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We investigate an interacting supersymmetric gradient flow in the Wess-Zumino model. Thanks to the
nonrenormalization theorem and an appropriate initial condition, we find that any correlator of flowed
fields is ultraviolet finite. This is shown at all orders of the perturbation theory using the power counting
theorem for one-particle irreducible supergraphs. Since the model does not have the gauge symmetry, the
mechanism of realizing the ultraviolet finiteness is quite different from that of the Yang-Mills flow, and this
could provide further understanding of the gradient flow approach.
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I. INTRODUCTION

The gradient flow has achieved great success in lattice
field theory [1,2], and there are many applications, such
as nonperturbative renormalization group [3–14], a holo-
graphic description of field theory [15–21], OðNÞ nonlinear
sigma model and large N expansion [22–25], supersym-
metric theory [26–35], and phenomenological physics,
to obtain the bounce solution or sphaleron fields configu-
ration [36–39]. Further studies of the gradient flows could
provide a deep understanding of field theories [40,41].
In the Yang-Mills flow, any correlator of the flowed field

is ultraviolet (UV) finite at positive flow time if the four-
dimensional Yang-Mills theory is properly renormalized.
In the case of QCD, with an extra field strength renorm-
alization for the flowed quarks, a similar property is
obtained [42]. This property is a key ingredient of the
flow approach, and physical quantities that are difficult to
define exactly on the lattice can be studied by lattice
simulations with the flows [43–50].
Such a UV finiteness of gradient flow, however, does not

hold for scalar field theory in general [51]. The interacting

flow has nonremovable divergences, and the extra field
strength renormalization remains even for the massless
free flow.1 This seems to suggest that the gauge symmetry
or other symmetries are necessary in realizing the UV
finiteness of the interacting gradient flow.
Supersymmetric gradient flow is another possibility of

realizing the UV finiteness. The supersymmetric flows are
constructed for the super-Yang-Mills theory in Refs. [28,30]
and for the super-QCD in Ref. [32]. In Ref. [31], we also
constructed a supersymmetric flow in the Wess-Zumino
model, which is referred to as Wess-Zumino flow in this
paper. The Wess-Zumino flow is the simplest supersym-
metric extension of the gradient flow and gives a good
testing ground in investigating the influence of supersym-
metry on the flow approach.
In this paper, we show that any correlation function of

chiral superfields obtained from the Wess-Zumino flow is
UV finite at positive flow time in all orders of the
perturbation theory. Since the model does not have the
gauge symmetry, the mechanism of realizing the UV
finiteness is quite different from that of the Yang-Mills
flow. As we will see later, it is a direct consequence of the
supersymmetry, in particular, the nonrenormalization theo-
rem of the Wess-Zumino model.
To show this, we first introduce a method of defining a

Wess-Zumino flow with renormalization-invariant couplings.
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1The flow equation is given only from the gradient of the
massless free part of the action, while the scalar field theory at
t ¼ 0 still has interaction terms. The initial condition is given by a
bare scalar field.

PHYSICAL REVIEW D 107, 125015 (2023)

2470-0010=2023=107(12)=125015(14) 125015-1 Published by the American Physical Society

https://orcid.org/0000-0001-5258-0682
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.125015&domain=pdf&date_stamp=2023-06-15
https://doi.org/10.1103/PhysRevD.107.125015
https://doi.org/10.1103/PhysRevD.107.125015
https://doi.org/10.1103/PhysRevD.107.125015
https://doi.org/10.1103/PhysRevD.107.125015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


We also give a renormalization-invariant initial condition.
These renormalization invariances are immediately shown
from the nonrenormalization theorem. The perturbation
calculation of the Wess-Zumino flow is carried out using
an iterative expansion of the flow equation and the ordinary
perturbation theory for the boundary Wess-Zumino model.
Since the initial condition depends on the coupling constant,
the order of the perturbative expansion is given by a fractional
power g2=3. The super-Feynman rule for one-particle irre-
ducible (1PI) supergraphs is then derived. Using the power
counting theorem based on the super-Feynman rule, the UV
finiteness of the Wess-Zumino flow is established.
The rest of this paper is arranged as follows: In Sec. II,

we consider the gradient flow of the ϕ4 scalar field theory.
In Sec. III, we review a perturbation theory in the Wess-
Zumino model as a supersymmetric extension of ϕ4 scalar
field theory. In Sec. IV, we construct the Wess-Zumino
flow with renormalization-invariant couplings according
to Ref. [31] with some modifications. With the super-
Feynman rule for the correlation function derived from the
iterative expansion of the flow equation, we show that the
Wess-Zumino flow has UV finiteness using the power
counting theorem. Section V is devoted to summarizing
results.

II. THE CASE OF ϕ4 THEORY

Let t ≥ 0 be a flow time and φðt; xÞ be a t-dependent
field. We consider a gradient flow equation of Euclidean ϕ4

theory as

∂φðt; xÞ
∂t

¼ ð□ −m2Þφðt; xÞ − λφ3ðt; xÞ; ð1Þ

with an initial condition,

φðt ¼ 0; xÞ ¼ ϕðxÞ; ð2Þ

where□ ¼ ∂μ∂μ. As the name suggests, the rhs of Eq. (1) is
−δS=δϕjϕ→φ where

S ¼
Z

d4x

�
1

2
ð∂μϕÞ2 þ

m2

2
ϕ2 þ λ

4
ϕ4

�
ðxÞ; ð3Þ

with a bare mass m and a bare coupling constant λ. In this
setup, the scalar theory (3) is put on the boundary (t ¼ 0).
In the Yang-Mills flow, it is shown that correlation

functions at positive flow time are UV finite under the
initial condition Bμðt ¼ 0; xÞ ¼ AμðxÞ where AμðxÞ is a
bare field irrelevant to a renormalization scheme. This
property plays a crucial role in matching two different
schemes that are used for calculating nontrivial renormal-
izations for operators [1,42–44]. In this paper, we also
employ an initial condition given by bare fields for the

Wess-Zumino flow in later sections, such as Eq. (2) for
scalar theory.
The formal solution of Eq. (1) can be obtained from

an iterative approximation of the flow equation. This is
regarded as a perturbative expansion in terms of λ. The
flowed field φðt; xÞ is thus given by a treelike graph with
the boundary field ϕ at the end points. The correlation
function of the flowed field is then evaluated by the usual
perturbation theory at the boundary [1,2].
In the massless free flow, where ∂φ=∂t ¼ □φ and Eq. (3)

gives the boundary theory,2 any correlation function of
φðt; xÞ is UV finite up to an extra wave function renorm-
alization once the boundary theory is properly renormal-
ized. However, for massive or interacting flows (m ≠ 0 or
λ ≠ 0), such a property is not obtained [51].
This conclusion is easily understood from the 4þ 1-

dimensional theory that produces the same perturbative
series discussed above. As in the case of the Yang-Mills
flow [2], the bulk action of the 4þ 1-dimensional theory is
given by

Sbulk ¼
Z

∞

0

dt
Z

d4xLðt; xÞf∂tφðt; xÞ − ð□ −m2Þφðt; xÞ

þ λφ3ðt; xÞg; ð4Þ

with a Lagrange multiplier field Lðt; xÞ. The effect of
the boundary field on the bulk field φðt; pÞ is suppressed by
a damping factor e−tp

2

. Therefore, at large flow times,
correlation functions of the bulk fields are given by
Feynman diagrams consisting only of flow lines and
flow vertices. Any diagram of this kind resulting from
the action (4) starts from L and ends at φ and is expressed
as a directed graph without loops. Since there are no
divergences, bulk counterterms are absent for the action (4).
However, m and λ are the bare parameters of the boundary
theory and contain divergences determined in the theory.
Therefore, unnecessary “bulk counterterms” arise from the
renormalization of m and λ, and this dþ 1-dimensional
theory is nonrenormalizable.3

Achieving UV finiteness in the massive or interacting
flow requires the absence of the bulk counterterms. In
other words, the flow equation should be given by
renormalization-invariant couplings. We consider a super-
symmetric ϕ4 theory in the next section because further
constraints on the renormalization are needed to define
such a renormalization-invariant flow equation.

2In this case, the action that defines the gradient flow is
different from the boundary theory.

3In the massless free flow, there are no “bulk counterterms”,
and any UV divergence of flowed field correlators appears only in
loop integrals at the boundary. If we took φðt ¼ 0; xÞ ¼ ϕRðxÞ
instead of Eq. (2), any correlation function is UV finite.
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III. REVIEW OF THE WESS-ZUMINO MODEL

We work in Euclidean space with the notation of
Refs. [30,31], which is derived from Ref. [52] by a
Wick rotation. See the Appendix for details of the notation.

A. The Wess-Zumino model

The Wess-Zumino model is a supersymmetric extension
of ϕ4 theory, which is given by a scalar field AðxÞ, a Weyl
spinor ψðxÞ, and an auxiliary field FðxÞ. In the superfield
formalism, a chiral superfield Φðx; θ; θ̄Þ contains the field
contents as

Φðy; θÞ≡ AðyÞ þ
ffiffiffi
2

p
θψðyÞ þ iθθFðyÞ; ð5Þ

where yμ ¼ xμ þ iθσμθ̄.
In Minkowski space, an antichiral superfield Φ† is

defined by the Hermitian conjugate of Φ. However, in
Euclidean space, such a definition is incompatible with the
Wick rotation. In fact, ψ̄ is not a Hermitian conjugate of ψ ,
but a different Weyl spinor. We define an antichiral
superfield Φ̄ that is a Euclidean counterpart of Φ† as

Φ̄ðȳ; θ̄Þ≡ A�ðȳÞ þ
ffiffiffi
2

p
θ̄ ψ̄ðȳÞ þ iθ̄ θ̄F�ðȳÞ; ð6Þ

where ȳμ ¼ xμ − iθσμθ̄.
In Euclidean space, the chiral and antichiral superfields

Φ and Φ̄ also satisfy D̄ _αΦ ¼ DαΦ̄ ¼ 0. The supersym-
metry transformation of a superfieldF ðx; θ; θ̄Þ is defined as

δξF ðx; θ; θ̄Þ ¼ ðξQþ ξ̄ Q̄ÞF ðx; θ; θ̄Þ; ð7Þ

where the supercovariant derivatives D; D̄ and super-
charges Q; Q̄ are defined in the Appendix. Super-
symmetry transformations of component fields are derived
from (7).
The Wess-Zumino model is then defined by

S ¼ −
Z

d8zΦ̄ðzÞΦðzÞ −
Z

d4xd2θWðΦðzÞÞ

−
Z

d4xd2θ̄WðΦ̄ðzÞÞ; ð8Þ

where

WðΦÞ≡m
2
Φ2 þ g

3
Φ3 ð9Þ

for bare coupling constants m ≥ 0 and g > 0. To simplify
the notation, we used z¼ðxμ;θα; θ̄ _αÞ and d8z≡ d4xd2θd2θ̄.
The action is invariant under the supersymmetry trans-
formation (7).
Renormalized superfield ΦR and renormalized coupling

constants mR, gR satisfy

ΦR ¼ Z−1
2Φ; Φ̄R ¼ Z−1

2Φ̄; ð10Þ

and

δm ¼ mZ −mR; δg ¼ gZ
3
2 − gR: ð11Þ

The nonrenormalization theorem of the Wess-Zumino
model tells us that the F-terms are not renormalized, that
is, δm ¼ δg ¼ 0 [53–56]. Therefore, we have

mR ¼ mZ; gR ¼ gZ
3
2: ð12Þ

It turns out that a normalized mass given by

M≡mg−
2
3 ð13Þ

is invariant under the renormalization.

B. Perturbation theory

The perturbation theory can be given in the superfield
formalism [55]. We derive a super-Feynman rule for 1PI
supergraphs of the Wess-Zumino model in Euclidean
space. Equation (12) is formally confirmed by the power
counting theorem derived from the super-Feynman rule.
We first introduce external chiral and antichiral super-

fields J and J̄ satisfying D̄ _αJ ¼ DαJ̄ ¼ 0 and consider

Z½J; J̄� ¼
Z

DΦDΦ̄e−S0−Sint−Ssrc ; ð14Þ

where

Ssrc ¼ −
Z

d4xd2θJðzÞΦðzÞ −
Z

d4xd2θ̄ J̄ðzÞΦ̄ðzÞ: ð15Þ

The superfield Green’s function Gðz1; z2;…; zm; z01; z
0
2;

…; z0nÞ is obtained by

Gðz1;…; zm; z01;…; z0nÞ ¼
1

ZjJ¼J̄¼0

δm

δJðz1Þ � � � δJðzmÞ
δn

δJ̄ðz01Þ � � � δJ̄ðz0nÞ
Z½J; J̄�j

J¼J̄¼0

; ð16Þ
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where

δJðz1Þ
δJðz2Þ

¼ −
D̄2

1

4
δ8ðz1 − z2Þ; ð17Þ

δJ̄ðz1Þ
δJ̄ðz2Þ

¼ −
D2

1

4
δ8ðz1 − z2Þ; ð18Þ

and the other functional derivatives are zero, where D1 and
D̄1 are defined for z1.
Let S0 and Sint be the free and interaction parts of the

action, respectively. The free field action S0 can be written
in the full superspace as

S0 ¼ −
Z

d8z

�
Φ̄Φþm

2
Φ
�
−
D2

4□

�
Φ

þm
2
Φ̄
�
−
D̄2

4□

�
Φ̄
�
ðzÞ: ð19Þ

Similarly, we have

Sint ¼ −
g
3

Z
d8z

�
Φ2

�
−
D2

4□

�
Φþ Φ̄2

�
−
D̄2

4□

�
Φ̄
�
ðzÞ;

ð20Þ

and

Ssrc ¼ −
Z

d8z

�
J

�
−
D2

4□

�
Φþ J̄

�
−
D̄2

4□

�
Φ̄
�
ðzÞ: ð21Þ

These are easily derived using Eqs. (A12) and (A13).
A short calculation tells us that Z0½J; J̄�≡ Z½J; J̄�jg¼0 is

written as

Z0½J; J̄� ¼ exp

�
1

2

Z
d8zd8z0ðJðzÞ; J̄ðzÞÞΔGRSðz; z0Þ

×

�
Jðz0Þ
J̄ðz0Þ

��
; ð22Þ

where

ΔGRSðz; z0Þ ¼
1

−□þm2

 
mD2

4□
1

1 mD̄2

4□

!
δ8ðz − z0Þ: ð23Þ

The propagator ΔGRS is called the Grisaru-Rocek-Siegel
(GRS) propagator, introduced in [55].
Two-point functions are thus obtained as

hΦðz1ÞΦ̄ðz2Þi0 ¼
1

16

D̄2
1D

2
1

−□1 þm2
δ8ðz1 − z2Þ;

hΦðz1ÞΦðz2Þi0 ¼
m
4

D̄2
1

−□1 þm2
δ8ðz1 − z2Þ;

hΦ̄ðz1ÞΦ̄ðz2Þi0 ¼
m
4

D2
1

−□1 þm2
δ8ðz1 − z2Þ; ð24Þ

where h� � �i0 is the expectation value in the free theory. The
Green’s function (16) is obtained from

Z½J; J̄� ¼ exp

�
−Sint

�
δ

δJ
;
δ

δJ̄

��
Z0½J; J̄�; ð25Þ

by evaluating the functional derivatives δ=δJ and
δ=δJ̄. In perturbation theory, we need to evaluate extra
derivatives that arise from the Taylor expansion of
exp f−Sint½ δδJ ; δ

δJ̄�g.
The perturbative calculation of Green’s functions con-

tains a term like

−Sint
�
δ

δJ
; 0

�
Jðz1ÞJðz2ÞJðz3Þ ¼

g
3

Z
d8z4

�
−

D2
4

4□4

�
δ

δJðz4Þ
���

δ

δJðz4Þ
�

2

Jðz1ÞJðz2ÞJðz3Þ

¼ 2g
Z

d8z4δ8ðz1 − z4Þ
�
−
D̄2

2

4

�
δ8ðz2 − z4Þ

�
−
D̄2

3

4

�
δ8ðz3 − z4Þ; ð26Þ

where JðziÞ attaches to antichiral superfields via Eq. (22).
We used (A13) to show the second equality.
The effective action is made of 1PI supergraphs that are

calculated from 1PI Green’s functions amputating propa-
gators of external lines. Each vertex of 1PI diagrams has
two or three internal lines. For a vertex with no external

lines, two of the three internal lines have D̄2

4
as suggested

from the last line of Eq. (26). Whereas, for a vertex with
two internal lines and one external line, one of the two

internal lines has D̄2

4
because the external lines are asso-

ciated with δ=δJ without D2

4□
in the first line of (26).
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The super-Feynman rules for 1PI supergraphs are given
in the momentum space as follows:
(a) Use the propagators Δ̃GRS for ΦΦ;ΦΦ̄; Φ̄ Φ̄, which

are given by

Δ̃GRSðp; θ1; θ̄1; θ2; θ̄2Þ ¼
1

p2 þm2

 
− mD2

1

4p2 1

1 − mD̄2
1

4p2

!

× δ2ðθ1 − θ2Þδ2ðθ̄1 − θ̄2Þ:
ð27Þ

(b) Write a factor 2g and
R
d2θd2θ̄ at each vertex. For a

vertex with n internal lines (n ¼ 2, 3), put a factor of
−D̄2=4 ð−D2=4Þ at n − 1 lines of the n chiral (anti-
chiral) lines.

(c) Impose the momentum conservation at each vertex
and integrate over undetermined loop momenta.

(d) Compute the usual combinatoric factors.
These rules are given in Euclidean space. See also Ref. [52]
for the rule in Minkowski space.
We can calculate the superficial degrees of divergence

for 1PI supergraphs using the super-Feynman rule.
Consider a 1PI supergraph with L loops, V vertices, E
external lines, and P propagators, of which C are ΦΦ or
Φ̄ Φ̄ massive propagators. We count D2; D̄2 as p because
D̄2D2 ∼ p2 for chiral superfields. Each loop integral has
d4p. The GRS propagator provides 1=p2 with an additional
factor 1=p for ΦΦ or Φ̄ Φ̄ propagators. The internal lines
have 2V − E factors of D2 or D̄2. In each loop integral,
we can use an identity δ12D2D̄2δ12 ¼ 16δ12 to remove a
D2D̄2 ∼ p2. The superficial degrees of divergence for the
graph is given by

d ¼ 4L − 2P − Cþ 2V − E − 2L: ð28Þ

Using V − Pþ L ¼ 1, we find

d ¼ 2 − E − C: ð29Þ

For E ¼ 2, d can be zero (the logarithmic divergence). If
two external lines have the same chirality, d < 0 because at
least one ΦΦ or Φ̄ Φ̄ propagator is needed. We have d < 0
for E ≥ 3. Thus, we find that the wave function renorm-
alization exists but the effective action does not have any
divergent correction to mΦ2 and gΦ3.

IV. THE WESS-ZUMINO FLOW

We consider a supersymmetric gradient flow in the
Wess-Zumino model. It can be shown that any correlation
function of the flowed fields is UV finite thanks to the
nonrenormalization theorem under an appropriate initial
condition.

A. The Wess-Zumino flow with renormalization-
invariant couplings

In Ref. [31], we defined a supersymmetric flow equation
using the gradient of the action (8). However, the bulk
counterterms exist in this case, because the bare coupling
constants m, g included in the flow receive the renormal-
izations determined at t ¼ 0. See Ref. [51] for relevant
arguments. Therefore, the flow theory with bare m and g is
ill defined at the quantum level.
In order to solve this issue, we introduce renormaliza-

tion-invariant couplings into the flow equation. We con-
sider the following rescaling of coordinates and field
variables:

x0μ ≡ g
2
3xμ; θ0 ≡ g

1
3θ; θ̄0 ≡ g

1
3θ̄ ð30Þ

and

A0ðx0Þ≡ g
1
3AðxÞ;

ψ 0ðx0Þ≡ ψðxÞ;
F0ðx0Þ≡ g−

1
3FðxÞ: ð31Þ

Replacing every variable of the superfields by the corre-
sponding rescaled variable, we have

Ξðx0; θ0; θ̄0Þ≡ g
1
3Φðx; θ; θ̄Þ; ð32Þ

where

Ξðy0; θ0Þ ¼ A0ðy0Þ þ
ffiffiffi
2

p
θ0ψ 0ðy0Þ þ iθ0θ0F0ðy0Þ; ð33Þ

and y0μ ≡ x0μ þ iθ0σμθ̄0 ¼ g
2
3y. The differential operators

satisfy Q0
α ¼ g

1
3Qα and D0

α ¼ g
1
3Dα. The superfield formal-

ism is then kept unchanged because Ξ is a chiral superfield
satisfying D̄0

_αΞ ¼ 0 and the supersymmetry transformation
laws of A0;ψ 0; F0 are the same as those of A, ψ , F.
Hereafter, we omit the prime symbols unless they are

confusing. From a short calculation, one can show that
the Wess-Zumino action is rewritten in Ξðx; θ; θ̄Þ and
Ξ̄ðx; θ; θ̄Þ as

S¼ −
1

g2

Z
d4xd2θd2θ̄ Ξ̄Ξ−

1

g2

Z
d4xd2θ

�
1

2
MΞ2 þ 1

3
Ξ3

�

−
1

g2

Z
d4xd2θ̄

�
1

2
MΞ̄2 þ 1

3
Ξ̄3

�
: ð34Þ

We should note that M is defined as Eq. (13), which is
invariant under the renormalization for (8) in the standard
manner.
In terms of rescaled variables, we can consider a

supersymmetric gradient flow according to Ref. [31] as
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∂tΨðt; zÞ ¼ g2
D̄2

4

δS
δΞðzÞ

				
ΞðzÞ→Ψðt;zÞ

; ð35Þ

where z ¼ ðx; θ; θ̄Þ. The D̄2 factor is needed to keep the
superchiral condition for Ψðt; zÞ because δS=δΞ is not
chiral. The flow equation for Ψ̄ is given by a replacement
ðΨ;Ξ; D̄Þ ↔ ðΨ̄; Ξ̄; DÞ from Eq. (35). We thus have

∂tΨ ¼ □Ψ −M
D̄2

4
Ψ̄ −

D̄2

4
Ψ̄2; ð36Þ

∂tΨ̄ ¼ □Ψ̄ −M
D2

4
Ψ −

D2

4
Ψ2: ð37Þ

The flow equation is given with couplings that are
renormalization invariant for the original Wess-Zumino
action (8) given by ðA;ψ ; FÞ.
The initial condition for Ψðt; zÞ and Ψ̄ðt; zÞ is given in

the next section. If a supersymmetry transformation of the
flowed fields is defined by extending (7) to the 4þ 1

dimensions as δξΨðt; zÞ ¼ ðξQþ ξ̄ Q̄ÞΨðt; zÞ, then the
flow equations and the supersymmetry transformation
are consistent because they satisfy ½δξ; ∂t� ¼ 0.
The superchiral condition D̄ _αΨ ¼ DαΨ̄ ¼ 0 allows us to

expand Ψ and Ψ̄ as

Ψðt; y; θÞ ¼ ϕðt; yÞ þ
ffiffiffi
2

p
θχðt; yÞ þ iθθGðt; yÞ; ð38Þ

Ψ̄ðt; ȳ; θÞ ¼ ϕ̄ðt; ȳÞ þ
ffiffiffi
2

p
θ̄ χ̄ðt; ȳÞ þ iθ̄ θ̄ Ḡðt; ȳÞ: ð39Þ

For the component fields, we have

∂tϕ ¼ □ϕþ iMḠþ ð2iϕ̄ Ḡ−χ̄ χ̄Þ; ð40Þ

∂tϕ̄ ¼ □ϕ̄þ iMGþ ð2iϕG − χχÞ; ð41Þ

∂tχ ¼ □χ þ iσμ∂μðMχ̄ þ 2ϕ̄ χ̄Þ; ð42Þ

∂tχ̄ ¼ □χ̄ þ iσ̄μ∂μðMχ þ 2ϕχÞ; ð43Þ

∂tG ¼ □G − i□ðMϕ̄þ ϕ̄2Þ; ð44Þ

∂tḠ ¼ □Ḡ − i□ðMϕþ ϕ2Þ: ð45Þ

Since the reality condition is broken by the Wick rotation,
the Hermitian conjugate relation is not kept for the flow
equation. So ϕ̄ and Ḡ are independent complex fields that
are not complex conjugates of ϕ and G. From the initial
condition given in the next section, the complex conjugate
relation is kept only at the boundary such as ϕ̄ðt ¼ 0; xÞ ¼
ðϕðt ¼ 0; xÞÞ�. Note that the flow equations for ϕ̄; χ̄; Ḡ are
obtained from those of ϕ; χ; G by a simple replacement as
ϕ ↔ ϕ̄; χ ↔ χ̄; G ↔ Ḡ and σμ ↔ σ̄μ.

B. The vector notation and an initial condition

We introduce a vector notation of chiral superfields as

Ψðt; zÞ ¼
�Ψ1ðt; zÞ
Ψ2ðt; zÞ

�
≡
�Ψðt; zÞ
Ψ̄ðt; zÞ

�
: ð46Þ

The Wess-Zumino flow equations (36) and (37) can be
expressed as

∂tΨ ¼ ð□þMΓΔÞΨþ Δ̄N; ð47Þ

where

Δ≡
�− 1

4
D2 0

0 − 1
4
D̄2

�
; ð48Þ

Δ̄≡
�− 1

4
D̄2 0

0 − 1
4
D2

�
; ð49Þ

Γ≡
�
0 1

1 0

�
; ð50Þ

and the nonlinear part is characterized by

Niðt; zÞ ¼
1

2
gijkΨjðt; zÞΨkðt; zÞ; ð51Þ

with a coefficient gijk defined as gijk ¼ 2ΓijΓik.
We consider the following initial condition,4

Ψjt¼0 ¼ Φ0; ð52Þ

where

Φ0ðzÞ≡ g
1
3

�ΦðzÞ
Φ̄ðzÞ

�
¼ g

1
3

R

�ΦRðzÞ
Φ̄RðzÞ

�
: ð53Þ

The second equality of Eq. (53) is a direct consequence of
the nonrenormalization theorem. We may considerΨjt¼0 ¼
fðMÞΦ0 instead of Eq. (52) because the conclusion of this
section does not change for any nonzero function fðMÞ.
Hereafter, we take fðMÞ ¼ 1 for simplicity.
The operators introduced above satisfy

Δ̄ΔΔ̄ ¼ □Δ̄; ð54Þ

ΓΔ̄Γ ¼ Δ; ð55Þ

Γ2 ¼ 1; ð56Þ

4For the component fields, we have ϕjt¼0 ¼ αA, χjt¼0 ¼ αψ ,
and Gjt¼0 ¼ αF, where α ¼ g

1
3.
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and

Δ̄ΔΨ ¼ □Ψ: ð57Þ

C. Iterative solution of the Wess-Zumino flow

The flowed field Ψðt; zÞ satisfying the Wess-Zumino
flow equation can be expressed as an iterative expansion.
To show this, we first introduce a heat kernel in the
superspace z ¼ ðxμ; θα; θ̄ _αÞ as

KtðzÞ ¼
 

CtðxÞ − D̄2

4
ffiffiffiffiffiffi
−□

p StðxÞ
− D2

4
ffiffiffiffiffiffi
−□

p StðxÞ CtðxÞ

!
× δ2ðθÞδ2ðθ̄Þ;

ð58Þ
where

CtðxÞ≡
Z

d4p
ð2πÞ4 e

ipx−tp2

cos


tM

ffiffiffiffiffi
p2

q �
; ð59Þ

StðxÞ≡
Z

d4p
ð2πÞ4 e

ipx−tp2

sin


tM

ffiffiffiffiffi
p2

q �
: ð60Þ

The heat kernel satisfies

ð∂t −□ −MΓΔÞKtðzÞ ¼ 0 ð61Þ

and

K0ðzÞ ¼ δ8ðzÞ; ð62Þ

since C0ðxÞ ¼ δ4ðxÞ and S0ðxÞ ¼ 0. The flow equation (47)
can be solved formally as

Ψðt; zÞ ¼
Z

d8z0Ktðz − z0ÞΦ0ðz0Þ þ
Z

t

0

ds

×
Z

d8z0Δ̄Kt−sðz − z0ÞNðs; z0Þ; ð63Þ

where Δ̄ acts on z. Inserting the formal solution intoΨ ofN
on the rhs repeatedly yields an iterative approximation of
the flow equation. The iterative approximation can be
expressed as a treelike graph with Φ0 at end points.
In Fig. 1, the iterative solution of the Wess-Zumino flow

equation (47) is represented graphically. The circle with
cross associated with the end points of the flow time zero is
a one-point vertex defined by

ð64Þ

The flow vertex shown by an open circle is defined as

ð65Þ

where an operator Δ̄iiðp; θ; θ̄Þ acts upon the outgoing line
with the index i. For each vertex (one-point and flow
vertex), the Grassmann integral

R
d2θd2θ̄ is performed. In

addition, for the flow vertex, the flow time t is integrated
out from 0 to ∞.
The flow line connecting the vertices is defined by

ð66Þ

where K̃tðp; θ; θ̄Þ ¼
R
d4xe−ipxKtðx; θ; θ̄Þ and ΘðtÞ is the

Heaviside step function. The arrow indicates the direction
of increasing flow time.
As for the momenta, at each flow vertex, the momentum

conservation is assumed, and an undermined momentum of
ingoing flow lines is integrated.
In Fig. 1, the treelike graph begins at a single square of

flow time t and terminates at the one-point vertices of flow
time 0. The flow time runs from 0 to t keeping the time
order with step functions. The initial condition (53) tells us

that this iterative approximation may be understood as the
perturbative expansion of one-third power of the coupling
constant g

1
3.

D. Super-Feynman rules

We move on to perturbative calculations of correlation
functions of Ψi combining the above iterative approxima-
tion of the Wess-Zumino flow and the super-Feynman rules
in the Wess-Zumino model at t ¼ 0 discussed in Sec. III B.

FIG. 1. Treelike graphs of the iterative solution Ψðt; p; θ; θ̄Þ.
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For example, the leading order contribution to the two-point function is diagrammatically represented as

ð67Þ

The staple symbol on the lhs denotes the contraction between two boundary fieldsΦ0, which is given at the leading order as

hΦ0;iðp; θ; θ̄ÞΦ0;jðp0; θ0; θ̄0Þi ¼ g
2
3Dijðp; θ; θ̄Þð2πÞ4δ4ðpþ p0Þδ2ðθ − θ0Þδ2ðθ̄ − θ̄0Þ; ð68Þ

where

Dðp; θ; θ̄Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
0
B@ sin ðβ0ðpÞÞ D̄2

4
cos ðβ0ðpÞÞ D̄2D2

16
ffiffiffiffi
p2

p

cos ðβ0ðpÞÞ D2D̄2

16
ffiffiffiffi
p2

p sin ðβ0ðpÞÞ D2

4

1
CA ð69Þ

for tanðβ0ðpÞÞ ¼ m=
ffiffiffiffiffi
p2

p
.

As shown in Eq. (67), we obtain the two-point function ofΨ at the leading order taking a contraction between twoΦ0 for
two tree-level solutions of Ψ as

hΨiðt; p; θ; θ̄ÞΨjðs; q; θ0; θ̄0Þi ¼ g
2
3Dtþs;ijðp; θ; θ̄Þð2πÞ4δ4ðpþ qÞδ2ðθ − θ0Þδ2ðθ̄ − θ̄0Þ; ð70Þ

where

Dtðp; θ; θ̄Þ ¼
e−tp

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
0
B@ sin ðβtðpÞÞ D̄2

4
cos ðβtðpÞÞ D̄2D2

16
ffiffiffiffi
p2

p

cos ðβtðpÞÞ D2D̄2

16
ffiffiffiffi
p2

p sin ðβtðpÞÞ D2

4

1
CA ð71Þ

for βtðpÞ ¼ β0ðpÞ þ tM
ffiffiffiffiffi
p2

p
.

Thus, a field propagator associated with Eq. (70) is defined by

ð72Þ

The time dependence appears as a sum of two boundary
times, and the diagram of field propagator is shown by a
line without an arrow. Since Eq. (71) reproduces Eq. (69)
for t ¼ 0, Eq. (72) contains all of the field propagators such
as hΦ0Φ0i and the mixed one hΦ0Ψi, as well as hΨΨi.
Note that each field propagator is counted as g

2
3 in the

perturbation theory.
We reformulate the perturbation theory at t ¼ 0 in terms

of Φ0 because the Φ0 propagator is treated uniformly with
flow propagators. Unlike the perturbation theory given in
Sec. III B, the GRS propagatorΔGRS is not used. The super-
Feynman rules at t ¼ 0 should be modified to make fit with
the rules for the iterative approximation of the Wess-
Zumino flow equation. First, we rewrite the interaction
part of the action (20) as

Sint ¼ −
Z

d8z

�
1

3!
hijk

�
Δ
□
Φ0

�
i
Φ0;jΦ0;k

�
ðzÞ; ð73Þ

where hijk ¼ 2δijδik. The three-point vertex of the flow
time zero may be defined by

ð74Þ

where Δiiðp; θ; θ̄Þ acts on an internal line p, i. This is
because Δiiðp; θ; θ̄Þ=p2 can be changed to Δjjðq; θ; θ̄Þ=q2
or Δkkðr; θ; θ̄Þ=r2 by using the identity Δ̄Δ

□
Φ0 ¼ Φ0 for

Eq. (73). For each boundary vertex, the Grassmann integralR
d2θd2θ̄ is performed.
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Now, we consider the following one-loop correction to the two-point function, including one flow vertex (open circle)
and one ordinary vertex (filled circle)5:

ð75Þ

As in the tree-level case, performing the contraction
between two Φ0 yields a field propagator. In this case,
the three lines without arrows on the rhs indicate the mixed
propagators associated with hΦ0Ψi.
Here, we mention that the coupling expansion does not

naively correspond to the loop expansion. This is because
the g dependence arises only from the field propagators of
the order g2=3, and the vertices and flow propagator do not
depend on g. Each one-loop diagram in Fig. 2 has different
orders g2n=3 where n is the number of field propagators.
The super-Feynman rules for the correlation functions of

Ψ in the momentum space are summarized as follows:
(a) Use Eq. (66) for a flow line that is an outgoing line

emanated from each flow vertex.
(b) Use Eq. (72) for a field propagator by which two

points (flow vertices, boundary vertices, and starting
points denoted by □) are connected.

(c) Use Eq. (65) for each flow vertex, and use Eq. (74) for
each boundary vertex. For each flow vertex at t,
perform the flow time integral

R∞
0 dt. For all the flow

and boundary vertices at ðθ; θ̄Þ, perform the Grass-
mann integral

R
d2θd2θ̄.

(d) Impose the momentum conservation at each vertex
and integrate over undetermined loop momenta.

(e) Compute the usual combinatoric factors.
These rules are given in Euclidean space. In addition, we
mention rules and properties that are common with the
Yang-Mills flow [2]. Diagrams with closed flow line loops

are absent because any loop has at least a field propagator.
The flow lines depend on the difference between two flow
times of end points. The flow time dependence of propa-
gators are determined by the sum of flow times at the end
points.

E. The massive free flow

We consider the massive free flow, dropping the inter-
action terms from the flow equations (but the boundary
Wess-Zumino model has the interactions). The exact
solution is

Ψðt; zÞ ¼
Z

d8z0Ktðz − z0ÞΦ0ðz0Þ: ð76Þ

Then, recalling the definition of Φ0 (53), a correlation
function of the flowed fields hΨðt1; z1ÞΨðt2; z2Þ…
Ψðtn; znÞi can be given by a linear combination of
correlation functions of the renormalized fields ΦRðziÞ
and Φ̄RðziÞ with ðgRÞn3. In the renormalized perturbation
theory, when evaluating the correlators of ΦRðziÞ and
Φ̄RðziÞ, UV divergences are renormalized by the normal
counterterms. So, in the case of the massive free flow, any
correlation function of the flowed fields is UV finite for any
nonzero flow time if the Wess-Zumino model is properly
renormalized.

F. Power counting theorem

We can calculate the superficial degrees of divergence in
the perturbation theory of the Wess-Zumino flow using the
super-Feynman rule given in Sec. IV D.

FIG. 2. One-loop diagrams.

5The boundary vertex attached to three Φ0 is given by a
product of Eqs. (74) and (64).
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Since the field propagators given in Eq. (72) have
t-dependent functions, we need to evaluate the following
integrals for each flow vertex:

Iðp2Þ≡
Z

∞

0

dte−tp
2

fðt; p2Þ; ð77Þ

where p is a loop momentum and external momenta are set
to zero for simplicity. After a short calculation, we find that,
for large p2,

Iðp2Þ ¼ p−2fð0; p2Þ þ ðp−2Þ2fð1Þð0; p2Þ þ � � � ; ð78Þ

where fðnÞðt; p2Þ ¼ dnfðt; p2Þ=dtn. Since flow propaga-
tors with the same chirality and field propagators have
fðt; p2Þ ∼ cosðtM

ffiffiffiffiffi
p2

p
Þ, cosðβtðp2ÞÞ, sinðβtðp2ÞÞ, the

extra suppression factor appears as p−2 from the first term
of (78). Whereas, for massive flow propagators with the
opposite chirality, fðt; p2Þ ∼ sinðtM

ffiffiffiffiffi
p2

p
Þ leads to

fð0; p2Þ ¼ 0 and the extra factor becomes p−3 from the
second term of (78).
At each flow vertex with an external flow line, we can

apply the identity Δ̄Δ
□
Ψ ¼ Ψ to an internal line and move a

factor of Δ̄ to the external line by integrals of parts. This
transformation leads to an extra suppression factor p−1

because a factor Δ
□
remains at the internal line. This type of

transformation cannot be applied to the boundary vertex
because, since it is made of fields with the same chirality,
the partial integration of Δ̄ does not work.
Consider a 1PI supergraph with L loops, V boundary

vertices, Vf flow vertices, E external field lines, Ef external
flow lines, and P field propagators, of which C are massive
field propagators with the same chirality, ΨΨ and Ψ̄ Ψ̄,
and Pf flow propagators, of which Cf are massive flow
propagators with the opposite chirality. Each loop has a
d4p integral, and the identity δ12D2D̄2δ12 ¼ 16δ12 still
applies in this case to remove aD2D̄2 ∼ p2 at each loop. At
t ¼ 0, ΨΨ̄ propagators behave as p0, while massive chiral
propagators behave as p−1 for large p2. We have extra
suppression factors p−2 from the boundary of t integrations
at each flow vertex discussed above. For massive flow
propagators with the opposite chirality, we have p−3

instead of p−2. Each boundary vertex has a factor of
Δii=p2 ∼ p−1 on one of the internal lines. Each internal
outgoing flow line emanated from the flow vertex has a
factor of Δ̄ii ∼ p. Each external flow line has a suppression
factor p−1 from the discussion using the identity Δ̄Δ

□
Ψ ¼ Ψ.

Thus, we find that the superficial degrees of divergence d
is given by

d ¼ 2L − C − 2Vf − Cf − V þ Vf − Ef − Ef: ð79Þ

Using a topology relation L − P − Pf þ V þ Vf ¼ 1 and a
few relations such as 3V þ 3Vf ¼ Eþ Ef þ 2Pþ 2Pf

(each vertex has three lines) and Vf ¼ Ef þ Pf (the flow
vertex has an outgoing flow line), where Ef ≥ 1 for
nonzero Vf, we finally obtain

d ¼ 2 − C − Cf − E − 3Ef: ð80Þ

This shows that any super-Feynman graph with flow
vertices is UV finite at all orders of perturbation theory.
The remaining divergences for Vf ¼ Ef ¼ 0 arise from
boundary vertices and cancel as in the massive free flow
case because n-point functions of Ψðt; zÞ are those of
KtΦ0ðzÞ for Vf ¼ 0 and Φ0 is given by gR and renormal-
ized fields ΦR from (53). We can conclude that any
correlation function of flowed fields is UV finite in the
Wess-Zumino flow at all orders of perturbation theory.

V. SUMMARY

We introduced a supersymmetric gradient flow with
renormalization-invariant couplings in the Wess-Zumino
model and showed that correlation functions of the flowed
superfield are UV finite using a power counting theorem for
1PI supergraphs based on super-Feynman rules. In par-
ticular, we found that the interaction terms of the flow
equation do not contribute to divergent graphs, only terms
of the boundary theory do. After the parameter renormal-
ization in the boundary theory, the remaining divergence of
the wave function can be removed by taking initial
conditions to be renormalization invariant. Thus, we found
that any correlation function of the flowed superfield is UV
finite at all orders of the perturbation theory.
In nonsupersymmetric scalar field theory, including the

mass term and a term like ϕ4 interaction yields nonremov-
able divergences. Even in the massless free flow, a wave
function renormalization remains. Some kind of symmetry
could be necessary for the UV finiteness property. In the
Yang-Mills flow, the BRS symmetry guarantees the UV
finiteness, whereas in the Wess-Zumino flow, the super-
symmetry plays a crucial role to hold the property in a
mechanism that is quite different from the Yang-Mills flow.
The existence of the nonrenormalization theorem is

significant in our proof because it leads to the renormal-
ization-invariant initial condition [Eqs. (52) and (53)] and
the invariant mass [Eq. (13)] in the Wess-Zumino flow
[Eq. (47)]. The UV finiteness is a direct consequence of
these invariances. Therefore, it is unclear whether our
results can be extended to other theories that do not have
a nonrenormalization theorem.
Without the renormalization-invariant initial conditions

(52) and (53), the wave function renormalization remains,
and the extra wave function renormalization of the flowed
superfield, as in gradient flow of quark fields, makes the
correlation function finite. On the other hand, if the flow
equations are not given by renormalization-invariant
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coupling constants, the perturbative renormalizability
breaks down completely.
Gradient flows have been successfully applied to various

research such as nonperturbative renormalization group,
holographic descriptions of field theory, and lattice simu-
lations. In addition, supersymmetry has been actively studied
in particle physics in a variety of ways. Therefore, super-
symmetric gradient flows can be expected to have various
applications. The techniques developed in this article will be
very useful for subsequent studies using supersymmetric
gradient flows.
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APPENDIX: CONVENTION IN EUCLIDEAN
SPACE

In order to obtain the Euclidean theory from the
Minkowski one with metric ημν ¼ diagf−1; 1; 1; 1g in
Ref. [52], we use the Wick rotation x0 → −ix0 to move
on to the Euclidean signature. The Euclidean four-
dimensional σ matrices are defined as σ0 ¼ σ̄0 ≡ −i1;
the others are the same. The auxiliary fields in the chiral
superfields are replaced as F;F� → iF; iF�. The Euclidean
action is defined as SE ¼ −iS after the Wick rotation.
The Fourier transformation is defined by

Φðx; θ; θ̄Þ ¼
Z

d4p
ð2πÞ4 e

ipxΦ̃ðp; θ; θ̄Þ: ðA1Þ

1. Spinors and σ matrices

Let ψα (α ¼ 1, 2) be a SUð2ÞR spinor and ψ̄ _α ( _α ¼ 1, 2)
be a SUð2ÞL spinor, then they are not related to each other
under the complex conjugate in the four-dimensional
Euclidian space. We define the invariant tensors of SUð2ÞR
and SUð2ÞL as

ϵ21 ¼ ϵ12 ¼ ϵ_2 _1 ¼ ϵ_1 _2 ¼ 1;

ϵ12 ¼ ϵ21 ¼ ϵ_1 _2 ¼ ϵ_2 _1 ¼ −1 ðA2Þ

with the others being zero, so that ϵαβϵ
βγ ¼ δα

γ and

ϵ _α _βϵ
_β _γ ¼ δ _α

_γ . Then spinors with upper and lower indices
are related through the invariant tensors,

ψα ¼ ϵαβψβ; ψα ¼ ϵαβψ
β: ðA3Þ

We use the following spinor summation convention:

ψχ ¼ ψαχα; ψ̄ χ̄ ¼ ψ̄ _αχ̄
_α: ðA4Þ

The σ matrices in the Euclidean space ðσμÞα _β and ðσ̄μÞ _αβ
are defined as

σ0 ¼
�−i 0

0 −i

�
; σ1 ¼

�
0 1

1 0

�
;

σ2 ¼
�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
;

ðσ̄μÞ _αα ¼ ϵ _α _βϵαβðσμÞβ _β;
σ̄0 ¼ σ0; σ̄i ¼ −σiði ¼ 1; 2; 3Þ: ðA5Þ

For more detail on the spinor algebra, see Ref. [30].

2. Chiral superfield

The supercharges Qα and Q̄ _α are defined as difference
operators on the superspace labeled by z ¼ ðxμ; θα; θ̄ _αÞ,

Qα ¼ ∂α − iðσμÞα _αθ̄ _α
∂μ;

Q̄ _α ¼ −∂ _α þ iθαðσμÞα _α∂μ; ðA6Þ

where ∂α ¼ ∂

∂θα ; ∂ _α ¼ ∂

∂θ̄ _α
, and ∂μ ¼ ∂

∂xμ
. The associated

supercovariant derivatives that commute with the super-
charges are defined as

Dα ¼ ∂α þ iðσμÞα _αθ̄ _α
∂μ;

D̄ _α ¼ −∂ _α − iθαðσμÞα _α∂μ: ðA7Þ

These difference operators obey

fQα; Q̄ _αg ¼ 2iðσμÞα _α∂μ;
fDα; D̄ _αg ¼ −2iðσμÞα _α∂μ; ðA8Þ

and the other anticommutation relations vanish. After a
short calculation, one can show the useful identities

D2D̄2D2 ¼ 16□D2;

D̄2D2D̄2 ¼ 16□D̄2; ðA9Þ

where □ ¼ ∂μ∂μ.
The chiral and antichiral superfields Φðx; θ; θ̄Þ and

Φ̄ðx; θ; θ̄Þ are characterized by the constraints D̄ _αΦ ¼ 0

and DαΦ̄ ¼ 0, respectively. They are expanded in θ
and θ̄ as

Φðx; θ; θ̄Þ ¼ AðxÞ þ iθσμθ̄∂μAðxÞ þ
1

4
θθθ̄ θ̄□AðxÞ

þ
ffiffiffi
2

p
θψðxÞ − iffiffiffi

2
p θθ∂μψðxÞσμθ̄ þ iθθFðxÞ;

ðA10Þ
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Φ̄ðx; θ; θ̄Þ ¼ A�ðxÞ − iθσμθ̄∂μA�ðxÞ þ 1

4
θθθ̄ θ̄□A�ðxÞ

þ
ffiffiffi
2

p
θ̄ ψ̄ðxÞ þ iffiffiffi

2
p θ̄ θ̄ θσμ∂μψ̄ðxÞ þ iθ̄ θ̄F�ðxÞ;

ðA11Þ

where A and F are complex bosonic fields, and ψ ; ψ̄ are
two component spinors. Note that Φ̄ is not a complex
conjugate ofΦ in this Euclidean theory. One can easily find
the following projection operators for the chiral superfields:

D̄2D2

16□
Φ ¼ Φ; ðA12Þ

D2D̄2

16□
Φ̄ ¼ Φ̄: ðA13Þ

Introducing new coordinate ðy; θ; θ̄Þwith yμ¼xμþiθσμθ̄,
the derivative operators and Φ are expressed as

Qα ¼ ∂α;

Q̄ _α ¼ −∂ _α þ 2iθαðσμÞα _α∂μ;
Dα ¼ ∂α þ 2iðσμÞα _αθ̄ _α

∂μ;

Φðy; θÞ ¼ AðyÞ þ
ffiffiffi
2

p
θψðyÞ þ iθθFðyÞ; ðA14Þ

while in ðȳ; θ; θ̄Þ with ȳμ ¼ xμ − iθσμθ̄,

Qα ¼ ∂α − 2iðσμÞα _αθ̄ _α
∂μ;

Q̄ _α ¼ −∂ _α;

Dα ¼ ∂α;

D̄ _α ¼ −∂ _α − 2iθαðσμÞα _α∂μ;
Φ̄ðȳ; θ̄Þ ¼ A�ðȳÞ þ

ffiffiffi
2

p
θ̄ ψ̄ðȳÞ þ iθ̄ θ̄F�ðȳÞ: ðA15Þ

Note that ȳ is not a complex conjugate of y in the
Euclidean space.

3. Integral and delta function over Grassmann
coordinates

The volume element of the superspace z ¼ ðxμ; θα; θ̄ _αÞ is

d8z ¼ d4xd2θd2θ̄; ðA16Þ

where

Z
d2θθ2 ¼ 1;

Z
d2θ̄θ̄2 ¼ 1: ðA17Þ

Under the Euclidean space integral, the Grassmann inte-
grals can be interpreted as

Z
d4xd2θ ¼

Z
d4x

�
−
D2

4

�
;

Z
d4xd2θ̄ ¼

Z
d4x

�
−
D̄2

4

�
ðA18Þ

and

Z
d4xd2θd2θ̄ ¼

Z
d4x

�
D2D̄2

16

�
: ðA19Þ

The delta functions are defined as

δ2ðθÞ ¼ θ2; δ2ðθ̄Þ ¼ θ̄2; ðA20Þ

such that

Z
d2θδ2ðθÞ ¼ 1;

Z
d2θ̄δ2ðθ̄Þ ¼ 1: ðA21Þ

The functional derivatives of chiral superfields ΦðzÞ and
Φ̄ðzÞ are

δΦðz1Þ
δΦðz2Þ

¼ −
D̄2

1

4
δ8ðz1 − z2Þ; ðA22Þ

δΦ̄ðz1Þ
δΦ̄ðz2Þ

¼ −
D2

1

4
δ8ðz1 − z2Þ; ðA23Þ

where

δ8ðz1 − z2Þ ¼ δ4ðx1 − x2Þδ2ðθ1 − θ2Þδ2ðθ̄1 − θ̄2Þ: ðA24Þ

We use the abbreviation δ12 ¼ δ2ðθ1 − θ2Þδ2ðθ̄1 − θ̄2Þ for
simplicity. The following relation

δ12D2D̄2δ21 ¼ δ12D̄2D2δ21 ¼ 16δ12 ðA25Þ

is useful in perturbative calculations.
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