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In this paper, we construct a charged soliton with a finite energy and no delta function source in a pure
Abelian gauge theory. Specifically, we first consider the three-dimensional Abelian gauge theory, with a
Maxwell term and a level N CS term. We find a static solution that carries charge N, angular momentum N

2

and whose radius is N independent. However, this solution has a divergent energy. In analogy to the
replacement of the four-dimensional Maxwell action with the BI action, which renders the classical energy
of a point charge finite, for the three-dimensional theory which includes a CS term such a replacement leads
to a finite energy for the solution of above. We refer to this soliton as a CSBIon solution, representing a
finite energy version of the fundamental (sourced) charged electron of Maxwell theory in four dimensions.
In three dimensions the BIþ CS action has a static charged solution with finite energy and no source, hence
a soliton solution. The CSBIon, similar to its Maxwellian predecessor, has a charge N, angular momentum
proportional to N and an N-independent radius. We also present other nonlinear modifications of Maxwell
theory that admit similar solitons. The CSBIon may be relevant in various holographic scenarios. In
particular, it may describe a D6-brane wrapping an S4 in a compactified D4-brane background. We believe
that the CSBIon may play a role in condensed matter systems in 2þ 1 dimensions like graphene sheets.

DOI: 10.1103/PhysRevD.107.125011

I. INTRODUCTION

Classical solutions of quantum field theories with finite
energy are physically very important and are rare. In gauge
theories there are certain finite energy solutions with some
finite charge, usually topological in nature, though not only
(for instance, consider the Q-ball solution [1]). In the case
of non-Abelian gauge theories, one can have topological
soliton solutions involving the gauge fields only, for
instance, the BPST instanton solution [2], though in that
case the solution only exists in Euclidean signature. If one
adds matter, specifically scalars, there are more soliton
solutions possible, like the ’t Hooft monopole in the 3þ 1
dimensional non-Abelian case [3], and the Nielsen-Olesen
vortex in 2þ 1 dimensional Abelian-Higgs theory [4]. One
can also have finite energy solutions that are sourced by a
delta function, like the BIon solution, invented by Born and

Infeld [5] in order to describe the electron as a finite energy
solution with a delta function source.
But until now, to our knowledge, there were no soliton

solutions in pure Abelian gauge theory. In this Letter, we
first derive a static solution of the Maxwellþ level N CS
theory. This explicit solution has a charge N, angular
momentum N=2, and a radius which is N independent.
However, it has a divergent energy and a delta function
source. We cure both problems by uplifting the system into
a BIþ CS one. We refer to the corresponding soliton
solution as the CSBIon. For that case were not able to
derive an analytic explicit solution, but we show that indeed
it has finite energy, and charge, angular momentum and
radius similar to those of the predecessor Maxwellþ CS
theory, but no delta function source. Moreover, the electric
charge associated with the solution does not arise from a
topological number.
The Maxwellþ CS electromagnetism in 2þ 1 dimen-

sions has many applications to condensed matter physics.
These are described in the reviews [6–8] and in references
therein. Probably in a similar manner one can consider
applications of the BIþ CS action to solid states systems.
In particular a phenomenological description of the dynam-
ics of the graphene sheets in terms of a DBI action was
proposed in [9]. The CSBIon may be a source outside of
the sheet.
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Gauge field theories, Abelian and non-Abelian, described
by an action built of BI and CS terms, are very common on
the world volumes of D-branes. As such they show up in
various string and holographic models. An example of such
an Abelian gauge theory in three dimensions is associated
with a D6-brane that resides in the background of compac-
tified D4-branes and wraps an S4. This model has been
suggested [10] as the holographic dual of the proposal to
describe an Nf ¼ 1 baryon in terms of a quantum Hall
droplet [11].
The paper is organized as follows. The next section is

devoted to the motivation for this work and to a comparison
with the BIon solution in four dimensions. In Sec. III we
derive solutions of the Maxwellþ CS action. First we
derive the basic static solution and compute its classical
energy, angular momentum and radius. We then derive a
solution with finite energy for the case where the origin is
encircled by a conducting circle and a time dependent
solution. In Sec. IV we uplift the Maxwell term to a BI one.
We write down the equations of motion and the constitutive
relations. We analyze the structure of the solution and
conclude that it has to have finite energy and charge and
angular momentum that are linear with N and radius which
is independent of it. Next we describe certain ModMax
generalizations. In the next section we summarize, con-
clude and write down several open questions. The paper
includes also three Appendices. In the first we describe a
nonrelativistic BI-type model, followed in the second by a
relativistic one. We then present 4 attempts of approximat-
ing the exact solution in the third one.

II. MOTIVATION AND COMPARISONWITH BION
SOLUTION IN FOUR DIMENSIONS

As motivation for our work, we can take the point of
view of the formal theoretical physicist, and simply look for
an answer to a mathematical physics question: can we find
in Abelian gauge theory a finite energy soliton solution,
which is not sourced by a delta function?
In four dimensions, the BIon solution to the BI action [5]

(modification of Maxwell electromagnetism) has a finite
energy, which is why Born and Infeld constructed it. But it
is also sourced by a delta function, so as to be able to be
identified with a finite field energy version of the electron.
At r → ∞, the BIon solution becomes the regular Maxwell
electron, so E⃗ ∝ 1=r2, which gives a finite energy at infinity,
since E ∼ 4π

R
r2drE⃗2=2 ∼

R
dr=r2, while at r → 0, the

BIon modification keeps E⃗ finite.
But the BIon is necessarily sourced, since ∇! · D⃗≡ 4πρ̃f,

with ρ̃f the free, or external, charge density, which is found
to be qδ3ðrÞ. There are no static solutions that are finite
energy and not sourced, either in Maxwell or in BI theory.
In Maxwell theory (see [12–14]) and in its BI generali-

zation [15,16], there are time-dependent knotted solutions
with nontrivial topological charges.

So it is natural to look to three dimensions, and see if
we can find something there. But in three dimensions, even
the regular Maxwell electron has E⃗ ∝ 1=r, so a diverging
energy at infinity, since now E ∼ 2π

R
rdrE⃗2=2 ∼

R
dr=r.

So one needs to consider a modification of Maxwell theory
at large distances, or small energies (in the IR). Luckily,
in three dimensions we have the CS term that we can add,
and will dominate in the IR.
We can now ask: can we find such an action, of

Maxwellþ CS, or BIþ CS in a physical system? The
answer for BIþ CS is in the affirmative, as follows.
Consider the D4-brane holographic system, or the

doubly Wick rotated nonextremal D4-brane (Witten model)
with a large N number of D4-branes, and consider a
D6-brane wrapping the transverse S4 in it, and the other
three directions being parallel to the D4-brane. The CS term
on the D6-brane will contain a nontrivial term of the typeR
A ∧ dA ∧ Fð4Þ, and since on the transverse sphere

Fð4Þ ∼ Nϵð4Þ, we obtain on the three directions common
to the D4- and D6-brane an Abelian gauge theory term

SCSþBI ¼ SBI þ
N
2π

Z
d3xϵμνρAμ∂νAρ: ð2:1Þ

But, before we continue, we will review the four-
dimensional BIon solution.
The four-dimensional BI action is

Lðb; E⃗; B⃗Þ ¼ b2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F −G2

p �
; ð2:2Þ

where b is the dimensional parameter, of dimension 2, that
defines the theory, and

F ¼ 1

b2
ðB⃗2 − E⃗2Þ ¼ 1

2b2
FμνFμν;

G ¼ 1

b2
E⃗ · B⃗ ¼ −

1

4b2
FμνF̃μν; ð2:3Þ

with F̃μν ¼ 1
2
ϵμνρσFρσ.

As always in nonlinear electromagnetism theories, be it
inside a material, or in vacuum, we define the objects

H⃗ ¼ −
∂L

∂B⃗
¼ B⃗ −GE⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F −G2
p ;

D⃗ ¼ ∂L

∂E⃗
¼ E⃗þ GB⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F −G2
p ; ð2:4Þ

the aboveHðE;BÞ andDðE;BÞ being constitutive relations
for the material, or the vacuum theory.
In terms of E⃗, D⃗, B⃗, H⃗, the Maxwell equations without

sources have form

HORATIU NASTASE and JACOB SONNENSCHEIN PHYS. REV. D 107, 125011 (2023)

125011-2



∇!× E⃗ ¼ −
1

c
∂tB⃗; ∇! · B⃗ ¼ 0;

∇!× H⃗ ¼ 1

c
∂tD⃗; ∇! · D⃗ ¼ 0: ð2:5Þ

In the presence of sources, one has

∇! · D⃗ ¼ ρ̃ext; ð2:6Þ

which contains only the external (or free) charge density
ρ̃ext (or ρ̃f), which means delta function sources, introduced
as an extra term in the Lagrangian of the type

R
ρ̃extA0,

whereas we also have

∇! · E⃗ ¼ ρ̃

ϵ0
; ð2:7Þ

but here in ρ̃we also have charges due to the polarization of
the material, or in this case, of the vacuum, leading as usual
to the fact that this total charge density is spread out.
In four dimensions, the Hamiltonian is the Legendre

transform of the Lagrangian over E⃗ ¼ F0i ¼ − _A⃗ in the
A0 ¼ 0 gauge,

H ¼ E⃗ D⃗−L ¼ b2

2
664 1þ B⃗2

b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B⃗2−E⃗2

b2 −
�
B⃗·E⃗
b2

�
2

r − 1

3
775; ð2:8Þ

and since we can calculate that

2s≡ D⃗2 þ B⃗2 ¼
E⃗2 þ B⃗2

�
1þ B⃗2−E⃗2

b2

�
þ 2

ðE⃗·B⃗Þ2
b2

1þ B⃗2−E⃗2

b2 −
�
B⃗·E⃗
b2

�
2

;

p2 ≡ D⃗2B⃗2 − ðB⃗ · D⃗Þ2 ¼ E⃗2B⃗2 − ðE⃗·B⃗Þ2
b2

1þ B⃗2−E⃗2

b2 −
�
B⃗·E⃗
b2

�
2
; ð2:9Þ

we can reexpress it in terms of its natural variables, D⃗ and
B⃗, as

Hðb; D⃗; B⃗Þ ¼ b2
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2s
b2

þ p2

b4

s
− 1

#

¼ b2
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ D⃗2 þ B⃗2

b2
þ D⃗2B⃗2 − ðD⃗ · B⃗Þ2

b4

s
− 1

#
:

ð2:10Þ

The BIon is a purely electric solution (B⃗ ¼ 0), sourced
by a point charge, so ρ̃ext ¼ Ωd−1qδdðr⃗Þ, where for later
simplicity we took out a factor of Ωd−1, the volume of the
unit sphere; for d ¼ 3, Ω2 ¼ 4π.

For the purely electric theory, the relevant constitutive
relation becomes

D⃗ ¼ E⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E⃗2=b2

q ; ð2:11Þ

inverted as

E⃗ ¼ D⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D⃗2=b2

q ¼ −∇!ϕ: ð2:12Þ

Then, in four dimensions the equation of motion (EOM)
for the BIon solution becomes

d
dr

ðr2DrÞ ¼ 4πqδ3ðr⃗Þ; ð2:13Þ

with solution

Dr ¼
q
r2

; ð2:14Þ

so that

Er ¼ −ϕ0ðrÞ ¼ q=r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

b2r4 þ 1

q ¼ qbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2r4 þ q2

p : ð2:15Þ

As we see, at r → ∞, the solution reduces to the
Maxwell electron solution, and at r → 0, E=b → 1, the
maximum allowed value, because of the square rootffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E⃗2=b2

q
.

While ∇! · D⃗ ¼ ρ̃ext ¼ qδ3ðr⃗Þ is sourced by a point
charge, the total charge is spread out,

ρ̃

ϵ0
≡ ∇! · E⃗ ¼ d

dr
ðr2ErÞ

¼ d
dr

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

b2r2 þ 1

q ¼ 2q3

b2r5
�

q2

b2r4 þ 1

�
3=2 ; ð2:16Þ

due to the “polarization of the vacuum.”
The total field energy of the purely electric solution, the

spatial integral of its Hamiltonian,

E ¼
Z

d3rb2
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ D⃗2

b2

s
− 1

#

¼ 4πb2
Z

∞

0

r2dr

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

b2r4

s
− 1

#
; ð2:17Þ

is finite.
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A. Three-dimensional BIon solution to BI theory

We can repeat the same analysis for the three-dimen-
sional case. We now denote by ρ the two-dimensional radial
coordinate (polar coordinate in the plane).
In 2þ 1 dimensions, the EOM for the BIon solution is

(taking out a factor of Ω1 ¼ 2π as before),

d
dρ

ðρDρÞ ¼ 2πqδ2ðr⃗Þ; ð2:18Þ

with solution

Dρ ¼
q
ρ
; ð2:19Þ

so

Eρ ¼ ϕ0 ¼ q=ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

ρ2b2 þ 1
q ¼ qbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2ρ2 þ q2
p : ð2:20Þ

This integrates to

ϕ ¼ −q
Z

ρ

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðq=bÞ2

p ¼ q sinh−1
bρ
q
: ð2:21Þ

However, now the total field energy of the purely electric
solution is

E ¼
Z

d2rb2
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ D⃗2

b2

s
− 1

#

¼ 2πb2
Z

∞

0

ρdρ

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

b2ρ2

s
− 1

#
; ð2:22Þ

and is log-divergent at ρ → ∞ as
R
dρ=ρ, the same

divergence as in the Maxwell case. Of course, at ρ → 0
the energy is still finite.

III. SOLUTIONS FOR MAXWELL PLUS
CHERN-SIMONS IN THREE DIMENSIONS

In three dimensions, we can add a CS term, that will
dominate over the Maxwell one (or a BI, reducing to
Maxwell) at large distances, so in the IR. We analyze
therefore the solutions of this system.

A. The basic static solution

Consider then the Abelian Maxwellþ CS term action at
level N, that reads

SCSþMx ¼
Z

d3x

�
−

1

4g2
FμνFμν þ N

2π
ϵμνρAμ∂νAρ

�
; ð3:1Þ

where, since we have the CS term added to the Maxwell
term, we have introduced also the coupling g2 in front of the
action. Then, as usual, Aμ has mass dimension 1, so g2 has
mass dimension 1.
The corresponding EOM is

∂νFνμ þ λϵμνρFνρ ¼ 0; ð3:2Þ

where λ ¼ g2N
2π has dimension 1.

Explicitly, we have (i ¼ 1, 2)

∂iFi0 þ λF12 ¼ 0;

∂0F01 þ ∂2F21 þ λF20 ¼ 0;

∂0F02 þ ∂1F12 þ λF01 ¼ 0: ð3:3Þ

We define, as usual, the magnetic field (in three
dimensions, it is a scalar) B≡ F12, the electric field
Ei ≡ Fi0. Consider a static solution (∂tE⃗ ¼ ∂tB ¼ 0)
depending only on the radial coordinate ρ, the radial
component of E⃗ denoted by E and with E0 ¼ ∂ρE,
B0 ¼ ∂ρB. Then the equations of motion take the form

E
ρ
þ E0 ¼ λB∂iB ¼ λEi ⇒ B0 ¼ λE: ð3:4Þ

Combining the two, we obtain a single equation for E,

ρ2E00 þ ρE0 − Eð1þ λ2ρ2Þ ¼ 0: ð3:5Þ

Denoting z≡ λρ, we obtain a modified Bessel equation
in the variable z,

z2∂2zEþ z∂zE − Eð1þ z2Þ ¼ 0: ð3:6Þ

Thus the general solution for E is

E ¼ ãI1½λρ� þ b̃K1½λρ�; ð3:7Þ

where In½λρ� and Kn½λρ� are the modified Bessel functions
of the first and second kind, and ã; b̃ are arbitrary
constants.
Requiring on physical grounds that the field goes to zero

at large ρ, so excluding the I1 solution, we end up with the
solution

E ¼ b̃K1½λρ�; B ¼ −b̃K0½λρ�: ð3:8Þ
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Near ρ ¼ 0, this solution becomes

EðρÞ ≃ b̃
λρ

; BðρÞ ≃ b̃ ln

�
λρ

2

�
: ð3:9Þ

We check that one of the equations of motion becomes
near ρ ¼ 0

B0 ≃
b̃
ρ
≃ λE; ð3:10Þ

so is satisfied near ρ ¼ 0, and the other becomes

E0 þ E
ρ
≃
b̃
λ

�
1

ρ2
−

1

ρ2

�
≃ λB; ð3:11Þ

so is also satisfied, but in leading order, 1=ρ2 (if we keep
higher orders in the expansions of E and B in ρ, it is, of
course, satisfied to all orders).
In retrospect, to satisfy the two differential equations in

leading order, we can propose the ansatz that EðρÞ≃
b̃=ðλρÞ, then find B from B0 ¼ λE, and then check that
the remaining equation, E0 þ E=ρ ¼ λB, is satisfied in
leading order.
Note, however, that the solution we found has a delta

function source.1 Similarly to what one does in 3þ 1
dimensions for the electron solution to pure Maxwell
theory, we rewrite the 0 component of (3.2) as

∇! · E⃗ ¼ λBþ Cδ2ðrÞ ð3:12Þ

with a free coefficient C, and integrate over an infinitesimal
disk D of radius ϵ in order to fix C. Using the Stokes
theorem (Green-Riemann in 2 dimensions) to rewrite the
left-hand side as

R
C E⃗ · d⃗l, we obtain

2π
b̃
λ
¼ Oðϵ2Þ þ C ⇒ C ¼ 2πb̃

λ
: ð3:13Þ

Note also that in this case, since we obtain a linear
second order differential equation, with two independent
solutions, we can also propose the other ansatz (corre-
sponding to E ¼ I1ðλρÞ, which is excluded on physical
grounds, as it blows up at infinity). Using the above rule,
we would write (we introduce D and H for later use in the
case of nonlinear electromagnetism theories, though here
they are trivial, D ¼ E, B ¼ H)

D ¼ E ≃ Aρþ Cρ3 ⇒ B ¼ H ¼ 1

λ

�
D0 þD

ρ

�

¼ 2A
λ

þ 3C
λ
ρ2; ð3:14Þ

in which case H0 ¼ λE implies C ¼ Aλ2=6, which indeed
matches the solution with I1,

D ¼ E ≃ Aρ

�
1þ λ2ρ2

6

�
: ð3:15Þ

This solution is indeed a solution without source, since
again integrating (3.12) over a small disk as before, we now
find

A2πϵ2 ¼ 2Aπϵ2 þ C ⇒ C ¼ 0: ð3:16Þ

At ρ → ∞, we also have two possible behaviors: the
divergent one, to be excluded on physical grounds,

E ¼ I1ðλρÞ ≃
eλρffiffiffiffiffiffiffiffiffiffi
2πλρ

p ; B ¼ I0ðλρÞ ≃ E; ð3:17Þ

and the good one,

E ¼ K1ðλρÞ ≃ e−λρ
ffiffiffiffiffiffiffi
π

2λρ

r
; B ¼ −K0ðλρÞ ≃ E: ð3:18Þ

Note that at these large distances, the CS term dominates
over the Maxwell one, hence the exponential behavior
(unlike the Maxwell behavior, E ≃ 1=ρ).
Also note that, since the differential equation is linear,

we have two solutions with general coefficients, but in the
nonlinear case to be studied later, we can have uniquely
fixed solutions (or not, depending on the nonlinear modi-
fication, as we will see).
We would like to determine for this solution the

charge, energy, momentum, angular momentum, and
mean radius. The charge is the integral of the divergence
of the electric field (in this Maxwell case there is no
difference between D⃗ and E⃗). Ignoring for the moment
the source charge at the origin, of value C=g2 ¼
2πb̃=ðg2λÞ, and integrating only until a small radius ϵ
(since as we will see, the energy is divergent anyway, but
both problems will be cured by going to the BI theory),2

we obtain

1We would like to thank Z. Komargodski for pointing this fact
to us.

2If we nevertheless include the charge at the origin, so
including r ¼ 0 in our integration region, we obtain twice
the charge, and so we find J=Q ¼ 1=4, i.e., if we fix b̃ such
that Q ¼ N, then we find J ¼ N=4. But r ¼ 0 does not
contribute to the charge in the correct BI case, so we will
ignore it.
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Q ¼ 1

g2

Z
ϵ
d2x∇ · E⃗ ¼ λ

g2

Z
Sϵ

d2xB ¼ 2π
b̃
g2λ

Z
∞

ϵ→0

dzzK0½z�

¼ 2π
b̃
g2λ

; ð3:19Þ

where we have used
R∞
0 dzzK0½z� ¼ 1.

If we choose the constant to be b̃ ¼ λ2, we get that

Q ¼ N; ð3:20Þ

as we want.
For a radial electric field E, the components of the

momentum Px and Py (given by the Poynting vector P⃗)
vanish.
The angular momentum J is given by (the four-dimen-

sional J⃗ ¼ R r⃗ × P⃗, with P⃗ ¼ E⃗ × H⃗ the Poynting vector
becomes in three dimensions J ¼ R d2xϵijxiPj, with Pi ¼
ϵijEjB=g2, and xiEi ¼ ρEρ ¼ ρE, so J ¼ R d2xρEB=g2)

J ¼ 1

g2

Z
d2xρEB ¼ 2π

g2
b̃2

λ3

Z
∞

0

dzz2K0½z�K1½z� ¼
2π

g2
b̃2

λ3
1

2
;

ð3:21Þ

where we have used
R∞
0 dzz2K0½z�K1½z� ¼ 1

2
. Upon

substituting the value of the constant b̃ chosen above,
we get

J ¼ 2π

g2
b̃2

λ3
1

2
¼ 2π

g2
λ4

λ3
1

2
¼ N

2
: ð3:22Þ

Then the mean radius of the object is given by

ρ̄ ¼
λ
g2
R
d2xρB

λ
g2
R
d2xB

¼ 1

λ

R
∞
0 dzz2K0½z�R∞
0 dzzK0½z�

¼ π

2

1

λ
; ð3:23Þ

so we see that in units of λ, which is the only parameter
appearing in the equations of motion (3.3) (note that, in this
classical casewe are considering, the equations ofmotion are
the relevant object), the mean radius is independent of N.
Even though the object described by this static solution

does not relate to the usual flavor degrees of freedom in the
Sakai-Sugimoto-Witten (SSW) model [17–19], it does
admit properties similar to what is expected in the large
N from the novel type of baryon, namely, it has Q ¼
N; J ¼ N=2 and ρ̄ is independent of N.
However, for it to represent a baryon as a soliton,

ignoring the delta function source for a while, we still
need to check the energy of the object. Calculating the
energy (note that the CS term does not contribute to the
Hamiltonian, hence to the energy, so the energy is the same
as in the pure Maxwell case),

E ¼ 1

2g2

Z
d2xðE2 þ B2Þ; ð3:24Þ

we obtain a divergence of the integral near ρ ¼ 0,R
∞
0 E2 ∼

R
∞
0 dzzK1½z�K1½z�. However, the magnetic part

of the energy is finite, since
R
∞
0 dzzK0½z�K0½z� ¼ 1

2
.

For future use, note the general formulas

Z
∞

0

xμdxKνðaxÞ ¼ 2μ−1a−μ−1Γ
�
1þ μþ ν

2

�
Γ
�
1þ μ − ν

2

�
Z

∞

0

x−λdxKμðaxÞKνðbxÞ ¼
2−2−λa−νþλ−1bν

Γð1 − λÞ Γ
�
1 − λþ μþ ν

2

�
Γ
�
1 − λ − μ − ν

2

�
Γ
�
1 − λþ μ − ν

2

�
F

×

�
1 − λþ μþ ν

2
;
1 − λ − μþ ν

2
; 1 − λ; 1 −

b2

a2

�
: ð3:25Þ

B. Regularization with a conducting circle
around the origin

The divergence of the energy, as well as the source, come
from the near ρ ¼ 0 region. To avoid them, we can consider
a system with a conducting circle of radius ρ0 around the
origin, so that the electric and magnetic fields inside it
vanish. Now all the integrals in the expressions for Q; J; ρ̄,
and E will be only between ρ0 and infinity.

If we take for this case that the constant is b̃ ¼ λ2

Q̂
,

where Q̂ ¼ ðρ0λÞK1½ðρ0λÞ�, which ensures that we
still have Q ¼ N, we get for the angular momentum

J ¼ 2π

g2
b̃2

λ3

Z
∞

ρ0

dzz2K0½z�K1½z�

¼ 2π

g2
λ4

Q̂2λ3
1

2
½ðρ0λÞK1½ðρ0λÞ�2 ¼

N
2
: ð3:26Þ
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Thus, even for this regularized setup, the ratio J
Q ¼ 1

2
is

still maintained.
The finite energy in this case is given by

E ¼ 1

2g2

Z
d2xðE2 þ B2Þ ¼ λNE0; ð3:27Þ

where the dimensionless quantity E0 is given by

E0 ¼
K0½ρ0λ�

2ðρ0λÞK0½ρ0λ�
: ð3:28Þ

The mean radius is now

ρ̄ ¼
λ
g2
R
d2xρB

λ
g2
R
d2xB

¼ 1

λ

R∞
ρ0
dzz2K0½z�R∞

ρ0
dzzK0½z�

¼ π

2

ρ̂

λ
; ð3:29Þ

where

ρ̂¼ 1

6

 
−3πL2ðλρ0Þþ

3πð 1
λρ0

−L1ðλρ0ÞK2ðλρ0ÞÞ
K1ðλρ0Þ

þ4λρ0

!
;

ð3:30Þ

and L1ðzÞ and L2ðzÞ are the modified Struve function of
order 1 and 2, respectively.
To conclude, in the “regularized case” where the electric

and magnetic fields vanish within a radius ρ0 from the
origin, we can still get a solution that admits a charge
Q ¼ N, angular momentum J ¼ N

2
, while having now a

finite energy, quantized in terms of the scale λ in the
equations of motion, E ¼ λNE0, and a mean radius that is
N independent, in terms of the scaling with ρ̄ ∼ 1

λ.

C. Time-dependent solution

We have found a static solution of the equations of
motion (3.3), but it had a divergent energy. Let us look
now for a time-dependent solution. In particular, we
would like to check whether there is solution that
incorporates a “chiral mode,” while keeping the same
scaling of Q, J, and ρ̄ with N. We start with an ansatz that
includes both a radial, as well as an azimuthal component
of the electric field vector,

E⃗ ¼ Eρρ̂þ Eθθ̂; Eρ ¼ EρðρÞ;
Eθ ¼ EθðρÞ cosðθ − wtÞ: ð3:31Þ

Since Eθ now does depend on theta, the divergence
equation [the first equation in (3.3)] has another term, so we
also modify the ansatz for B in the form

B ¼ BρðρÞ þ Bθðρ; θÞ; ð3:32Þ

such that the additional equation that follows from the first
equation of (3.3) reads

1

ρ
∂θEθ ¼ λBθ → Bθ ¼ −

1

λρ
EθðρÞ sinðθ − wtÞ:

ð3:33Þ
The second and third equations now read

∂yBρ ¼ λEρðρÞ sinðθÞ; ∂yBθ ¼ λEθ cosðθÞ − ∂tEθ sin θ;

∂xBρ ¼ λEρðρÞ cosðθÞ; ∂xBθ ¼ −λEθ sinðθÞ− ∂tEθ cos θ;

ð3:34Þ

from which it follows that

∂ρBρ ¼ λEρ ∂ρBθ ¼ −wEθ sinðθ − wtÞ: ð3:35Þ
Thus, it follow that Eρ obeys the modified Bessel

equation (3.5), namely,

ρ2E00
ρ þ ρE0

ρ − Eρð1þ λ2ρ2Þ ¼ 0; ð3:36Þ
and hence we have

Eρ ¼ λ2K1½λρ�; Bρ ¼ λ3K0½λρ�: ð3:37Þ
As for Eθ and Bθ, if we substitute the right-hand side of

(3.33) into the right-hand side of (3.35), we get

−
∂ρEθ

λρ
þ Eθ

λρ2
¼−wEθ → ρ∂ρEθ− ðwλρ2þ1ÞEθ ¼ 0:

ð3:38Þ

The solution of this equation is

Eθ ¼ cρeλwρ
2

; Bθ ¼ −
c
λ
eλwρ

2

sinðθ − wtÞ: ð3:39Þ

The exponential growth of Eθ is surprising. Note that if
one uses Euclidean instead of Lorentzian signature, this
growth turns into a decay, e−λwρ

2

.
Since when determining Q we integrate over θ, we get

that if there is a natural cutoff along ρ, Bθ does not
contribute to Q, and thus we still have that

Q ¼ N: ð3:40Þ
The angular momentum does not involve Eθ and again

the integral over Bθ vanishes, so we also still get that

J ¼ N
2
: ð3:41Þ

We also get again that

ρ̄ ¼ π

2

1

λ
: ð3:42Þ
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IV. THE THREE-DIMENSIONAL BI ACTION
PLUS CS TERM

We want to find a finite energy soliton solution, so we
must modify the action in the region where the divergence
is situated, namely, at ρ → 0.

A. Equations of motion and constitutive relations

To obtain that, we replace the Maxwell term by a BI
term. The main goal is to check whether the “soliton”
solution (3.8) is modified in the case of a BI action such that
we have a finite energy, rather than a divergent one (as well
as no delta function source). Consider then

SCSþBI ¼
Z

d3x

(
Rb2

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2g2b2
FμνFμν

s #

þ N
2π

ϵμνρAμ∂νAρ

)
; ð4:1Þ

where b has dimension 2, R is a length scale, and g2 is
dimensionless, so that R=g2 is the previously defined 1=g2,
now renamed 1=g̃2, that will continue to appear in λ.
The corresponding equations of motion are

∂ν

 
Fνμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
2g2b2 FμνFμν

q
!

þ λϵμνρFνρ ¼ 0: ð4:2Þ

Explicitly, we have

∂1D̃1 þ ∂2D̃2 − λB ¼ 0;

∂0D̃1 − ∂2H̃ þ λE2 ¼ 0;

∂0D̃2 þ ∂1H̃ − λE1 ¼ 0; ð4:3Þ

where

D̃1 ¼ D1g2 ¼
E1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 1
g2b2 ðE2 − B2Þ

q ;

D̃2 ¼ D2g2 ¼
E2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 1
g2b2 ðE2 − B2Þ

q ;

H̃ ¼ Hg2 ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

g2b2 ðE2 − B2Þ
q ; ð4:4Þ

and as usual (but referring only to the BI part, the CS term
depends explicitly on Aμ, so we cannot include it in the

definition of D⃗;H)

D⃗ ¼ ∂L

∂E⃗
; H ¼ −

∂L
∂B

: ð4:5Þ

Note that in three dimensions the magnetic field B is a
scalar, and so is H.
Looking for a static solution with only a radial compo-

nent of E⃗ denoted by E, the equations take the form

D̃
ρ
þ D̃0 ¼ λB;

∂yH̃ ¼ λẼy;

∂xH̃ ¼ λẼx; ð4:6Þ

which imply the 2 regular differential equations for the
radial fields,

H̃0 ¼ λE; D̃0 þ D̃
ρ
¼ λB: ð4:7Þ

A note on the BI action: When reducing the four-
dimensional BI action (2.2) to three dimensions, two things
happen: we are left with only B ¼ Bz and E1 and E2, so
B1 ¼ B2 ¼ 0, Ez ¼ 0, which also means that E⃗ · B⃗ ¼ 0,
hence G ¼ 0 now, and the second is that we integrate over
z, giving a factor R in front, with dimensions of length. We
also have introduced 1=g2 in front of F in the action.
Then, the constitutive relations become now (after

absorbing the factor of R in D̃ and H̃)

HðE⃗; BÞ ¼ 1

g2
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ B2−E⃗2

g2b2

q ¼ H̃
g2

;

D⃗ðE⃗; HÞ ¼ 1

g2
E⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ B2−E⃗2

g2b2

q : ð4:8Þ

It would seem that we could simply use the above
constitutive relations in (4.7), but that would be more
difficult. It is clear that the better form is in terms of D⃗; B
and E⃗ðD⃗; BÞ and HðD⃗; BÞ, which are the natural variables
in the Hamiltonian formalism.
The Hamiltonian, as the Legendre transform of the

Lagrangian, which in four dimensions was (2.8), becomes
in three dimensions

H ¼ Rb2

2
64 1þ B⃗2

g2b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2−E⃗2

g2b2

q − 1

3
75; ð4:9Þ

but it needs to be reexpressed in terms of D⃗; B, where D⃗ is
now in (4.8).
Reducing to three dimensions the correct form of the

Hamiltonian (2.10), in terms of D⃗, B⃗, we obtain
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Hðb; D⃗; B⃗Þ ¼ Rb2

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2D⃗2 þ B2=g2

b2
þ D⃗2B2

b4

s
− 1

3
75:

ð4:10Þ

Then,

E⃗ðD⃗; BÞ ¼ ∂H

∂D⃗
¼ g2D⃗

1þ B2=ðg2b2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2D⃗2þB2=g2

b2 þ D⃗2B2

b4

q : ð4:11Þ

Moreover, since we can check that

E⃗2

g2b2
¼ g2D⃗2

b2
1þ B2=ðg2b2Þ
1þ g2D⃗2=b2

; ð4:12Þ

then

H̃ðD⃗;BÞ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

g2b2−
E⃗2

g2b2

q ¼B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þg2D⃗2=b2

1þB2=ðg2b2Þ

s
: ð4:13Þ

Then we want to solve the equations of motion (4.7),
with constitutive relations

E⃗ðD⃗; BÞ ¼ ∂H

∂D⃗
¼ g2D⃗

1þ B2=ðg2b2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2D⃗2þB2=g2

b2 þ D⃗2B2

b4

q ;

H̃ðD⃗; BÞ ¼ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2D⃗2=b2

1þ B2=ðg2b2Þ

s
: ð4:14Þ

B. The analysis of possible solutions

These are 4 equations in z ¼ λρ with 4 unknowns, so
they will admit a solution.
However, the solution is hard to obtain. We will focus on

the solution near ρ ¼ 0. We have shown that the expansion
of the exact solution in the Maxwell case near ρ ¼ 0 can
also be obtained as follows: we propose an Ansatz for one
of the fields (there E), and then find the other fields from
one of the equations of motion, and the constitutive
relations, and finally check if the remaining equation is
satisfied.
In this case, specifically we find it easier to write an

Ansatz for D̃ðρÞ, then find B from D̃0 þ D̃=ρ ¼ λB, then E
and H from the constitutive relations, and finally check if
the equation H̃0 ¼ λE is satisfied.
Since there are only a small number of possible behav-

iors near ρ ¼ 0, once we find one that works, it is the
correct one.
As in the Maxwell case, we can have, near ρ ¼ 0, the

solution that was excluded before, since it blew up at
infinity, with D ¼ Aρþ Cρ3. For the moment we will

ignore it, though it will turn out to be the only possibility in
the end.
First, an observation: for D → ∞ and B → ∞, the

constitutive relations (4.14) give

E ≃ B; H̃ ≃ D̃; ð4:15Þ

which is the opposite of the small field result, for D → 0,
B → 0,

E ≃ D̃; H̃ ≃ B: ð4:16Þ

We consider the following possibilities:
(i) We first try D̃ diverging as a power law, D̃ ¼ A=ρα,

α ≠ 1, and α > 0.
Then we get

B ¼ ð1 − αÞ A
λρ1þα ; H̃ ¼ A

ρα
sgnðλÞsgnð1 − αÞ;

E ¼ jBj: ð4:17Þ

On the other hand, from the EOM, we have

λE ¼ H̃0 ¼ −α
A

ρ1þα sgnð1 − αÞ: ð4:18Þ

We see that we have matching with the previous

only if α → ∞. This actually means D̃ ¼ Ae
β
ργ , and

we will comment on this later on, but for now, we
will continue to try other cases.

(ii) We can also have D̃ ¼ A ln ρ, giving

B≃
A
λ

lnρ
ρ

; E ¼ A
jλj

lnρ
ρ

; H̃ ¼ A lnρsgnðλÞ:

ð4:19Þ

But on the other hand, from the EOM, we get

λE ¼ H̃0 ¼ A
ρ
sgnðλÞ; ð4:20Þ

so it does not match. This is not a good solution.
(iii) More generally, D̃ ¼ A lnα ρ gives

B ≃
A
λ

lnα ρ
ρ

; H̃ ¼ A lnα ρsgnðλÞ;

E ¼ A
lnα ρ
ρ

sgnðλÞ; ð4:21Þ

but from the equations of motion,
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λE ¼ H̃0 ¼ αA
lnα−1 ρ

ρ
sgnðλÞ; ð4:22Þ

so this also does not match.
(iv) We next try D̃ ¼ Aþ Kρα, α > 0, giving

B ≃
A
λρ

; H̃ ¼ K
λρ

A2

g2b2 þ A2
;

E ¼ A

jλj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ g2b2

p 1

ρ
; ð4:23Þ

and from the EOM

λE ¼ H̃0 < 1=ρ; ð4:24Þ

which also does not match.
(v) Similarly, we have also tried 5. D̃ ¼ Aρα ln ρ,

6. D̃ ¼ Aþ Kρ ln ρ, 7. D̃ ¼ K̃= ln ρ, 8. D̃ ¼
Aþ K̃ρα= ln ρ, 9. D̃ ¼ A=ρþ C ln ρ, 10. D̃ ¼
Aþ K̃= ln ρ, 11. D̃ ¼ Aρα, α > 0 (both α > 1 and
0 < α < 1). None of these works.

This is good, since we can either have a unique solution,
or two solutions, as in the Maxwell case, so if we find
another possibility besides the D ¼ Aρþ Cρ3 one, that
must be it.
As we said, we could try (α, β > 0)

D̃ ¼ Ae
α
ρβ ¼ −jD̃j; B ¼ −

αβA
λρβþ1

e
α
ρβ ¼ jBj ð4:25Þ

with E ≃ B and D ≃H.
Note that now the Hamiltonian is

H ¼ Rb2
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D̃2 þ B2

g2b2
þ D̃2B2

g4b4

s
− 1

#
; ð4:26Þ

so in our case it is

H ≃ R
D̃jBj
g2

≃
A2jαβj
g2jλj

e
2α
ρβ

ρβþ1
; ð4:27Þ

which would give an even more divergent energy. But now,
unlike the purely electric BIon solution, for which we had

to have E=b ≤ 1 because of the square root
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E⃗2=b2

q
, in

this case, this does not contradict anything, since we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2=b2 − E⃗2=b2

q
, and B > E.

However, note that while the leading behavior in B, D is
OK, the subleading one gives a contradiction.
Indeed, if we are more precise, when D → ∞; B → ∞,

from the constitutive relations (4.14), we have

H ≃D

�
1þO

�
1

B2; D2

��
;

E ≃ B

�
1þO

�
1

B2; D2

��
: ð4:28Þ

In our case, using the leading behavior of D and B, we
find

H ≃ Ae
α
ρβ

�
1þO

�
e
−2 α

ρβ

��
;

E ≃ −
αβA
λρβþ1

�
1þO

�
e
−2 α

ρβ

��
: ð4:29Þ

On the other hand, from the equations of motion, D0 þ
D=ρ ¼ λB and H0 ¼ λE, these two should reduce to
(almost) the same equation, and by comparing the differ-
ence between the two, we find we should have

D
ρ
¼ A

ρ
e

α
ρβ ¼ Oðe− α

ρβÞ; ð4:30Þ

which is a contradiction.
So, in fact, there is no diverging solution either.
In this case, the only solution that we still have is the

(modified) small field behavior from the Maxwell case,
which we also saw had no delta function source. This
corresponds to D ¼ Aρþ Cρ3, and we could prove it
as above.
However, for ease of analysis in the case of other

nonlinear actions besides BI, we will show how to derive
them using theDðE;BÞ andHðE;BÞ formulas. In this case,
we must make Ansatze for both E and B, then use the
constitutive relations DðE;BÞ and HðE;BÞ and then check
both equations of motion, D0 þD=ρ ¼ λB and H0 ¼ λE.
At ρ → 0, we write

E ¼ Aρþ Cρ3; B ¼ B0 þ B2ρ
2: ð4:31Þ

From the constitutive relations, we get

D ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

0

p ðAρþ Cρ3Þ;

H ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

0

p ðB0 þ B2ρ
2Þ: ð4:32Þ

The EOM D0 þD=ρ ¼ λB fixes

B0 ¼
2A

λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

0

p ; B2 ¼
3Cffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

0

p ; ð4:33Þ
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while the EOM H0 ¼ λE fixes

B2 ¼
λA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

0

p
2

; ð4:34Þ

so that

C
A
¼ λ2

6
ð1þ B2

0Þ;

B2 ¼
λ2A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

0

p
2

;

B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

0

q
¼ 2A

λ
: ð4:35Þ

Thus the solution is defined completely in terms of the
arbitrary constant A, like in the Maxwell case.
At ρ → ∞, we still have the exponentially small sol-

ution, we can ignore the BI modification to the action, since
it vanishes at large distances.
But also at ρ → ∞ we do not have the diverging solution

anymore, for the same reason as in the small ρ case. From
(4.28) at large ρ, we need to be able to neglect D=ρ with
respect to D0, in order for the two equations of motion
D0 þD=ρ ¼ λB and H0 ¼ λE to give the same one in
leading order. That excludes a power law, and only leaves
an exponential in leading order,

D ≃ Aeαρ
β
; B ≃

Aαβ
λ

ρβ−1eαρ
β
; ð4:36Þ

with α, β > 0. But then the subleading order does not
match, since we get

D
ρ
≃
A
ρ
eαρ

β ≃Oðe−αρÞ; ð4:37Þ

which is a contradiction.
But then, the only possibility left is that there is a unique

solution, with ρ → 0 behavior given by the modified I1
Maxwell solution at zero and the modified K1 Maxwell
solution at infinity. This will have a finite energy, as we
wanted. One could, in principle, find this solution through
numerical analysis, but this is left for further work.
We call the solution defined in this subsection the

CSBIon.

C. Charge, energy, and angular momentum of
the soliton solution

We revisit the calculation of Q, J, E in Maxwellþ CS
theory, with a view to understand it in the case of the BIþ
CS soliton.
We first note that, in general, ∇! · D⃗ ¼ ρf, the free (not

polarization) charge, usually qδdðr⃗Þ. But we also have the

general Maxwell equation ∇! · D⃗ ¼ λB in the presence of

the CS term, with no delta function source, so really we still
have

Q ¼ 1

g2

Z
d2z∇! · D⃗ ¼ λ

g2

Z
d2xB: ð4:38Þ

Here λ ¼ g2N=ð2πÞ, and E and B are both proportional
to an arbitrary constant, called b̃. In the Maxwell case, we
chose it to be ¼ λ2, so that the charge Q ¼ N. Now, for the
same reason, we will choose a slightly different value. Note
that b̃ has dimension 2, but once this is taken out, E and B
become dimensionless functions of the dimensionless
variable z ¼ λρ. Thus we write

B ¼ b̃BðzÞ; E ¼ b̃EðzÞ: ð4:39Þ

Note that, for the BI case,

˜D⃗ ¼ E⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E⃗2−B2

g2b2

q ; H̃ ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E⃗2−B2

g2b2

q ; ð4:40Þ

which means that also

D̃ ¼ b̃ D̃ðzÞ; H̃ ¼ b̃ H̃ðzÞ; ð4:41Þ

and similarly for the case of the new relativistic modifi-
cation in Appendix B.
Then

Q ¼ 2πb̃
g2

Z
∞

0

dz zBðzÞ; ð4:42Þ

where the integral is a dimensionless number, so we can
now choose instead

b̃ ¼ λ2
Z

∞

0

dz zBðzÞ ⇒ Q ¼ N: ð4:43Þ

The Poynting vector, giving the momentum density of
the electromagnetic wave, is in four dimensions

P⃗ ¼ E⃗ × H⃗; ð4:44Þ

which in three dimensions becomes

Pi ¼ ϵijEjH; ð4:45Þ

and therefore the angular momentum is

J ¼ 1

g2

Z
d2xρEH ¼ 2πb̃2

g2λ3

Z
∞

0

dz z2EðzÞHðzÞ: ð4:46Þ
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But with the above choice of b̃, we obtain

J ¼ N

R∞
0 dzz2EðzÞHðzÞ
½R∞0 dz zBðzÞ�2 : ð4:47Þ

Unfortunately, without a full solution, we cannot calcu-
late the coefficient of N in the above.
Because of the scaling of the fields with b̃ and g, and the

form of the Hamiltonian H, expanded in powers of the
fields, we can write, in the Maxwell as well as in the BI
(and new relativistic) cases,

H ¼ 1

g2
b̃2HðzÞ; ð4:48Þ

so that the (finite) energy is now

E ¼ 2πb̃2

g2λ2

Z
∞

0

dz zHðzÞ: ð4:49Þ

With the choice of b̃, we have now

E ¼ Nλ

R∞
0 dz zHðzÞ

½R∞0 dz zBðzÞ�2 : ð4:50Þ

Since λ has dimension 1 and is the only dimensional
constant appearing in the equations of motion, we can
consider it as the scale of the energy although, strictly
speaking, from the point of view of the action, where we
have separately the dimension 1 constant g2 and N, λ is
quantized in units of N as well, so the energy would be
proportional to N2, not N.
The coefficients of N in J and Nλ in E can only be

calculated numerically, or knowing the full solution.

D. ModMax and ModMax precursor generalizations
in three dimensions

One can ask about the generality of the analysis in the
Maxwell and BI cases.
One could think that perhaps the new ModMax theory of

Bandos et al. [20], an extension of Maxwell with a
dimensionless parameter γ, could also be of help in solving
the singularity at ρ ¼ 0. We could extend the Maxwell term
to the ModMax term, and we will do that soon, but for the
moment consider the more general precursor theory to
ModMax, which is the theory that generalizes BI with the
introduction of the same parameter γ, with Hamiltonian
(see the Lagrangian in [21])

Hð4dÞ
BI−gen:ðD⃗; B⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 2T

�
s cosh γ − sinh γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − p2

q �
þ p2

s
− T; ð4:51Þ

where

s ¼ D⃗2 þ B⃗2

2
; p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D⃗2B⃗2 − ðD⃗ · B⃗Þ2

q
: ð4:52Þ

Reducing to three dimensions, B⃗ becomes B, so we get

s ¼ D⃗2 þ B2

2
; p ¼ BjD⃗j; ð4:53Þ

and so

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − p2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
D⃗2 þ B2

2

�2

− D⃗2B2

s
¼ jD⃗2 − B2j

2
: ð4:54Þ

Also introducing g2, the three-dimensional Hamiltonian is

Hð3dÞ
BI−genðD⃗; BÞ ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 2T

g2

�
cosh γ

˜D⃗
2 þ B2

2
− sinh γ

j ˜D⃗ − B2j
2

�
þ

˜D⃗
2
B2

g4

s
− RT: ð4:55Þ

To this, one must, of course, add the CS Hamiltonian, but that vanishes, since the CS Lagrangian is linear in _A⃗ (it has the
term _A1A2 − _A2A1), so we are safe.
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Then we define E⃗ and H as usual, obtaining

E⃗ ¼ ∂H

∂D⃗
¼ ˜D⃗

T
h
cosh γB − sinh γsgnð ˜D⃗2

− B2Þ
i
þ B2=g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2 þ 2T
g2

�
cosh γ

˜D⃗
2þB2

2
− sinh γ j ˜D⃗−B2j

2

�
þ ˜D⃗

2
B2

g4

s ;

H̃ ¼ ∂H
∂B

¼ B
T

�
cosh γB − sinh γsgnð ˜D⃗2

− B2Þ
�
þ ˜D⃗

2
=g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2 þ 2T
g2

�
cosh γ

˜D⃗
2þB2

2
− sinh γ j ˜D⃗−B2j

2

�
þ ˜D⃗

2
B2

g4

s : ð4:56Þ

The ModMax part of the Lagrangian is

LðE⃗; B⃗Þ¼T

"
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

B2− E⃗2

g2T
coshγ− sinhγ

jB2− E⃗2j
T2

s #
;

ð4:57Þ
to which now we must add the CS term.
The equations of motion are, as in the BI case,

D
ρ
þD0 ¼ λB; H̃0 ¼ λE: ð4:58Þ

From the constitutive relations (4.56), we see that as
B; D̃ → ∞, we obtain again

E → B; H̃ ¼ D̃; ð4:59Þ
as in the BI case (the opposite of the small field results).
We also obtain that in the ModMax limit T → ∞, the

constitutive relations (4.56) become

E⃗ ¼ D̃½cosh γ − sinh γsgnð ˜D⃗2
− B2Þ�;

D̃ ¼ B½cosh γ − sinh γsgnð ˜D⃗2
− B2Þ�: ð4:60Þ

This means that, up to a numerical factor, we are back to
the constitutive relations of the Maxwell theory, so the
same analysis as there follows.
Instead, we may hope that the precursor to the ModMax

has a better chance of avoiding the singularity, so we repeat
the same analysis. But since we have E ≃ B and H ≃D at
large D and B, we have the same analysis as in the BI case:
the equations of motion in terms of E, B,D,H are the same,
and for diverging D, B the same constitutive relations, so
again we takeD ¼ A=ρα and (since thenD and B are large)
find matching only for α → ∞.
Moreover, then explicitly again we can take D ¼ Aeα=ρ

β

and obtain matching, but only for the leading order, the
subleading one does not work. So in this case again
we have a solution interpolating between the modified
Maxwell I1 solution at ρ ¼ 0 and the modified MaxwellK1

solution at ρ → ∞. This again gives a finite energy.

In order to find the generality of the solution to the
diverging energy problem in nonlinear theories of electro-
magnetism, we consider other nonlinear modifications in
the Appendices.

V. CONCLUSIONS AND DISCUSSION

In this paper we have defined a finite energy solution to
three-dimensional BIþ CS electromagnetism (Abelian
gauge theory), which we called a CSBIon. The solution
for a level N CS term has charge N, radius that is N
independent, and angular momentum and (finite) energy
proportional to N, which means the solution represents a
soliton.
The CSþ BI theory was understood heuristically in

string theory as a D6-brane wrapping an S4 in a D4-brane
background, giving the CSþ BI theory on the common
D2-brane world volume.
The CS term is crucial in many condensed matter

applications, since it dominates at low energies over the
Maxwell term. But it was crucial for the finiteness of the
soliton that we had BI electromagnetism, not Maxwell.
However, we can understand the BI modification as a type
of regularization. In fact, since the BI scale is related to the
string scale in string theory, the regularization appears
because of string theory.
The list of open questions related to the CSBIon include,

in particular, the following ones:
(i) Deriving explicit, probably numerical, solutions of

the equations of motion of the BIþ CS theory.
(ii) In this paper we have analyzed the pure gauge

theory. An obvious question is to consider the
coupling of the BIþ CS theory to scalar and fermion
fields. It will be interesting to explore the inter-
actions between the CSBIon and the matter fields.

(iii) A natural generalization of the model discussed here
is in the form of a non-Abelian BIþ CS theory.

(iv) The action of the BIþ CS emerges as the low energy
effective action associated with D-branes in various
string backgrounds. In these cases one needs to
study the system in a curved background with
possibly additional fields.
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(v) Probably the most interesting question regarding the
CSBIon is to find realizations of it in the context of
condensed matter systems.

(vi) In this paper we have analyzed the system classi-
cally. An obvious question is how to quantize it.
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APPENDIX A: NONRELATIVISTIC BI-TYPE
MODEL

Wesaw that the problemwith theMaxwellmodification to
BI, and itsModMax precursor generalization, is that we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2 − E⃗2

p
in the Lagrangian, which in principle allows

for the solution where E ≃ B → ∞, unlike the case of the
original BI purely electric solution, where effectively we hadffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E⃗2

p
, so jE⃗jwas bounded by 1 (and in fact it reached this

value at the core of theBIon). That iswhy, although in factwe
find that the diverging solutions are not allowed by the EOM,
the finite energy solutions that we find are not like in the case
of the BIon; namely, they do not go to a fixed, maximal,
solution at ρ ¼ 0, but rather they go to a solution depending
on an arbitrary constant.
Then, in order to have a solution with naturally bounded

jE⃗j, as well as naturally bounded B, so with a more intuitive
finite energy solution, it suffices to reverse the sign of B2

in the BI-type Lagrangian. To preserve the Maxwell
Lagrangian at small fields, we also add a B2 term, obtaining

SNRCSþBI ¼
Z

d3x

(
Rb2

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

g2b2
ðB2 þ E⃗2Þ

s
−

B2

g2b2

#

þ N
2π

ϵμνρAμ∂νAρ

)
: ðA1Þ

Then we find

˜D⃗ ¼ g2
∂L

∂E⃗
¼ E⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − B2þE⃗2

g2b2

q ;

H̃ ¼ −g2
∂L
∂B

¼ 2B −
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − B2þE⃗2

g2b2

q : ðA2Þ

The Hamiltonian is now

H ¼ E⃗ D⃗−L ¼ Rb2

2
64 1 − B⃗2

g2b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2þE⃗2

g2b2

q − 1þ B2

g2b2

3
75; ðA3Þ

and as before, we find that we can rewrite it as

Hðb; D⃗; B⃗Þ ¼ Rb2

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2D⃗2 − B2=g2

b2
−
D⃗2B2

b4

s

− 1þ B2

g2b2

3
75: ðA4Þ

Then we have

E⃗ðD⃗; BÞ ¼ ∂H

∂D⃗
¼ ˜D⃗

1 − B2=ðg2b2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ˜D⃗

2
−B2

g2b2 −
˜D⃗
2
B2

g4b4

r : ðA5Þ

Moreover, since we can check that

E⃗2

g2b2
¼

˜D⃗
2

g2b2
1 − B2=ðg2b2Þ
1þ ˜D⃗

2
=ðg2b2Þ

; ðA6Þ

then

H̃ðD⃗; BÞ ¼ 2B −
Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − B2

g2b2 −
E⃗2

g2b2

q

¼ 2B − B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ˜D⃗

2
=ðg2b2Þ

1 − B2=ðg2b2Þ

s
: ðA7Þ

Then we want to solve the equations of motion (4.7) with
constitutive relations

E⃗ðD⃗; BÞ ¼ ∂H

∂D⃗
¼ ˜D⃗

1 − B2=ðg2b2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ˜D⃗

2
−B2

g2b2 −
˜D⃗
2
B2

g4b4

r ;

H̃ðD⃗; BÞ ¼ B

"
2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ˜D⃗

2
=ðg2b2Þ

1 − B2=ðg2b2Þ

s #
: ðA8Þ

Since we have the bound jE⃗=ðgbÞj ≤ 1 and jB=ðgbÞj ≤ 1
from the square root in the Lagrangian, if follows that E and
B can at most be finite, but cannot be infinite.
(1) According to our recipe, we start with an Ansatz for

D. Assume first it is infinite, while B must be finite,
as we said. Since D0 þD=ρ ¼ λB, this is only
possible if D ¼ A=ρþ Cρþ…, which gives
B ¼ 2C=λþ…. But then the constitutive relations
give
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E ¼ D̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

B2

g2b2

s
; H̃ ¼ 2B − B

j ˜D⃗j=gbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

g2b2

q :

ðA9Þ

Then

E ≃
A
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4C2

λ2

s
; H̃ ≃ −

2C
λ

A

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4C2

λ2

q ;

ðA10Þ

and we see that then H̃ → ∞ and moreover,
H̃0 ¼ E → ∞, which is not possible. So this pos-
sibility is out.

From now on, we will consider gb ¼ 1 for simplicity
(though it can be reinstated easily).
(2) More generically, consider E and B finite, but D

noninfinite. Then,

B ¼ Aþ Kρβ ⇒ D ¼ Cρþ K0ρ1þβ: ðA11Þ

But the constitutive relations then say

E ≃D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

p
∼ Cρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

p
→ 0; ðA12Þ

so we get a contradiction. We could continue with
E ∝ ρ, and we will in fact see that this is the solution,
but for the moment we just say that E cannot be finite if
B is finite.
(3) We could have E finite, but B ¼ Kρα → 0, which

would imply

D ¼ Cρ1þαð1þ K0ρβÞ; ðA13Þ

but then from the constitutive relationsH ≃ B ≃ Kρα

and E ≃D ≃ Cρ1þα → 0, contradicting our
assumption.

(4) We are left with the possibility that E → 0 and B
finite. Assume

B ¼ Aþ K0ρβ; ðA14Þ

which means that

D ¼ Cρð1þ KρβÞ → 0; ðA15Þ

which gives

B ¼ 1

λ

�
D0 þD

ρ

�
¼ 2C

λ
þ ð2þ βÞCK

λ
ρβ: ðA16Þ

But then, from the constitutive relations,

H ≃ B
�
2 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

p
�
; ðA17Þ

yet we want at least H ¼ F þ Gρ2, so E ∝ ρ → 0. This
implies β ¼ 2 (at least), and moreover we can calculate H.
We have two possibilities:
(a) F ¼ 0, so H ∝ ρ2. In that case, we obtain

A ¼ 2C
λ

¼
ffiffiffi
3

p

2
⇒ K0 ¼ 4Ck

λ
¼

ffiffiffi
3

p
K: ðA18Þ

Then also

H ≃
ffiffiffi
3

p

2

"
2 −

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

ffiffiffi
3

p
K0ρ2

q
#
≃ −6K0ρ2: ðA19Þ

From the constitutive relations, we obtain

E ≃D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

p
≃
Cρ
2

; ðA20Þ

but from the last EOM we get

E ¼ H0

λ
¼ −12

K0

λ
ρ ¼ −12

ffiffiffi
3

p K
λ
ρ; ðA21Þ

and equating the two, we get

K ¼ −
λ2

96
: ðA22Þ

Then, finally,

E ≃
ffiffiffi
3

p

8
λρ; B ≃

ffiffiffi
3

p

2

�
1 −

λ2ρ2

48

�
; ðA23Þ

which gives a finite energy density at zero from (A3), just
like for the BIon.
(b) The more general case is for F ≠ 0, so
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H ¼ B

�
2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þD2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

p
�

≃ A

	
2 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

p þ ρ2
�
K0

A

�
2 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

p
�
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − A2

p
�
C2

2
þ K0A
1 − A2

��


¼ 2C
λ

	
2 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2C=λÞ2

p þ ρ2
�
2K

�
2 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2C=λÞ2

p �

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð2C=λÞ2
p �

C2

2
þ 2Kð2C=λÞ2
1 − ð2C=λÞ2

��

: ðA24Þ

But from the constitutive relations we have

E ≃D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B2

p
¼ Cρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2C=λÞ2

q
; ðA25Þ

while from the EOM we have

E¼H0

λ
¼ 4Cρ

λ2

�
2K

�
2−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ð2C=λÞ2

p �
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ð2C=λÞ2

p
×

�
C2

2
þ 2Kð2C=λÞ2
1− ð2C=λÞ2

��
: ðA26Þ

Equating the two, we obtain

K ¼ 1

2

C2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð2C=λÞ2

p þ λ2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2C=λÞ2

p
2 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ð2C=λÞ2
p − ð2C=λÞ2

ð1−ð2C=λÞ2Þ3=2
: ðA27Þ

Thus we have obtained K ¼ KðCÞ, and we had pre-
viously obtained

B ≃
2C
λ
ð1 − 2Kρ2Þ; E ≃ Cρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2C=λÞ2

q
; ðA28Þ

so the solution has a free parameter C, bounded by
C ≤ λ=2. That is good, since we have solutions at infinity
that are also defined by a free parameter. This is also what
happens for the BIon solution.

APPENDIX B: RELATIVISITIC BI-TYPE MODEL

We can also consider relativistic nonlinear electromag-
netism Lagrangians, but we consider one that obtains a
stronger bound on the fields than in the BI case. We take

1

R
L ¼ E⃗2 − B2

2g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
E⃗2 − B2

g2b2

�2
s

: ðB1Þ

This guarantees that at least jE⃗2 − B2j ≤ g2b2, unlike the
BI case, where, if B diverges faster than E, B can diverge as

much as possible, as well as having B2 − E⃗2 diverge
as well.
But we still have the problem that E⃗2 and B2 could

diverge, as long as their difference does not, which would
still give a divergent energy.
First, we calculate the constitutive relations

˜D⃗ ¼ g2
∂L

∂E⃗
¼ E⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
�

E⃗2−B2

g2b2

�
2

s ;

H̃ ¼ −g2
∂L
∂B

¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
E⃗2−B2

g2b2

�
2

s : ðB2Þ

Then the Hamiltonian is

H ¼ E⃗ · D⃗ − L

¼ Rb2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
E⃗2−B2

g2b2

�
2

s �
E⃗2

g2b2
þ B2

g2b2
þ
�
E⃗2 − B2

2g2b2

�3�
;

ðB3Þ

just that now we have not been able to rewrite it in terms of
D̃; B, and find from it E⃗ðD⃗; BÞ andHðD⃗; BÞ as in the BI case.
As a result, it is more difficult to analyze the solution to

the equations of motion. Before, we had to only write an
Ansatz for D, then derive B from the equations of motion,
then E and H from the constitutive relations, and, finally,
check the remaining EOM H0 ¼ λE.
Now, we must write two Ansätze, for E and B, derive D

and H from the constitutive relations, and finally check
both equations of motion.
But, because of the form of the Lagrangian, now this

procedure is more doable.
Indeed, now, if B or E is infinite, so must the other one,

and we must have B ≃ E → ∞, with ðB2 − E2Þ2 ≤ 1.
Let us assume that this is the case, and then we must also

have, for the subleading terms, first in the case of
jB2 − E2j ≃ 1,

HORATIU NASTASE and JACOB SONNENSCHEIN PHYS. REV. D 107, 125011 (2023)

125011-16



jB2 − E2j ¼ 1 − Aρα; ðB4Þ

which gives, from the constitutive relations (B2),

D ≃ A0 E

ρα=2
≃H: ðB5Þ

Even in the case of jE2 − B2j ¼ C ≤ 1, we still obtain
D ≃H > B ≃ E (otherwise we have ≫ instead of just >,
but the effect is the same).
We then obtain a contradiction, since on the one hand we

have obtainedD ≃H > B ≃ E, but then from the equations
of motion we have jDj=ρ < jD0j in order to be able to
neglect the extra termD=ρ and the two equations of motion
to give the same thing, and on the other we have then
jD0j ≃ λE < λD, which finally gives jDj=ρ < λjDj, which
is a contradiction.
So we do not have diverging fields at ρ ¼ 0, just like in

the BI case, and for a similar reason. But we also cannot
have diverging fields at ρ ¼ ∞, now called r to remember
that it goes to infinity, just like in the BI case.
Indeed, again we need to be able to neglect D=r with

respect to D0, in order to obtain the same EOM for the two,
D0 þD=r ¼ λB and H0 ¼ λE, since E ≃ B, say with
subleading terms in a Taylor expansion,

B2 − E2 ¼ 1 −
A
r
; ðB6Þ

so from the constitutive relations (B2),

D ≃
Effiffiffiffi
2A
r

q ≃H ≃
Bffiffiffiffi
2A
r

q : ðB7Þ

But for a diverging power law, D0 ∼D=r, so we must
have an exponential instead,

B ≃ E ≃ Ceαr
β
; ðB8Þ

with β > 0. Moreover, then the equations of motion reduce
in leading order to

D0 ≃
Cαβffiffiffiffiffiffi
2A

p rβ−1=2eαr
β
; ðB9Þ

and equating with λB gives β ¼ 1=2 and

αβffiffiffiffiffiffi
2A

p ¼ λ ⇒ A ¼ α2

8λ2
: ðB10Þ

It would seem like we found a solution, but in fact the
solution is not valid for the subleading terms, which give a
contradiction. Indeed, from the subleading terms for the
two equations of motion, we obtain

3

2

Cαffiffiffiffiffiffi
2A

p eα
ffiffi
r

p

ffiffiffi
r

p ¼ δðλBÞ;

1

2

Cαffiffiffi
2

p eα
ffiffi
r

p

ffiffiffi
r

p ¼ δðλEÞ; ðB11Þ

which would give

B2 − E2 ∼
eα
ffiffi
r

p
ffiffiffi
r

p → ∞; ðB12Þ

contradicting our assumption. So the diverging solution is
excluded also at infinity.
On the other hand, as usual, at infinity the exponentially

small solution, given by CSþMaxwell, is still okay, since
we can neglect the correction to the Maxwell action.
And at ρ ¼ 0, again (like in the BI case) we have just a

modification of the I1 solution of the Maxwell case. Indeed,
with the Ansatz

E ≃ Aρþ Cρ3;

B ≃ B0 þ B2ρ
2; ðB13Þ

from the constitutive relations (B2), we find

D ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − B4
0

p ðAρþ Bρ3Þ;

H ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − B4
0

p ðB0 þ B2ρ
2Þ: ðB14Þ

Then the EOM D0 þD=ρ ¼ λB gives

2Affiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B4

0

p þ 3Cffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B4

0

p ρ2 ¼ λðB0 þ B2ρ
2Þ; ðB15Þ

fixing

B0 ¼
2A

λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B4

0

p ; B2 ¼
3C

λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B4

0

p ; ðB16Þ

with B0 solving therefore the equation

B0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B4

0

q
¼ 2A

λ
; ðB17Þ

while the H0 ¼ λE equation gives

C
A
¼ λ2

6
ð1 − B4

0Þ; ðB18Þ

so that finally

B2 ¼
λA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − B4

0

p
2

; ðB19Þ

so all the coefficients are written in terms of a single one, A,
like in the BI case.
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We can also easily exclude the other potential cases at
ρ → 0 and B → constant (which implies H ∝ ρ, plus
maybe a constant from H0 ¼ λρ, but that forces the square
root in the action to be finite, which in turn means D starts
with a constant, but then the term D=ρ in the EOM λB ¼
D0 þD=ρ implies a diverging term in B, contradiction), or
E → constant and B → 0 (which again imples the D=ρ
term for λB must diverge, giving a contradiction), as not
solving the equations of motion, just as they were excluded
in the BI case.
That means again, like in the BI case, that the non-

diverging solution, modification of the I1 solution in the
Maxwell case at ρ ¼ 0, matches onto the nondiverging
solution, modification of theK1 solution at ρ ¼ ∞, giving a
finite energy solution.

APPENDIX C: ATTEMPTS OF FINDING AN
ANALYTIC SOLUTION

In this appendix we try to see if we can guess a full
solution of the equations of motion in the BIþ CS case,
based on the Maxwellþ CS solutions, and what happens in
3þ 1 dimensions if we change the Maxwell theory into a
BI theory.
We first note that the solutions of the BIþ CS turn into

the solutions of the Maxwellþ CS in the asymptotic limit
ρλ → ∞. Thus, an idea is to take an Ansatz for the solutions
of the BIþ CS in the form of

DðρλÞ ¼ K1ðρλÞfðρλÞ; lim
ρλ→∞

fðρλÞ ¼ 1; ðC1Þ

BðρλÞ ¼ −K0ðρλÞðfðρλÞ þ gðρλÞÞ; lim
ρλ→∞

gðρλÞ ¼ 0:

ðC2Þ

Upon inserting this into (4.7) we find that

f0ðρλÞ ¼ −λ
K0

K1

gðρλÞ: ðC3Þ

With this Ansatz for D and B, we get that E and H take
the form

EðρλÞ ¼ fðrÞK1ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0ðrÞ2ðfðrÞ þ gðrÞÞ2 þ 1

fðrÞ2K1ðrÞ2 þ 1

s
ðC4Þ

and

H ¼ K0ðrÞðfðrÞ þ gðrÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞ2K1ðrÞ2 þ 1

K0ðrÞ2ðfðrÞ þ gðrÞÞ2 þ 1

s
:

ðC5Þ

Plugging these expressions into the EOM (4.7) we find
the following constraint equation on f and g

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ2K1ðrÞ2þ1

K0ðrÞ2ðfðrÞþgðrÞÞ2þ1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0ðrÞ2ðfðrÞþgðrÞÞ2þ1

fðrÞ2K1ðrÞ2þ1

q
fðrÞK1ðrÞðK0ðrÞ2ðfðrÞ þ gðrÞÞ2 þ 1Þ2

1

r
ðfðrÞK0ðrÞK1ðrÞ2ð−rgðrÞf0ðrÞ þ K0ðrÞ2ðfðrÞ þ gðrÞÞ3ðfðrÞ − rf0ðrÞÞ

−2rfðrÞf0ðrÞ − rfðrÞg0ðrÞ þ fðrÞgðrÞ þ fðrÞ2ÞÞ;
ð−K0ðrÞðf0ðrÞ þ g0ðrÞÞ þ fðrÞ2K1ðrÞ3ðfðrÞ þ gðrÞÞþK1ðrÞðfðrÞ þ gðrÞÞðfðrÞ2K0ðrÞ2ðK0ðrÞ2ðfðrÞ þ gðrÞÞ2 þ 1Þ þ 1ÞÞ;
¼ fðrÞK1ðrÞðK0ðrÞ2ðfðrÞ þ gðrÞÞ2 þ 1Þ2: ðC6Þ

1. Attempt 1

The simplest attempt is obviously to take

fðρλÞ ¼ 1; gðρλÞ ¼ 0: ðC7Þ
In fact this can be generalized, since the EOM (4.7) that

relates D̃ and B,

D̃0 þ D̃
ρ
¼ λB; ðC8Þ

has a solution of the form

D̃ ¼ b̃ðcK1½λρ� þ dI1½λρ�; B ¼ b̃ðcK0½λρ� − dI0½λρ�Þ:
ðC9Þ
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FIG. 1. H0=λE − 1 for λ ¼ 1.
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Not surprisingly, this is the same solution for E and B in
the Maxwellþ CS system and hence it is not a solution of
the BI case. Indeed,

H0 ¼ λE ðC10Þ
is not fulfilled. This can be seen in Fig. 1.
If indeed these configurations of D̃; B are solutions of the

full system of equations, then it is easy to check, using
(4.10), that the corresponding energy when we take d ¼ 0,
unlike the Maxwell case, is finite.

2. Attempt 2

Another attempt which is inspired by the passage of the
electric field from Maxwell theory to the BI one, namely,

E ∼
1

r
→

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p ; ðC11Þ

takes the form

D̃ ∼ K1½λρ� → K1½λρ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K1½λρ�2�

q
; ðC12Þ

and similarly

B ∼ K1½λρ� → K0½λρ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K0½λρ�2

q
: ðC13Þ

This means that we take

fðρλÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þK1ðρλÞ2

q
; fðρλÞþgðρλÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þK0ðρλÞ2

q
:

ðC14Þ

In this case, using the constitutive relations, we find that
the difference between H0½λρ� − λE½λρ� and D½λρ�0 þ
D½λρ� − λB½λρ� is very small, apart from the region around
λρ ∼ 0, as can be seen in Fig. 2.
This is not surprising, since the BI starts to deviate from

Maxwell when λρ ∼ 1.
The energy density associated with this configuration,

following (4.10), is drawn in Fig. 3.
It is obvious from this figure that the total energy is

indeed finite. The question is whether the correction to this
configuration that yields a solution of the system will
preserve this property.
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FIG. 2. Left figure H0 − λE. Right figure D0 þDρ − λB for λ ¼ 1.
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FIG. 3. The energy as a function of λρ for g ¼ b ¼ λ ¼ 1.
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FIG. 4. H0 − λE for attempt 3 with λ ¼ 1.
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3. Attempt 3

A third attempt of finding an analytic solution is as
follows. We start with the Ansatz for D of above (C12). We
then determine B using (4.7) and get

B ¼ K1ðrÞ3 − rK0ðrÞ
rðK1ðrÞ2 þ 1Þ3=2 : ðC15Þ

We then determine E and H using the constitutive
relations and check again whether the other EOM H0 −
λE is obeyed. Again it is obeyed apart from the region of
ρ ∼ 0 as can be seen in Fig. 4.

4. Attempt 4

Another attempt is to use (C12) for B½λρ�, but for B½λρ�
we take

B ∼ K1½λρ� → K0½λρ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K0½λρ�2

q
: ðC16Þ

In this case the configurations are a reasonable approxi-
mation for the solutions of the EOM for large ρ but deviate
in the region of small ρ, as can be seen in Fig. 5, do not
solve exactly the equations of motion in the region of
small ρ.
To conclude, we see that we could not find an analytic

solution.
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