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This study employs the effective field theory approach to quantum gravity to investigate a non-Abelian
gauge theory involving scalar particles coupled to gravity. The study demonstrates explicitly that the
Slavnov-Taylor identities are maintained at one-loop order, which indicates that the universality of the color
charge is preserved. Additionally, the graviton corrections to the two-loop gluon self-energy and its
renormalization are computed.
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I. INTRODUCTION

Although we are still in need of a consistent and
generally accepted description of quantum gravity at high
energies, if we restrict ourselves to low energies compared
to the Planck scale, we can nevertheless draw some trustful
conclusions about the gravitational phenomena at quantum
level using the viewpoint and methods of effective field
theories [1–3]. Thus, the well-known nonrenormalizability
of Einstein’s theory coupled to other fields [4–6] is not
an impediment to study the influence of gravity in the
renormalization of other fields and parameters in a mean-
ingful way. The central idea is that we add to the action the
high-order terms needed to renormalize the parameters of
the lower-order terms and the new parameters introduced
will be irrelevant to the low-energy behavior of the theory.
As it is well known, the renormalized quantities of a

theory depend on an arbitrary scale and the renormalization
group is the theoretical tool to study this dependence and
allows us to describe how the coupling constants change
with this scale, establishing the so-called running of the
coupling constants [7]. If this dependence is such that the
coupling constant gets weaker as we go to higher energies
the theory is said to be asymptotically free [8–10]. The
possibility that gravitational corrections could render all
gauge coupling constants asymptotically free was sug-
gested by Robinson and Wilczek, who used the effective

field theory approach of quantum gravity to reach this
conclusion [11]. However, this result was soon contested
by Pietrykowski [12], who showed that the result was
gauge dependent. Subsequently, many works investigate
the use of the renormalization group in quantum gravity as
an effective field theory (see for instance Refs. [13–23]). In
a previous work [21], we used dimensional regularization
to compute gravitational effects on the beta function of the
scalar quantum electrodynamics at one-loop order and
found that all gravitational contributions cancel out. The
situation is different at two-loop order, in which we do find
nonzero gravitational corrections to the beta function for
both scalar and fermionic QED, as shown in a latter work
[22]. However, those corrections give a positive contribu-
tion to the beta function and thus the electrical charge is
neither asymptotically free nor has a nontrivial fixed point.
The use of renormalization group in the context of non-

renormalizable field theories raise some subtle questions.
The universality of the coupling constants in effective field
theories was discussed by Anber et al. in [20], where it was
suggested that an operator mixing could make the coupling
constants dependent on the process under consideration and
therefore nonuniversal. That would imply that, unlike
renormalizable field theories, the concept of running
coupling may not be useful in the effective field theory
approach to quantum gravity. This is indeed the case for the
quartic self-interaction of scalars in scalar-QED, as dis-
cussed in [21] but, as shown in [21] for scalar-QED and in
[23] for fermionic-QED it seems not to be the case for the
gauge coupling because of the Ward identity. The central
role of the gauge symmetry in the universality of the gauge
coupling for QED led us to explore this issue in the non-
Abelian case. Using dimensional regularization, we
showed that the Slavnov-Taylor identities are satisfied in
a non-Abelian gauge theory coupled to fermions and
gravity [24]. In the same work, we have also calculated
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the gravitational correction for the beta function at one loop
thus verifying directly the absence of contributions from
the gravitational sector.
In previous studies, the coupling of non-Abelian gauge

theories to gravity has been investigated [24–27]. In this
research, we extend our previous analysis by investigating
the asymptotic behavior of a non-Abelian gauge theory
coupled to complex scalars and gravity. This exploration is
motivated by the significant role scalar theories play in the
advancement of high-energy theory. Over the years, scalar
models have been proposed to tackle issues such as
renormalization group theory for nonrenormalizable theo-
ries [28], the study of dilatons [29], and potential candi-
dates for dark matter [30,31]. In fact, Ref. [32] argue that
quantum gravity might have crucial implications in a theory
of dark matter. Additionally, a recent study [33] inves-
tigated the interaction between SU(2) Yang-Mills waves
and gravitational waves. The results revealed that while the
problem can be perturbatively studied in the symmetric
phase, nonperturbative approaches are necessary in the
broken phase. Hence, the examination of a non-Abelian
gauge theory coupled to complex scalars and gravity is of
particular interest due to the fundamental role scalar
theories have played in addressing diverse problems in
high-energy theory.
The paper is structured as follows. Section II introduces

the Lagrangian and propagators of the model. In Sec. III,
the one-loop renormalization of the model is presented,
highlighting the preservation of gauge invariance of the
gravitational interaction and respect for the Slavnov-Taylor
identities. Section IV utilizes the Tarasov algorithm to
compute the two-loop counterterm for the gluon wave
function. Finally, concluding remarks are provided in
Sec. V. The minimal subtraction (MS) scheme is used
throughout this work to handle the UV divergences, with
ðþ − −−Þ being the spacetime signature and natural units
of c ¼ ℏ ¼ 1 are adopted.

II. THE EINSTEIN-SCALAR-QCD MODEL

To get an effective field theory description for our model,
we add higher order terms to the Lagrangian of a non-
Abelian gauge theory with complex scalars coupled to
gravity:

L ¼ ffiffiffiffiffiffi
−g

p X
f

�
2

κ2
R −

1

4
gμαgνβGa

μνGa
αβ þ gμνðDμϕ

iÞ†Dνϕ
i

−miðϕiÞ†ϕi þ λððϕiÞ†ϕiÞ2 þ LHO

�
; ð1Þ

where the index i ¼ 1; 2;…; Ns runs over the scalars
flavors, Ga

μν ¼ ∇μAa
ν −∇νAa

μ þ gfabcAb
μAc

ν is the non-
Abelian field-strength with fabc being the structure con-
stants of the SUðNÞ group, and Dμ ¼ ∂μ − igtaAa

μ is the

covariant derivative. The higher order terms LHO are
written as

LHO ¼ λ̃1
M2

P
½ReððϕiÞ†∂μϕiÞ�2 þ λ̃2

M2
P
½ImððϕiÞ†∂μϕiÞ�2

−
ẽ3
4
Gμν

a
□

M2
P
Ga

μν: ð2Þ

To obtain the usual quadratic term for the gravitational
field, we need to expand gμν around the flat metric as

gμν ¼ ημν þ κhμν; ð3Þ

such that

gμν ¼ ημν − κhμν þ � � � and
ffiffiffiffiffiffi
−g

p ¼ 1þ κ

2
hþ � � � ; ð4Þ

where h ¼ ημνhμν. The affine connection is written as

Γλ
μν ¼

1

2
κðηλσ − κhλσÞð∂μhσν þ ∂νhσμ − ∂σhμνÞ: ð5Þ

Organizing the Lagrangian as

L ¼ Lh þ Lf þ LA; ð6aÞ

Lh ¼
2

κ2
ffiffiffiffiffiffi
−g

p
R; ð6bÞ

Ls ¼
ffiffiffiffiffiffi
−g

p ½gμνðDμϕ
iÞ†Dνϕ

i −miðϕiÞ†ϕi þ λððϕiÞ†ϕiÞ2�;
ð6cÞ

LA ¼ −
ffiffiffiffiffiffi−gp
4

gμαgνβGa
μνGa

αβ: ð6dÞ

Using Eqs. (3)–(5), we write the pure gravity sector (6b)
in terms of hμν. Moreover, it is convenient to organize Lh in
powers of h as follows:

Lh ¼ L0
h þ κL1

h þ � � � ; ð7aÞ

L0
h ¼ −

1

4
∂μh∂μhþ 1

2
∂μhσν∂μhσν; ð7bÞ

L1
h ¼

1

2
hαβ∂μhβα∂μh−

1

2
hαβ∂αhμν∂βhνμ − hαβ∂μhνα∂μhβν

þ 1

4
h∂βhμν∂βhνμ þ hβμ∂νhαβ∂μhνα −

1

8
h∂νh∂νh; ð7cÞ

where the indices are raised and lowered with the flat metric
(here and henceforth, we are following the results
in Ref. [34]).
For the matter sector (6c), the expansion around the flat

metric give us
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Ls ¼ ðDμϕiÞ†Dμϕ
i −m2

i ððϕiÞ†ϕiÞ

−
λ

4
ððϕiÞ†ϕiÞ2 − κhμνðDμϕ

iÞ†Dνϕ
i

þ κ

2
h

�
ðDμϕiÞ†Dμϕ

i −m2
i ðϕiÞ†ϕi −

λ

4
ððϕiÞ†ϕiÞ2

�
;

ð8Þ

which we organize as follows:

Ls ¼ L0
s þ κL1

s þ � � � ; ð9aÞ

L0
s ¼ ðDμϕiÞ†Dμϕ

i −m2
i ððϕiÞ†ϕiÞ − λ

4
ððϕiÞ†ϕiÞ2; ð9bÞ

L1
s ¼ −hμνðDμϕ

iÞ†Dνϕ
i

þ 1

2
h

�
ðDμϕiÞ†Dμϕ

i −m2
i ðϕiÞ†ϕi −

λ

4
ððϕiÞ†ϕiÞ2

�
;

ð9cÞ

and finally, for the gauge sector,

LA ¼ L0
A þ κL1

A þ � � � ; ð10aÞ

L0
A ¼ −

1

4
Ga

μνG
μν
a ; ð10bÞ

L1
A ¼ 1

2
hτνG

μν
a Ga

μτ þ
1

2
hL0

A: ð10cÞ

As usual for gauge theories, in order to quantize this
model, we have to deal with the excess of degrees of
freedom in Aa

μ and hμν due to their symmetries. In our
calculations, we have followed the Faddeev-Popov pro-
cedure that introduces gauge-fixing terms in the action that
will modify the propagators of both Aa

μ and hμν. Moreover,
we must also introduce ghost fields for both vector and
tensor fields. However, the ghost field associated with the
graviton will not appear in this text because, since we are
working with the one-graviton exchange approximation,
the new term containing the ghosts added to the action will
not contribute to the renormalization of the gauge coupling
constant. Therefore, whenever we refer to ghost field in
what follows, we mean the one associated with Aa

μ. The
propagators for scalars, ghosts, gluons, and gravitons are
given, respectively, by

ΔsðpÞ ¼
i

p2 −m2
a
; ð11aÞ

ΔabðpÞ ¼
i
p2

δab; ð11bÞ

Δμν
abðpÞ ¼

i
p2

�
ημν − ð1 − ξAÞ

pμpν

p2

�
δab; ð11cÞ

ΔαβμνðpÞ ¼ i
p2

�
Pαβμν − ð1 − ξhÞ

Qαβμν

p2

�
: ð11dÞ

The gauge-fixing parameters ξA and ξh will be carried out
through the whole calculation, since we do not want to
choose any specific gauge. The projectors Pαβμν and Qαβμν

in the graviton propagator are given by

Pαβμν ¼ 1

2
ðηαμηβν þ ηανηβμ − ηαβημνÞ;

Qαβμν ¼ ðηαμpβpν þ ηανpβpμ þ ηβμpαpν þ ηβνpαpμÞ:
ð12Þ

III. THE ONE-LOOP RENORMALIZATION

The Slavnov-Taylor identities are a set of relations that
must be satisfied by the n-point functions to ensure the
gauge independence of the observables of the theory. In this
section we want to explicitly show that the Slavnov-Taylor
identities are respected at one-loop order for our model. To
simplify our computations, we will consider here that all
the masses are the same, so we drop the index i. As we will
see, this will not affect our final result.
We start by computing the n-point functions. Namely,

the self-energy of scalar, vector, and ghost fields (Σs;Π
μν
ab,

and Σab, respectively), also the scalar-gluon, ghost-gluon,
and gluon-gluon three-point functions (Γμ

a, Γμ
abc, and Πμνα

abc,
respectively), the gluon four-point function (Γμνρσ

abcd), and
finally the scalar-gluon four-point function (Πμν

abcd). All the
computations were done using the Mathematica packages:
FeynRules to generate the models [35], FeynArts to draw the
diagrams [36], and FeynCalc to simplify and compute the
amplitudes [37].
At one-loop, the self-energy of the scalar field, Fig. 1,

results in

FIG. 1. Feynman diagrams for the scalar self-energy. Continuous, wiggly, dotted, and dashed lines represent the scalar, gluon, ghost,
and graviton propagators, respectively.
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−iΣsðpÞ¼ ip2

�
CAðξA−3Þg2− ðξh−2Þκ2m2

16π2ϵ
þZð1Þ

2s

�

þ im2

�
−CAξAg2þ4λNs− ðξh−2Þκ2m2

16π2ϵ
−Zð1Þ

ms

�

þ finite; ð13Þ

where CA ¼ N for the SUðNÞ group. By imposing finite-
ness to ΣsðpÞ, we find the following one-loop counter-
terms:

Zð1Þ
2s ¼ κ2m2ðξh − 2Þ − CAðξA − 3Þg2

16π2ϵ
; ð14aÞ

Zð1Þ
m ¼ −CAξAg2 þ 4λNs − ðξh − 2Þκ2m2

16π2ϵ
: ð14bÞ

For the gluon self-energy, it is convenient to write the
one-loop correction (corresponding to the diagrams in
Fig. 2) as

Πμν
abðpÞ ¼ ðp2ημν − pμpνÞΠðpÞδab; ð15Þ

where the function ΠðpÞ is found to be

ΠðpÞ ¼ −iZð1Þ
3 − ip2Z̃ð1Þ

3 þ iκ2p2ð2 − 3ξhÞ
96π2ϵ

−
iCAg2ð2Ns þ 3ξA − 13Þ

96π2ϵ
þ finite; ð16Þ

and, imposing the finiteness on ΠðpÞ, we find

Zð1Þ
3 ¼ −

CAg2ð2Ns þ 3ξA − 13Þ
96π2ϵ

; ð17aÞ

Z̃ð1Þ
3 ¼ −

κ2ð3ξh − 2Þ
96π2ϵ

: ð17bÞ

We can see from Eq. (16) that Z3 is the relevant counterterm
to the beta function of the color charge, since it is the
renormalizing factor for the quadratic term Gμν

a Ga
μν, while

Z̃3 renormalizes a higher derivative term like Gμν
a □Ga

μν.

Notice also that the UV divergent part of Eq. (16) is not
dependent on the masses of the scalars.
Contributions to the ghost self-energy up to one-loop

order are depicted in Fig. 3. The resulting expression is

−iΣab ¼
�
ip2CAðξA − 3Þg2

64π2ϵ
þ ip2Zð1Þ

2c

�
δab þ finite; ð18Þ

and, imposing finiteness, we find

Zð1Þ
2c

¼ −
CAg2ðξA − 3Þ

64π2ϵ
: ð19Þ

Notice that in Fig. 3 the gravitational interactions are not
shown. Although in the action there is a coupling of hμν to
the kinetic term of the ghosts associated with the gluons,
the gravitational contributions to the ghost self-energy will
be renormalized by a higher-order term and is therefore
irrelevant for our purposes here. One way to see why this is
happens is to observe that both the ghosts and the graviton
are massless, so the only contribution proportional to κ2

must be of the order p4.
For the three-point functions, let us first consider the

ghost-ghost-gluon vertex (Fig. 4), where again all the
gravitational corrections are renormalized by higher-order
terms and are therefore omitted here. Also, in the following
expressions, we will use p1 and p2 to represent incoming
external momenta, and p3 and p4 for outgoing momenta.
The expression obtained for these diagrams is

Γμ
abc ¼ −gpμ

3fabc

�
CAg2ξA
32π2ϵ

þ Zð1Þ
1c

�
þ finite; ð20Þ

and the subtraction of the UV pole will give us

Zð1Þ
1c

¼ −
CAg2ξA
32π2ϵ

: ð21Þ

FIG. 2. Feynman diagrams for the gluon self-energy.

FIG. 3. Feynman diagrams for the ghost self-energy.

FIG. 4. Feynman diagrams for the vertex interaction between
gluons and ghosts up to one-loop order.
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For the other three-point function, the scalar-scalar-gluon
vertex, the gravitational interaction will be present in some
diagrams, as we can see in Fig. 5, where the relevant
contributions to this function up to one-loop order are
shown. The resulting expression is

−iΓμ
abc ¼ gfabcðpμ

2 − pμ
3Þ

×
�
CAð9 − 5ξAÞg2 þ 4κ2m2ðξh − 2Þ

64π2ϵ
− Zð1Þ

1

�

þOðp3Þ þ finite; ð22Þ

from which, through MS, we find

Zð1Þ
1 ¼ CAð9 − 5ξAÞg2 þ 4κ2m2ðξh − 2Þ

64π2ϵ
: ð23Þ

The three-point function describing the vertex with three
gluons in shown in Fig. 6. We have used the projection

Πμνα
abc ¼ ημνΠα

abc ⇒ Πα
abc ¼

1

4
ημνΠ

μνα
abc ð24Þ

and used the fact that p3 ¼ p1 þ p2 to get

−iΠα
abc ¼

g3fabcCAð−9ξA − 4Ns þ 17Þðp1 − p2Þα
256π2ϵ

−
3

4
Zð1Þ
3g gðp1 − p2Þαfabc þOðp2Þ þ finite; ð25Þ

Through MS, we impose finiteness and find

Zð1Þ
3g ¼ −

g2CAð9ξA − 17 − 4NsÞ
192π2ϵ

: ð26Þ

Now, we consider the scattering of four gluons (see
Fig. 7, showed at the end of the paper for convenience).
Since the interaction of four gluons has no derivatives, the
Z4g counterterm will renormalize terms proportional to p0

FIG. 5. Feynman diagrams to the vertex interaction between quarks top and gluons up to one-loop order.

FIG. 6. Feynman diagrams to the gluons vertex interaction at one-loop order.
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and therefore we can set external momentum equals to
zero if we restrict ourselves to the computation of this
counterterm. Also, for simplicity, we have used the scalar
projection

Γabcd ¼
1

16
ημνηρσΓ

μνρσ
abcd; ð27Þ

to obtain the expression for the gluon four-point function

FIG. 7. Feynman diagrams to the scattering between gluons up to one-loop order and one graviton exchange.
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−iΓabcd ¼ −
�
iCAg4ðNs þ 3ξA − 2Þ

32π2ϵ
þ 3

2
iZð1Þ

4g g
2

�

× ðtrðtatbtctdÞ − 2trðtatctbtdÞ − 2trðtbtctatdÞ
þ trðtbtatctdÞ þ trðtctatbtdÞ þ trðtctbtatdÞÞ;

ð28Þ

Then, again imposing finiteness through MS, we have

Zð1Þ
14g

¼ −
CAg2ðNs þ 3ξA − 2Þ

48π2ϵ
: ð29Þ

The other four-point function involves two scalars and
two gluons (see Fig. 8, again showed at the end of the paper

FIG. 8. Feynman diagrams to the scattering between gluons and quarks up to one-loop order and one graviton exchange.
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for convenience). For this vertex, we use the following
projection:

Πμν
abcd ¼ ημνΠabcd ⇒ Πabcd ¼

1

4
ημνΠ

μν
abcd ð30Þ

and then we have

Πabcd ¼
�
ig2 − 3CAðξA − 1Þg2 − 2ðξh − 2Þκ2m2

16π2ϵ

− 2iZð1Þ
2g g

2

�
ð2trðtatbtctdÞ − trðtatctbtdÞ

− trðtbtatctdÞ − trðtbtctatdÞ − trðtctatbtdÞ
þ 2trðtctbtatdÞÞ: ð31Þ

The counterterm is found to be

Zð1Þ
2g ¼ −

3CAðξA − 1Þg2 − 2ðξh − 2Þκ2m2

32π2ϵ
: ð32Þ

From Eqs. (14a), (17a), (19), (21), (23), (26), and (29) we
conclude that

Zð1Þ
1 − Zð1Þ

2s ¼ Zð1Þ
3g − Zð1Þ

3 ¼ 1

2
ðZð1Þ

4g − Zð1Þ
3 Þ

¼ 1

2
ðZð1Þ

2g − Zð1Þ
2s Þ ¼ Zð1Þ

1c − Zð1Þ
2c

¼ −
CAg2ð3þ ξAÞ

64π2ϵ
ð33Þ

so the Slavnov-Taylor identities [38,39] are indeed
respected and thus gravitational interaction does not spoil
the gauge symmetry. This result allows us to define a global
color charge.
Moreover, we can show that the beta function is

independent of κ and m, as the expression the one-loop
beta function of the color charge can be found through the
relations between the renormalized coupling constants and
the counterterms given by

g ¼ μ−2ϵ
Z2sZ

1=2
3

Z1

g0; ð34aÞ

g ¼ μ−2ϵ
Z3=2
3

Z3g
g0; ð34bÞ

g ¼ μ−2ϵ
Z3

Z1=2
4g

g0; ð34cÞ

g ¼ μ−2ϵ
Z2cZ

1=2
3

Z1c
g0; ð34dÞ

g ¼ μ−2ϵ
Z1=2
2 Z1=2

3

Z1=2
2g

g0: ð34eÞ

Therefore, the beta function for the color charge is

βðgÞ ¼ lim
ϵ→0

μ
dg
dμ

¼ lim
ϵ→0

μ
d
dμ

�
g0

�
1 − Zð1Þ

1 þ Zð1Þ
2s þ Zð1Þ

3

2

�
μ−2ϵ

�
;

¼ −
g3

ð4πÞ2
�
11

3
CA −

2

6
Ns

�
: ð35Þ

The observed outcome is gauge independent, a charac-
teristic that was previously established via a functional
approach in Ref. [40]. This property has also been verified
in the context of the effective field theory of gravity when
coupled with fermionic QCD in [24].
As we can see, it does not depend on the mass, so our

choice to make all masses the same does not affect our
result for the beta function at one-loop order. On the other
hand, as discussed in [23], at two-loop order we would
expect a

P
i κ

2m2
i term.

It is needed to stress here the importance of a regulari-
zation scheme that preserves the symmetries of the model.
In fact, the authors in Ref. [40] showed that in the weak-
gravity limit there is no gravitational contribution at one-
loop order if the regularization scheme preserves the
symmetries of the model, such as dimensional regulariza-
tion. On the other hand, if the regularization scheme does
not preserve all the symmetries, there will be a negative
contribution to the beta function (as seen in [11]).

IV. TWO-LOOP GLUON SELF-ENERGY

This section presents the computation of the two-loop
gluon self-energy and its renormalization. TARCER [41],
in combination with previously cited Mathematica pack-
ages, is utilized for this computation. TARCER implements
the Tarasov algorithm for the reduction of two-loop scalar
propagator type integrals with external momentum and
arbitrary masses [42]. The Feynman and harmonic gauges
(ξA ¼ ξh ¼ 1) are used for simplicity, and the analysis is
limited to the case in which there is only one scalar
particle (Ns ¼ 1).
The Feynman diagrams we need to compute are showed

in Fig. 9. Due to gauge invariance, our result can be
expressed as

Πð2Þ
μν ¼ ðp2gμν − pμpνÞΠð2Þ; ð36Þ

where the function Πð2Þ is a scalar function that can be
expressed in terms of a set of basic integrals. To present the
results in a simplified manner, we will adopt a notation
similar to the one used in the original TARCER paper [41]
for the basic integrals that will be utilized,
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FIG. 9. Feynman diagrams to the gluon self-energy involving only one graviton exchange at two-loop order.
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AνðmÞ ¼ 1

πD=2

Z
dDk

½k2 −m2�ν ; ð37aÞ

Bν1;ν2ðm1; m2Þ ¼
1

πD=2

Z
dDk

½k2 −m2
1�ν1 ½ðk − pÞ2 −m2

2�ν2
; ð37bÞ

Jν1;ν2;ν3ðm1; m2; m3Þ ¼
1

πD

Z
dDk1dDk2

½k21 −m2
1�ν1 ½k25 −m2

2�ν2 ½k24 −m2
3�ν3

; ð37cÞ

Fν1;…;ν5ðm1;…; m5Þ ¼
1

πD

Z
dDk1dDk2

½k21 −m2
1�ν1 ½k22 −m2

2�ν2 ½k23 −m2
3�ν3 ½k24 −m2

4�ν4 ½k25 −m2
5�ν5

; ð37dÞ

in which p is the external momentum and we introduced k3 ¼ k1 − p, k4 ¼ k2 − p, and k5 ¼ k1 − k2.
Therefore, we can write

Πð2Þ ¼ c1A1ðmÞB1;1ð0; 0Þ þ c2A1ðmÞB1;1ðm;mÞ þ c3B1;1ð0; 0ÞB1;1ðm;mÞ þ c4ðA1ðmÞÞ2
c5ðB1;1ð0; 0ÞÞ2 þ c6ðB1;1ðm;mÞÞ2 þ c7J1;1;1ð0; 0; 0Þ þ c8J1;1;1ðm;m; 0Þ þ c9J2;1;1ðm;m; 0Þ
c10F1;1;1;1;1ð0; m; 0; m;mÞ þ c11F1;1;1;1;1ðm; 0; m; 0; mÞ: ð38Þ

All of the aforementioned integrals are established and can be found in Refs. [43,44], and the coefficients ci are presented
in the Appendix. As we are only concerned with the renormalization of the gluon wave function, we expand Eq. (38) around
p ¼ 0 and retain only terms proportional to p0. Higher powers in the external momentum will be renormalized by higher-
order terms. Thus we obtain

Πð2Þ ¼ −
iλCAg2

384π4ϵ
−
iκ2m2CAg2

256π4ϵ
þ iC2

Ag
4 logðm2Þ

384π4ϵ
−
iC2

Ag
4 log ð−p2Þ
64π4ϵ

−
iλCAg2

384π4ϵ
þ 5iγC2

Ag
4

384π4ϵ

þ 17iC2
Ag

4

576π4ϵ
þ 5i logð4πÞC2

Ag
4

384π4ϵ
þ 5iC2

Ag
4

768π4ϵ2
þOðpÞ þ finite: ð39Þ

Now, we should compute the one-loop diagrams with counterterms insertion in Fig. 10. By doing so, we obtain

Πð2Þ
μνCT ¼ ðp2gμν − pμpνÞΠð2Þ

CT; ð40Þ

where

Πð2Þ
CT ¼ −

iC2
Ag

4 logðm2Þ
384π4ϵ

þ iC2
Ag

4 log ð−p2Þ
64π4ϵ

−
5iC2

Ag
4

384π4ϵ2
þ iλCAg2

192π4ϵ
−
5iγC2

Ag
4

384π4ϵ

−
59iC2

Ag
4

2304π4ϵ
−
5i logð4πÞC2

Ag
4

384π4ϵ
þOðpÞ þ finite: ð41Þ

Therefore, we obtain that the two-loop gluon wave
function counterterm is given by

Zð2Þ
3 ¼ C2

Ag
4

256π4ϵ
−

5C2
Ag

4

768π4ϵ2
−
κ2m2CAg2

256π4ϵ
: ð42Þ

V. CONCLUDING REMARKS

In summary, we have evaluated the n-point functions for
the Einstein-Scalar-QCD model and demonstrated that
there are no gravitational corrections to the beta function

of the color charge at one-loop order. Additionally, we have
explicitly verified that the Slavnov-Taylor identities are
preserved at this order of perturbation theory, indicating
that the universality of the color charge is maintained. Last,
we have computed the counterterm for the gluon wave
function at two-loop order.
It is important to contextualize our results and com-

pare them with previous research. To this end, we will
follow the discussion in [45] and highlight some dis-
tinctions between our findings and theirs. One such
difference lies in the adoption of a distinct regularization
scheme. In Ref. [26], it is argued that there are three
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primary concerns that should be considered when working
with quantum gravity: gauge invariance, gauge conditions
introduced in the quantization process, and the ability of the
method to regulate any type of divergence. It was further
argued that although dimensional regularization (DR) sat-
isfies the first two requirements, it cannot handle more than
logarithmic divergences. Therefore, Tang andWu employed
the loop regularization method (LP) in their studies [26,27]
to regulate the divergences. This method is capable of
dealing with the quadratic divergences that appear in the
Feynman diagrams. The authors used LP to compute the
beta functions of the Einstein-Yang-Mills theory and com-
pared the results with those obtained using DR. They found
that while using DR leads to no gravitational contribution at
one loop, the use of LP leads to a contribution that is
proportional to μ2.
It is a fundamental requirement that physical results should

not depend on the choice of the regularization scheme.Anber
pointed out in [20] that the quadratic divergences are not
relevant when using the S matrix, which is a physical
quantity. Moreover, Toms demonstrated in [46] that it is
possible to define the electrical charge in quantum gravity
using the background field method in a physically mean-
ingful way that is not influenced by the quadratic divergen-
ces. Therefore, such contributions should be regarded as

unphysical and shouldnot be included in the evaluationof the
running coupling.
An intriguing avenue for further investigation pertains to

the existence of a non-Abelian scalar particle serving as a
potential darkmatter candidate, as well as the implications of
quantum gravity for dark matter. In the study conducted in
Ref. [32], the potential ramifications of quantum gravity on
dark matter models were explored. It was demonstrated that
quantum gravity would give rise to a fifth forcelike inter-
action, setting a lower limit on the masses of bosonic dark
matter candidates. The authors also argued that, due to the
influence of quantum gravity, these potential candidates
would decay. However, given the ongoing observation of
dark matter in the present Universe, the authors were able to
calculate an upper bound on the mass of a scalar singlet dark
matter particle. In our future work, we intend to investigate
the mass range for a non-Abelian scalar dark matter candi-
date, as presented in our study. In such a scenario, the fifth
forcelike interaction would also be non-Abelian in nature.
This particular scenario was discussed in [31].
In our future endeavors, we plan to investigate the

dynamics of the renormalized coupling constant in non-
Abelian gauge theories, considering the presence of fer-
mions and scalars coupled to gravity at the two-loop level.
This investigation will involve an expansion of our research

FIG. 10. Gluon self-energy one-loop diagrams with counterterms insertions.
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to incorporatemodified theories of gravity, such as quadratic
gravity [47–51]. Drawing on the qualitative analysis pre-
sented in [24], we expect that modified theories of gravity,
characterized by unconventional properties such as repul-
sive gravity under specific regimes, could potentially impact
the behavior of the beta function. These modified gravity
theories introduce additional gravitational interactions and
might influence the running of the coupling constant in non-
Abelian gauge theories, leading to intriguing and novel
phenomena.
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APPENDIX: TWO-LOOP COEFFICIENTS

In this section we present the two-loop coefficients for
the two-loop gluon self-energy from Eq. (38).

c1 ¼ −
iðD4 − 10D3 þ 35D2 − 50Dþ 24ÞCAg2s

960ðD − 4ÞðD − 3ÞðD − 1Þ2m4
ð−4CAg2sð20ð2D2 − 3D − 11Þm2

þ ð2D2 − 11Dþ 12Þp2Þ − 5ðD2 − 8Dþ 12Þκ2m2ððD − 8Þp2 − 48m2ÞÞ; ðA1aÞ

c2 ¼ −
iCAg2s

16ðD − 4ÞðD − 3ÞðD − 1Þ2m2p2
ð−64ðD − 1Þ2ðD2 − 7Dþ 12Þλm2

þ 8ðD − 1ÞCAg2sð4ðD3 − 8D2 þ 19D − 16Þm2 þ ðD − 2ÞDp2Þ þ 2D6κ2m4 − 18D5κ2m4

−D5κ2m2p2 þ 22D4κ2m4 − 64D4λm2 þ 23D4κ2m2p2 þ 262D3κ2m4 þ 576D3λm2

− 196D3κ2m2p2 − 1124D2κ2m4 − 1728D2λm2 þ 696D2κ2m2p2 þ 8D2κ2p4 þ 1712Dκ2m4

þ 1984Dλm2 − 1048Dκ2m2p2 − 24Dκ2p4 − 928κ2m4 − 768λm2 þ 544κ2m2p2 þ 16κ2p4Þ;

c3 ¼ −
iðD3 − 8D2 þ 19D − 12ÞCAg2sð2CAg2s þ κ2ð2ðD − 2Þm2 − ðD − 4Þp2ÞÞ

2ðD − 4ÞðD − 3ÞðD − 1Þ2 ; ðA1bÞ

c4 ¼
ið3D4 − 40D3 þ 180D2 − 320Dþ 192ÞCAg2s

960ðD − 6ÞðD − 5ÞðD − 4Þ2ðD − 3ÞðD − 2ÞðD − 1Þ2ð3D − 4Þm4p4
ð−1920ðD − 1Þ2ðD4 − 14D3

þ 71D2 − 154Dþ 120Þλm2p2 þ 4ðD2 − 3Dþ 2ÞCAg2sðð2D3 − 19D2 þ 54D − 45ÞðD − 4Þ2p4

þ 32ð4D5 − 48D4 þ 113D3 þ 616D2 − 3099Dþ 3470Þm4 þ 4ð8D5 − 40D4 − 281D3 þ 2224D2

− 4899Dþ 3924Þm2p2Þ þ 5ðD − 5Þm2p2ððD2 − 3Dþ 2ÞððD5 − 23D4 þ 200D3 − 820D2 þ 1584D

− 1056Þκ2p2 − 384ðD3 − 8D2 þ 19D − 12ÞλÞ þ 4ð5D7 − 113D6 þ 1052D5 − 5122D4 þ 13896D3

− 20896D2 þ 16032D − 4800Þκ2m2ÞÞ; ðA1cÞ

c5 ¼
iCAg2s

128ðD − 4ÞðD − 1Þ2 ð64ðD
3 − 5D2 þ 2Dþ 2ÞCAg2s þ ð−24D5 þ 497D4 − 3680D3 þ 12984D2

− 21560Dþ 11840Þ κ2p2Þ; ðA1dÞ

c6 ¼
iCAg2s

64ðD − 4ÞðD − 1Þ2p2
ðκ2ð16ðD3 − 10D2 þ 36D − 36Þm4 − 8ðD3 − 10D2 þ 48D − 48Þm2p2

þ ðD3 − 10D2 þ 64D − 64Þp4Þ − 128ðD − 1ÞCAg2sð2m2 − p2ÞÞ; ðA1eÞ

c7 ¼ −
iCAg2s

48ðD − 6ÞðD − 4Þ2ðD − 1Þð3D − 4Þp2
ð24ð9D6 − 189D5 þ 1364D4 − 4756D3 þ 9280D2

− 10336Dþ 4992ÞCAg2s þ ð6D8 − 35D7 − 2454D6 þ 39327D5 − 240012D4 þ 695044D3

− 915664D2 þ 366464Dþ 98304Þκ2p2Þ; ðA1fÞ
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c8 ¼ −
iCAg2s

480ðD − 4ÞðD − 2ÞðD − 1Þm2p4
ð4ðD − 2ÞCAg2sð32ð12D4 − 92D3 − 41D2 þ 1577D − 2776Þm4

þ 4ð24D4 − 172D3 þ 273D2 þ 193D − 516Þm2p2 þ ð6D4 − 67D3 þ 271D2 − 468Dþ 288Þp4Þ
þ 5κ2m2p2ð4ð6D6 − 213D5 þ 2417D4 − 12716D3 þ 34112D2 − 45272Dþ 23616Þm2

þ ð3D6 − 63D5 þ 518D4 − 2092D3 þ 4296D2 − 3968Dþ 1024Þp2ÞÞ; ðA1gÞ

c9 ¼
iCAg2s

480ðD − 4ÞðD − 3ÞðD − 2ÞðD − 1Þm2p4
ð4ðD − 2ÞCAg2sð240ð7D2 − 57Dþ 100Þm4p2

− ðD − 4Þ2ð2D2 − 9Dþ 9Þp6 þ 128ð4D4 − 32D3 − 7D2 þ 548D − 1041Þm6

− 4ð6D4 − 39D3 − 22D2 þ 517D − 876Þm2p4Þ þ 5κ2m2p2ð16ð2D6 − 69D5 þ 789D4 − 4236D3

þ 11684D2 − 16012Dþ 8664Þm4 − 4ðD6 − 44D5 þ 543D4 − 3040D3 þ 8736D2 − 12616D

þ 7296Þm2p2 − ðD6 − 25D5 þ 246D4 − 1220D3 þ 3224D2 − 4416Dþ 2496Þp4ÞÞ; ðA1hÞ

c10 ¼
iκ2m2CAg2sððD2 − 6Dþ 4Þp2 − 4ðD − 2Þm2Þ

2ðD − 1Þ ; ðA1iÞ

c11 ¼ −
iCAg2sðCAg2sð8m2 − p2Þ þ ðD − 2Þκ2m2ððD − 4Þp2 − 8m2ÞÞ

2ðD − 1Þ : ðA1jÞ
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