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We show that the Wilsonian formulation of the renormalization group (RG) defines a quantum channel
acting on the momentum-space density matrices of a quantum field theory. This information theoretical
property of the RG allows us to derive a remarkable consequence for the vacuum of theories at a fixed
point: they have no entanglement between momentum scales. Our result can be understood as deriving
from the scale symmetry of such theories and leads to constraints on the form of the ground state and on
expectation values of momentum-space operators.
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I. INTRODUCTION

The Wilsonian renormalization group (RG) transforma-
tion is a fundamental concept in the study of quantum field
theories (QFTs) and statistical physics, which has been of
great importance to understanding phenomena in these
areas [1–4]. It is typically defined as the integration over
high-momentum modes of a field theory above a given
scale μ with a sharp cutoff, followed by the rescaling of
momenta and fields [5,6].
For physical quantum systems (whose states are

described by density matrices [7]), it is of prime importance
for the Wilson RG to be a quantum channel of states in a
QFT, i.e., a completely positive and trace-preserving
(CPTP) map (see Sec. 8.2 of Ref. [7] for a definition
and discussion). Indeed, were it not CPTP, there would be
field theories, possibly tensored with finite-dimensional
systems, where the renormalization procedure gives rise to
density matrices for the long distance degrees of freedom
that would violate key requirements of quantum mechanics
(e.g., positivity). Furthermore, since the RG preserves
exactly the averages of long-wavelength observables [6],
this would contradict the fact that the set of expectation
values of all elements in an observable algebra determines

the quantum state [8,9], and such expectation values are
obtained from a vacuum state.
Although it is physically intuitive that the Wilsonian RG

defines a CPTP map, such has so far not been demon-
strated, despite recent advances discussed in Refs. [10–15].
Our first result in this paper is to prove that the RG has this
property. This will be done via the Schrödinger picture of
the wave functionals in QFT [12,16]. We then use it to
explore entanglement properties between momentum
scales at RG fixed points.
As discussed first in Refs. [17,18], and later explicitly

worked out with examples in Ref. [19], the first RG step,
integrating out fast modes, is equivalent to taking a partial
trace over degrees of freedom above a certain scale, which
is a quantum channel. Therefore, we only need to focus on
the rescaling of fields and momenta in the second step to
show its CPTP property. We will show that the scaling used
in the RG procedure defines a unitary evolution of the
momentum-space density matrices. Hence, as the compo-
sition of two quantum channels is still CPTP, we conclude
the proof for the full Wilsonian RG transformation. This
nature of the RG not only guarantees the expected con-
sistency of the method, but it also paves the way toward
investigating how the entanglement between momentum
scales evolves along the RG trajectory. In particular, it
allows us to study such entanglement for theories lying at
fixed points. Our main result is establishing that, as long as
a fixed point theory exists [for example, as a conformal
field theory (CFT)], then there is no entanglement in its
ground state between momentum modes at different scales,
even though such theories can be strongly interacting.
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We conclude with a discussion about some consequences
of this property and on the novel perspectives it provides.

II. THE WILSONIAN RG AS A QUANTUM
CHANNEL

We begin by reviewing one of the insights of Ref. [17]. It
is known that the ground state of a quantum system can be
represented via the functional integral of its action (see, for
instance, Sec. IV in Ref. [20]). Suppose one partitions the
Hilbert space of a QFT in d spatial dimensions with action
S in momentum space as H ¼⊗k Hk, where each Hk is
generated by eigenstates of (the Hermitian components of)
the field mode ϕk, where ϕ represents any collection of
bosonic and fermionic fields of the theory. Then, the
ground state matrix elements between two vectors jφki,
jφ̃ki such that each momentum mode has a definite
amplitude are given by the path integral [17,20],

hφkjρjφ̃ki ¼
1

Z

Z
ϕkð0þÞ¼φk

ϕkð0−Þ¼φ̃k

DϕkðτÞe−S½ϕkðτÞ�; ð1Þ

the boundary condition indicates a discontinuity at
Euclidean time τ ¼ 0, the action S½ϕkðτÞ� is written in
terms of the Fourier-transformed fields, and

Z ¼
Z

DϕkðτÞe−S½ϕkðτÞ�: ð2Þ

With this representation it becomes clear that integrating
out fast modes with jkj ≥ μ for an arbitrarily chosen and
changeable μ is the same as taking a partial trace over the
Hilbert space ⊗jkj≥μ Hk, as can be seen by the equality

hOi ¼ 1

Z

Z
DϕkðτÞO

�
ϕk; i

δ

δϕk

�
e−S½ϕkðτÞ�

¼ 1

Z

Z
Dϕjkj≤μðτÞO

�
ϕk; i

δ

δϕk

�
e−Sμ½ϕkðτÞ� ð3Þ

for any observable O built from field modes ϕk such that
jkj ≤ μ and where Sμ is the Wilsonian effective action at
scale μ obtained by integrating out fields with jkj > μ. This
is the relation hOAi ¼ TrðρOAÞ ¼ TrAðρAOAÞ which char-
acterizes a reduced density matrix for a subsystem A from
the observables acting on it, applied to momentum scales in
a field theory, here defined as the field modes with
momenta with a certain magnitude.
Thus, a low-momentum density matrix ρμ derived from

this QFT ground state is well defined and given in terms of
Sμ by [17,19]

hφjkj<μjρμjφ̃jkj<μi ¼
1

Z

Z
ϕkð0þÞ¼φjkj<μ

ϕkð0−Þ¼φ̃jkj<μ
Dϕke−Sμ : ð4Þ

The broader point is that this interpretation is valid even
in the case of states other than the vacuum: the first RG step
defines a partial trace over high-momentum modes and
takes density matrices on the full Hilbert space of the theory
to density matrices acting on the long-wavelength degrees
of freedom only.
Moving on to the scaling transformation, we define Λ as

the overall cutoff of the QFT and the scaling parameter as
σ ≔ Λ=μ. Thus, the rescaling of field modes is given by [5]

k → σk; ð5Þ

ϕk → σdϕϕσk; ð6Þ

where dϕ is the scaling dimension of the Fourier-
transformed field, which depends on the fixed point of
interest. The Euclidean time variable must also be rescaled
as τ → σ−zτ, using the dynamical critical exponent z
introduced by Hertz in Ref. [21]. We keep z generic as
our results will be valid for both relativistic and non-
relativistic field theories. Furthermore, note that the scaling
transformation employed here is simply the uniform
dilation of length scales. More general Weyl transforma-
tions curving space are not investigated. The latter lead to
anomalies in certain CFTs (the main differences between
the two transformations are discussed in Ref. [22]).
The matter of time rescaling is also a good opportunity to

emphasize the peculiarities of our momentum-space cutoff:
modes with jkj > μ are integrated over at all energies,
without any constraint in the temporal component of
momentum, which transforms only under the second step
of the RG. Such distinction is essential for the integration of
fast modes to be identified with a partial trace, as the degrees
of freedom of the system are labeled by the spatial momenta
and in the path integral the dependence in τ is only used to
project into the ground state, meaning there are no restric-
tions on its conjugate k0. Similar conclusions, in the context
of the functional RG, are reached in Refs. [12,23] (which
discuss the phase space and canonical structure) and
Ref. [24]. This suggests that, even for relativistic theories,
focusing only on the spatialmomenta is key to understanding
the entanglement properties of QFTs.
Last but not least, as discussed by Hertz in Ref. [21],

Sec. VI, and Millis in Ref. [25], the fixed points and
universal quantities obtained with this cutoff are the same
as in any other RG method, thus keeping the following
analysis very general.
Now, recall that S½ϕkðτÞ� is the original action of the QFT

in terms of momentum-space fields and let SðσÞ½ϕkðτÞ� ≔
Sμ½σdϕϕσkðσ−zτÞ� denote the new action at scale Λ obtained
from the scaling transformation. Then, by means of the
path-integral construction of matrix elements of a state
operator, this action naturally defines the density matrix
ρðσÞ via
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hφkjρðσÞjφ̃ki ¼
1

ZðσÞ

Z
ϕkð0þÞ¼φk

ϕkð0−Þ¼φ̃k

Dϕke
−SðσÞ½ϕk�; ð7Þ

ZðσÞ ¼
Z

DϕkðτÞe−SðσÞ½ϕk�: ð8Þ

There is a priori no reason to believe that ρðσÞ ¼ jΩihΩj,
where jΩi is the ground state vector, since the action
SðσÞ½ϕk� will be generally different from the original S½ϕk�.
The process of obtaining an effective action by integrating
part of the momentum modes can be inverted by a scaling
transformation only at a RG fixed point.
In general, the scaling transformation must be defined

not only for ρμ, but also for any density matrix acting on the
low-momentum degrees of freedom.Wewill do so by using
the Schrödinger representation of states in a QFT [12,16],
where a generic density matrix ρ acting on the Hilbert space
of momentum modes below scale μ can be formally written
as the path integral

ρ ¼
Z Y

jkj;jk0j≤μ
DϕkDϕ0

k0ρðϕk;ϕ0
k0 Þjϕkihϕ0

k0 j; ð9Þ

Z Y
jkj≤μ

Dϕkρðϕk;ϕkÞ ¼ 1: ð10Þ

Then, we define the scaling transformation as taking ρ to a
ρ̃ such that

ρ̃ ¼
Z Y

jkj;jk0j≤Λ
DϕkDϕ0

k0 ρ̃ðϕk;ϕ0
k0 Þjϕkihϕ0

k0 j; ð11Þ

ρ̃ðϕk;ϕ0
k0 Þ ¼

1

N
ρðσdϕϕσ−1k; σ

dϕϕ0
σ−1k0 Þ; ð12Þ

N ¼
Z Y

jkj≤Λ
Dϕkρðσdϕϕσ−1k; σ

dϕϕ0
σ−1k0 Þ; ð13Þ

which is composed of the same rescalings as before with a
relabeling of the momentummodes. The normalizing factor
N is introduced due to the scaling of fields in the path-
integral measure. This definition is exactly the same as
Eq. (7) whenever the density matrix elements can be
defined via an effective action, with N ¼ ZðσÞ=Z. This
can be confirmed by writing Eq. (7) in the form of Eq. (12)
via a change of variables. Note that, while the rescaling of
momenta and fields enacts a shift in the labels of the
degrees of freedom, the time rescaling by itself produces no
change: in Eq. (7) the fields are integrated over all possible
dependencies in τ (a consequence of no cutoffs being
imposed on the energies) and the integration limits are
taken at τ ¼ 0�, so the rescaling can be undone by a change
of variables with no alterations in the final matrix elements.
Interestingly, this is not the case at finite temperature, not

studied in this paper, where the time periodicity is changed
by the rescaling, see Ref. [25] and the Appendix.
From now on, it is important to define the theory in a box

of volume V, an IR cutoff, so that the number of degrees of
freedom is finite and the functional integrals and other
quantities are well defined. With this cutoff the normali-
zation constant becomes N ≈ σ−dϕμ

dV as can be seen by
comparing Eqs. (10) and (13) explicitly.
As discussed in Ref. [6], this scaling is “trivial” in the

sense that all statistical properties of the state at low-
momentum degrees of freedom are preserved and all
original expectation values can be recovered. In a quantum
system this is tantamount to the transformation being
described by a unitary map; in fact, if we define the
operator,

U ≡
ffiffiffiffiffi
N

p Z Y
jkj≤μ

Dϕkjσ−dϕϕσkihϕkj; ð14Þ

by computing the necessary integrals with both UVand IR
cutoffs, it is easy to show that givenU and density matrices
of Eqs. (9) and (11), we have ρ̃ ¼ UρU†. Furthermore, U
also obeys UU† ¼ U†U ¼ 1 and so the scaling trans-
formation is indeed unitary. This can be tested, for example,
by confirming the validity of the fact that the entropy of a
density matrix is invariant under unitary transformations
[7]. Indeed, it can be shown using the method and examples
of Ref. [19] that the entropy of the matrices before and after
scaling (at lowest nontrivial perturbative order) are equal
(see the Appendix for more information on this point).
In real space the unitarity of scaling maps is well known.

What we have shown is that this property is also present in
the specific transformation used in the momentum-space
RG, which also includes scaling of field modes and time
and which, although first defined only as a manipulation of
the effective action, naturally leads to a map of density
matrices. Therefore, the full Wilsonian RG procedure
defines a quantum channel ρ → ρðσÞ which is the compo-
sition of a partial trace over high momenta (map ρ → ρμ)
and a unitary induced by the rescaling operation (map
ρμ → ρðσÞ). The RG flow, being a completely positive and
trace-preserving process, can thus be described using tools
such as the operator-sum representation (see Chap. 8
of Ref. [7]).

III. ENTANGLEMENT BETWEEN
SCALES AT A FIXED POINT

To see how the information theory formulation of the RG
might be valuable, we apply it to study the momentum-
space entanglement in the ground states of RG fixed points.
By definition, these QFTs are such that S�ðσÞ½ϕk� ¼ S�½ϕk�
(the latter being the fixed point action, generally including
all powers and derivatives of the field) no matter how many
degrees of freedom are integrated over in the first step.
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Consequently, by the connection between action functionals
and density operators explored earlier, we must have
ρðσÞ ¼ ρ ¼ jΩihΩj, meaning ρðσÞ is a pure state and so
SEEðρðσÞÞ ¼ 0. The entropy of interest is SEEðρμÞ ¼
−Trðρμ log ρμÞ, which gives the entanglement between
low and high momenta. However, we showed that rescaling
is a unitary (in this context only also the inverse of the partial
trace), therefore

SEEðρμÞ ¼ SEEðρðσÞÞ ¼ 0: ð15Þ

Thus, the ground states of theories at a RG fixed point have
no entanglement between different momentum scales.
While all transformations were defined starting from a

full regularization of the QFT, this does not restrict the
validity of our result. We introduce the UV cutoffΛ in order
to regularize the theory, but scale invariance makes its
removal simple. Interactions are renormalized so that the
theory is kept at the fixed point, by simply leaving the
dimensionless parameters constant, and the limiting pro-
cedure Λ → ∞ keeps the entanglement entropy between
slow and fast modes equal to zero. As for the IR cutoff,
Refs. [3,4] explain how the finite volume acts as a relevant
operator, driving the system away from the fixed point, and
as pointed out in Ref. [6], the scaling transformation
effectively changes the size of the box as V → σ−dV.
This means that the V → ∞ limit must be taken before any
other when defining the theory, similar to discussions of
spontaneous symmetry breaking. This limit ensures the
theory stays at a fixed point and that the Hilbert spaces
before and after scaling are the same (without it, different
periodic boundary conditions define different vector
spaces), a necessary condition for the equation ρðσÞ ¼
jΩihΩj to be meaningful. Ultimately this does not change
much, as the scaling transformation is still unitary at infinite
volume and the proof of Eq. (15) follows the same way,
though it is important to keep these subtleties in mind.
Note that our only assumption at this point was that a

fixed point exists. Hence, what we have shown is that,
contrary to what may be intuitively expected, even a
strongly interacting QFT can have no entanglement in
its vacuum if the theory is scale invariant. In other words,
the stringent conditions on the couplings of a fixed point
automatically constrain the ground state entanglement
between momentum scales to vanish.
Physically, this result can be understood as follows. The

entanglement entropy between scales necessarily vanishes
as both μ → 0 and μ → Λ. This is because as μ → Λ, then
fewer and fewer momentum degrees of freedom are being
integrated out, and in this limit we are simply left with the
full vacuum of the theory, a pure state with zero entropy
(when μ ¼ Λ we simply have the full action of the theory,
which defines the ground state). On the other hand, if
μ → 0, we can invoke the fact that, if the global state is
pure, the entropy after taking the partial trace is equal to

that of the density matrix of the traced out degrees of
freedom [7], meaning that the entropy at μ ¼ 0 must be
equal to the entropy of the ground state, which is zero.
Now, the entanglement entropy is always positive [20],

so it must reach a maximum between 0 and Λ as μ is varied,
but such a maximum naturally defines a characteristic scale
for a theory, since it is the momentum scale across which
modes are correlated the most. Therefore, if a theory is
scale invariant, the momentum-space entanglement entropy
must be constant. Since we know it vanishes both in the IR
and UV extremes, it must vanish always. In this way we
arrive once more at the conclusion that there must be no
entanglement with respect to this partition. This general
behavior of momentum-space entanglement used in our
argument is seen in the explicit formulas obtained in
Refs. [17,19] and is the field theory equivalent of the
“Page curve” discussed in Sec. 3.1 of Ref. [26]. The latter is
an upper bound on the entanglement entropy generated
when degrees of freedom are gradually traced out in a pure
state of a finite-dimensional system.

IV. CONSEQUENCES FOR
FIXED POINT THEORIES

We can derive a number of implications from the fact that
there is no entanglement between momentum scales in the
ground state of scale-invariant QFTs for any separation
scale μ chosen. The most direct one is that the vacua of
these theories are separable, i.e., it is a simple tensor
product of terms labeled by the momentum scale. Writing
the Hilbert space of a fixed point theory as H ¼⊗μ Hμ,
with μ denoting the momentum scale (meaning each Hμ

contains all modes with jkj ¼ μ), the vacuum must be given
by jΩi ¼⊗μ jΩμi. Due to scale symmetry and the unitarity
of the scaling map, the projections of the components jΩμi
into eigenstates of field modes must obey hϕkjΩμi ¼
hσ−dϕϕσkjΩσμi for any real σ.
Furthermore, separability of the state vector leads to

connected correlation functions of observables acting on
different momentum scales being all equal to zero [7,27].
That is, defining the operators which act on the subsystems
below and above scale μ, respectively,

O< ≔
X∞
n¼1

Z
jkij≤μ

Yn
i¼1

ddki
ð2πÞd fnðk1;…; knÞϕk1…ϕkn ; ð16Þ

O> ≔
X∞
n¼1

Z
jkij>μ

Yn
i¼1

ddki
ð2πÞd f̃nðk1;…; knÞϕk1…ϕkn ; ð17Þ

given two families of functions ffnðk1;…; knÞg,
ff̃nðk1;…; knÞg (which must be of compact support in
jkij ≤ μ, jkij > μ, respectively, see Chap. 2 of Ref. [8]) then
the separability of the vacuum implies the factorization
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of the expectation value of their product: hO<O>i ¼
hO<ihO>i.
Translating this condition into identities for the field

correlators is somewhat complicated, but the n-point func-
tions of the field in momentum space must be such that all
momenta are at the same scale (have the same absolute
value), or else they factorize into products of correlators. For
example, the four-point function hϕk1ϕk2ϕk3ϕk4i becomes
such that

hϕk1ϕk2ϕk3ϕk4i ¼ Fðk1; k2; k3; k4Þ þ hϕk1ϕk2ihϕk3ϕk4i
þ hϕk1ϕk3ihϕk2ϕk4i þ hϕk1ϕk4ihϕk2ϕk3i;

ð18Þ

where Fðk1; k2; k3; k4Þ depends on the fixed-point theory
and vanishes unless jk1j ¼ jk2j ¼ jk3j ¼ jk4j. This identity
can be understood as follows. If all momenta have the same
magnitude, the correlator can have any form consistent with
scale symmetry, otherwise it must factorize into a product of
expectation values. Note that this result is independent of
momentum conservation (the expression still contains a delta
function making

P
4
i¼1 ki ¼ 0). Furthermore, generalized

versions of this relation are valid for the other n-point
functions.
It would be interesting to compare these formulas to the

ones found in Refs. [28,29] for CFTs, though the authors
work with correlations of arbitrary scaling operators, while
we are considering the “fundamental” field appearing in the
Lagrangian defining the theory, in terms of which all
operators may be constructed. Expanding on this latter
notion, mathematically it means the field ϕk and its
polynomials must define an irreducible set of operators
in the Hilbert space of the QFT (see Sec. 3.1 of Ref. [9] for
an introduction). This requirement is what distinguishes
operators whose momentum correlations must factorize
between scales at a fixed point from the others: it formalizes
the idea that a “fundamental field” identifies the “degrees of
freedom” of a QFT. Going back to CFTs, a generic scaling
operator does not satisfy this irreducibility condition and so
its correlation functions do not have to factorize.
Having discussed some corollaries of our result, it is

important to make clear that the lack of entanglement
between momentum scales does not imply that theories at a
RG fixed point have an unentangled vacuum: the notion of
entanglement depends on the chosen partition of the Hilbert
space and separability with respect to one tensor product
structure does not imply the same about other partitions.
For example, in free field theories there is entanglement in
real space but not in momentum space [20].

V. CONCLUSIONS AND OUTLOOK

We have shown that the Wilsonian RG is equivalent to a
quantum channel acting on density matrices of the momen-
tum-space degrees of freedom. Furthermore, we proved that

it is such that RG fixed points have no entanglement
between momentum modes at different scales and dis-
cussed some of the consequences of this fact.
The analysismade here can serve as starting point for other

investigations, perhaps of QFTs at a phase transition instead
of a fixed point. A field theory undergoing a second phase
transition may still flow under the RG transformation, see
Ref. [30]. More broadly, we can use techniques such as the
operator-sum decomposition to ask how specific RG flows
reflect on the momentum-space entanglement entropy: does
it present “critical scaling” under certain conditions? By
plotting SEEðρμÞ as a function of μ, does the graph contain
universal information? And what properties of a given phase
transition or crossover can be read off from it?
From a mathematical point of view, while we have used

the Schrödinger picture following Refs. [12,16], this was
merely a way of representing the idea that low-momentum
observables of a QFT can be constructed formally via
functions of the Fourier-transformed fields, thus defining
the momentum-space operators for each mode k. By
comparison with the local algebras of observables [8],
which have been important for studying entanglement in
real space [27,31–34], it would be interesting to rigorously
and abstractly define the momentum-space algebras of
observables and analyze their properties, possibly connect-
ing with previous work in Refs. [35,36]. In such formalism,
the partial trace over fast modes becomes the restriction of
the ground state to the subalgebra of low-momentum
observables and the rescaling of fields and momenta
translates into applying the dual map of the scaling unitary
of density matrices to this subalgebra. Furthermore, while
we considered fields at a fixed time in our arguments, it is
known that in relativistic theories they are too singular [8].
An algebraic formulation would avoid this problem by
considering observables acting at spatial momenta below a
certain scale, but with arbitrary energy: the algebra asso-
ciated with a “cylinder” of radius μ in momentum space and
infinitely extended along the energy axis. This not only
corresponds to the partial trace over high-momentum
degrees of freedom while avoiding ill-defined operators,
but alsomakes clear that our subalgebra is invariant under the
rescaling of time with a dynamical critical exponent, equiv-
alent to what was previously discussed for density matrices.
Another opportunity provided by this formulation is to
investigate the connection between momentum-space entan-
glement and the effects of renormalization in real-space
entanglement, such as those explored in Refs. [37–39].
We may also wonder what the separability in momentum

space of the ground state of CFTs implies to holography.
Finding the dual in anti–de Sitter (AdS) space of the
momentum-space density matrix ρμ is essential to tackling
this question, but is an open problem as pointed out in
Ref. [40]. Furthermore, it was shown in Ref. [41] that the
intuitive idea of restricting the AdS radial coordinate
corresponds to a relativistic Wilsonian cutoff, that is, the
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remaining modes must obey, in Euclidean signature,
k20 þ k2 ≤ Λ, a constraint on the energies which, as
mentioned in Ref. [17] and discussed previously in this
paper, is absent from the tensor product structure we are
working with. Nevertheless, a proposal in Ref. [42] gen-
eralizes the concept of entanglement wedge to momentum
space and merits further investigation. Finally, the descrip-
tion of the RG as a specific CPTP map possibly opens a
path to connecting renormalization to recent discussions of
circuit complexity in field theory, such as the ones in
Refs. [43,44], which have also been studied in relation to
the AdS=CFT duality.
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APPENDIX: UNITARITY OF SCALING IN
PERTURBATION THEORY

In this appendixwe prove the claimmade in themain text,
that the von Neumann entropies before and after the scaling
transformation, when explicitly calculated at lowest non-
trivial order using the method developed in [19], are equal.
As a brief review, the method in Ref. [19] consists of

calculating the Rényi entropies HnðρÞ through the relation

HnðρÞ ¼
1

1 − n
lim
β→∞

ðlogZnðβÞ − n log ZðβÞÞ; ðA1Þ

where, given an effective action Seff which generates the
matrix elements of ρ, ZðβÞ is the usual finite-temperature
partition function and ZnðβÞ is the partition function after
modifying the nonlocal kernels of Seff in a specific manner
detailed in Ref. [19].
It turns out that when starting with a free field theory and

adding a perturbative interaction, a series of cancellations
happen and at order Oðλ2Þ in the coupling (the lowest with
nontrivial results) the von Neumann and Rényi entropies
are proportional to the same contractions of Feynman
diagrams appearing in the modified partition function.
Then, to show that the entropies before and after scaling

are the same, we need only to prove the equality between
Feynman diagram contractions. We will do so for one of the
contributions, as the others follow the same argument.
Consider a contributing term to the entropy of reduced

density matrix ρμ in perturbative λϕ4 theory of the form

Z �
Kμ;βðk; p; q; τ; τ0ÞhϕkðτÞϕ�

kðτ0Þinβ ðA2Þ

corresponding to Eq. (C6) of Ref. [19], where the subscript
nβ in the correlator means that the expectation value is
taken at inverse temperature nβ, the region of integration
over all momenta and form of the kernel Kμ;β are specified
but irrelevant to our argument, and a number of Matsubara
sums and Euclidean time integrals are suppressed.
Applying the scaling map k → σk, ϕk → σdϕϕσk,

τ → σ−zτ, the associated term leading to the entropy of
state ρðσÞ isZ �

Kμ;βðσ−1k0; p; q; σ−zτ; σ−zτ0Þ

× σ1−dσ2dϕhϕk0 ðσ−zτÞϕ�
k0 ðσ−zτ0Þinβ: ðA3Þ

Now, this transformation is defined such that
hϕkðτÞϕ�

kðτ0Þinβ ¼ σ2dϕhϕσkðτÞϕ�
σkðτ0Þinβ for the trans-

formed fields, see Ref. [6]. To deal with the rescaling in
time we make a change of variables to restore τ; τ0, but as
pointed out by Ref. [25] and can be seen by taking into
account the integration limits of the (suppressed) time
integrals, this effectively changes the temperature perio-
dicity to σ−zβ (and nσ−zβ in the replica trick calculations of
Ref. [19]). Therefore, it is easy to see that Eq. (A3) equals

Z �
Kμ;σ−zβðσ−1k0; p; q; τ; τ0Þ

× σ1−dhϕσ−1k0 ðτÞϕ�
σ−1k0 ðτ0Þinσ−zβ

¼
Z �

Kμ;σ−zβðk; p; q; τ; τ0ÞhϕkðτÞϕ�
kðτ0Þinσ−zβ; ðA4Þ

where the last equality is derived via a simple change of
variables in the momentum k0, originally one of the slow
modes.
So we can see that there is a change for any finite-

temperature calculation, which makes an analogous inves-
tigation of the RG in this context an interesting problem. For
our focus on the vacua of field theories at zero temperature,
however, this is not a concern because the β → ∞ limit
remains unchanged and after the limit the results are the same
as before the dilation. Thus, the contribution to the entropy of
ρðσÞ is exactly equal to that ofρμ and a calculation can be done
for any of the other perturbative terms leading to similar
results. Therefore, the total entropy is unchanged, consistent
with our claim of the unitarity of the scaling transformation.
Finally, note that there was no need to specify the values

of dϕ or z; the scaling is unitary regardless of the dimension
given to field ϕk. For the appearance of scaling dimensions
different from the correct ones in the context of the
renormalization group, see Ref. [45]. In more detail, any
scaling with wrong dimension can be decomposed into a
product of the correct scaling with a change of the
normalization of the field operator, which Ref. [45] names
a “redundant operation”.
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