
massive and massless cases, respectively. The investigation
of vacuum stability has determined the possible vacuum
states and the condition to achieve stability in each case.
From the results presented in Eqs. (87) and (88), we can
conclude that the stable vacuum is determined by the values
of the coupling constants λψ and g and not on the value of
the parameter, L, of the boundary condition.
Therefore, by extending the analysis performed in Ref. [23]

to the complex field and considering other conditions,we have
also generalized the results found in Refs. [17,18,26–28] for a
self-interacting real scalar field theory.
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