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We report the differential representation of three- and four-point amplitudes for Yang-Mills fields and
Einstein gravity in anti–de Sitter spacetime at tree level. The amplitudes exhibit the flat-space structures by
using the weight-shifting operators with reordering, which makes the differential double copy relation
at the three-point level straightforward. For four-point Yang-Mills amplitudes, we establish the differential
Bern-Carrasco-Johansson relation, which can be useful for proving the differential doubly copy at the
four-point level in the future.
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I. INTRODUCTION

Scattering theory plays an essential role in understanding
the fundamental principles of particles. For the past decades,
there hasbeen hugeprogress in scattering theory in flat space,
which not only successfully predicts and explains many
exciting discoveries made by colliders [1], but also remark-
ably reveals hidden structures linked to the entity of local
quantum field theories, such as Bern-Carrasco-Johansson
(BCJ) relations [2] and the double copy structures [3–5].
However, our Universe is not flat. Although our Universe

is generally curved, the local scattering of particles in a
small regime compared to the curvature can still be
approximated by flat-space physics, as verified by scatter-
ing experiments. It is then natural and crucial to ask, do
those beautiful structures of scattering remain for curved
spacetime? How good can the locally flat scattering experi-
ments say about curved spacetime? A natural starting point
to answer these questions would be studying other max-
imally symmetric spacetimes, such as anti–de Sitter (AdS)
and de Sitter (dS) space.
AdS scattering is studied extensively due to its correspon-

dence with conformal field theories (CFTs) [6]. The unitary
AdS physics can be explored by using unitary large-N
CFT [7] that is highly constrained by conformal symmetry
and crossing symmetry (see Refs. [10,11] for quick reviews).
As expected, the appropriate limit of conformal correlators
and conformal data corresponds to the flat-space limit of
local AdS scattering, giving back the flat-space scattering

data (see, e.g., [12–20] and references therein) [21].
However, previously it was usually not expected to recon-
struct full AdS amplitudes/CFT correlators from flat space.
In this sense, the flat-space limit of AdS=CFT is crucially
different from “flat holography” [22]. Recent progress was
made in [23–30], which surprisingly found the differential
representation of scalar (A)dS amplitudes by writing (A)dS
amplitudes as conformal generators acting on scalar contact
Witten diagrams. This differential representation not only
makes the flat-space limit manifest, but also allows one to
uplift the flat-space amplitudes to (A)dS in a universal way.
In this paper, we aim to progress toward extending the

differential representation to spinningcorrelators by focusing
on massless gluons and gravitons in AdS from Yang-Mills
(YM) theory and Einstein gravity. Massless spinning par-
ticles in flat space are constrained by stringent consistency
conditions and encode hidden structures, such as double
copy structures [3–5]. We report the differential representa-
tion for YM and graviton amplitudes in AdS. We show that
we can uplift gluon and graviton amplitudes in AdS from flat
space up to a finite number of additional contact structures.
We argue and expect that the additional contact structures can
be bootstrapped by requiring the conservation of conserved
currents and stress tensors. The same arguments also apply to
hidden structures like BCJ relations and the double copy,
which are now in a differential format. Although we start our
exploration in AdS spacetime, our results should be readily
translated to dS [31].
The rest of this paper is organized as follows. In Sec. II,

we introduce our differential operators for representing
spinning correlators and comment on power counting
principles in CFT. In Sec. III, we construct the differential
representation for three- and four-point YM amplitudes and
graviton amplitudes; we show that the double copy is
straightforward for three-point amplitudes. In Sec. IV, we
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propose another differential representation for YM ampli-
tudes, which allows us to uplift flat-space BCJ numerators
and prove the differential BCJ relations. We summarize and
point out future directions in Sec. V. We record detailed
ingredients in our derivations in Appendixes B and C.

II. BUILDING BLOCKS FOR DIFFERENTIAL
REPRESENTATION

This section introduces our notations and building
blocks for differentially representing conserved current
and stress-tensor correlators.
For scalars, it is easy to find the differential representation

for any contact diagrams up to any points by using the coset
construction [27]. The spirit is that the contracted bulk
derivatives can be replaced by the contractions of conformal
generators, as guaranteed by the conformal symmetry. For
spinning objects, the tensor structures appear, which can
either contract among themselves or with bulk derivatives.
From the perspective of CFTs, the spinning indices shall
be captured by the spin-up weight-shifting operator [32]
(written in terms of embedding formalism [33]),

D0þ
μ ¼ ðJ þ ΔÞZμ þ XμZ · ∂X; ð1Þ

where X, Z are coordinates and polarizations in the embed-
ding space of CFTs; they obey X2 ¼ Z2 ¼ X · Z≡ 0.Δ and
J are the scaling dimension and spin of the operators on
which it acts. On the other hand, we speculate and show
that bulk derivatives can be replaced by dimension-up
weight-shifting operator Dþ0 (that raises the scaling
dimensions [32]) modulo bulk coordinates,

Dþ0
μ ¼ c1∂Xμ þ c2Xμ∂

2
X þ c3Zμ∂Z · ∂X þ c4Z · ∂X∂Zμ

þ c5XμZ · ∂X∂Z · ∂X þ c6ZμZ · ∂X∂2Z

þ c7XμðZ · ∂XÞ2∂2Z; ð2Þ
where the coefficients can be found in [32]. An intuitive
way to convince ourselves that the dimension-up weight-
shifting operator plays a role like momentum in flat space
is that the flat-space momentum is i∂=∂x, which also
increases the “scaling dimensions.” In this paper, we find
that it is instructive to define the following differential
operators proportional to weight-shifting operators with
state-dependent normalizations:

E ¼ −
ðX · ∂X þ Z · ∂ZÞ
X · ∂XðX · ∂X þ 1ÞD

0þ
μ ;

P ¼ 2

ðX · ∂X þ 1Þðdþ X · ∂X − 2Þðdþ 2X · ∂X − 2ÞD
þ0
μ ;

ð3Þ
where−X · ∂X givesΔwhen it acts on operators with scaling
dimension Δ, and Z · ∂Z gives J when it acts on spin-J
operators.

Before ending this section, we want to comment, in
general, on how (3) can serve as fundamental ingredients
for large-N CFTwith natural power counting rules. We will
show that YM and graviton amplitudes can be uplifted from
flat space to AdS by using (3). In addition to these examples,
we claim that using (3) can uplift flat-space amplitudes of
effective field theories (EFTs) to AdS as general large-N
conformal correlators, where Wilson coefficients depend on
details of the conformal theory. The reason is that we find
bulk derivatives can be replaced by P module additional
terms with fewer numbers ofP. This claim implies that CFT
correlators at large-N limit enjoy the same power counting
rules as EFTs in flat space, which also makes manifest of the
counting maps between conformal correlators and flat-space
amplitudes [34]. Remarkably, in this way, different operator
product expansion (OPE) structures can be easily distin-
guished. For example, three-point functions of conserved
currents in generic CFT have two parity-even structures
corresponding toF2 andF3 in AdS bulk, respectively. There
was no obvious way to construct three-point structures
precisely corresponding to themusing embedding formalism
or spin-up operators [33]. This is the main reason that
spinning bootstrap is so hard to perform since the OPE
matrix might be messy in an inappropriate basis [35]. The
helicity basis provides a clean way to organize the OPE
matrix in CFT3 [36]. However, simply looking at them it is
still challenging to distinguish between the two structures.
Now (3) makes the distinction manifest as for flat-space
amplitudes. In this way, the differential representation in
terms of (3) with power counting rules encoded could be
useful for a clean spinning bootstrap even beyond holo-
graphic CFTs in the future. We elaborate on the discussions
here in Appendix A.

III. CONSTRUCTION OF THE DIFFERENTIAL
REPRESENTATION

We consider the following action for Yang-Mills theory
and Einstein gravity:

S ¼
Z

ddþ1x
ffiffiffi
g

p �
1

16πG
ðR − 2ΛÞ − 1

4g2YM
Fa
μνFaμν

�
; ð4Þ

where Λ ¼ −ðd − 1Þðd − 2Þ=ð2R2
AdSÞ. In this paper, we

usually set RAdS ¼ 1 unless we emphasize it. Our goal is to
compute the four-point function for conserved currents and
stress tensors in holographic CFT that is effectively
described by (4). These “amplitudes” can be computed
by using the holographic dictionary [37,38]

M ≔ hO1 � � �Oni ¼
�Y

i

δ

δJ ð0Þ
i

�
he−Sbulkibulk; ð5Þ

where J ð0Þ
i denotes the source as the non-normalizable

mode of bulk fields, and we keep the spinning indices

YUE-ZHOU LI PHYS. REV. D 107, 125018 (2023)

125018-2



implicit. The variations produce the bulk-to-boundary
propagators, and the remaining fields are Wick contracted
by the bulk expectation value.

A. Warm-up: Three-point amplitudes

1. Yang-Mills theory

We start by looking into three-point functions as a warm-
up. For YM theory, it is rather straightforward to evaluate
the three-point function

M3;YM ¼ gYM

Z
Ddþ1YfabcVμ;ab

g;12 ðYÞδ3Ac
μ; ð6Þ

where we are using the embedding AdS coordinate Y [39]
and the shorthand notation Ddþ1Y ≔ ddþ2YδðY2 þ 1Þ.
For latter convenience, we explicitly write the three-point
vertex function Vν;ab

ij as

Vν;ab
g;12 ¼ ð∇μδ1Aνaδ2Aμb − δ1Aμa∇μδ2AνbÞ

þ 1

2
ðδ1Aμa∇νδ2Ab

μ −∇νδ1Aa
μδ2AμbÞ; ð7Þ

where δiA denotes the bulk-to-boundary propagator (in
terms of the embedding space formalism [39]),

δiAμa ¼ Cd−1;1
2ðXμ

i Y · Zi − Zμ
i Y · XiÞ

ð−2Xi · YÞd
: ð8Þ

We use the standard normalization

CΔ;J ¼
π−

d
2ΓðΔÞðΔþ J − 1Þ

2ðΔ − 1ÞΓð− d
2
þ Δþ 1Þ : ð9Þ

Usually, it is also instructive to introduce the bulk embed-
ding polarizations W to contract the bulk indices, where
W2 ¼ W · Y ≡ 0. Appropriate differential operators can
recover the bulk indices [39]. It is easy to explicitly
evaluate three-point functions like (7). Nevertheless, in
this paper, we aim to provide a differential representation
that rewrites (7) in terms of differential operators acting on
scalar seeds with zero derivatives. As we claim in the
last section, the bulk-to-boundary propagators shall be
represented by weight-shifting operators modulo bulk
coordinates. In our conventions, we find

δiAμ ¼ Ei;μδiϕd−1;

∇μδiAν ¼
d − 1

2
ðEi;νPi;μδiϕd−2 − YðμEi;νÞδiϕd−1Þ; ð10Þ

where δϕΔ denotes the bulk-to-boundary propagator of
scalar ϕ, whose corresponding operator has scaling dimen-
sion Δ. Aside from the second part of the second line in
(10), we have already observed a flat-space structure by
identifying E → ϵ, P → p, and the transverse property also
remains

Ei · Piδiϕd−2 ¼ 0: ð11Þ

The overall coefficient ðd − 1Þ=2 seems to ruin the precise
flat-space structure, but we claim this is the normalization
factor that can be absorbed into the plane wave in the flat-
space limit. For AdS4=CFT3, this normalization is precisely
one. We can then readily show (7) can be rewritten by

M3;YM ¼ −
d − 1

2
gYMT OððE2 · E3ÞðE1 · P2ÞWd−1;d−2;d−1

− ð1 ↔ 2Þ þ ð2 → 1; 1 → 3ÞÞf123; ð12Þ

whereWΔi
refers to the scalar contact Witten diagram with

no derivatives, and i ↔ j also permutes the corresponding
legs for the contact Witten diagram. T O means the operator
ordering, which always places E on the left-hand side of P
for the same point. For simplicity in this paper, we define the
amplitudes by pure differential forms with contact seeds

slipped off cM. It is easy to recover the contact seeds and go

from cM to M by power counting P. By dividing appro-
priate normalization, (12) is a trivial uplift from flat space by
taking ϵ → E, p → P followed by operator reordering. It is
also straightforward to uplift another three-point vertex
corresponding to the cubic term F3, see Appendix A.

2. Gravitons

For graviton three-point amplitude, we find (see also [40])

M3;grav ¼ 4
ffiffiffiffiffiffiffiffiffi
8πG

p Z
Ddþ1YVμν

h;12ðYÞδ3hμν; ð13Þ

where the vertex function Vμν
h;12 is lengthy and we leave its

explicit expression to Appendix B. Similarly, δihμν is the
bulk-to-boundary propagator for gravitons, given by (we dot
it into bulk embedding polarizations to keep it light)

δihμνWμWν ¼ Cd;2
4ðW · XiY · Zi −W · ZiXi · YÞ2

ð−2Xi · YÞdþ2
: ð14Þ

As we promise, we find

δihμν ¼ Ei;μEi;νδiϕd;

∇μδihνρ ¼ Ei;νEi;ρPiμδiϕd−1 þOðYÞ;
∇μ∇νδihρσ ¼ Ei;ρEi;σPiμPiνδiϕd−2 þOðY; gÞ; ð15Þ

where we drop out the lengthy terms depending on bulk
coordinates and metric Yμ and gμν. We record the complete
expressions in Appendix C. As contracted, these terms
OðY; gÞ can either be annihilated or give rise to contact
terms with fewer derivatives. For the three-point function,
they are completely canceled, and we arrive at a precisely
flat-space uplift,
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cM3;grav ¼ T OðMflat
3;gravjϵ→E;p→PÞ: ð16Þ

3. The differential double copy

Using differential operators (3), three-point amplitudes
have the same structure as in flat space up to universal
reordering. Therefore, the double copy structure at the three-
point level should be straightforward. To show this, we find
that, although P itself is not conserved as the momentum,
effective conservation emerges at the level of three-point
amplitudes for both YM and gravitons, e.g., three-point
amplitudes are invariant under the following replacement:

E3 · P2 → −E3 · P1; P1 · P2 → 0: ð17Þ
Keeping these identities in mind, three-point amplitudes in
AdS then make not much difference from flat space, and the
differential double copy is valid,

cM3;grav ¼
4

ðd − 1Þ2
8

ffiffiffiffiffiffiffiffiffi
8πG

p

g2YM
T O½ðcM3;YMÞ2�: ð18Þ

B. Four-point amplitudes

1. Yang-Mills theory

Let us start by considering only the s-channel exchange
diagram in YM theory,

MðsÞ
4ex;YM ¼ g2YM

Z
Ddþ1Y1Ddþ1Y2fabcfdeg

× Vμ;ab
g;12 ðY1ÞhAc

μðY1ÞAg
νðY2ÞibulkVν;de

g;34ðY2Þ;
ð19Þ

where the expectation value of the remaining bulk fields
gives rise to the bulk-to-bulk propagator,

hAμðY1ÞAνðY2Þi ≔ Πg;μνðY1; Y2Þ; ð20Þ

which satisfies the following equation in the transverse
gauge:

∇2
Y1
Πg;μνðY1; Y2Þ ¼ −δμνδðY1 − Y2Þ: ð21Þ

The trick to finding the differential representation is elimi-
nating the bulk-to-bulk propagator by the conformal Casimir

operator minus its eigenvalue for the propagating field. This
procedure produces effective contact diagrams that include
only the bulk-to-boundary propagators. Indeed, we find

Dd−1;1
12 Vμ;ab

12 ¼ ∇2
Y1
Vμ;ab
12 ; ð22Þ

where

DΔ;J
12 ¼ C12 − ðΔðΔ − dÞ þ JðJ þ d − 2ÞÞ: ð23Þ

The conformal Casimir C12 is

C12 ¼ −
1

2
ðL1 þ L2Þ2; Lμν

i ¼ X½μ
i ∂

ν�
Xi
þ Z½μ

i ∂
ν�
Zi
: ð24Þ

By integration by parts, we can move this bulk Laplacian to
act on the bulk-to-bulk propagator and (21) then reduces it to
effective contact interactions (note Dd−1;1

12 ≡ C12),

C12M
ðsÞ
4ex;YM ¼ −g2YM

Z
Ddþ1YfabefcdeVab

12ðYÞ · Vcd
34ðYÞ:

ð25Þ

Wecan then represent these effective contact terms using (10).
In addition to the exchange diagram, the YM theory also
provides a four-point contact diagram A4. This contact dia-
gram can be trivially uplifted from flat space using (10).
Combining with permutations to include all channels, we
obtain

cM4;YM ¼ ðd − 1Þ2
4

T OðcMflat
4;YMjϵ→E;p→P;1=sij→1=ð2Dd−1;1

ij ÞÞ;
ð26Þ

where we follow [26,27] to define the operator 1=Dij

satisfying 1=DijDij ≡ 1, and now the operator ordering
T O always keeps 1=Dij on the most left. It is worth noting
that the expression of flat-space YM amplitude is not unique,
as we can always use momentum conservation and general-
ized gauge symmetry to trade one expression for another,
although they are all equivalent for on-shell amplitudes. This
freedom allows for establishing the BCJ relation in the flat
space [2]. In Eq. (26), we consistently uplift a flat-space YM
amplitude obtained by following the same procedure with the
same gauge and the Feynman rules in flat-space,

cMflat
4;YM ¼

�
g2YM
4s12

ð2ϵ1 · ϵ2p1 · ϵ3p3 · ϵ4 − 2ϵ1 · ϵ2p2 · ϵ3p3 · ϵ4 − 2ϵ1 · ϵ2p1 · ϵ4p4 · ϵ3 þ 2ϵ1 · ϵ2p2 · ϵ4p4 · ϵ3

− p1 · p3ϵ3 · ϵ4ϵ1 · ϵ2 þ p1 · p4ϵ3 · ϵ4ϵ1 · ϵ2 þ p2 · p3ϵ3 · ϵ4ϵ1 · ϵ2 − p2 · p4ϵ3 · ϵ4ϵ1 · ϵ2 − 4ϵ1 · ϵ3p1 · ϵ2p3 · ϵ4

þ 4ϵ1 · ϵ4p1 · ϵ2p4 · ϵ3 þ 4ϵ2 · ϵ3p2 · ϵ1p3 · ϵ4 − 4ϵ2 · ϵ4p2 · ϵ1p4 · ϵ3 þ 2ϵ3 · ϵ4p1 · ϵ2p3 · ϵ1 − 2ϵ3 · ϵ4p2 · ϵ1p3 · ϵ2

− 2ϵ3 · ϵ4p1 · ϵ2p4 · ϵ1 þ 2ϵ3 · ϵ4p2 · ϵ1p4 · ϵ2Þ þ
g2YM
2

ϵ1 · ϵ2ϵ3 · ϵ4

�
f12ef34e þ ðpermÞ: ð27Þ
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To ensure the prescription of YM amplitudes is unambigu-
ous and to enable the differential BCJ relation, an analog to
momentum conservation is required in AdS. However, the
differential operator P does not provide such structures at
the four-point level. Instead, we will provide an alternative
differential representation using the conformal generators
in the following section, which will encompass “momen-
tum conservation” and allow us to establish the differential
BCJ relation.

2. Gravitons

We follow the same logic for evaluating graviton
amplitudes,

MðsÞ
4ex;grav ¼ 16 × 8πG

Z
Ddþ1Y1Ddþ1Y2

× Vμν
h;12ðY1ÞhhμνðY1ÞhρσðY2ÞibulkVρσ

h;34ðY2Þ:
ð28Þ

To correctly deal with the graviton, we must be careful
about the trace part of the graviton and the vertex. We adopt
the de Donder gauge for bulk-to-bulk propagating grav-
itons and a meticulous analysis shows [26,41] (see also
Appendix D for more details)

Dd;2
12 M

ðsÞ
4ex;grav ¼ 16 × 8πG

Z
Ddþ1Y

× Vμν
h;12ðYÞPμν;ρσV

ρσ
h;34ðYÞ; ð29Þ

where Pμν;ρσ is the projector precisely the same as the flat-
space propagator

Pμν;ρσ ¼ −
1

2

�
gμρgνσ þ gμσgρσ −

2

d − 1
gμνgρσ

�
: ð30Þ

The resulting contact terms can then be represented by using
(15) [precisely one is (C1)]. Tohavewell-defined amplitudes,
we should also include four graviton contact contributions
from theEinstein-Hilbert action [(B7) inAppendixB]. These
contributions can again be rewritten using (15). We can
use many identities to eliminate all Y dependences (see
Appendix C). This procedure represents the graviton ampli-
tude in terms of differential operators E and P. We find that
we can write down the resulting differential amplitude by
uplifting the flat-space graviton amplitude plus an extra
contact contribution coming from the cosmological constant
term in the action SΛ ∝

R
ddþ1x

ffiffiffiffiffiffi−gp Λ,

cM4;grav ¼ T OðcMflat
4;gravjϵ→E;p→P;1=sij→1=ð2Dd;2

ij ÞÞ

þ 1

R2
AdS

cMAdS
4;grav: ð31Þ

Similar to YM amplitudes, cMflat
4;grav is the flat-space graviton

amplitude obtained using the standard Feynman techniques

in flat space. We explicitly write down 1=R2
AdS to emphasize

that this term is solely contributed by the AdS term SΛ and is
vanishing in the flat-space limit. This extra term is

cMAdS
4;grav ¼ 4πGdðððE1 · E2Þ2ðE3 · E4Þ2

− 4E1 · E2E2 · E3E3 · E4E4 · E1Þ þ permÞ: ð32Þ

Under the gauge transformation hμν → hμν þ∇ðμξνÞ, the
action cannot be gauge invariant without SΛ. For this reason,

the term cMAdS
4;grav in the amplitude has to exist as the

consequence of the gauge invariance in the AdS bulk (which
is the conservation of stress tensors on the CFT side). This
provides an idea to “bootstrap” stress-tensor correlators from
flat-space amplitudes. To obtain the stress-tensor correlator,
we can directly uplift the flat-space amplitudes and then
append the enumerated crossing symmetric structures with
fewer numbers of P. The coefficients of those appended
structures should be fixed by requiring the conservation of
stress tensors. However, as we will discuss in the next
subsection, verifying the conservation of stress tensors in
our language is technically difficult andwe did not manage to
overcome this difficulty at the current stage.

C. Comment on gauge invariance and conservation

Before we end this section, we would like to discuss
and comment on the relation between bulk gauge invari-
ance and boundary conservation law using our uplift
operators (3).
From the bulk perspective, the action is invariant under

the gauge transformation

Aμ → Aμ þ∇μχ; hμν → hμν þ∇ðμξνÞ; ð33Þ

where χ is arbitrary scalar and ξ vector. According to our
statement that bulk derivatives can be replaced by P
modulo bulk coordinates, we expect this gauge invariance,
as in flat space, to be represented by the invariance of the
boundary correlator under

Eμ → Eμ þ #Pμ: ð34Þ

In other words, if we replace E by P (without changing the
scaling dimension of the building scalar contact), the
correlator should be completely vanishing,

MjEi→Pi
¼ 0: ð35Þ

This statement reminds us of the conservation of con-
served current and stress tensor, as promised by AdS=CFT
correspondence [6,37,38]. To show this, we should first
recover the boundary tensor indices by using

Dμ
Z ¼ d − 2

2
∂
μ
Z þ Z · ∂Z∂

μ
Z −

1

2
Zμ

∂
2
Z; ð36Þ
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then we contract one index with a boundary derivative. For
the same point, we can show

∂X ·DZEμ ¼ −
2

d
Pμ;

∂X ·DZEμEν ¼ −
2d

ðdþ 2Þðd − 1Þðd − 2ÞPμEν; ð37Þ

where the first line is the identity for conserved currents and
the second line is for stress tensors [42]. These identities
confirm that the conservation is equivalent to (35) and is
consistent with the expectation from bulk gauge invariance.
We then claim we can even uplift the flat-space gauge
invariance condition.
However, it is hard to impose or verify the conserva-

tion condition (35) for differential representation, because
there are several difficulties that arise after we do the
replacement E → P. First, the ordering of differential
operators is no longer in the operator ordering, which
makes the organization messy. Second, it is not trivial to
move differential operators to remove the poles 1=Dij. In
the end, we do not find conservation of P analogous to
flat space [43]. We leave these problems to be resolved in
future works.

IV. DIFFERENTIAL BCJ RELATION
FOR YM AMPLITUDES

A. Differential representation using
conformal generators

We have already found a differential representation for
YM amplitudes in terms of the weight-shifting operators.
However, for the four-point case, we do not find the simple
analogy of the flat-space momentum conservation in terms
of P. On the other hand, the conformal generators enjoy the
analogy of momentum conservation because of conformal
symmetry,

Xn
i¼1

Lμν
i fðXiÞ≡ 0; ð38Þ

where fðXiÞ is any conformal invariant function. To
manifest hidden structures of YM amplitude, we propose
replacing P with the conformal generators. Although it is
not obvious, we indeed find such a replacement,

Ei · PjEk · Pl → 2Eμ
i E

ν
kLjμ

ρLlρν; Pi · Pj → −
1

2
Li · Lj;

ð39Þ

and simultaneously the scalar contact seeds are now uni-
form Wd−1;d−1;d−1;d−1. We now arrive at an differential
representation that enjoys the momentum conservation

(that we can replace L4 by −L1 − L2 − L3) and the trans-
versity

Eμ
i E

ν
kLiμ

ρLlρν ¼ 0; Eμ
i E

ν
kLjμ

ρLkρν ¼ 0: ð40Þ

B. Establishing the differential BCJ relation

Similar to the flat space, it is instructive to study the
color-ordered amplitudes. We can easily extract the color-
ordered amplitudes by recalling

f12ef34e ¼ TrðT1T2T3T4Þ − TrðT1T2T4T3Þ
− TrðT1T3T4T2Þ þ TrðT1T4T3T2Þ: ð41Þ

The color-ordered amplitude M½i1; i2; i3; i4� is the coef-
ficient of TrðTi1Ti2Ti3Ti4Þ.
Let us take M½1234� as an example. We find, similar

to the flat space, that we can write the color-slipped
amplitude as

cM½1234� ¼ 1

Dd−1;1
12

N s −
1

Dd−1;1
23

N t: ð42Þ

As in flat space, the differential numerator N is also
ambiguous. For example, shifting N s by N s → N s þ
const ×Dd−1;1

12 and similar for N t does not change the
amplitudes. It is not hard to find such numerators satisfying
the following permutation properties:

N sj2↔4 ¼ −N t; N sj2→4;3→2;4→3 ¼ N t; ð43Þ

which could be obtained by uplifting flat-space numerators,

N s ¼ T Oðnflats jϵ→E;p→PÞ; ð44Þ

followed by replacement (39). Nevertheless, even though
we uplift the flat BCJ numerators that satisfy the kinematic
Jacobi relation [2]

ns þ nt þ nu ¼ 0; ð45Þ

it still does not guarantee that the differential numerators
satisfy these kinematic Jacobi relations. The culprit is the
ordering of differential operators; more specifically, terms
like fðEÞLi · Lj do not manifestly cancel the denominator
Dd−1;1. To resolve this problem, we should move Li · Lj to
the most left. We can easily do this by noting

Ei1 · Ei2Ei3 · Ei4Li1 · Li3 ¼ Dd−1;1
i1i3

Ei1 · Ei2Ei3 · Ei4

− 2ðEi2 · Ei4Ei1 · Ei3 − Ei2 · Ei3Ei1 · Ei4Þ: ð46Þ

It turns out that additional terms such as the second line
above would generally cancel out in the final expression,
and we then trivially move Li · Lj to the most left asDd−1;1

ij .
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After this operation, we can then use the Ward identity to
rewrite L4 ¼ −L1 − L2 − L3 followed by the transversity
(40) to eliminate unwanted terms. We also have to show

ðDd−1;1
12 þDd−1;1

13 þDd−1;1
23 Þf1;d−1ðXiÞ ¼ 0; ð47Þ

where f1;d−1 is any conformal invariant function with spin
weights J ¼ 1 and scaling weights Δ ¼ d − 1. This state-
ment is equivalent to L2

i f1;d−1 ¼ 0, which can be easily
proved by acting L2

i on shadow representation [35,44] of
any such function f1;d−1,

f1;d−1 ¼
X
J

Z
dΔIðΔ; JÞ

×
Z

DdX5hV1V2OΔ;JðX5ÞihÕd−Δ;JðX5ÞV3V4i;

ð48Þ

where Vi is used to denote the conserved current operator
in CFT, while OΔ;J is an arbitrary spin-J operator with
scaling dimension Δ that can appear. Taking all of these
into account, we can then prove the differential kinematic
Jacobi identity

N s þN t þN u ¼ 0: ð49Þ

Following the same operations described above, we can
readily prove the differential BCJ relation,

Dd−1;1
12

cM½1234� −Dd−1;1
13

cM½1324� ¼ 0: ð50Þ

C. Comment on four-point double copy

The uplift of the BCJ numerators (49) strongly suggests
that there should be a differential double copy relation up to
terms with less number of momenta suppressed by the AdS
radius, namely,

cM4;grav ∝ T O

�
1

Dd;2
12

N 2
s þ

1

Dd;2
23

N 2
t þ

1

Dd;2
24

N 2
u

�
þ cMres:

ð51Þ

However, it is hard to find the remaining term cMres and
prove this proposal. The most important reason is that the
momentum conservation is built into the double copy
relation, but we do not manage to find a clean way to
replace P in (31) by L. There are large redundancies to
rewrite (31) in terms of conformal generators. It is thus
difficult to locate a nice minimum basis that allows us to

prove (51) by figuring out what is cMres. Another way
to explore (51) might be by generalizing the algorithm
in [41] that translates the differential representation to final

amplitudes in the Mellin space. The resulting Mellin
amplitudes [13,45] may help explicitly verify the relation

and fill in the missing corner cMres. We can also hope to

completely determine cMres by enumerating all possible
structures with less number of P and requiring the con-
servation of stress tensors in the stress-tensor correlatorcM4;grav. We leave this interesting question for future
studies.

V. SUMMARY

We proposed the differential representation for tree-level
gluon and graviton scattering from YM and Einstein
gravity in AdS. The essential differential operators are
proportional to dimension- and spin-up weight-shifting
operators. They provide a natural scheme for organizing
(A)dS amplitudes and large-N conformal correlators by
counting the number of P, where the hierarchy of different
structures is made manifest, as we explain in Appendix A.
Using these differential operators, three- and four-point
amplitudes in AdS are straightforwardly uplifted from flat-
space cousins. For three-point amplitudes, such an uplift
makes the double copy relation straightforward. At the
four-point level, we find a different differential representa-
tion for YM amplitudes by using spin-up weight-shifting
operators and the conformal generators, for which differ-
ential BCJ numerators can be uplifted from flat-space ones,
building differential BCJ relations. The differential BCJ
numerators follow the kinematic Jacobi identity. We could
then argue that the double copy structure for the four-point
function should be valid up to the remaining terms with a
fewer number of weight-shifting operators P. It would be
interesting to make connections between our findings and
the similar structures in momentum space [46–50,70] or
Mellin space [51–53] (by generalizing to supersymmetric
theories [24]). These connections, as analytically continued
to the dS space [8,54], could improve the understanding
of cosmological correlators by following the lines of,
e.g., [55–60].
This paper is the first step toward revealing the hidden

structures of spinning correlators. Most importantly, our
surprising findings rely more or less on guess work. It is
thus crucial to develop a more systematic way for uplifting
by using (3) and relevant operators, similar to the scalar
case [23,27]. Additionally, the ordering of differential
operators and nonconservation of operators P prevent
one from proving or imposing the conservation for current
and stress-tensor operators. One possible way to resolve
this problem is to carefully think about algebra that (3) may
form together with other differential operators [such as
emergent SOð5; 5Þ algebra for bispinor representation of
AdS4=CFT3 [61] ]. In addition, the uplift from flat-space
convinces us there should also exist the Parke-Taylor
formula, and we believe the bispinor formalism [61] would
be the correct tool. As these challenges are overcome, we
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believe the four-point double copy in AdS can be precisely
established.
It would also be interesting to understand why this

differential representation manifests the flat-space limit by
detailed investigation of the Inönü-Wigner contraction of
the conformal group, and its representations [62]. This
exploration can help understand many aspects of the
S-matrix as the flat-space limit of conformal correlators,
following the lines of [18,63–66].
Ultimately, we want to emphasize that the differential

representationmight help bootstrap holographicCFTs beyond
the scope of the Lorentzian inversion formula [67–69]. The
Lorentzian inversion formula does not workwell for spin-zero
trajectories, while the differential representation precisely
captures the contact terms with complete OPE data built into
the numerators.
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Note added.—Recently, [70] appeared, which has partial
overlap with the idea of using weight-shifting operators
and the discussions on three-point double copy in Secs. II
and III A.

APPENDIX A: POWER COUNTING IN
CONFORMAL CORRELATORS

We elaborate on the discussion in Sec. II in this
appendix. We start by considering the three-point functions
of conserved currents. There are, in general, two parity-
even OPE structures. These two three-point structures can
be accounted by AdS YM three-point vertex (6) and a
higher derivative cubic term arises in AdS EFTs,

L ¼ −
fabc

3g3YM
gHFμ

νaFν
ρbFρ

μc: ðA1Þ

Using the bulk-to-boundary propagator of the gluon (8), we
can explicitly evaluate the resulting three-point functions
by performing the integrals over AdS,

M3;YM ∝
ð2d − 3ÞðH23V1 þH13V2Þ þ V3ðð2d − 3ÞH12 þ 3ðd − 2ÞV1V2Þ

ð−2X1 · X2Þd=2ð−2X1 · X3Þd=2ð−2X2 · X3Þd=2
;

M3;cub ∝
V3ððdþ 2ÞV1V2 þH12Þ þH23V1 þH13V2

ð−2X1 · X2Þd=2ð−2X1 · X3Þd=2ð−2X2 · X3Þd=2
; ðA2Þ

where the definitions of Hij and Vi are

Hij ¼ 2ððXi · ZjÞðZj · XiÞ − ðXi · XjÞðZi · ZjÞÞ; Vi ≔ Vi;jk ¼
ðXi · XkÞðZi · XjÞ − ðXi · XjÞðZi · XkÞ

Xj · Xk
: ðA3Þ

See Ref. [33] for more details of this convention. We do not
specify the overall coefficients in (A2), as they can be
absorbed into the OPE coefficients. In holographic CFTs,
the OPE associated with M3;cub should be suppressed by a
large gapΔgap ≫ 1 [71]. However, looking at the lhs of (A2)
cannot tell us which AdS vertices are their origins, making
the power counting of OPE coefficients in terms of 1=Δgap

vague. This is in contrast to the flat-space EFT amplitudes,
where it is easy to figure out that higher power of the
momentum comes with higher suppression of the UV scale
1=M.
Now as the differential operators P and E allow us to

uplift the flat-space amplitudes, the issue of the power
counting in CFT can be resolved. We can show thatM3;cub

can also be uplifted from flat-space three-point amplitudes
produced by (A1),

dM3;cub ∝ T OðF̂1μ
νF̂2ν

ρF̂3ρ
μÞ þ perm;

F̂iμν ¼ EiνPiμ − EiμPiν: ðA4Þ

It is then apparent that more P come with higher orders of
1=Δgap in holographic CFTs. It is worth noting that this flat-
space structure persists even beyond holographic CFTs
because three-point structures (not including the OPE) are
general objects, as they are essentially fixed by conformal
symmetry. This makes the helicity structures of CFT3 [36]
(i.e., the orthogonality of three-point structures) manifest
by uplifting flat-space amplitudes.
We expect a similar uplift to work for three-point

functions where the third operator is nonconserved.
Such uplifts may diagonalize the OPE matrix of mean
field theory (MFT) in general dimensions, as one did for
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CFT3 [36]. Using the bootstrap idea, the diagonal MFT
OPE could pave the way for constraining spinning corre-
lation functions (beyond holographic CFTs).
The same arguments apply to the power counting in four-

point correlators. For example, the low-lying terms in the
four-point function of conserved currents from contact
diagrams follow precisely as flat-space amplitudes (for the
sharp power counting in flat space where the gravity is
dynamical, see Ref. [72]),

cMct
4V ∝

c1
CTΔ2

gap
½T OðF̂1μνF̂

μν
2 F̂3ρσF̂

ρσ
4 Þ þ perm�

þ c2
CTΔ2

gap
½T OðF̂1μ

νF̂2ν
ρF̂3ρ

σF̂4σ
μÞ� þ � � � ; ðA5Þ

where CT is the central charge appearing as the coefficient
of the stress-tensor two-point function. For holographic
CFTs, we have the hierarchy CT ≫ Δd−1

gap ≫ 1.
Although we focus on spin-1 conserved current in this

appendix, the same principle should apply to three- and
four-point stress-tensor correlators.

APPENDIX B: GRAVITON VERTICES IN AdS

In this appendix, we provide three- and four-point
vertices for Einstein gravity in AdS,

S ¼ 1

16πG

Z
ddþ1x

ffiffiffi
g

p ðR − 2ΛÞ; ðB1Þ

where Λ ¼ −ðd − 1Þðd − 2Þ=ð2R2
AdSÞ. To compute verti-

ces, we expand the metric around the AdS background,

gμν ¼ gAdSμν þ
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
hμν; ðB2Þ

and then expand the action up to the fourth order. For the
three-point vertex, we perform (5) for two gravitons to give
δ1;2h while leaving the third one “off shell.”We vary off the
off-shell graviton to give the three-point vertex function; for
the four-point vertex, which gives rise to four-point contact
amplitude, we use (5) to end up with the final answer. As in
the main text, when it does not confuse, we slip off the
superscript AdS and remember gμν is the AdS metric. We
performed the calculations using the xAct Mathematica
package [73].

1. Three-point vertex

The external on-shell gravitons are computed by the
bulk-to-boundary propagators, which satisfy

δih
μ
μ ¼ ∇μδihμν ¼ 0;

�
∇2 þ 2

R2
AdS

�
δihμν ¼ 0: ðB3Þ

Then we find the three-point vertex can be written by

Vμν
h;12 ¼ V̂μν

h;12 −
1

2
V̂h;12gμν; ðB4Þ

where V̂h;12 is the trace of V̂μν
h;12,

V̂μν
h;12 ¼

ffiffiffiffiffiffiffiffiffi
8πG

p
ð−∇νδ2hρσ∇μδ1hρσ −∇μδ2hρσ∇νδ1hρσ − 2δ1hρσ∇σ∇ρδ2hμν þ 2δ1hρσ∇σ∇νδ2hμρ þ 2δ1hρσ∇σ∇μδ2hνρ

− 2δ1hρσ∇ν∇μδ2hρσ − 2h2;ρσ∇σ∇ρδ1hμν þ 2h2;ρσ∇σ∇νδ1hμρ þ 2h2;ρσ∇σ∇μδ1hνρ − 2h2;ρσ∇ν∇μδ1hρσ

− 2∇σδ1h
μ
ρ∇σδ2hνρ þ 2∇σδ1h

μ
ρ∇ρδ2hνσ − 2∇σδ2hμρ∇σδ1hνρ þ 2∇ρδ2hμσ∇σδ1hνρÞ: ðB5Þ

2. Four-point vertex

The four-point vertex can be calculated similarly. We present the four-point vertex with ordering (1234) as follows:

V1234;h ¼ 4πG½δ1hμρð2δ2hμρ∇νδ4hγσ∇γδ3hνσ − 3δ2hμρ∇γδ4hνσ∇γδ3hνσ − 16δ2h
μ
σ∇γδ4hνσ∇ρδ3hγν

þ 12δ2h
μ
σ∇ρδ4hγν∇σδ3hγν − 4δ2hνσ∇γδ4hμρ∇γδ3hνσ þ 12δ2hνσ∇γδ3hμσ∇γδ4hνρ − 16δ2hνσ∇ρδ3h

μ
γ∇νδ4hγσ

þ 24δ2hνσ∇σδ3h
μ
γ∇νδ4hγρ − 16δ2hνσ∇σδ3h

μ
γ∇γδ4hνρ − 8δ2hνσ∇μδ3hσγ∇νδ4hγρ þ 16δ2hνσ∇γδ4hμρ∇νδ3hσγ

þ 16δ2h
μ
σδ3hγν∇σ∇ρδ4hγν − 32δ2h

μ
σδ3hγν∇γ∇ρδ4hνσ þ 16δ2h

μ
σδ3hγν∇γ∇νδ4hρσ − 8δ2h

μ
σ∇γδ3h

ρ
ν∇νδ4hγσ

þ 24δ2h
μ
σ∇γδ3h

ρ
ν∇γδ4hνσÞ þ

δ1hμρ
R2
AdS

ð−dδ2hμρδ4hνσδ3hνσ þ 20δ2hμρδ4hνσδ3hνσ þ 4dδ2h
μ
σδ4hνρδ3hσν

− 32δ2h
μ
σδ3h

ρ
νδ4hνσ þ 16δ2h

μ
σδ4hνρδ3hσνÞ�: ðB6Þ

The corresponding four-point contact diagram is then evaluated by

Mct
4;grav ¼

Z
Ddþ1YðV1234;hðYÞ þ permÞ: ðB7Þ
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APPENDIX C: ON THE GRAVITON BULK-TO-BOUNDARY PROPAGATOR

In this appendix, we complete the differential representation for bulk-to-boundary propagators (15). We provide detailed
identities for contracting bulk-to-boundary propagators when deriving the differential representation.
The complete version of (15) is

δihμν ¼ Ei;μEi;νδiϕd;

∇μδihνρ ¼ Ei;νEi;ρPiμδiϕd−1 − ðYρEiμEiνδiϕd þ YνEiμEiρδiϕdÞ;
∇μ∇νδihρσ ¼ Ei;ρEi;σPiμPiνδiϕd−2 − YσEiνEiρPiμδiϕd−1 − YμðEiρEiσPiνδiϕd−1 þ YσEiνEiρδiϕdÞ

− YρðEiνEiσPiμδiϕd−1 þ YμEiνEiσδiϕdÞ − δμρEiνEiσδiϕd − δσμEiνEiρδiϕd: ðC1Þ

To arrive at differential representation exhibiting flat-space structure, we should prove identities with the spirit of
transverse-traceless and on-shell conditions in flat space. We find

Ei · EiPiμPiνδiϕd−2 ¼ Ei · Eiδiϕd ¼ Pi · Piδiϕd−2 ¼ Ei · PiPiμδiϕd−2 ¼ Ei · Piδiϕd−1 ¼ 0: ðC2Þ

For the terms OðYÞ;OðY; gÞ, we prove a set of identities that can help us get rid of Y in the final representation so that the
differential representation is well defined even from the perspective of pure CFT,

Y · Piδiϕd−1 ¼ ðY · PiÞ2δiϕd−2 ¼ Y · Eiδiϕd ¼ ðY · EiÞ2δiϕd ¼ ðY · EiÞ2Pi;μδiϕd−1 ¼ 0;

Y · PiPi;μδiϕd−2 ¼ −Pi;μδiϕd−1; ðY · EiÞ2Pi;μPi;νδiϕd−2 ¼ 2Ei;μEi;νδiϕd;

Y · EiPi;μδiϕd−1 ¼ −Ei;μδiϕd; Y · EiPi;μPi;νδiϕd−2 ¼ −Ei;ðμPi;νÞδiϕd−1: ðC3Þ

APPENDIX D: ON THE GRAVITON BULK-TO-BULK PROPAGATOR

In this appendix, we show in detail how we derive (29) by following the lines of [26,41]. For simplicity, we take the de
Donder gauge for the propagating graviton. It is useful to decompose the graviton into the traceless part and the trace part,

hμν ¼ h̃μν þ
1

dþ 1
hgμν; h̃≡ 0: ðD1Þ

The basic idea is to treat h̃μν and h independently. They give rise to three different bulk-to-bulk propagators by the Wick
contractions that satisfy different equations. To see this, we consider the equation of motion of gravitons in the de Donder
gauge,

ð∇2
Y1

þ 2ÞhhμνðY1ÞhρσðY2Þi − 2gμνhhðY1ÞhρσðY2Þi ¼
1

2

�
gμρgνσ þ gμσgνρ −

2gμνgρσ
d − 1

�
δðY1 − Y2Þ: ðD2Þ

It is easy to find that upon the trace decomposition (D7) we have

ð∇2
Y1

þ 2Þhh̃μνðY1Þh̃ρσðY2Þi ¼
1

2

�
gμρgνσ þ gμσgνρ −

2gμνgρσ
dþ 1

�
δðY1 − Y2Þ;

ð∇2
Y1

− 2dÞhhðY1ÞhðY2Þi ¼
2ðdþ 1Þ
d − 1

δðY1 − Y2Þ;
ð∇2

Y1
− 2dÞhhðY1Þh̃μνðY2Þi ¼ ð∇2

Y1
þ 2ÞhhμνðY1ÞhðY2Þi ¼ 0: ðD3Þ

Additionally, any vertex functions coupled to the stress tensor are now naturally decomposed into traceless and trace parts,

Vμνhμν ¼ Ṽμνh̃
μν þ 1

dþ 1
TrVh: ðD4Þ
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With all these ingredients in mind, we can rewrite the graviton exchange amplitudes (28) as

MðsÞ
4ex;grav ¼ 16 × 8πG

Z
Ddþ2Y1Ddþ2Y2

�
Ṽμν
h;12hh̃μνðY1Þh̃ρσðY2ÞiṼρσ

h;34 þ
1

ðdþ 1Þ2 TrVh;12hhðY1ÞhðY2ÞiTrVh;34

þ 1

dþ 1
TrVh;12hhðY1Þh̃ρσðY2ÞiṼρσ

34;h þ
1

dþ 1
Ṽμν
h;12hh̃μνðY1ÞhðY2ÞiTrVh;34

�
: ðD5Þ

Using the AdS embedding formalism for the bulk-to-boundary propagator (14), we can easily prove the following
identities:

C12Ṽ
μν
h;12 ¼ ð∇2

Y1
þ 2ðdþ 1ÞÞṼμν

h;12; C12TrVh;12 ¼ ∇2
Y1
TrVh;12: ðD6Þ

Therefore, we find

Dd;2
12 M4ex;grav ¼

Z
Ddþ2Y1Ddþ2Y2

×

�
Ṽμν
h;12ð∇2

Y1
þ 2Þhh̃μνðY1Þh̃ρσðY2ÞiṼρσ

h;34 þ
1

ðdþ 1Þ2 TrVh;12ð∇2
Y1

− 2dÞhhðY1ÞhðY2ÞiTrVh;34

þ 1

dþ 1
TrVh;12ð∇2

Y1
− 2dÞhhðY1Þh̃ρσðY2ÞiṼρσ

h;34 þ
1

dþ 1
Ṽμν
h;12ð∇2

Y1
þ 2Þhh̃μνðY1ÞhðY2ÞiTrVh;34

�
: ðD7Þ

Plugging (D3) into (D7), we prove (29).
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