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We formulate Uð1Þk Chern-Simons theory on a Euclidean spacetime lattice using the modified Villain
approach. Various familiar aspects of continuum Chern-Simons theory such as level quantization, framing,
the discrete 1-form symmetry and its ’t Hooft anomaly, as well as the electric charge of monopole operators
are manifest in our construction. The key technical ingredient is the cup product and its higher
generalizations on the (hyper-)cubic lattice, which recently appeared in the literature. All unframed
Wilson loops are projected out by a peculiar subsystem symmetry, leaving topological, ribbonlike Wilson
loops which have the correct correlation functions and topological spins expected from the continuum
theory. Our action can be obtained from a new definition of the theta term in four dimensions which
improves upon previous constructions within the modified Villain approach. This bulk action coupled to
background fields for the 1-form symmetry is given by the Pontryagin square, which provides anomaly
inflow directly on the lattice.
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I. INTRODUCTION

Despite its ubiquity and apparent simplicity in the
continuum, it is not obvious that Abelian Chern-Simons
(CS) theory admits a lattice regularization. Indeed, there are
claims in the literature that the most basic Uð1Þ CS theory,
with continuum action

S ¼ ik
4π

Z
a ∧ da; ð1Þ

cannot be formulated in a local way on the lattice [1–3],
with the culprit often identified as the framing anomaly
[4,5] or chiral central charge [6]. A direct consequence of
the framing anomaly is that Wilson loops require point-
splitting regularization to be well defined. The physical
operators in continuum CS theory are therefore ribbons, or
framed Wilson loops, rather than standard line operators.
One might hope that a fully regularized lattice formulation
of CS theory would help illuminate precisely such subtle-
ties of the continuum theory which make it difficult to
discretize in the first place. Aside from providing a setting
to study aspects of CS theory on its own, such a lattice

description could be useful in demonstrating exact boson/
fermion dualities, constructing noninvertible defects in
four-dimensional theories, and has some parallels to the
problem of putting chiral fermions on the lattice.
In fact there is a long history of attempts to discretize CS

theory on Euclidean spacetime lattices [7–11] as well as in
the Hamiltonian framework where time is kept continuous
[12–16]. However, perhaps surprisingly, global aspects
have been all but ignored in the literature. The main goal
of this paper is to provide a discretization of Uð1Þk CS
theory that correctly captures its global features such as its
symmetries, level quantization, framing, and the role of
monopoles directly on the lattice. Our construction is based
on the modified Villain approach [17–20] which naturally
endows certain lattice theories with features (such as
symmetries, dualities, and anomalies) of their continuum
limits (see also [21–32] for related works).
Chern-Simons theory has no interesting local dynamics.

It is therefore crucial for any formulation of CS theory to
incorporate its global aspects, which are all that remain. In
the present Abelian context the fact that we consider a
compact (i.e., Uð1Þ rather than R) gauge group means that
one can have quantized magnetic fluxes,

Z
Σ
da ∈ 2πZ; ð2Þ

where a is the Uð1Þ gauge field and Σ is a closed surface.
If the surface is contractible, the above equation indicates
the presence of a monopole somewhere in its interior.
In the continuum, it is well known that such monopole
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configurations are not gauge invariant in the presence of a
CS term [33,34]. This might appear to pose a problem for
formulating CS theory in a fully gauge-invariant way on the
lattice, as generic discretizations of Uð1Þ gauge theory
contain dynamical lattice-scale monopoles.
The modified Villain approach circumvents this issue by

offering complete control over monopoles. In the conven-
tional Villain or “periodic Gaussian” formulation quantized
magnetic flux is encoded in discrete plaquette variables
n ∈ Z in addition to the familiar algebra-valued gauge
fields a ∈ R living on links [17]. The plaquette variable n
can be interpreted as a discrete gauge field for the Z 1-form
symmetry of the pure, noncompact R gauge theory
which acts by a → aþ 2π. Gauging these discrete shifts
is equivalent to studying compact Uð1Þ ¼ R=2πZ gauge
theory. In the modified Villain formulation, monopoles are
consequently eliminated from the theory by introducing a
Lagrange multiplier which constrains the discrete gauge
field to be flat [19]. This modification allows one to
establish various dualities directly on the lattice, where
depending on the context the Lagrange multiplier assumes
the role of a T-dual scalar, dual photon, or magnetic gauge
field. This approach has also found applications in eluci-
dating the behavior of fracton models [20,35] and has
been recently generalized to the Hamiltonian formu-
lation [32,36].
Our lattice action can be written compactly in terms of

(higher) cup products as follows:

Sða; n;φÞ ¼
X
c

ik
4π

½a ∪ da − 2πða ∪ nþ n ∪ aÞ�

−
ik
2
a ∪1 dnþ iφ ∪ dn; ð3aÞ

where the sum is over all cubes of the lattice, and φ is the
aforementioned Lagrange multiplier which removes
monopoles. We give explicit expressions for the higher
cup products in Appendix A—graphical representations of
each of the terms appearing above are shown in Fig. 1. In a
more conventional lattice gauge theory notation, our action
reads

Sða; n;φÞ

¼ ik
4π

X
x;μ
ν<ρ

ϵμνρ

�
ax;μðda − 2πnÞxþμ̂;νρ − 2πnx;νρaxþν̂þρ̂;μ

�

þ i
X
x

�
φx −

k
2
ðax;3 þ axþ3̂;2 þ axþ3̂þ2̂;1Þ

�
ðdnÞx;123;

ð3bÞ

where the sum is over all sites x on the lattice, μ; ν; ρ ∈
f1; 2; 3g and μ̂ denotes a unit vector in the μ direction—
cells are labeled by a “root” site and the directions in which
the cell extends. Our notation is explained in more detail

below. It should be clear from this form of the action that
the ∪ and ∪1 products explicitly break the discrete rota-
tional invariance of the lattice.
The action (3) turns out to have a peculiar staggered

symmetry1 commonly associated with Chern-Simons dis-
cretizations. This staggered symmetry causes extra zero
modes to appear in the Gaussian operator. This was shown
to be generic for any local, gauge-invariant, parity-odd
Euclidean lattice action [37], and has been likened to the
well-known fermion doubling problem associated with
putting chiral fermions on the lattice [38].2

This symmetry has important consequences. It implies
that the nontrivial gauge-invariant observables in our theory
are in fact framed Wilson lines, or ribbons. These ribbons
are topological and have fully computable correlation
functions. An example is shown below in Fig. 2. The
curve C̃twist shown there is twisted in a precise sense: the
corresponding ribbon has nontrivial self-linking computed
with our fixed choice of framing.
Much of the foundational literature on lattice CS theory

viewed the zero modes associated with the aforemen-
tioned staggered symmetry as detrimental. This is not
without reason—they make canonical quantization more
subtle. But they are also avoidable in the Hamiltonian

FIG. 1. Cup products used in the CS action (17). The black
lines represent the gauge field a, the orange plaquettes represent
the discrete magnetic flux variable n, and the black dot represents
the Lagrange multiplier φ.

1The symmetry is akin to a subsystem symmetry, where it
transforms fields on links related by a diagonal lattice translation
(see Fig. 4 and discussion around it). The precise form of the
symmetry depends on the definition of the cup product.

2The zero modes may be lifted by including additional terms
in such a way that the action is invariant under a modified
parity transformation [39,40], analogous to the Ginsparg-Wilson
approach to chiral fermions on the lattice [41–43]. However, it is
not clear if the resulting theory shares the desired topological
properties of continuum CS theory.
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formulation—in a set of papers [14,15] Eliezer and
Semenoff were able to construct and solve a gauge-
invariant local lattice Hamiltonian free of extra zero modes.
This was possible because they included couplings between
adjacent parallel link variables, which disappear as one
takes the lattice spacing to zero. Their solution matches
much of the physics of continuum CS theory, but still
suffers from ambiguities related to the self-intersection of
Wilson lines. Although for reasons of brevity we will not
discuss it here, one can show that these ambiguities can be
resolved by discretizing the time direction at the cost of
reintroducing the zero modes. Finally, one can easily put
“doubled” CS theories on the lattice without encountering
extra zero modes [2,44–48].
We reiterate that in stark contrast to the older literature,

our point of view is that the presence of the zero modes and
the associated staggered symmetry on a space-time lattice
is not a problem. In fact, the staggered symmetry projects
out all of the naive Wilson loops! This as a blessing, rather
than a curse, since it directly reflects the fact that the
continuum Chern-Simons theory has a framing anomaly
which forces one to pick a framing for every loop. In other
words, observables in Chern-Simons theory are not loops,
but strips. In fact we show that the correct topological
observable on the lattice is a Wilson strip, which can be
viewed as two parallel charge-1=2 Wilson loops con-
nected by a surface.3 As we will see, all key ingredients
of this construction agree with the expectations from the
continuum.
Before moving on, let us make some more detailed

remarks on related recent works. The older literature did
not incorporate the crucial global aspects of CS theory, with

the exception of Ref. [15] which took into account large
gauge transformations by hand to canonically quantize the
theory on the torus. More recently, Refs. [2,10] gave lattice
constructions of Abelian CS theories with multiple Uð1Þ
factors, taking into account the compactness of the gauge
group. See also Ref. [49] for a recent application of the
Villain formulation to the study of anomalies in 2þ 1D
topological phases.
Reference [10] presented a discretization of Uð1ÞK CS

theory on a triangulation and showed that their action
preserves the 1-form global symmetries of the continuum
theory. The dynamical variables in their construction are
simply the real-valued gauge fields aI , I ¼ 1;…; K which
live on each link. The quantized magnetic flux is then,
schematically,

2π

Z
Σ
bdaI⌉ ∈ 2πZ; ð4Þ

where bx⌉ denotes the integer nearest to x and bdaI⌉
represents the quantized magnetic flux through a plaquette.
The lattice action of Ref. [10] is a noncontinuous function
of the real-valued variables aI and is invariant under large
gauge transformations aI → aI þ 2πmI with mI ∈ Z.
However, Ref. [10] must include a Maxwell term with a
large coefficient to suppress monopole configurations
where dbdaI⌉ ≠ 0. For any nonzero value of the gauge
coupling, monopoles exist and spoil ordinary 0-form gauge
invariance. The lack of gauge redundancy is pointed out by
the authors as a welcome feature of their model, as it allows
for a tensor product Hilbert space. In this paper we take
invariance under ordinary gauge transformations to be a
necessary ingredient.
Reference [2] employed the Villain approach to construct

doubled CS theory (with both compact and noncompact
gauge groups) on both cubic and triangulated lattices. In
particular, Ref. [2] contains a comprehensive analysis of the
doubled CS theory with gauge group Uð1Þ2 and K-matrix
(0n

n
k) with n ∈ Z and k ∈ 2Z, including detailed computa-

tions of the partition function and correlation functions on
spacetimes with torsion, a reconstruction of the Hilbert
space from lattices with boundary, and a method to repro-
duce the continuum path integral using a correspondence
between the Villain formulation on a triangulation and
Deligne-Beilinson cohomology.
The remainder of the paper is structured as follows. In

Sec. II we briefly review our conventions for cochain
(form) notation on the cubic lattice, and present our lattice
action. We show how level quantization and the electric
charge of monopoles arise from demanding full Uð1Þ
gauge invariance. In Sec. III we discuss the symmetries
of the theory, which include the Zk 1-form symmetry and
an exotic “staggered” symmetry which projects out ordi-
nary Wilson loops. In Sec. IV we describe the correspon-
dence between topological, framed Wilson loops (or ribbon

FIG. 2. A framed Wilson loop defined on a curve C̃twist with a
nonvanishing self-linking number. The black lines denote “ordi-
nary” charge-1=2 Wilson lines of the dynamical gauge field a,
and the orange plaquettes indicate the support of surface
operators built from the discrete gauge field n.

3A fractional Wilson loop is not well defined without a surface.
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operators) and background fields for the 1-form symmetry.
We compute the ’t Hooft anomaly for the 1-form symmetry
and use it to identify twisted Wilson loops. Section V is
dedicated to a novel definition of the theta term on the
lattice in four dimensions. When θ ¼ 2πk with k even, we
recover our 3d CS theory on the boundary of a 4d lattice.
Coupling the bulk to background fields for the 1-form
symmetry leads to an anomaly inflow action based on the
Pontryagin square. Explicit formulas for the cup products
and their higher generalizations, as well as a discussion of
the Pontryagin square, are collected in Appendix A and B.

II. THE MODIFIED VILLAIN ACTION

A. Lattice preliminaries

Throughout the paper we use the language of differential
forms or cochains on the cubic lattice.4 We consider three-
and four-dimensional periodic lattices (denoted generically
by M) with lattice spacing set to one. Fields that live on
sites (denoted s or x), links (l), plaquettes (p), cubes (c),
and hypercubes (h) of the lattice are referred to as 0-, 1-, 2-,
3-, and 4-cochains. In addition, fields can take real or
integer values, or can be finite spins taking values only
from say 0; 1;…q − 1 for some integer q. These are then
naturally associated with Abelian groups R, Z and Zq (we
use additive notation for all group operations). Therefore a
field living on a p-cell which takes real, integer and integer
mod q values are referred to as belonging to the set of
m-cochains CmðM;RÞ; CmðM;ZÞ and CmðM;ZqÞ respec-
tively. Further, there is a natural exterior derivative d of
these fields which maps a field on a m-cell to a field on a
mþ 1 cell (i.e., a m-cochain to a mþ 1-cochain).
If the exterior derivative of an m-cochain is zero, then it

is called closed while if a m-cochain is the exterior deri-
vative of a (m − 1)-cochain it is called exact in analogy with
differential forms. The set of closed m-cochains valued in
an Abelian group G, which are called m-cocycles, is
denoted by ZmðM;GÞ, while the set of exact m-cochains
(or m-coboundaries) is denoted by BmðM;GÞ. The mth
cohomology class HmðM;GÞ is the set of m-cocycles
which are not coboundaries5 HmðM;GÞ ¼ ZmðM;GÞ=
BmðM;GÞ. We only consider G ¼ R;Z;Zq in this paper.
To reduce clutter we will not indicate the degree of a given
cochain unless necessary.
It is often useful to view a given cochain valued in a

group G as being embedded in a larger group G0 and then
impose a gauge redundancy on it. For example, suppose c
is an m-cochain which we wish to take values in
CmðM;ZqÞ. It may be useful to define c ∈ CmðM;ZÞ
and then impose a gauge redundancy c → cþ qf, where

f ∈ CmðM;ZÞ is arbitrary. This effectively makes c
describe a cochain in CmðM;Z=qZ ¼ ZqÞ. If we further
want the cochain c to be closed, we then have to
impose dc ¼ 0 mod k.
Finally, the dual lattice M̃ is obtained from the original

d-dimensional lattice by a positive translation in all
directions by one half of a lattice unit. A given m-cell
on the dual (resp. original) lattice is naturally associated
with the (d −m)-cell on the original (resp. dual) lattice it
pierces. This relation is captured by the Hodge star operation
⋆which extends to cochains: ⋆∶CmðM;GÞ → Cd−mðM̃; GÞ,
and satisfies ⋆2α ¼ ð−1Þmðd−mÞα.
In the Villain approach to Uð1Þ lattice gauge theory, the

dynamical variables are real-valued link fields a∈C1ðM;RÞ
and integer-valued plaquette variables n ∈ C2ðM;ZÞ. The
link variables have the usual gauge redundancy

a → aþ dλ ð5Þ
with λ ∈ C0ðM;RÞ, but also shift under large gauge trans-
formations

a → aþ 2πm ð6Þ
withm ∈ C1ðM;ZÞ, which causes a to effectively describe a
1-cochain in C1ðM;R=2πZ ¼ Uð1ÞÞ, as expected for a
lattice Uð1Þ gauge field. The plaquette variable n is a gauge
field for these discrete shifts, and accordingly n → nþ dm
under such a gauge transformation. The quantityX

p∈Σ
np ∈ Z ð7Þ

is gauge invariant provided Σ is a closed surface, and is
interpreted as the magnetic flux through the surface Σ.
Configurations where dn ≠ 0 are similarly interpreted as
monopole configurations, since the flux through a contract-
ible (homologically trivial) surface is equal to the sum of dn
on each cube enclosed by the surface. If dn ¼ 0 everywhere,
the magnetic flux can only be nonvanishing through homo-
logically nontrivial surfaces. In this case n ∈ H2ðM;ZÞ. The
continuum interpretation of n in that case is that it describes
the 1st Chern class of the Uð1Þ bundle.
The key ingredients for constructing our CS action is the

cup product ∪ on the lattice and its higher generalizations
(i.e. ∪1;∪2;…, see below). The cup product of a p-cochain
α and q-cochain β is a (pþ q)-cochain α ∪ β. The cup
product is similar to the wedge product in de-Rham
cohomology, and satisfies the Leibniz rule

dðα ∪ βÞ ¼ dα ∪ β þ ð−1Þpα ∪ dβ; ð8Þ

which one can use to establish the “summation by parts”
identity X

dα ∪ β ¼ ð−1Þpþ1
X

α ∪ dβ; ð9Þ

4See e.g. App. A of Ref. [19] for more details regarding
differential forms (i.e., cochains) on hypercubic lattices.

5Or in other words, HmðM;GÞ is the set of closed m-forms
valued in G which are not exact.
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where the sum is over any ðpþ qþ 1Þ-cycle. A crucial
feature of the cup product is that, unlike thewedge product, it
is not graded commutative. Instead, cochains (anti)commute
up to higher cup products,

α ∪ β − ð−1Þpqβ ∪ α ¼ ð−1Þpþqþ1½dðα ∪1 βÞ
− dα ∪1 β − ð−1Þpα ∪1 dβ�: ð10Þ

The ∪i product of a p-cochain α and q-cochain β is a
ðpþ q − iÞ-cochain. The higher cup products were intro-
duced in [50] for triangulations and have appeared in
various places in the physics literature in the study of
anomalies and topological phases of matter [1,10,51–57].
The higher cup products are neither graded commutative
nor associative.
The (higher) cup products have a simple geometric

interpretation. Roughly speaking ordinary cup products
have to do with “generic” intersections,6 e.g., two surfaces

intersecting at a line in three dimensions, a line intersecting a
surface at a point in three dimensions, two lines intersecting
at a point in two dimensions, etc. The higher cup products
detect “nongeneric” intersections, e.g., a linelike intersection
of a surface and a line in three dimensions, the pointlike
intersection of two lines in three dimensions, the linelike
intersection of two lines in two dimensions, etc. Such
nongeneric intersections are natural on the lattice but can
always be resolved as generic intersections (or no intersec-
tions at all) in the continuum. We show some examples to
illustrate this interpretation below in Fig. 3.
The hypercubic analog of the higher cup products have

only appeared recently in the physics literature [53] and
were systematically defined in a combinatorial way in [56].
Cup products on a simplicial lattice depend crucially on a
choice of the branching structure, or ordering of vertices,
which induces a choice of framing for each link on the
lattice. The choice of branching structure is replaced by a
fixed definition of the cup products in the hypercubic
case—for completeness we give explicit formulas with
graphical aids for (higher) cup products in Appendix A.

B. Gauge invariance and level quantization

We begin by introducingUð1Þ gauge fields in the Villain
formulation ða; nÞ where a ∈ C1ðM;RÞ and n∈C2ðM;ZÞ.
We impose the following gauge symmetry

a → aþ dλþ 2πm

n → nþ dm; ð11Þ

with λ ∈ C0ðM;RÞ; m ∈ C1ðM;ZÞ. The most naive lattice
action that mimics the continuum CS term is simply

X
c

ik
4π

a ∪ da; ð12Þ

with the sum being over all cubes of the lattice, which we
assume has no boundary. For now we allow the level k to
be arbitrary, but soon we will see that it must be quantized.
The above form of the action is invariant under ordinary
gauge transformations, but under large gauge transforma-
tions a → aþ 2πm (where m is a Z valued 1-cochain) it
shifts by

X
c

ik
2
½m ∪ daþ a ∪ dmþ 2πm ∪ dm� ð13Þ

For now let us ignore the last term appearing above. After
summing by parts it is clear that the first two terms can
be canceled by including additional terms in the action
involving the discrete magnetic flux,

X
c

ik
4π

½a ∪ da − 2πða ∪ nþ n ∪ aÞ�: ð14Þ

FIG. 3. On the left are some intersecting objects on the dual
lattice, which via Poincaré duality correspond to the cochains on
the original lattice drawn on the right. We have indicated the links
or plaquettes on the original lattice which pierce or are pierced by
the surfaces and lines on the dual lattice, as well as the location of
some nonvanishing (higher) cup products.

6What is meant by this statement is that p-forms (i.e.,
p-cochains) are associated by Poincaré duality to codimension-p
surfaces (see Sec. IV for more details). So for a pair of cochains
α and β, the cup product α ∪ β measures the intersection of the
lines, surfaces or hypersurfaces corresponding to their Poincaré
duals.
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However, these extra terms are not invariant under ordinary
gauge transformations, but shift by

−
ik
2

X
c

dλ ∪ nþ n ∪ dλ ¼ ik
2

X
c

λ ∪ dnþ dn ∪ λ: ð15Þ

We see that the gauge variation vanishes if the discrete
gauge field n is flat, dn ¼ 0. In other words, to maintain
gauge invariance we must remove dynamical monopoles
from the theory.
This can be accomplished by introducing a Lagrange

multiplier field φ ∈ C0ðM;RÞ and adding the term

i
X
c

φ ∪ dn ð16Þ

to the lattice action.7 Integrating out φ localizes the path
integral on configurations for which the action (14) is
(0-form) gauge-invariant. Equivalently, since integrating
over φ on all sites projects onto a gauge-invariant path
integral weight for a, we should be able to write a gauge-
invariant action which includes the coupling (16) provided
φ itself shifts appropriately under gauge transformations.
This leads us to the CS action quoted in the introduction:

Sða; n;φÞ ¼
X
c

ik
4π

½a ∪ da − 2πða ∪ nþ n ∪ aÞ�

−
ik
2
a ∪1 dnþ iφ ∪ dn; ð17Þ

where the term involving the ∪1 product ensures that the
action is invariant under gauge transformations which act
by a → aþ dλ and φ → φ − kλ. Under this shift, the
action changes by

Sðaþ dλ; n;φ − kλÞ − Sða; n;φÞ

¼ −
ik
2

X
c

ðdλ ∪ nþ n ∪ dλþ dλ ∪1 dnþ 2λ ∪ dnÞ:

ð18Þ

We now apply the cup product identity from Eq. (10) with
α ¼ n; β ¼ dλ,

n ∪ dλþ dλ ∪1 dn ¼ dλ ∪ n − dðdλ ∪1 nÞ; ð19Þ

to find

Sðaþ dλ; n;φ − kλÞ − Sða; n;φÞ

¼ −
ik
2

X
c

ð2dλ ∪ nþ 2λ ∪ dn − dðdλ ∪1 dnÞÞ

¼ −
ik
2

X
c

dð2λ ∪ n − dλ ∪1 dnÞ ¼ 0: ð20Þ

Therefore, the action in Eq. (17) is invariant under ordinary,
0-form gauge transformations.
Now we turn to invariance under large (discrete 1-form)

gauge transformations and quantization of the level k.
Under a large gauge transformation, we have

Sðaþ2πm;nþdm;φÞ−Sða;n;φÞ
¼−ikπ

X
c

ðm∪ nþn∪mþm∪1 dnþdm∪mÞ: ð21Þ

Unlike in the 0-form case, cup-product identities cannot be
used to recast this as a total derivative. Moreover, the above
sum can be an arbitrary integer,8 so in order for the
exponentiated action to be invariant we are forced to take
k to be an even integer, k ∈ 2Z. This is the famous level
quantization condition.9

Finally, the action is invariant mod 2πi under additional
discrete shifts of the Lagrange multiplier φ → φþ 2πr, with
r ∈ C0ðM;ZÞ. This gauge redundancy effectivelymakesφ a
compact scalar with radius 2π. In 3d Abelian gauge theory
without a CS term, we could identify M≡ eiφ as a mono-
pole operator, since the insertion of such an operator inserts a
unit magnetic flux through Eq. (16). However, in CS theory
M is not gauge-invariant and can only exist at the endpoints
of a charge-kWilson line.We return to this point in Sec. IV B.
To summarize, we have constructed a Chern-Simons

action (17) which is invariant under the following gauge
redundancies on a lattice without boundary provided k is an
even integer:

a → aþ dλþ 2πm;

n → nþ dm;

φ → φ − kλþ 2πr; ð22Þ
where λ ∈ C0ðM;RÞ; m ∈ C1ðM;ZÞ; r ∈ C0ðM;ZÞ.

7On a triangulation, Lagrange multiplier terms defined via a
cup product fail to enforce the desired cell-by-cell constraints
[52,58] (unless the constrained quantity is a top form), and one
needs the auxiliary variables φ to live on the dual lattice. On the
cubic lattice, there is no such requirement.

8The following is an example of a field configuration for which
the above sum is equal to 1: takemx;3 ¼ mxþ3̂;1 ¼ 1 for some site
x and otherwise vanishing. Then the last term in Eq. (21) is equal
to 1 on a single cube and 0 everywhere else.

9The level k can also be an odd integer if we define the theory
using an appropriate auxiliary 4d bulk (this is discussed later in
Sec. V). Although the definition of the action with auxiliary bulk
will not dependent on the choice of bulk extension as long as the
lattice describes a spin manifold, we are unable to construct an
intrinsically 3d construction of the odd k CS lattice theory. This is
perhaps not surprising, because odd k CS theories are spin
theories, and as such they depend on the spin structure. While we
believe that this construction can be used to define odd k CS
theories on the lattice, we mostly focus on the even-k case here.
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III. SYMMETRIES

We can look for 1-form symmetries by shifting a →
aþ ϵ with ϵ ∈ C1ðM;RÞ. The action shifts by

ΔS ¼
X
c

ik
4π

½ϵ ∪ daþ a ∪ dϵþ ϵ ∪ dϵ

− 2πðϵ ∪ nþ n ∪ ϵþ ϵ ∪1 dnÞ�

¼
X
c

ik
4π

½dϵ ∪ aþ a ∪ dϵþ ϵ ∪ dϵ

− 2πðϵ ∪ nþ n ∪ ϵþ ϵ ∪1 dnÞ� ð23Þ

Now suppose ϵ ¼ 2π
k ω, with ω ∈ C1ðM;ZÞ and dω ¼

0 mod k, i.e., ω is a Zk cocycle. Then we have

ΔS ¼ −iπ
X
c

ðω ∪ nþ n ∪ ωþ ω ∪1 dnÞ

¼ −iπ
X
c

ðω ∪ n − n ∪ ω − ω ∪1 dnÞ mod 2πi

¼ −iπ
X
c

ðdðω ∪ nÞ − dω ∪1 nÞ ¼ 0 mod 2πi: ð24Þ

The first term vanishes when summed over the entire
lattice, and the second term is zero mod 2πi because
dω ¼ 0 mod k and we assume k to be even. Hence, shifting
the gauge field by a Zk cocycle leaves the exponentiated
action invariant—this is the electric 1-form symmetry of
the CS theory.
There is another interesting class of transformations that

leaves the action invariant. Integrating by parts, we can
rewrite the shift of the action under a → aþ ϵ as

ΔS ¼
X
c

ik
4π

�
ϵ ∪

�
da − 2πnþ 1

2
dϵ

�

þ
�
da − 2πnþ 1

2
dϵ

�
∪ ϵ − 2πϵ ∪1 dn

�
: ð25Þ

Without loss of generality we can integrate out φ to set
dn ¼ 0 and ignore the last term.10 Then, if we can choose ϵ
such that X

c

ϵ ∪ X þ X ∪ ϵ ¼ 0 ð26Þ

for all 2-cochains X, the action is left invariant. By
examining the definition of the cup product one can see
that this condition is equivalent toX

p

Xpðϵf−1ð⋆pÞ þ ϵfð⋆pÞÞ ¼ 0; ð27Þ

where f is a half-unit lattice translation in the x̂þ ŷþ ẑ
direction and ⋆p is the link on the dual lattice which
pierces p. The above condition is satisfied if ϵf2ðlÞ ¼ −ϵl
for all links l. An example of such an ϵ is given in
Fig. 4. Note that on a toroidal lattice the set of transformed
links “wraps around” the entire lattice and consistency
requires the number of lattice sites in each direction to
be even.
This extra invariance is directly related to the aforemen-

tioned zero modes which are a common feature of lattice
CS constructions [2,14,15,37].11 Viewed as a symmetry, it
is natural to ask which operators carry charge under the
staggered shifts of a, and which operators are neutral. One
can quickly convince themselves that ordinary Wilson
loops of any size transform under the staggered symmetry.
This can be used to conclude that such ordinary Wilson
loops have identically vanishing expectation values. To see
this, we start with a Wilson loop on a single plaquette p

WðpÞ ¼
Y
l∈∂p

eial ; ð28Þ

and perform the transformation a → aþ ϵ, where ϵf2ðlÞ ¼
−ϵl and ϵl ¼ α for some l ∈ ∂p. This field redefinition
leaves the action invariant but multiplies the single-
plaquette Wilson loop by eiα. As a result, the expectation
value must vanish.
Note that this is what one expects from a gauge

redundancy rather than a global symmetry. A line operator
charged under a 1-form gauge symmetry vanishes identi-
cally for any size loop, while a gauge-invariant, contractible
line operator charged under a 1-form global symmetry
only vanishes in the limit where the size of the loop goes
to infinity (provided the symmetry is unbroken). In this
sense the staggered symmetry behaves like a gauge

FIG. 4. A 1-cochain ϵ which takes values �α and �β on the
indicated links and 0 everywhere else satisfies ϵf2ðlÞ ¼ −ϵl.

10Alternatively we can assign φ a compensating shift.

11The extra zero modes appear whenever p1 þ p2 þ p3 ¼
π mod 2π where pμ are the quasi momenta of the gauge field a.
On the other hand the change a → aþ ϵ is a symmetry as long
as ϵ is odd under the diagonal translation in all directions.
This means that ϵ consists precisely of modes for which
p1 þ p2 þ p3 ¼ π mod 2π.
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symmetry.12 Note that on the one hand, adding a Maxwell
term lifts the staggered symmetry. On the other hand, the
Maxwell term will not be generated in our pure CS lattice
theory.
As mentioned in the introduction, it is well-known that

in continuum CS theory ordinary Wilson loops are ill-
defined and require point-splitting regularization [5].
Such point-splitting “frames” the Wilson line, turning
it into a ribbon. The staggered symmetry associated to
the extra zero modes on the lattice performs the welcome
function of completely projecting out all ordinary, line-
like Wilson loops. However, looking at Fig. 4, it is clear
that a pair of identical Wilson loops which are displaced
relative to one another by one positive lattice unit in each
direction will be neutral under the symmetry transforma-
tion. Such “doubled” Wilson loops are precisely the
framed, ribbonlike Wilson loops on the lattice, and make
up the set of physical operators. In the next section we
describe how to construct and manipulate these operators
by turning on background fields for the Zk 1-form
symmetry.

IV. BACKGROUND FIELDS
AND FRAMED WILSON LOOPS

As we argued above, ordinary Wilson loops have
vanishing expectation values (and generically, correla-
tors). On the other hand, in continuum CS theory, Wilson
lines are topological and generate a Zk 1-form symmetry,
whose ’t Hooft anomaly is encoded in the anyonic linking
relations between Wilson loops [59,60]. In other words,
in CS theory a Wilson line is both the charge and the
charged object of a symmetry. The fact that the charges are
conserved explains their topological nature, while the
fact that lines are charged objects explains why their
linking is nontrivial. Our task is then to find Wilson loops
which do not vanish, but are topological and correspond to
charges of the 1-form electric Zk symmetry. As we will
see, such loops will end up being framed Wilson loops, or
ribbons.
To discover these Wilson loops we will couple the theory

to background gauge fields for the Zk 1-form symmetry.
The gauge fields of a 1-form symmetry are 2-forms (or
rather 2-cochains), and since the symmetry in question is
discrete the gauge field must be flat and so is really a
2-cocycle. Such an object can be described at the cochain
level by an integer valued field B living on plaquettes of the
lattice [i.e., B ∈ C2ðM;ZÞ�, with a gauge symmetry

B → Bþ dV þ kL; ð29Þ

where V is an arbitrary integer-valued field living on links,
and L is an arbitrary integer valued field living on
plaquettes. Further we impose dB ¼ 0 mod k, which
implements flatness of the B field.13 Hence B is really a
representative of H2ðM;ZkÞ.
To any such field B on the lattice there corresponds

a network of lines defined on the dual lattice. This
correspondence is called Poincaré duality, and goes as
follows. Imagine a simple contour on the dual lattice C̃.
Such a contour pierces some collection of plaquettes on
the original lattice. To this contour we can associate a
1-cochain ½C̃� ∈ C1ðM̃;ZÞ on the dual lattice which counts
the oriented number of times a dual link is traversed by C̃,
and a 2-cochain ⋆½C̃� ∈ C2ðM;ZÞ on the original lattice
which counts the oriented number of times a plaquette is
pierced by C̃.
Now take B ¼ ⋆½C̃� (see left of Fig. 5). Such a B

configuration clearly has the property that it is flat
dB ¼ 0 if the contour is closed ∂C̃ ¼ 0. Alternatively
we may have that dB is a multiple of k, in which case
the contours in C̃ can end in multiples of k. An arbitrary
2-cochain B can be described by a collection of contours,
which we simply denote by C̃, where B ¼ ⋆½C̃�.
Next, imagine that we employ a gauge transformation

B → Bþ dV. It takes little thought to convince oneself
that dV corresponds to inserting arbitrary contours on the
dual lattice which are contractable, i.e., contours Γ̃ for
which Γ̃ ¼ ∂Σ̃. This means that we can use the gauge
freedom to deform the set of contours corresponding to B
as we wish. Finally, the gauge freedom that B → Bþ kL
simply tells us that inserting noncontractable or open
contours does not change anything as long as they come
in multiples of k. This is just a statement that k contours
can annihilate. In fact all of these properties are exactly

FIG. 5. A framed Wilson loop defined by turning on a back-
ground gauge field B for the Zk 1-form symmetry which is
Poincaré dual to the curve C̃ on the dual lattice.

12The reason for this behavior is that this staggered symmetry
cannot be spontaneously broken. This is because it can be viewed
as a continuous subsystem symmetry of an effectively one-
dimensional subsystem. It may be interesting to explore in more
detail the relation of this symmetry structure to known subsystem
symmetries.

13The flatness is only meaningful modulo k as the gauge field
B is meant to represent a Zk gauge field. The failure of the B field
to be flat is associated with a monopole operator at the cube on
which dB ≠ 0. Such a monopole operator lies at the endpoint of a
charge k topological Wilson line.
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features of a collection of lines which measure the 1-form
Zk charge.14

In a conventional situation, turning on a background
field B ¼ ⋆½C̃� would be equivalent to inserting topological
defects, or symmetry generators, supported on the lines C̃
on the dual lattice. In the present case, we expect such
operators to be topological Wilson lines, which live on
the original, rather than dual, lattice. To see how this works
out, we couple Eq. (17) to a background gauge field B for
the Zk 1-form symmetry. The 1-form global symmetry
transformation a → aþ 2π

k ω can be promoted to a back-
ground gauge redundancy via the minimal substitution
n → nþ 1

k B. This is quite natural because physically,
coupling the theory to a background field for the 1-form
symmetry relaxes the quantization condition (2) to allow
for fractional fluxes. The coupling to background fields is

Sða;n;φ;BÞ ¼
X
c

ik
4π

�
a ∪ da− 2πa ∪

�
nþ 1

k
B

�

− 2π

�
nþ 1

k
B

�
∪ a− 2πa ∪1

�
dnþ 1

k
dB

��

þ iφ ∪
�
dnþ 1

k
dB

�
þ iπB ∪1 n: ð30Þ

The dynamical fields a and n shift under these background
gauge transformations as

a → aþ 2π

k
V; n → n − L: ð31Þ

Note that the last term in Eq. (30) does not arise from any
minimal coupling, but plays an important role. We will
come back to it in a moment.
First, let us check that the action remains invariant under

dynamical gauge transformations even in the presence of
background fields. Repeating the analysis around Eq. (21),
under dynamical gauge transformations the action coupled
to B has an additional shift by

− iπ
X
c

ðB ∪ mþm ∪ Bþm ∪1 dB − B ∪1 dmÞ

¼ −iπ
X
c

ðdðB ∪1 mÞ − dB ∪1 mþm ∪1 dBÞ

¼ 0 mod 2πi; ð32Þ
where we used the cup product identity Eq. (10) with α ¼ B
and β ¼ m and the last equality follows from the fact that
dB ¼ 0 mod k. So the exponentiated action coupled to

background fields is gauge-invariant. This means that
turning on a particular background has the effect of
inserting some collection of gauge-invariant operators.
Now, we focus on a configuration B ¼ ⋆½C̃� for some

single closed contour C̃ on the dual lattice, for example the
one on the left side of Fig. 5. Plugging this into the action in
Eq. (30) (ignoring the last term for the moment), we see that

such an insertion involves the terms e
i
2

P
c
ða∪BþB∪aÞ. A

quick reference to Fig. 11 in the appendix reveals that this
corresponds to the insertion of two charge 1=2Wilson lines
on the original lattice, offset by a diagonal shift. These
are represented by the black lines in the right of Fig. 5. But
such Wilson lines have improperly quantized coefficients
and hence are not invariant under large gauge trans-
formations. To make them gauge invariant, we need to
connect themwith a surface built out of the discrete variable
n on plaquettes lying between the two fractionally charged

Wilson lines. This is exactly what the final term e−iπ
P

c
B∪1n

in Eq. (30) accomplishes. We can identify the resulting
operator as a framed Wilson line, which is topological by
virtue of background gauge invariance. Due to the framing,
these Wilson lines are really “strips” or “ribbons,” but are
defined via a single curve C̃ on the dual lattice,

bWðC̃Þ≡ e
i
2

P
c

a∪⋆½C̃�
e

i
2

P
c

⋆½C̃�∪a
e
−iπ

P
c

⋆½C̃�∪1n
: ð33Þ

A. ’t Hooft anomaly for Zk 1-form symmetry

Now we turn to background gauge transformations. As
discussed above, these gauge transformations have the
effect of adding contractible loops, or lines in multiples
of k, to the network of symmetry defects. Invariance under
such transformations implies that the corresponding sym-
metry operators are completely captured by their Zk
homology. Failure to maintain full gauge invariance indi-
cates a ’t Hooft anomaly, and a more detailed dependence
of correlation functions on the topology of the symmetry
defect network [59]. Under a background gauge trans-
formation the action shifts by

S
�
aþ 2π

k
V; n → n − L;φ;Bþ dV þ kL

�
− Sða; n; BÞ

¼
X
c

ik
4π

�
2π

k
V ∪ da −

2π

k
dV ∪ a −

�
2π

k

�
2

dV ∪ V

−
2π

k
V ∪

�
2πnþ 2π

k
B

�
−
�
2πnþ 2π

k
B

�
∪
2π

k
V

−
2π

k
V ∪1

�
2πdnþ 2π

k
dB

��
þ iπdV ∪1 ðn − LÞ − iπB ∪1 L: ð34Þ

Dropping total derivatives and multiples of 2πi, the
variation simplifies to

14The statement that a Zk symmetry is free from ’t Hooft
anomalies (i.e., the theory is completely background gauge-
invariant) means that only the Zk homology of the lines are
important. In CS theory the anomaly implies that the correspond-
ing lines (or rather strips, as we shall see) are only topological up
to linking, intersections, and topological twists.
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X
c

−
2πi
2k

ðdV ∪ V þ V ∪ Bþ B ∪ VÞ

− iπ
�
ðBþ dVÞ ∪1 Lþ V ∪1

1

k
dB

�
− iπðV ∪ nþ n ∪ V þ V ∪1 dn − dV ∪1 nÞ: ð35Þ

Note that the first two lines only involve background
fields—they encode the anomaly of the Zk symmetry, or
obstruction to gauging. The last line can be rewritten, mod
2πi, as

− iπðV ∪ n − n ∪ V þ dV ∪1 n − V ∪1 dnÞ
¼ −iπdðV ∪1 nÞ; ð36Þ

which is a total derivative. Hence, all terms involving
dynamical fields drop out and we are left with the anomaly,

SanomalyðB; V; LÞ

¼
X
c

−
2πi
2k

ðdV ∪ V þ V ∪ Bþ B ∪ VÞ

− iπ

�
ðBþ dVÞ ∪1 Lþ V ∪1

1

k
dB

�
: ð37Þ

Note that despite our working with a Zk symmetry the
anomaly displays Z2k-valued terms, as well as Z2-valued
terms (recall dB ∈ kZ) which are absent in the standard
continuum analysis (see Appendix B). In fact we will see
that this Z2k structure leads to the correct topological spin
of framed Wilson loops. As is usually the case with
anomalies, one can cancel some of the above terms by
using local counter-terms involving background fields. In
the present case we are limited to terms involving higher
cup products such as B ∪1 B and B ∪2 dB. The fact that a
genuine anomaly remains is made clear by providing a
four-dimensional anomaly inflow action (55), which we
discuss later in Sec. V.
Background gauge transformations can be used to

compare correlation functions of Wilson loops as they
are topologically deformed.15 To illustrate this, let us start
with a straight Wilson loop and perform a set of gauge
transformations B → Bþ dV to deform its shape. We first
start with V such that V ∪ Bþ B ∪ V ¼ 0 for all cubes c
such that the anomaly Eq. (37) vanishes. In Fig. 6 we show

examples of such transformations, which indicate the
topological nature of our framed Wilson loops.
Now we consider transformations which deform the

Wilson loop in such a way that the anomaly induces a Z2k
phase. Examples of such transformations are depicted in
Fig. 7 (see also Fig. 2). Let us call this new loop C̃twist. It
follows from the anomaly that

hŴðC̃twistÞi ¼ e�2πi
2k hŴðC̃Þi; ð39Þ

which indicate that the contours C̃twist are indeed twisted, or
in other words have nontrivial self-linking with respect to

FIG. 6. Background gauge transformations can be used to
deform a Wilson line.

FIG. 7. Twisting a straight Wilson loop C̃ → C̃twist introduces a
Z2k phase. The straight and twisted configurations are related via
background gauge transformations, B → Bþ dV where B ¼
⋆½C̃� and V ¼ ⋆½Σ̃�. In (a) the anomaly picks up a contribution
from a single cube for which B ∪ V ¼ þ1. Note that the
anomalous phase is not coming from the self-intersection of
the curve C̃twist (for this reason, we resolved the intersection
point). In (b) the anomalous phase comes from a single cube for
which V ∪ B ¼ −1.

15To be very explicit, due to the invariance of the measure over
the dynamical fields under redefinitions a → aþ 2π

k V; n →
n − L, we haveZ

DaDne−SðBþdVþkL;a;nÞ ¼
Z

DaDne−SðBþdVþkL;aþ2π
k V;n−LÞ

¼ e−SanomalyðB;V;LÞ
Z

DaDne−SðB;a;nÞ:

ð38Þ
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our framing. We can further identify this minimal phase
resulting from twisting as the fractional 1

2k spin of an
anyon [5,6].
Finally let us now insert a contractable C̃0 Wilson loop

linking the original one C̃. This corresponds to a gauge
transformation V which is unity on all links pierced by the
surface Σ̃0 whose boundary is C̃0 (see Fig. 8). A little
thought reveals that both V ∪ B and B ∪ V are þ1 for a
single cube. Hence the anomaly induces a phase e−2πi=k,
so that

hŴðC̃ÞŴðC̃0Þi ¼ e
2πi
k hŴðC̃ÞihŴðC̃0Þi: ð40Þ

This reproduces the familiar linking relation one expects
from the continuum—indeed, correlation functions of
loops which are sufficiently large and far apart will yield
linking-dependent Zk phases.

B. Open Wilson lines and monopole operators

Coupling to background fields for the 1-form symmetry
also gives us a way of constructing gauge-invariant
monopole operators, which must be attached to Wilson
lines of the appropriate charge. In particular, we can
take a background field configuration which is pure gauge,
B ¼ k⋆½C̃�, which roughly corresponds to a charge-k
Wilson line with boundary, ∂C̃ ≠ 0. This activates all terms
in Eq. (30) except for the final one. The resulting operator is
shown in Fig. 9, and consists of two charge k=2 Wilson
lines emanating from a single monopole operator. There is
no magnetic ribbon connecting the two Wilson lines
because they each have integer charge.
Although this operator appears to be nontrivial, the

fact that it corresponds to a pure-background-gauge

configuration implies that it at most has contact interactions
encoded in the last term of the anomaly (37). Relatedly, the
1-form charge of the open Wilson line is trivial at long
distances (i.e., ignoring intersections), and a straight open
Wilson line such as the one in Fig. 9 can be topologically
contracted to a point. Correspondingly, there are no
genuinely nontrivial monopole operators in CS theory,
nor is there a faithfully-actingUð1Þmagnetic symmetry as
in pure 3d Maxwell theory in the absence of dynamical
monopoles.
That there is no Uð1Þ magnetic symmetry is also made

clear by the fact that the would-be symmetry generatorsY
p∈Σ

eiαnp ð41Þ

are trivial operators (here α is an arbitrary angle). Such an
operator can be completely removed by an appropriate field
redefinition of a and φ (or just φ in the case that Σ is a
boundary).

C. Comments on zero and near-zero modes

We close this section with some comments on the
presence of the zero and near-zero modes which are generic
for Chern-Simons discretizations and which have been
studied in many works cited in the Introduction. These zero
modes arise as a result of an exact symmetry of the action
(see Fig. 4 and the discussion around it) which we refer to
as staggered symmetry. Though we have seen that the exact
zero modes simply project out certain operators, one may
worry that near-zero modes could affect correlators of the
surviving operators and betray the existence of the gapless
sector.16

However, as we already explained, the staggered sym-
metry completely eliminates all operators which are
charged under it. This includes the naive Wilson loops
and a more general class of operators such as

eiα
P

p∈S
½ðdaÞpþ2πnp�; α ∈ R; ð42Þ

where the sum is over plaquettes belonging to some open
surface S on the lattice (as discussed in the previous
section, summing over a closed surface would yield a
trivial operator). Moreover, the Wilson lines which sur-
vive the staggered symmetry are completely topological
with correlation functions dictated by the 1-form sym-
metry and its ’t Hooft anomaly. So even if the near-zero
mode sector is physical, it is completely decoupled from
the Wilson strips.
One may wonder whether there exist, aside from the

topological Wilson lines, any operators which do not
vanish due to the staggered symmetry, are nontrivial,
and could activate these near-zero modes. The answer is

FIG. 8. Large framed Wilson loops with nontrivial linking. In
the absence of additional twists, large nonintersecting loops yield
linking-dependent Zk phases.

FIG. 9. A monopole operator attached to the endpoint of a
framed Wilson line with charge k. 16We thank Max Metlitski for raising this question.
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no—the only other class of gauge- and stagger-invariant
operators can be written as17

ei
P

c
H∪ðda−2πnÞþðda−2πnÞ∪H ð43Þ

for some real 1-cochain H. However, up to a local
counterterm (see below), this can be completely removed
by shifting a → aþ 4π

k H. We can therefore conclude that
apart from projecting out unframed operators, the zero and
near-zero modes do not affect any correlation functions.
We make a brief comment that the counterterm we

mention above is not completely removable and contains
information on universal contact terms in the continuum CS
theory. Namely the operator (43) has a continuum analog as
expð i

2π

R
W ∧ daÞ, where nowW plays the role of H, up to

normalization. This operator generates all correlators of the
field-strength da, which in CS theory are pure contact
terms. However, because of the flux quantization of da, W
can be viewed as a Uð1Þ gauge field. This constrains the
possible counterterms which are allowed, rendering some
of the contact terms “physical” [61].18

V. 4D THETA TERM AND ANOMALY INFLOW

In this section we show that our CS action (17) can be
obtained from a particular definition of the 4d theta term
on a lattice with boundary and θ ¼ 2πk. There are two
perspectives on defining CS theory via some auxiliary bulk.
One is that we define the value of the 3d Chern-Simons
action by extending each field configuration into a bulk and
computing the action there. Different extensions of a given
3d field configuration must yield the same action. Such an
extension exists for every field configuration, but a fixed
choice of bulk manifold may admit an extension of one
class of field configurations but not another (for example, if
they differ by global fluxes).
In the current context we work with a fixed 4d lattice

with boundary, which has the topology of T2 ×D. In other
words we define a bulk theory on a fixed manifold such that

it reproduces Chern-Simons theory on the boundary with
no bulk-dependence. We will see that this is only possible if
k is even. The theta term we consider is

Sθða; n; bÞ ¼
X
h

iθ
8π2

ðda− 2πnÞ ∪ ðda− 2πnÞ

−
iθ
4π

ðda− 2πnÞ ∪1 dnþ i

�
θ

2π
aþ b

�
∪ dn;

ð44Þ
where b ∈ C1ðX;RÞ is a Lagrange multiplier imposing the
no-monopole constraint and the sum is over all hypercubes
h of the 4d lattice X. The ∪1 product between 2- and
3-cochains is defined in Appendix A.
This definition of the theta term differs from the one

presented in Refs. [19,29] in two ways. First, the Lagrange
multiplier b, which should be interpreted as the magnetic
gauge field, lives on the original lattice and not the dual
lattice. Second, the action includes additional terms involv-
ing dn, which vanish upon integrating out b. These two
modifications lead to certain desirable features—in par-
ticular, the above action density is 0- and 1-form gauge
invariant provided

b → b −
θ

2π
ðdλþ 2πmÞ: ð45Þ

This means we can easily study the theory on a manifold
with boundary. In addition, the gauge field b also has its
own magnetic Uð1Þ gauge symmetry

b → bþ dβ þ 2πs ð46Þ
with β ∈ C0ðX;RÞ and s ∈ C1ðX;ZÞ. The magnetic gauge
field transforms under electric gauge transformations due
to the Witten effect [62]. Owing to the fact that b lives
on the original lattice and not the dual lattice, these elec-
tric gauge transformations are perfectly local and do not
require “splitting” the charge between neighboring links as
in [19,29].19

Rewriting the action using the cup product identity
Eq. (10), we find that most terms are total derivatives:

Sθða; n; bÞ

¼
X
h

iθ
8π2

d½a ∪ da − 2πa ∪ n − 2πn ∪ a − 2πa ∪1 dn�

þ iθ
2
ðn ∪ nþ n ∪1 dnÞ þ ib ∪ dn: ð47Þ

17This operator can be thought of as the generator of staggered-
invariant field strength correlation functions.

18The meaning of the word “physical” is as follows. In the
continuum, contact terms are typically deemed unphysical because
they are ambiguous. To explain this, let us pick our favorite
regularization of the QFT, and consider the generating functional
containing local classical sources for all operators, which we
collectively label as J. As we flow to an intermediate energy scale
where our QFT lives, we generate infinitely many local terms
consistent with all the symmetries involving J only. These local
termswill induce contact contributions to the correlation functions.
The precise coefficients of these contact terms are ambiguous, as
they depend on the details of the UV completion. In the IR, this is
reflected in the ability to adjust local counterterms. It is for this
reason that one says contact terms are not “physical” or are
“ambiguous.”However note that contact terms of a given regulated
theory, such as a lattice theory, are not ambiguous at all. Never-
theless they generically, up to possible subtleties discussed in
Ref. [61], have no meaning in the IR theory.

19The attractive features of this theta term in the ‘electric’
variables come at the cost of making the dual “magnetic”
description (obtained by applying Poisson resummation to n)
more involved, but still possible to perform. The dual theory will
likely be nonultralocal and to restore exact electric-magnetic
duality one needs to appropriately modify the theory similarly to
what was done in [29].
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Now we set θ ¼ 2πk with k ∈ Z. On a lattice without
boundary (where X ≃ T4), this reduces to

Sθ¼2πkða; n; bÞ ¼
X
h

ikπðn ∪ nþ n ∪1 dnÞ þ ib ∪ dn:

ð48Þ
If we integrate out b to explicitly enforce the no-monopole
constraint, the second term vanishes and on a periodic
lattice

P
h n ∪ n evaluates to an even integer [19]. Hence

the partition function of the theory with θ ∈ 2πZ is equal to
unity on a closed periodic lattice.20

To make the connection to our 3d CS term (17), we now
take θ ¼ 2πkwith k ∈ 2Z and consider the theory (44) on a
lattice X with boundary ∂X. Referring to Eq. (47), the only
nontrivial term which fails to localize to the boundary is the
Lagrange multiplier, unless the magnetic gauge field is
restricted to be flat, db ¼ 0. Suppose we go further and
restrict b ¼ dφ mod 2π for some φ ∈ C0ðX;RÞ. This
relation is gauge invariant provided φ → φþ β − kλ, and
we observe that with such a restriction Eq. (47) reduces
exactly to our CS action Eq. (17). In other words, when k is
even

Sθ¼2πkða; n; b ¼ dφÞ
���
X
¼ SCS;kða; n;φÞ

���
∂X

ð49Þ

mod 2πi.
The fact that we had to restrict the magnetic gauge field

to be exact in order for the theta term to localize to the
boundary has a simple interpretation in terms of Higgsing
the magnetic gauge field. Indeed, we can couple b to a
Higgs field φ in the Villain representation,X

l

κ

2
ððdφÞl − bl − 2πulÞ2 ð50Þ

where u ∈ C1ðX;ZÞ and φ → φþ β − kλ, u → u − sþ
km under combined electric and magnetic gauge trans-
formations (i.e., φ is a dyonic Stueckelburg field).
Furthermore φ → φþ 2πr, u → uþ dr, as befits a com-
pact scalar. Taking the deep Higgs limit by sending κ → ∞
restricts b ¼ dφ mod 2π.
Physically, this Higgsing can be thought of as summing

over all monopole world lines in the bulk (which are really
dyons due to the Witten effect). This is necessary in order
to reproduce the full CS theory on the boundary for the
following reason. In our 4d setup the magnetic flux variable

n is dual to a surface Σ̃ in the bulk which can end on a
curve on the 3d boundary. Consider a 3d configuration
where n is dual to a noncontractible curve C̃, corresponding
to nonvanishing flux through a 2-cycle. With our fixed
bulk lattice X ≃ T2 ×D2, some configurations of this type
require the surface Σ ending on C̃ to also end on a dyon
world line in the bulk. As a result, to capture all configu-
rations on the boundary one has to sum over all dyon world
lines in the bulk with a flat weight, i.e., condense them.
The condensation of dyons is known as “oblique confine-
ment” [63–65].
Let us return again to the periodic 4d lattice without

boundary and b ¼ dφ,

Sθ¼2πkða; n; b ¼ dφÞ ¼
X
h

ikπðn ∪ nþ n ∪1 dnÞ; ð51Þ

where we dropped the total derivative. Clearly when k ∈
2Z the partition function is unity and this appears to be a
trivial theory. In fact, it is a symmetry-protected topological
(SPT) phase protected by the Uð1Þ electric 1-form sym-
metry of Eq. (44) which acts by shifting a by an arbitrary
flat 1-form. Though seemingly trivial, the action (51)
encodes the response to background fields for this sym-
metry. Let us consider the Zk subgroup of the electric
1-form symmetry. The SPT action coupled to a background
Zk gauge field B reads

SSPTðBÞ ¼
X
h

ikπ

��
nþ 1

k
B

�
∪
�
nþ 1

k
B

�

þ
�
nþ 1

k
B

�
∪1 d

�
nþ 1

k
B

��
:

¼ 2πi
2k

X
h

Pðknþ BÞ; ð52Þ

where we have introduced the Pontryagin square operation
which when k is even “squares” a Zk cocycle to form a Z2k
cocycle [51,66,67]. Explicitly,

PðαÞ≡ α ∪ αþ α ∪1 dα; ð53Þ

see Appendix B for some motivation behind this formula.
In the present context, the combination knþ B is a Zk
cocycle, and the above SPT action density takes values in
Z2k. The fact that the Pontryagin square is a well-defined
product in cohomology ensures that the SPT action is
invariant under both dynamical gauge transformations
(under which knþ B → knþ Bþ kdm) as well as back-
ground gauge transformations (under which knþ B →
knþ Bþ dV).
We can further simplify the SPT action by using a well-

known property of the Pontryagin square [see Eq. (B15)],

Pðαþ βÞ ¼ PðαÞ þ PðβÞ þ 2α ∪ β; ð54Þ

20One might try to use this fact to define Uð1Þk CS theory with
odd k on the lattice through Eq. (47). However, when k is odd the
bulk partition function on a closed (spin) manifold is only trivial
in the absence of monopoles. Here we are working with a fixed
bulk lattice X ≃ T2 ×D, and there exist 3d configurations which
cannot be extended to X without monopoles in the bulk. We
however expect that there exists a bulk lattice for which the odd k
theory can be defined in this way.
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where α; β ∈ HpðX;ZkÞ and the expression is valid at the
level of Z2k cohomology. In the present case α ¼ kn is
trivial in H2ðZkÞ, which implies

SSPTðBÞ ¼
2πi
2k

X
h

PðBÞ: ð55Þ

This is the SPT action coupled to a background field for the
Zk 1-form symmetry. Note that on our closed periodic
lattice, the above action evaluated to aZk phase as expected
for a spin manifold.
Now suppose we are on a lattice with boundary where

the genuine Z2k nature of the SPT phase appears. The SPT
action is no longer background gauge-invariant. Instead
(working mod 2πi),

SSPTðBþ dV þ kLÞ − SSPTðBÞ

¼
X
h

2πi
2k

ðB ∪ dV þ dV ∪ Bþ dV ∪1 dBþ dV ∪ dVÞ

þ iπððBþ dVÞ ∪ Lþ L ∪ ðBþ dVÞ
þ ðBþ dVÞ ∪1 dLÞ: ð56Þ

Now using the Leibniz rule and working mod 2πi, this
becomes

X
h

2πi
2k

ðdðB ∪ V þ V ∪ Bþ V ∪ dVÞ

− dB ∪ V − V ∪ dBþ dV ∪1 dBÞ
þ iπðL ∪ ðBþ dVÞ − ðBþ dVÞ ∪ L

þ ðBþ dVÞ ∪1 dLÞ: ð57Þ

Again using the cup product identities in Eq. (10) and
working mod 2πi this reduces to

SSPTðBþ dV þ kLÞ − SSPTðBÞ

¼
X
h

d

�
2πi
2k

ðB ∪ V þ V ∪ Bþ V ∪ dVÞ

þ iπ

�
ðBþ dVÞ ∪1 Lþ V ∪1

1

k
dB

��
; ð58Þ

which exactly cancels the Z2k-valued anomaly in Eq. (37).
Therefore, we have established anomaly inflow for the
’t Hooft anomaly of the Zk 1-form symmetry in our lattice
CS theory.

VI. CONCLUSIONS AND OUTLOOK

We have presented a fully regularized Euclidean lattice
formulation of compact, Uð1Þk Chern-Simons theory with
k even. Using this construction, we explored familiar (but
subtle) aspects of CS theory such as level quantization, the
need for framing, the electric charge of monopoles, and the

’t Hooft anomaly for the 1-form symmetry, all at finite
lattice spacing. This work provides yet another example
which challenges the common lore that certain aspects of
continuum quantum field theory cannot be captured on the
lattice, and has many worthwhile generalizations and
extensions.
Although we presented our construction on the cubic

lattice, all of the features explored in this paper [including
the lattice action (17)] carry over almost verbatim to a
general triangulation. On a triangulation, the definitions of
(higher) cup products and the framing of Wilson lines
depend sensitively on the choice of branching structure
(ordering of vertices), making certain aspects more tech-
nically involved, but straightforward.
We focused on the even level case which has an

intrinsically three-dimensional definition. The odd level
case is more subtle due to the theory being a spin-TQFT.
In the “simplest” case of k ¼ 1, the Wilson line is a
fermion, whose spin can be computed via self-linking.
However, this nontrivial topological spin cannot be com-
puted using the ’t Hooft anomaly for the 1-form symmetry,
as there is no 1-form symmetry when k ¼ 1. A proper
lattice formulation ofUð1Þk at odd level on the cubic lattice
will have to explicitly involve the spin structure, presum-
ably requiring an appropriate definition of ω2, the second
Stiefel-Whitney class.
Our pure-CS theory can be extended in various ways, for

instance by including a Maxwell term or charged matter.
The zero modes which required us to study only framed
Wilson loops gets lifted by a Maxwell term, and we expect
that the long-distance correlation functions of appropri-
ately-defined unframed Wilson loops should match the
correlation functions of untwisted, framed Wilson loops in
the pure CS theory.21

The main technical ingredients of our lattice formulation
are the use of Lagrange multipliers in the modified Villain
approach and the (higher) cup products on the cubic lattice.
We expect that these tools can be applied to other interesting
topological terms in various dimensions which have no
obvious definitions on the lattice. This includes the 3d and
4d “Maxwell-Goldstone” models and 4d axion-Maxwell
theory, all of which are theories with cubic topological terms
and higher-group symmetries [68–72]. It would be interest-
ing to try to give rigorous definitions of these theories on the
lattice while keeping all global properties intact. Finally, our
construction generalizes straightforwardly to torus gauge
groups with multiple Uð1Þ factors. It is less obvious how to
extend our analysis to non-Abelian groups and connect our
approach to existing proposals for non-Abelian CS terms on
the lattice [73].

21Maxwell-Chern-Simons theory also has topological Gukov-
Witten operators which generate the Zk 1-form symmetry. On the
lattice, these are ribbons with correlation functions and topo-
logical spins determined by the ’t Hooft anomaly Eq. (37).
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An obvious application of our CS action and its
generalizations is to establish exact dualities on the lattice.
Of course, it has long been known that particle-vortex
duality is exact on the lattice [74,75], and more recently it
was shown that lattice models in the modified Villain
formulation exhibit similar exact dualities [19,20,29].
Dualities between CS-matter theories can in principle be
established on the Euclidean lattice simply by comparing
world line representations. For related recent work in the
context of fermionic spin models, see [53,54,56,76].
An interesting question which we have not explored here

is how to understand the gravitational anomaly of CS
theory. It would be interesting to see whether or how the
subtle interplay of CS theory with gravity [5] manifests
itself in our construction.22 In particular CS theory in the
continuum, while naively metric-independent, requires the
metric in order to gauge fix. However, the dependence on
the metric is relatively mild, appearing as a phase of the
partition function which depends on the framing of the
manifold. In our construction, gauge fixing is not really an
issue,23 as the lattice gauge theory is compact. However the
extra zero modes will potentially cause problems, at least
on infinite lattices. It would be interesting to see whether
changing the choice of cup product leads to the phase
ambiguity related to the framing of the manifold expected
in the continuum. To understand this, one would have to
compute the partition function of our lattice CS theory. This
is bound to be subtle because of the staggered symmetry
which leads to extra zero modes in the Gaussian operator
which must be appropriately modded out. One way this can
be done is by introducing a Maxwell term, which would lift
the zero modes, and subsequently taking the subtle limit of
infinite gauge coupling.
Finally, another avenue is to formulate compact CS

theory on the lattice in the canonical formalism using the
Villain Hamiltonian approach [32]. A natural starting point
is the modified Villain generalization of the lattice action
studied by Eliezer and Semenoff, which is free of zero
modes when time is continuous. Similarly, one should be
able to construct the 4d θ-term24 in the Hamiltonian
formulation of the 4d gauge theory [32]. We leave this
for future work.
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APPENDIX A: (HIGHER) CUP PRODUCTS
ON THE CUBIC LATTICE

In this appendix we present explicit expressions for the
(higher) cup products on the cubic lattice. As discussed in
the main text, the standard cup product of a p-cochain
(p-form) and a q-cochain (q-form) is a (pþ q)-cochain
(pþ q-form), while the ∪i product of a p-cochain and a
q-cochain is a ðpþ q − iÞ-cochain. In this nota-
tion ∪ ¼ ∪0.
Two crucial properties of the cup product, which we do

not prove here, are that it obeys the Leibniz rule:

dðα ∪ βÞ ¼ dα ∪ β þ ð−1Þpα ∪ dβ; ðA1Þ

and is only supercommutative up to additional terms
involving the cup-1 product:

α ∪ β − ð−1Þpqβ ∪ α

¼ ð−1Þpþqþ1½dðα ∪1 βÞ − dα ∪1 β − ð−1Þpα ∪1 dβ�;
ðA2Þ

where α and β are p- and q-cochains respectively. The
above pattern continues—the ∪i product supercommutes
only up to terms involving the ∪iþ1 product:

α ∪i β − ð−1Þpqþiβ ∪i α

¼ ð−1Þpþqþ1þi½dðα ∪iþ1 βÞ − dα ∪iþ1 β

− ð−1Þpα ∪iþ1 dβ�: ðA3Þ

Note that the ∪i product strictly vanishes unless i ≤ p, q.
A general combinatorial definition of the higher cup

product on the hypercubic lattice is given in Ref. [56].25 For
completeness and clarity, we present graphical depictions
of the (higher) cup products in 1, 2, and 3 dimensions as
well as explicit formulas using notation which is standard
in lattice gauge theory. We will not give a general proof of

22We thank Shu-Heng Shao, Nathan Seiberg, and Yuya
Tanizaki for raising these points.

23There needs to be some partial discrete gauge fixing to bring
the link gauge fields into a finite interval as is customary in the
Villain formulation, but the gauge need not be fully fixed.

24In the Hamiltonian formulation the θ-angle periodicity is
only true up to the action by an operator containing the Chern-
Simons term.

25See Eqs. (27) and (28) in Ref. [56]. Note that the convention
we choose here corresponds to swapping all þ labels to − and
visa-versa in all of their formulas.
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the identities Eqs. (A2), (A3), but one can verify that they
hold for the specific cases provided below.
Our notation follows that of Ref. [19]. A p-cochain

(or p-form) α is denoted αx;μ1μ2���μp with x the “root” site
from which the p-chain (or p-cell) emanates, and the
indices run between 1 ≤ μi ≤ d. Below we will always take
μ1 < μ2 � � � < μp, with explicit minus signs to indicate
orientation.

(i) Ordinary cup products in 1 and 2 dimensions,
depicted in Fig. 10:

ðαð0Þ ∪ βð1ÞÞx;1 ¼ αxβx;1; ðA4aÞ

ðβð1Þ ∪ αð0ÞÞx;1 ¼ βx;1αx;1̂; ðA4bÞ

ðαð1Þ ∪ βð1ÞÞx;12 ¼ αx;1βxþ1̂;2 − αx;2βxþ2̂;1; ðA4cÞ

ðαð0Þ ∪ βð2ÞÞx;12 ¼ αxβx;12; ðA4dÞ

ðβð2Þ ∪ αð0ÞÞx;12 ¼ βx;12αxþ1̂þ2̂: ðA4eÞ

(ii) Ordinary cup products in 3 dimensions, depicted in
Fig. 11:

ðαð1Þ ∪ βð2ÞÞx;123 ¼ ðA5aÞ

αx;1βxþ1̂;23 − αx;2βxþ2̂;13 þ αx;3βxþ3̂;12;

ðβð2Þ ∪ αð1ÞÞx;123 ¼ ðA5bÞ

βx;23αxþ2̂þ3̂;1 − βx;13αxþ1̂þ3̂;2 þ βx;12αxþ1̂þ2̂;3;

ðαð0Þ ∪ βð3ÞÞx;123 ¼ αxβx;123; ðA5cÞ

ðβð3Þ ∪ αð0ÞÞx;123 ¼ βx;123αxþ1̂þ2̂þ3̂: ðA5dÞ

(iii) Higher cup products in 1 and 2 dimensions, depicted
in Fig. 12:

ðαð1Þ ∪1 β
ð1ÞÞx;1 ¼ αx;1βx;1; ðA6aÞ

ðαð1Þ ∪1 β
ð2ÞÞx;12 ¼ −ðαx;2 þ αxþ2̂;1Þβx;12; ðA6bÞ

ðβð2Þ ∪1 α
ð1ÞÞx;12 ¼ βx;12ðαx;1 þ αxþ1̂;2Þ; ðA6cÞ

ðαð2Þ ∪2 β
ð2ÞÞx;12 ¼ αx;12βx;12: ðA6dÞ

(iv) Cup-1 products in 3 dimensions, depicted in Fig. 13:

ðαð1Þ ∪1 β
ð3ÞÞx;123

¼ ðαx;3 þ αxþ3̂;2 þ αxþ3̂þ2̂;1Þβx;123; ðA7aÞ

ðβð3Þ ∪1 α
ð1ÞÞx;123

¼ βx;123ðαx;1 þ αxþ1̂;2 þ αxþ1̂þ2̂;3Þ; ðA7bÞ

ðαð2Þ ∪1 β
ð2ÞÞx;123 ¼ αx;23ðβx;12 þ βxþ2̂;13Þ

þ αxþ2̂;13βx;12 − αx;13βxþ1̂;23

− αxþ3̂;12ðβx;13 þ βxþ1̂;23Þ: ðA7cÞ

FIG. 10. Ordinary cup products in 1 and 2 dimensions.

FIG. 11. Ordinary cup products in 3 dimensions.

FIG. 12. Higher cup products in 1 and 2 dimensions.

FIG. 13. ∪1 products in 3 dimensions.
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(v) Cup-2 and cup-3 products in 3 dimensions, depicted
in Fig. 14:

ðαð2Þ ∪2 β
ð3ÞÞx;123

¼ ðαx;12 þ αx;23 þ αxþ2̂;13Þβx;123; ðA8aÞ

ðβð3Þ ∪2 α
ð2ÞÞx;123

¼ βx;123ðαx;13 þ αxþ1̂;23 þ αxþ3̂;12Þ; ðA8bÞ

ðαð3Þ ∪3 β
ð3ÞÞx;123 ¼ αx;123βx;123: ðA8cÞ

(vi) Here we only give an explicit formula for the ∪1

product of a 2-cochain and a 3-cochain in 4
dimensions needed to define the theta term in
Eq. (44) and the Pontryagin square:

ðαð2Þ ∪1 β
ð3ÞÞx;1234 ¼ ðA9aÞ

ðαx;34 þ αxþ3̂;24 þ αxþ2̂þ3̂;14Þβx;123 ðA9bÞ

þðαx;14 þ αxþ4̂;13 þ αxþ3̂þ4̂;12Þβxþ1̂;234 ðA9cÞ

− ðαxþ4̂;23 þ αxþ2̂þ4̂;13Þβx;124 þ αx;34βxþ3̂;124 ðA9dÞ

−ðαx;24 þ αxþ4̂;23Þβxþ2̂;134 þ αxþ3̂þ4̂;12βx;134: ðA9eÞ

APPENDIX B: THE ANOMALY OF Uð1Þk
IN THE CONTINUUM

AND THE PONTRYAGIN SQUARE

Consider the Uð1Þk Chern-Simons theory in continuum
on a 3d Euclidean manifold M. Rigorously the theory is
defined by using an auxiliary 4d manifold X such that
M ¼ ∂X, with the following action

S ¼ ik
4π

Z
X
F ∧ F ðB1Þ

where F ¼ dA and where A is a Uð1Þ connection on X
which smoothly extends from the connection on M. To
define the path integral onM, one integrates over all gauge
fields on M appropriately extended to X, with a weight

given by e−S.26 For this to make sense, one must make sure
that the weight e−S does not depend on the extension of the
gauge fields A on M to the gauge fields on X. A standard
argument shows27 that this is true for any k ∈ Z on a spin
manifold, and is true only for even k on a nonspin manifold.
The CS theory has Zk 1-form symmetry, for which we

can turn on background fields B̃ by replacing F → F þ B̃,

with B̃ the 2-form Zk gauge field,28 i.e., ei
R
Σ
B̃ is a Zk

phase. One way to characterize the ’t Hooft anomaly for
this symmetry is the failure of the CS action coupled to
background fields to be independent of the extension to X,
i.e., by the integral

ik
4π

Z
ðF þ B̃Þ ∧ ðF þ B̃Þ

¼ ik
4π

Z
F ∧ F þ ik

2π

Z
F ∧ B̃þ ik

4π

Z
B̃ ∧ B̃: ðB2Þ

It is easy to convince oneself that the second term is
0 mod 2π on a closed manifold, but the third one is in
general not. We want to understand the degree of the
anomaly, i.e., in what group the phase in the last term take
values in. It is useful to consider the normalization
B ¼ 1

2π kB̃, so that
R
B ∈ Z. Consider therefore

e
ik
4π

R
B̃∧B̃ ¼ e

i2π
2k

R
B∧B: ðB3Þ

Now we must distinguish between spin and nonspin
manifolds. First, we start with a spin manifold, in which
case

R
B ∧ B is always an even integer on a closed

manifold, and so the above phase is a Zk phase. On a
more general nonspin manifold

R
B ∧ B can take any

integer value in general, and the phase is Z2k. However,
recall that for odd k, the CS theory is not well defined on a
nonspin manifold, and so we conclude that the anomaly in
general has degree 2k for even k and degree k for odd k.
In fact this is a direct reflection of the properties of

the Pontryagin square. We will now briefly describe
the correspondence between the Pontryagin square in the
continuum and on the lattice. Much of this discussion can

FIG. 14. ∪2 and ∪3 products in 3 dimensions.

26What is meant by this is that for a particular configuration A
on M, one picks a 4d manifold X whose boundary is M, over
which A extends smoothly and then uses (B1) to compute the
weight. Note that it may be necessary to pick a different X for
different configurations A on M.

27The argument compares two such extensions X and X0 and
looks at the difference of weights defined via X and X0, i.e.

e−SXþSX0 ¼ e
− ik
4π

R
X∪ð−X0 Þ F∧F ¼ 1 if k ∈ Z in the spin case and k ∈

2Z in the nonspin case. This follows because 1
4π

R
F ∧ F ∈ 2πZ

on any closed spin 4-manifold, but can be half-integral on a
nonspin manifold.

28For the purpose of the continuum description we simply set
kB̃ ¼ dY, where Y is a properly quantized 1-form Uð1Þ gauge
field.
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be found in one form or another in Refs. [51,52]. A Zk
gauge field B is a member of cohomology HpðM;ZkÞ,
whereM is the spacetime manifold and p is the form degree
of B. We will take p to be even in what follows.
In the continuum we can describe B by a representative

of De Rham cohomology, i.e., it is a flat p-form withR
Σp

B ∈ Z where Σp is any p-cycle of the manifold. Then

we can construct a wedge product

B ∧ B: ðB4Þ

But we actually want to think of B as a member
of HpðM;ZkÞ and not HpðM;ZÞ. To achieve that, we
impose gauge invariance under B → Bþ kC where
C ∈ HpðM;ZÞ, so that B can be thought of as a Zk gauge

field, i.e., ei
2πs
k

R
B are well defined for integer s only.

Then the statement is that on any manifold (B4) is well
defined mod 2k if k is even and mod k if k is odd. In other
words B ∧ B ∈ H2pðM;Z2kÞ for k even and B ∧ B ∈
H2pðM;ZkÞ for k odd. To see this, we note that under
the transformation B → Bþ kC, Eq. (B4) transforms as

B ∧ B → B ∧ Bþ 2kB ∧ Cþ k2C ∧ C: ðB5Þ

To find the cohomology group for which the above
transformation is invisible, we integrate both sides on an
arbitrary manifold, and find

Z
B ∧ B →

Z
B ∧ Bþmod

�
2k for k-even

k for k-odd;
ðB6Þ

which establishes the result that for even k, B ∧ B ∈
H2pðM;Z2kÞ and for odd k, B ∧ B ∈ H2pðM;ZkÞ.
Notice that the crucial property to establish the result for
even k was the commutativity of the cup prod-
uct C ∧ B ¼ B ∧ C.
Now let us return to the anomalous phase, given by

ei
2π
2k

R
B∧B: ðB7Þ

Consider first the even k, so that the phase well defined and
is a Z2k phase on a general (potentially nonspin) manifold,
as it should be. On the other hand if k is odd, the above
expression is only well defined if the manifold is spin, in
which case the phase lies in Zk. So the anomaly is
described by the Pontryagin square of B.
On the lattice we can work directly at the level

of Zk cohomology, and take B ∈ H2ðM;ZkÞ (i.e.,
dB ¼ 0 mod k). Consistency requires invariance under
B→BþdVþkL with V ∈ C1ðM;ZÞ and L∈C2ðM;ZÞ.
We now start with the analog of the wedge product
Eq. (B4),

B ∪ B; ðB8Þ

and ask whether this is a well-defined product at the
cohomology level. Unlike in the continuum, where the
∧ product in de Rham cohomology is supercommutative,
the ∪ product at the cochain level is not. Let us consider a
replacement B → Bþ C, where we will set C ¼ dV and
C ¼ kL at the end, to check the gauge transformation. We
have that

B ∪ B → B ∪ Bþ C ∪ Bþ B ∪ Cþ C ∪ C

¼ B ∪ Bþ 2B ∪ Cþ C ∪ C ðB9Þ

− dðC ∪1 BÞ þ C ∪1 dBþ dC ∪1 B ðB10Þ

where we used (10). The second line is very much like the
one in the continuum, and if we set C ¼ dV or C ¼ kL it is
easily verified that it reduces to B ∪ B mod 2k for even k
and B ∪ B mod k for odd k. The first term of the third line
is a total derivative and vanishes after the sum over the
appropriate 2p-cells. The second and third terms in the
third line vanish mod k.
When k is even we can improve this product to get

something which is well-defined mod 2k. To do this we
must cancel the additional terms above, i.e. introduce a
counterterm to B ∪ B such that the combination transforms
by terms which vanish mod 2k. Such a term must be
bilinear in B, and it should involve the ∪1 product. There
are only two such terms we can write:

B ∪1 dB or dB ∪1 B: ðB11Þ

However these two terms are completely equivalent mod k2

and therefore we can use either.29 Moreover, B ∪1 dB ¼
−B ∪1 dB mod 2k so even the sign is irrelevant. Hence we
land on

PðBÞ ¼ B ∪ Bþ B ∪1 dB: ðB12Þ

Let us check if this is indeed well defined under the
transformation B → Bþ C with C either dV or C ¼ kL.
We have that

PðBÞ → PðBÞ þ 2C ∪ Bþ C ∪ C

− dðC ∪1 BÞ þ 2C ∪1 dB

þ dC ∪1 Bþ B ∪1 dC: ðB13Þ

The first two lines are not problematic. Finally we have the
term dC ∪1 Bþ B ∪1 dC, which is identically zero if
C ¼ dV, but one must check what happens if C ¼ kL.
Now using the identity for the commutation of the higher
cup product (A2), so that we have

29Remember that we are trying to construct a class of degree k
for odd k and 2k for even k, which in both cases are divisors of k2.
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dC ∪1 Bþ B ∪1 dC ¼ −dðdC ∪2 BÞ − dC ∪2 dB ðB14Þ

Now setting C ¼ kL we have that dC ∪2 dB ¼ kdL ∪2 dB ¼ 0 mod k2 and so PðBÞ is well defined mod 2k (resp. k) for k
even (resp. odd) as expected.
Finally, let us verify the identity Eq. (54). Let α; β ∈ H2ðZkÞ. Then

Pðαþ βÞ ¼ PðαÞ þ PðβÞ þ α ∪ β þ β ∪ αþ α ∪1 dβ þ β ∪1 dα

¼ PðαÞ þ PðβÞ þ 2α ∪ β − dðβ ∪1 αÞ þ dβ ∪1 αþ 2β ∪1 dαþ α ∪1 dβ

¼ PðαÞ þ PðβÞ þ 2α ∪ β − dðβ ∪1 αÞ þ 2β ∪1 dα − dðdβ ∪2 αÞ − dβ ∪2 dα: ðB15Þ

All of the terms in the last line are exact or multiples of 2k, as desired.
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