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We study the classical and quantum “properties” of Galilean fermions in 3þ 1 dimensions. We have
taken the case of massless Galilean fermions minimally coupled to the scalar field. At the classical level, the
Lagrangian is obtained by null reducing the relativistic theory in one higher dimension. The resulting
theory is found to be invariant under infinite Galilean conformal symmetries. Using Noether’s procedure,
we construct the corresponding infinite conserved charges. Path integral techniques are then employed to
probe the quantum properties of the theory. The theory is found to be renormalizable. A novel feature of the
theory is the emergence of mass scale at the first order of quantum correction. The conformal symmetry of
the theory breaks at quantum level. We confirm this by constructing the beta function of the theory.
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I. INTRODUCTION

Symmetries are essential in the study of any physical
system, in that they are responsible for conservation laws.
For example, symmetry in space and time translation leads
to momentum and energy conservation laws, respectively. It
is well established that Lorentz symmetry is essential to
describe the physics of fundamental particles and their
interactions. However, for systems where the speed of
objects (v) involved is much less than the speed of light
(c) (i.e., v ≪ c, also known as the nonrelativistic limit),
Galilean symmetry is better suited. The emergence of
nonrelativistic symmetries in the study of cold atoms,
Fermi condensates, the Efimov effect, etc. [1–3], has further
fuelled the validity to consider nonrelativistic limits.
Recently, there has been an upsurge to construct field

theories consistent with Galilean symmetry. This is
because Galilean symmetry has paved its way in describ-
ing condensed matter systems such as the quantum hall
effect, nonrelativistic fluid dynamics, and magnetohydro-
dynamics [4–6]. Galilean symmetry is characterized by
unequal scaling of space and time (also known as the
Galilean limit1), i.e.,

t → t; xi → ϵxi; ϵ → 0;

and is described by a set of symmetry generators viz. spatial
and temporal translations ðPi;HÞ, homogeneous spatial
rotations ðJijÞ, and Galilean boosts ðBiÞ. In addition,
Galilean symmetry can also be conformally extended by
including spatial conformal transformations ðKiÞ, temporal
conformal transformations (K), and dilatations (D).
Together, they form a closed Lie algebra known as finite
Galilean conformal algebra (fGCA) [7,8]. The Galilean
conformal symmetry generators can be obtained either
by taking the Galilean limit of Poincaré symmetry gen-
erators [8] or by finding the conformal isometries of
Newton-Cartan manifolds. (A brief discussion is given in
Sec. II A. For more details see [9,10].) A remarkable feature
of fGCA is that it can be given an infinite lift to construct an
infinite Lie algebra (2) known as infinite Galilean conformal
algebra (GCA) [7,8,11,12].
The study of Galilean conformal field theories has

recently seen a revival [7,8,11–13]. This is mainly because
field theories consistent with GCA admit an infinite number
of conserved charges at classical level (see [11,12] and
references therein). Surprisingly, not much heed has been
paid to understand the quantum “properties” of these
conformal theories except for some recent work in [14].
Addressing the issue of quantization of Galilean conformal
field theories is also important because of its application in
many physics systems [15–17]. In this paper we present
both the classical and quantum field descriptions of mass-
less Galilean fermions minimally coupled to the Galilean
scalar in 3þ 1 dimensions. Owing to the interaction
between a scalar field and a fermionic field, we call the
resultant theory the Galilean Yukawa theory.
Some of the early work on the Galilean fermion was

carried out by Lévy-Leblond in 1967 [18] where a Galilei
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1The Galilean limit is the same as the nonrelativistic limit.
They are often used interchangeably for each other in the
literature.
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invariant analog of the Dirac equation was constructed. An
interesting finding was that the spin magnetic moment, with
its Landé factor g ¼ 2, is not a relativistic property. Galilean
fermions have also been studied in [19] where a massless
Dirac equation was shown to exhibit the Schrödinger
symmetry (which we know is a conformal extension of
the Galilean group [9]). Recent investigation of the Galilean
fermion are considered in [14,20,21]. The Galilean Yukawa
theory is the simplest example of an interacting conformal
field theory admitting fermionic degrees of freedom, con-
sistent with GCA. The theory becomes even more captivat-
ing at quantum level because the mass term surfaces at the
first order of quantum correction. Admittance of the mass
scale in a pure Galilean field theory upon renormalization,
to our knowledge, has never been addressed before in the
literature.
A recent study carried out with Galilean quantum

electrodynamics in (3þ 1) dimensions [14] suggests the
presence of global conformal anomalies in the theory at
quantum level, which is quite different from the case of
Galilean electrodynamics coupled to the Schrödinger scalar
(sGED) in (2þ 1) dimensions [22] where the beta function
vanishes identically leading to a family of nonrelativistic
conformal fixed points. The N ¼ 2 supersymmetric exten-
sion of Galilean electrodynamics in (2þ 1) dimensions
constructed has also been studied in [23]. It must be noted
that the free Galilean scalar field theory does not admit any
dynamical degrees of freedom. This is because the Galilean
limit kills the kinetic part of the theory. Coupling Galilean
fermions to the Galilean scalar field introduces the dynami-
cal degrees of freedom into the theory. This makes for an
interesting case of a Galilean invariant conformal field
theory that admits an infinite number of conserved charges
at the classical level. Thus, this paper is an attempt to present
both the classical and the quantum field descriptions of the
Galilean Yukawa theory.
The Galilean Yukawa theory is constructed in this paper

by null reducing the relativistic Yukawa theory in one higher
dimension. This method is well known in the literature
and goes by the name of “null reduction” [24–27]. At the
classical level, the theory admits an infinite number of
conserved charges. To describe the quantum field descrip-
tion, we employ path integral techniques. The method of
cutoff regularization has been employed to regulate the UV
divergences, and the theory is then renormalized up to one-
loop. Interestingly, the mass scale in the scalar sector
appears at the first order of quantum correction. The
admittance of the mass term assures one that the theory
is no longer scale invariant at the quantum scale, albeit
exhibiting conformal invariance at the classical level.
This is suggestive of a global conformal anomaly in the
theory [28,29], which is further guaranteed by the non-
vanishing nature of the beta function.
This paper is organized as follows: In Sec. II we present

the classical field description of the Galilean Yukawa theory.

We briefly discuss the Galilean conformal symmetry in
Sec. II A and present some of the well-known results in the
literature. In Sec. II B, we construct the Lagrangian for the
Galilean Yukawa theory using null reduction. We address
the symmetries of the theory in Sec. II C followed by the
construction of conserved charges. We delve further into the
theory in Sec. III by presenting the quantum field descrip-
tion of the Galilean Yukawa theory. We have employed
functional techniques to develop the quantum field descrip-
tion of the theory. To bring out the nature of divergences in
the theory we employ the method of cutoff regularization.
To this end, we evaluate the one-loop corrections to the
propagators and vertex in Sec. III B. The issue of renorm-
alization is addressed in Sec. III C followed by the summary
and discussions in Sec. IV.

II. CLASSICAL FIELD DESCRIPTION
OF GALILEAN YUKAWA THEORY

A. Galilean conformal symmetry

Galilean conformal symmetry of a (dþ 1)-dimensional
spacetime is described by the set of symmetry generators-
time translations (H), space translations ðPiÞ, homogeneous
rotations ðJijÞ, Galilean boosts ðBiÞ, dilatation (D), and
spatial and temporal conformal transformations ðKi; KÞ. In
an adapted coordinate system xμ ≡ ðt; xiÞ we have

H ¼ −∂t; Pi ¼ ∂i; Jij ¼ xi∂j − xj∂i;

Bi ¼ t∂i; D ¼ −ðt∂t þ xi∂iÞ; Ki ¼ t2∂i;

K ¼ −ðt2∂t þ 2xit∂iÞ: ð1Þ

The symmetry generators (1) except Jij can be cast into a
compact notation, i.e.,

LðnÞ ¼ −tnþ1
∂t − ðnþ 1Þtnxi∂i;

MðnÞ
i ¼ tnþ1

∂i;

where H, D, K can be recovered by setting n ¼ −1, 0, 1 in
LðnÞ and Pi, Bi, Ki are recovered by setting n ¼ −1, 0, 1 in

MðnÞ
i . The generators LðnÞ, MðnÞ

i , Jij form a closed Lie
algebra called fGCA given by

½LðnÞ; LðmÞ� ¼ ðn −mÞLðnþmÞ;

½LðnÞ;MðmÞ
i � ¼ ðn −mÞMðnþmÞ

i ;

½MðnÞ
i ;MðmÞ

j � ¼ 0;

½LðnÞ; Jij� ¼ 0;

½Jij;MðnÞ
k � ¼ MðnÞ

½j δi�k: ð2Þ

A striking feature of (2) is that the algebra closes
∀ n;m ∈ Z. This gives fGCA an infinite lift. The resulting
Lie algebra is called infinite GCA. The reason for the
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infinite lift is captured in the underlying geometry. Precisely,
the Galilean conformal symmetries are related to the
conformal isometries of a “flat” Newton-Cartan spacetime
(see [9,10,30–32]). A Newton-Cartan (NC) spacetime is a
(dþ 1)-dimensional smooth manifold equipped with a
degenerate contravariant metric g along with a nonvanishing
one-form θ which also happens to be in the kernel of g.
The conformal isometries of NC spacetime are those

vector field X that preserve θ and g up to a nontrivial
conformal factor λ [9,33], i.e.,

£Xg ¼ λg; £Xθ ¼ −
1

2
λθ: ð3Þ

For a flat NC spacetime ðR ×RdÞ, in an adaptive coor-
dinate chart xμ ≡ ðt; xiÞ,

g ¼ gμν∂μ ⊗ ∂ν; θ ¼ dt where gμν ¼ diagð0; IÞ:

Equation (3) reduces to

X ¼ αðtÞ ∂
∂t

þ
�
ωijðtÞxj þ xiβðtÞ þ ξiðtÞ

�
∂

∂xi
; ð4Þ

where ω ∈ SOðdÞ, α; β ∈ R, and ξ ∈ Rd are the arbitrary
functions of time, explaining the infinite lift of GCA.
The generators fLðnÞ;MðnÞ

i ; Jijg can be used to construct
the action of symmetry generators on the local fields. This
can be done either by looking at scale-boost representations
or scale-spin representations of GCA. In this paper we shall
employ the scale-spin representation of GCA [34] (for
scale-boost representations of GCAwe request the reader to
see [35,36]). For some general field Φ ¼ ðφ;ϕ; Ai;…Þ,
where φ is some scalar field, ϕ is a two-component spinor,
Ai is a vector field, and the dots represent higher spin fields,
we can write

δLðnÞΦ ¼ ðtnþ1
∂t þ ðnþ 1Þtnðxl∂l þ ΔÞÞΦ

− tn−1nðnþ 1ÞxkδBk
Φ; ð5Þ

δ
MðnÞ

l
Φ ¼ −tnþ1

∂lΦþ ðnþ 1ÞtnδBl
Φ; ð6Þ

δJijΦ ¼ ðxi∂j − xj∂iÞΦþ ΣijΦ; ð7Þ

where Δ is the scaling dimension, δBl
Φ is the action of the

boost generator on the field Φ, and Σij ¼ 1
4
½σi; σj� ¼

i
2
ϵijkσk. For scalar field φ, Σijφ ¼ 0. We will employ

(5)–(7) to establish the invariance of the Galilean
Yukawa theory (16) under GCA and later again to construct
the conserved charges for the theory.

B. Lagrangian formulation

We shall employ the method of null reduction to
construct the Lagrangian for the Galilean Yukawa theory.

The method of null reduction has been widely used in the
literature to construct the Lagrangians for nonrelativistic
field theories [24–27]. We start with a relativistic theory in
one higher dimension. In an adaptive coordinate chart
xμ ¼ ðu; t; xiÞ, where u, t are the two real null coordinates
and xi ¼ ðx; y; zÞ are the spatial coordinates, we write

L̃ ¼ 1

2
ημνð∂μφÞð∂νφÞ þ iψ̄γμ∂μψ − gψ̄ψφ; ð8Þ

where ημν is the metric tensor for the Minkowski line
element in the coordinate chart xμ, i.e.,

ds2 ¼ du⊗ dtþdt⊗ duþ δijdxi ⊗ dxj ¼ ημνdxμ ⊗ dxν;

ð9Þ

φ is the scalar field, ψ is a four-component spinor, g is the
coupling strength, and γμ are the Dirac matrices whose
explicit form in coordinate chart xμ is taken to be

γu ¼
�
0

ffiffiffi
2

p

0 0

�
; ð10Þ

γt ¼
�

0 0

−
ffiffiffi
2

p
0

�
; ð11Þ

γi ¼
�
iσi 0

0 −iσi

�
; ð12Þ

where σi are the usual Pauli matrices. The γ matrices obey
the standard Clifford algebra, fγμ; γνg ¼ −2ημν, where ημν
is the metric tensor associated with the Minkowski line
element (9). The γ matrices allow us to define the adjoint of
the ψ , i.e., ψ̄ ¼ ψ†G, where2

G ¼
�
0 1

1 0

�
: ð13Þ

Now to write down the Lagrangian for the Galilean field
theory we null reduce (8) along the null direction u; i.e., we
demand

∂uφ ¼ ∂uψ ¼ 0:

This leads to the Lagrangian L for the Galilean Yukawa
theory

L ¼ 1

2
ð∂iφÞð∂iφÞ þ iψ̄ðγt∂t þ γi∂iÞψ − gψ̄ψφ: ð14Þ

2For a step-by-step construction of γ matrices, G and ψ̄ , we
request the reader to check our previous work [14].
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Note that the “leftover” null coordinate t has now acquired
the status of the nonrelativistic time. The gamma matrices
for (14) are now given by γI ¼ ðγt; γiÞ, and they obey the
degenerate Clifford algebra given by

fγI; γJg ¼ −2gIJ; ð15Þ
where gIJ is the degenerate metric, i.e., gIJ ¼ diag
ð0; 1; 1; 1Þ on the Newton-Cartan spacetime. We can further
reduce (14) in terms of the components of ψ ; i.e., we write
ψ ¼ ðϕχÞ where ϕ and χ are the two-component spinors
themselves, allowing us to write (14) as

L ¼ 1

2
ð∂iφÞð∂iφÞ −

ffiffiffi
2

p
iϕ†

∂tϕ − χ†σi∂iϕ

þ ϕ†σi∂iχ − gφðχ†ϕþ ϕ†χÞ: ð16Þ
Using (16), we can write L ¼ R

d3xL, i.e.,

L ¼
Z

d3x

�
1

2
ð∂iφÞð∂iφÞ −

ffiffiffi
2

p
iϕ†

∂tϕ − χ†σi∂iϕ

þ ϕ†σi∂iχ − gφðχ†ϕþ ϕ†χÞ
�
: ð17Þ

Note that in the absence of the spinor field, the theory
reduces to that of a real Galilean scalar field that does not
exhibit any dynamics. Thus, the coupling of spinor field
can also be understood as the introduction of the matter
degree of freedom into the Galilean scalar field theory.
Variation of the Lagrangian results in the following
equations of motion3:

−
ffiffiffi
2

p
i∂tϕþ σi∂iχ − gφχ ¼ 0; ð18Þ

∂
2φþ gðχ†ϕþ ϕ†χÞ ¼ 0; ð19Þ

σi∂iϕþ gφϕ ¼ 0: ð20Þ

For completeness, we mention the canonical4 Hamiltonian
H for the Galilean Yukawa theory,

H ¼ −
Z

d3x

�
1

2
ð∂iφÞð∂iφÞ − χ†σi∂iϕþ ϕ†σi∂iχ

− gφðχ†ϕþ ϕ†χÞ
�
: ð21Þ

C. Symmetries and conserved charges

Let us now analyze the symmetries of the Galilean
Yukawa theory constructed above. To do that, we first
have to write down the action of Galilean symmetry
generators fLðnÞ;MðnÞ

i ; Jijg on the fields ðφ;ϕ; χÞ. We

employ (5) and (6) to achieve that. The action of MðnÞ
i on

the fields takes on the following form:

δ
MðnÞ

i
ϕ ¼ −tnþ1

∂iϕ; ð22Þ

δ
MðnÞ

i
χ ¼ −tnþ1

∂iχ −
iðnþ 1Þffiffiffi

2
p tnσiϕ; ð23Þ

δ
MðnÞ

i
φ ¼ −tnþ1

∂iφ; ð24Þ

and the action of LðnÞ on the fields reads

δLðnÞϕ ¼ tnþ1
∂tϕþ ðnþ 1Þtnðxj∂j þ Δ1Þϕ; ð25Þ

δLðnÞχ ¼ tnþ1
∂tχ þ ðnþ 1Þtnðxj∂j þ Δ1Þχ

þ iffiffiffi
2

p nðnþ 1Þtn−1xkσkϕ; ð26Þ

δLðnÞφ ¼ tnþ1
∂tφþ ðnþ 1Þtnðxj∂j þ Δ2Þφ; ð27Þ

where Δ1 ¼ 3=2 and Δ2 ¼ 1. The stage is now set to
address the symmetries of the Galilean Yukawa theory.
We shall address the symmetries from the Lagrangian
perspective.

1. Symmetries of Lagrangian

We begin by varying the Lagrangian of the theory (17)
by an arbitrary variation δ, i.e.,

δL¼
Z

d3xfð∂iφÞð∂iδφÞ−
ffiffiffi
2

p
iδϕ†

∂tϕ−
ffiffiffi
2

p
iϕ†ð∂tδϕÞ

−δχ†σi∂iϕ−χ†σi∂iδϕþδϕ†σi∂iχþϕ†σi∂iδχ

−gδφðχ†ϕþϕ†χÞ−gφðδχ†ϕþχ†δϕþϕ†δχþδϕ†χÞg:
ð28Þ

To arrive at the symmetries of the Lagrangian under
Galilean conformal generators, we restrict δ to δ

MðnÞ
i

and

δLðnÞ . Now upon using (22)–(24) we arrive at

δ
MðnÞ

i
L ¼ 0: ð29Þ

Also, using (25)–(27), we can end up with

3For the full spectrum of equations of motion, one needs to
include the complex conjugates of (18)–(20).

4Note that the canonical momentum (πφ) for the Galilean
scalar φ does not appear in (21). This is because πφ is a primary
constraint in the theory and shall only appear in the expression for
the total Hamiltonian. The total Hamiltonian becomes essential
if we were to address quantization via canonical techniques.
However, in this paper we are interested in path integral
quantization. For more details on canonical quantization of
systems with constraints see [37].
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δLðnÞL ¼
Z

d3x∂t

�
1

2
ð∂iφÞð∂iφÞ −

ffiffiffi
2

p
iϕ†

∂tϕ − χ†σi∂iϕ

þ ϕ†σi∂iχ − gφðχ†ϕþ ϕ†χÞ
�
: ð30Þ

Clearly, we can see that under the action of Galilean
conformal symmetry generators, the variation in
Lagrangian either changes by a total time derivative term
or vanishes trivially. This assures that Galilean conformal
symmetries are preserved at the level of action in d ¼ 4
dimensions. The invariance of the Lagrangian under Jij is
trivially satisfied (i.e., δJL ¼ 0). We can then conclude that
the Galilean Yukawa theory (16) is invariant under infinite
Galilean conformal symmetry generators.

2. Conserved charges

The Noether theorem suggests that, for every continuous
symmetry of the Lagrangian, there exists a corresponding
global conserved charge. Owing to the existence of an
infinite number of symmetries, we can deduce that the
Galilean Yukawa theory admits an infinite tower of con-
served charges. The aim of this subsection is to construct
those charges. We begin by briefly outlining the systematic
procedure we would employ to construct the charges. Let
us consider a generic Lagrangian L in (dþ 1) spacetime
which depends upon the general field Φ, i.e.,

L≡ LðΦ; ∂tΦ; ∂iΦÞ: ð31Þ

Now consider the transformation of the field Φ → Φþ
δ1Φ. If we invoke the Euler Lagrange equations of motion,
the Lagrangian can at most change by a total time
derivative; i.e., we are studying the variation of the
Lagrangian on-shell,

δLjon-shell ¼
Z

ddx∂tΘtðΦ; ∂tΦ; ∂iΦ; δ1ΦÞ: ð32Þ

Now if we consider the infinitesimal symmetry transforma-
tion instead, i.e., Φ → Φþ δ2Φ, then the Lagrangian
should differ only by a total derivative, i.e.,

δLjoff-shell ¼
Z

ddx∂tαtðΦ; ∂tΦ; ∂iΦ; δ2ΦÞ: ð33Þ

Since the symmetry transformations leave the Lagrangian
invariant, i.e., choosing δ1 ¼ δ2 forces the off-shell variation
to be equal to the on-shell variation,

δLjon-shell ¼ δLjoff-shell:

Thus we can deduce

∂tðΘt − αtÞ ¼ 0:

Hence, the corresponding global conserved charge is
given by

Q ¼
Z

ddxðΘt − αtÞ: ð34Þ

Noether’s procedure described above allows one to deduce
the conserved charges associated with the Galilean con-

formal symmetry generators fLðnÞ;MðnÞ
i ; Jijg in (3þ 1)

dimensions. The on-shell variation of the Lagrangian (17)
leads to

Θt ¼ −
ffiffiffi
2

p
iϕ†δ1ϕ:

Now, the off-shell variation of (17) under LðnÞ and MðnÞ
i

leads to

αtjLðnÞ ¼ fnðtÞ
�
1

2
ð∂iφÞð∂iφÞ −

ffiffiffi
2

p
iϕ†

∂tϕ − χ†σi∂iϕ

þ ϕ†σi∂iχ − gφðχ†ϕþ ϕ†χÞ
�
;

αtjMðnÞ
i

¼ 0;

where fnðtÞ ¼ tnþ1 is a Laurent polynomial in t. The
conserved charges for the Galilean Yukawa theory becomes

QLðnÞ ¼
Z

d3x

�
−

ffiffiffi
2

p
i _fnϕ†

�
xj∂jϕþ 3

2
ϕ

�

− f

�
1

2
ð∂iφÞð∂iφÞ − χ†σi∂iϕþ ϕ†σi∂iχ

− gφðχ†ϕþ ϕ†χÞ
��

; ð35Þ

QMðnÞ ¼ −
Z

d3x
ffiffiffi
2

p
iϕ†ðξi∂iϕÞ; ð36Þ

where ξ ¼ ξj∂j is a spatially constant vector in time with
ξj ¼ tðnþ1Þð1; 1; 1Þ. The finite conserved charges can be
deduced from (35) and (36) by appropriately restricting n to
ð−1; 0; 1Þ. For example, restricting n ¼ −1 in (35) leads to
the Noether charge corresponding to the time translations
(Hamiltonian), i.e.,

QLð−1Þ ¼ −
Z

d3x

�
1

2
ð∂iφÞð∂iφÞ − χ†σi∂iϕ

þ ϕ†σi∂iχ − gφðχ†ϕþ ϕ†χÞ
�
; ð37Þ

which correctly reproduces the canonical Hamiltonian (21).
This example also serves as a verification check for the
conserved charges obtained for the Galilean Yukawa theory.
In a similar fashion, we can construct other finite charges for
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the Galilean Yukawa theory by appropriately restricting n to
−1, 0, or 1 in (35) and (36). A similar analysis yields the
Noether charge for rotations (J), i.e.,

Qω ¼
Z

d3x

�
−2

ffiffiffi
2

p
iωijxiϕ†

∂jϕþ1

2
ωijϵijkσkϕ

†ϕ

�
; ð38Þ

where ωij is a constant antisymmetric matrix, i.e.,
ωij ¼ −ωji.

III. QUANTUM FIELD DESCRIPTION
OF GALILEAN YUKAWA THEORY

In the last section, we provided the classical field
description of the Galilean Yukawa theory. In this section
we delve further into the theory by exploring the quantum
field description of the Galilean Yukawa theory. Our
motivation to study the quantum properties stems from
the realization that the theory admits an infinite number of
conserved charges [(35) and (36)] at the classical level. It
shall be interesting to understand how the symmetries
behave at the quantum level. To this end, our primary goal
is to construct a quantum field description of the Galilean
Yukawa theory. Our analysis relies upon the functional
techniques. For the sake of brevity, we shall revert to (14) to
exploit the quantum nature of the theory. The action S for
the theory reads

S ¼
Z

dt d3x

�
1

2
ð∂iφÞð∂iφÞ þ iψ̄ðγt∂t þ γi∂iÞψ − gψ̄ψφ

�
:

ð39Þ

The fermionic field ψ carries a mass dimension ½ψ � ¼
½ψ̄ � ¼ 3=2, and the scalar field φ admits ½φ� ¼ 1. This
restricts the coupling strength g to dimensionless, i.e.,
½g� ¼ 0, which makes for the case of a marginally renor-
malizable theory. For the rest of this paper, our focus will be
on the one-loop renormalization of th Galilean Yukawa
theory in (3þ 1) dimensions.

A. Feynman rules

For notational convenience, we introduce p ¼ ðω; piÞ,
where ω is the energy associated with the field and pi is the
spatial momentum of the field. The Feynman rules for the
Galilean Yukawa theory (39) are

1: For scalar propagator∶ Gðp;ωÞ ¼ i
p2

:

2: For fermion propagator∶ Dðp;ωÞ ¼ i
γtωþ γipi

:

3: For vertex∶ V ¼ −ig:

4: Overall multiplicative factor of − 1 for each internal

fermion loop:

Diagrammatic representation of Feynman rules is given in
Table I. Note that if we suppress the scalar degree of
freedom, we end up with a pure Galilean fermion theory
whose quantization is described by the fermion propagator.
Tree level quantization (from both canonical and func-
tional methods) of free Galilean fermions has been studied
in [38,39]. Also, if we suppress the fermionic part of the
Lagrangian, we end up with a Galilean scalar field. An
uninteresting feature of Galilean scalar field theory is that
it does not admit any kinetic terms. Because of the lack of
scalar dynamical degrees of freedom, we have not con-
sidered any self-interaction term such as φ4. Our point of
interest lies in incorporating the matter degrees of freedom
that happen to be fermionic fields ψ in our case. In the next
section, we study the one-loop corrections to the propa-
gators and vertex.

B. Regularization

Owing to the existence of a three point vertex in the
Feynman rules, the theory admits a correction to the scalar
propagator, fermion propagator, and vertex. In the general
treatment of quantum field theory, the loop corrections are
generally UV divergent quantities that must be regularized
by restricting the infinite modes in momentum and energy
integrals up to a UV cutoff regulator. In the context of
Galilean field theories, the unequal footing of space and
time forces one to consider the two cutoff regulators viz. Ω
in the energy sector and Λ in the momentum sector.
Following along the lines of [14], we define the superficial
degree of divergence by a set of two numbers ðD; FÞ, i.e.,

D¼
�

Powers of ω

in the numerator

�
−
�

Powers of ω

in the denominator

�
; ð40Þ

F ¼
�

Powers of p⃗

in the numerator

�
−
�

Powers of p⃗

in the denominator

�
: ð41Þ

The knowledge of the superficial degree of divergence is
helpful in understanding the extent to which the divergen-
ces can appear in the theory. However, as is often the case,
the actual degree of divergence can be softer than the
predicted superficial degree of divergence [40,41]. In what

TABLE I. Feynman rules for the Galilean Yukawa theory.

1. Gðω; piÞ p

2. Dðω; piÞ p

3. V

p q

k
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follows, we shall put (40) and (41) into use whenever
required. We begin by evaluating the correction to the
fermion propagator.

1. Correction to the fermion propagator

The Feynman diagram for the same is given by Fig. 1.
The loop integral (Σ) corresponding to Fig. 1 can be
evaluated by integrating along the unconstrained variables
ðωq; q⃗Þ, i.e.,

Σðωp;p⃗Þ¼
ið−igÞ2
ð2πÞ4

Z
dωqd3q

�
i

γtðωpþωqÞþγiðpiþqiÞ
�

×
i

qjqj
; ð42Þ

which can be rearranged to

Σðωp; p⃗Þ ¼
ið−igÞ2
ð2πÞ4

Z
dωqd3q

1

q2ðpþ qÞ2
× ðγtðωq þ ωpÞ þ ðγiðpi þ qiÞÞÞ: ð43Þ

The superficial degree of divergence is given by (2,0),
suggesting a quadratic divergence in the energy sector and
a logarithmic divergence in the momentum sector. We
introduce the cutoffs Ω in the energy sector and Λ in the
momentum sector. The integral evaluates to take the
following value:

Σðωp; p⃗Þ ¼ −i
g2

8πjp⃗j ðγ
tωp þ γipiÞΩ: ð44Þ

Note that the loop integral above does not exhibit any
logarithmic divergence offered due to the infinite modes
of the momentum as predicted by the superficial degree
of divergence. This is because the integral linear in q⃗
vanishes due to the antisymmetricity of the integral. Also,
the actual degree of divergence offered due to the energy
sector does not agree with the superficial degree of
divergence. This behavior is not surprising since we know
that the superficial degree of divergence renders only a
naive idea about the extent of divergences in the theory.
We note that in the cutoff limit Ω, the integral

R
dωqγ

tωq

vanishes owing to the fact that the integrand is an odd
function of ωq. Hence, the true degree of divergence of the
integral turns out to be linear.

2. Correction to the scalar propagator

The Feynman diagram for the correction to the scalar
propagator is given in Fig. 2. The loop integral (Π) in Fig. 2
takes on the following form:

Πðωp; p⃗Þ ¼
−i

ð2πÞ4
Z

dωqd3qð−igÞ2Tr
��

i
γtωq þ γiqi

�

×

�
i

γtðωq þ ωpÞ þ γjðqj þ pjÞ
��

: ð45Þ

The superficial degree of divergence in this case can be
evaluated to (1,1). This suggests that the loop integral
diverges linearly with the momentum cutoff and energy
cutoff, respectively. As it turns out, the integral can be
evaluated to the following value:

Πðωp; p⃗Þ ¼
3ig2

2π3
ΩΛ: ð46Þ

We note that the one-loop correction to the scalar propa-
gator diverges linearly with both energy as well as
momentum cutoff, which is in agreement with the super-
ficial degree of divergence.

3. Correction to the vertex

The Feynman diagram for the correction to the vertex is
given in Fig. 3. The loop integral (Γ) takes the following
form:

p p

q

p+q

FIG. 1. Correction to the fermion propagator.

p p

q

p+q

FIG. 2. Correction to the scalar propagator.

p p
q

p+q p+q

FIG. 3. Correction to the vertex.
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Γðωp; p⃗Þ ¼
i

ð2πÞ4
Z

dωqd3qð−igÞ3
i

qjqj

×

�
i

γtðωp þ ωqÞ þ γiðpi þ qiÞ
�

2

: ð47Þ

As before, we note that the superficial degree of divergence
turns out to be ð1;−1Þ. This is suggestive of linear
divergence offered due to the infinite energy modes.
Interestingly, the vertex correction in the momentum sector
does not offer any divergence superficially. The integral can
be evaluated to

Γðωp; p⃗Þ ¼ −
ig3

8πjp⃗jΩ: ð48Þ

Clearly, the integral diverges linearly. We note that in all
three corrections, the integral necessarily diverges due to
the cutoff offered at large energy values. This shall not be
surprising at all given that the scalar propagator does not
admit any kinetic term which means that we always have to
integrate over infinite energy modes, rendering us a linear
factor of Ω in each of the corrections.

C. Renormalization and beta function

Having evaluated all one-loop corrections in the pre-
vious subsection, the stage is set to address the question of
renormalization of the theory. As already mentioned, the
dimensionless nature of the coupling strength g makes the
Galilean Yukawa theory a reasonable candidate for a
renormalizable theory. By introducing counterterms to
the theory (i.e., subtracting the divergent pieces in the
various cutoffs), we shall be able to absorb the divergent
integrals (44), (46), and (48) in the field and coupling
redefinitions.
We begin our analysis with the correction to the scalar

propagator. The correction to the scalar propagator (46)
suggests that we should add the following counterterm:

+ + =
A

where the coefficient A can be chosen to render a finite
propagator at one-loop. The diagrammatic representation
takes down the following mathematical expression:

i
p2

þ i
p2

�
3ig2ΩΛ
2π3

�
i
p2

þ i
p2

A
i
p2

≡ finite

⇒
i
p2

�
1þ i

p2

�
3ig2ΩΛ
2π3

þ A

��
≡ finite:

After a bit of simple algebra, one can reduce the above
expression to

i

p2 − i
h
3ig2ΩΛ
2π3

þ A
i≡ finite:

Clearly, for the above expression to yield a finite value, we
must have the quantity in the bracket to vanish identically,
i.e.,

3ig2ΩΛ
2π3

þ A ¼ 0;

which restricts A to5

A ¼ −
3ig2ΩΛ
2π3

¼ −im2; ð49Þ

where m2 ¼ 3g2ΩΛ
2π3

is the mass parameter. Evidently, the
propagator renormalization of the scalar field has intro-
duced a mass scale in our theory. The corresponding
counterterm in the Lagrangian is

ðL1Þct ¼ −
1

2
m2φ2: ð50Þ

Remarkably, the scalar field has acquired the mass under
renormalization. The emergence of the mass term signals
the breaking of the conformal feature of the Galilean
Yukawa theory. However, the interesting thing to note is
that φ is a nondynamical field whose renormalization
results in the mass scale at the quantum level. The
emergence of a mass term for a nondynamical field is
something that has never been seen in Galilean field
theories. Note that the appearance of the mass term under
renormalization is not surprising. In fact, there is nothing
sacrosanct about the emergence of mass in a renormalized
theory. We shall recall that in the Lorentzian massless φ4

theory, the propagator correction leads to the mass
term [41].
Now let us turn our attention toward the renormalization

of the fermion propagator. Diagrammatically, we can
represent this in Fig. 4. Following along the lines of scalar
propagator renormalization, we can deduce that the coun-
terterm takes the following form:

+ + =
iB

FIG. 4. Renormalization of the fermion propagator.

5Note that subtracting only the divergent pieces is one possible
renormalization scheme out of many. We could also add to A a
finite term, without spoiling the finiteness of Aþ 3ig2ΩΛ=ð2π3Þ.
This ambiguity is fixed by measurement, according to the
standard renormalization procedure. For more details on renorm-
alization see [41].
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ðL2Þct ¼ iBψ̄ðγt∂t þ γi∂iÞψ ; ð51Þ

where the coefficient B should be fixed to absorb the
divergences in the theory. Using (44), we can fix B as

B ¼ g2

8πjpjΩ: ð52Þ

Our last hunt is to renormalize the vertex term. The
counterterm required to absorb the divergences in the
vertex can be shown to take the following form:

+ + =

C

where the coefficient C can be fixed using (48) to

C ¼ g2

8πjpjΩ: ð53Þ

The counterterm for the vertex in the Lagrangian takes the
following form then:

ðL3Þct ¼ gCψ̄ψφ: ð54Þ

Now that we have added the counterterms to our theory, we
can define the bare Lagrangian Lb as

Lb ¼ Lþ ðL1Þct þ ðL2Þct þ ðL3Þct;

where L is given by (14). The bare Lagrangian takes the
following form:

Lb ¼
1

2
ð∂iφÞð∂iφÞ þ iψ̄ðγt∂t þ γi∂iÞψ − gψ̄ψφ

−
1

2
m2φ2 þ iBψ̄ðγt∂t þ γi∂iÞψ þ Cgψ̄ψφ:

We can collect the coefficients to write

Lb ¼
1

2
ð∂iφÞð∂iφÞ −

1

2
m2φ2 þ ð1þ BÞiψ̄ðγt∂t þ γi∂iÞψ

− ð1 − CÞgψ̄ψφ: ð55Þ

We can then make the following redefinition for the fields:

φðbÞ ¼ φ;

ψ ðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ B

p
ψ : ð56Þ

The index b, appearing on the left-hand side of the fields,
represents the bare field. Note that under renormalization,
the scalar field does not get renormalized but instead leads

to the mass term in the theory. Using (56), we can write the
bare Lagrangian as

Lb ¼
1

2
ð∂iφðbÞÞð∂iφðbÞÞ −

1

2
m2φ2

ðbÞ þ iψ̄ ðbÞðγt∂t þ γi∂iÞψ ðbÞ

−
gð1 − CÞ
ð1þ BÞ ψ̄ ðbÞψ ðbÞφðbÞ: ð57Þ

We can clearly see that with the choice (56), one must
redefine the coupling as well. Define

gðbÞ ¼ g
ð1 − CÞ
ð1þ BÞ : ð58Þ

Thus, the bare Lagrangian (57) can be written down in
terms of bare variables ψ ðbÞ;φðbÞ, and gðbÞ as

Lb ¼
1

2
ð∂iφðbÞÞð∂iφðbÞÞ −

1

2
m2φ2

ðbÞ þ iψ̄ ðbÞðγt∂t þ γi∂iÞψ ðbÞ

− gðbÞψ̄ ðbÞψ ðbÞφðbÞ: ð59Þ

We note that even though, the theory can be made
renormalizable, the bare Lagrangian does not share the
same form as the starting Lagrangian. The emergence of the
mass term for the scalar field is the captivating feature of
the Galilean Yukawa theory. As already explained, the
emergence of the mass term is the signature of anomalous
breaking of conformal symmetry. To see this explicitly, we
shall construct the beta function ðβðgÞÞ for the theory. The
significance of the beta function is not just limited to
conformal breaking of symmetry but, in fact, it also helps
us to understand the validity of the theory with the cutoff
scale involved. The beta function is defined as

β ¼ Ω
∂g
∂Ω

: ð60Þ

We shall see from (58) that

gðbÞ ¼ g
ð1 − g2Ω

8πjpjÞ
ð1þ g2Ω

8πjpjÞ
: ð61Þ

Since the running coupling g is generally assumed to be
small, we can condense the above expression to a simpler
form by retaining the terms only up to Oðg3Þ, i.e.,

gðbÞ ¼
�
1 −

2g2Ω
8πjpj

�
g: ð62Þ

Since the bare coupling gðbÞ has to be taken independent of
the cutoff, we can differentiate the above expression to
arrive at
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∂g
∂Ω

¼ 2g3

8πjpj
�
1þ 6g2Ω

8πjpj
�
:

Retaining the terms only up to Oðg3Þ, we can write

∂g
∂Ω

¼ 2g3

8πjpj : ð63Þ

Now note that in quantum field theories, the cutoff is often
taken to be of the order of incoming momentum (or energy).
Thus we can always define Λ ¼ bjpj, where b > 0 is a
constant parameter. Also, the two cutoffs Ω and Λ can be
algebraically related by Ω ¼ aΛ, where a ≠ 1 is a positive
constant that parametrizes the discrepancy in the two
cutoffs. These two conditions allow us to relate Ω with
the momentum jpj, i.e., in the limit Ω → ∞, Ω

jpj ¼ ab. We
can then write (63) as

βðgÞ ¼ Ω
∂g
∂Ω

¼ g3
�
ab
4π

�
: ð64Þ

Since we know that both a and b are strictly positive, this
suggests that βðgÞ is always positive, i.e., βðgÞ > 0. This
again confirms the presence of conformal anomalies in the
theory and is in agreement with [28,29]. We shall also make
note of the fact that the theory is devoid of asymptotic
freedom; i.e., the Galilean Yukawa theory becomes strongly
coupled at large momentum (or energies). This becomes
evident if we integrate (64) between a reference scale Ω0

and Ω; i.e., we get

g2ðΩÞ ¼ g2ðΩ0Þ
1 − ab

2π g
2ðΩ0Þ lnðΩΩ0

Þ : ð65Þ

It is straightforward to see from (65) that at small values of
momentum, i.e., Ω ∼Ω0, we have gðΩÞ ∼ gðΩ0Þ. However,
at large momentum values, i.e., Ω ≫ Ω0, the running
coupling increases with the cutoff Ω confirming the invalid-
ity of the theory at large energies. Another interesting thing
to note here is the existence of the Landau pole in the theory.
We can check that (65) shoots up at Ω ¼ Ω0 expð 2π

abg2ðΩ0ÞÞ.
The existence of the Landau pole is a feature often observed
in quantum field theories that are not asymptotically free.

IV. SUMMARY AND OUTLOOK

Let us summarize what we have accomplished in this
paper. We have presented the classical and quantum field
descriptions of an interacting Galilean conformal field
theory. We have taken the case of massless Galilean
fermions coupled to a massless Galilean scalar field. The
introduction of scalar-fermionic interaction incorporates
the dynamical degrees of freedom into the free Galilean
scalar field theory, which otherwise is an example of a
nonrelativistic conformal field theory with a nondynamical

degree of freedom. At the classical level, the Lagrangian for
the theory is obtained by null reducing the Lagrangian
for the relativistic Yukawa theory in one higher dimension.
The resulting theory is found to be invariant under the full
Galilean conformal algebra, hence the name Galilean
Yukawa theory. We further exploit the presence of infinite
symmetries in the theory by constructing the conserved
charges (35) and (36) for the theory. The coupling strength
in the theory is observed to be dimensionless, which makes
for the case of a marginally renormalizable theory; i.e., the
theory may or may not be renormalizable. Interestingly,
what we have found is that the theory is renormalizable at
least to one-loop. Our prescription for quantization of the
Galilean Yukawa theory relies on path integral techniques.
We regularize the UV divergences in the theory by setting
the energy and momentum cutoff ðΩ;ΛÞ. An interesting
feature that emerges at quantum level is the entry ofmass in
the scalar sector of the theory. The admission of the mass
term in the Lagrangian suggests that the conformal invari-
ance of the theory is broken at the quantum level. This is
captured by the behavior of the beta function which
increases monotonically (and grows cubically) with the
coupling. This suggests that the theory is not asymptoti-
cally free. The lack of asymptotic freedom is also captured
by the Landau pole in the theory. The Galilean Yukawa
theory shares this interesting feature of anomalous breaking
of conformal symmetry with Galilean quantum electrody-
namics [14]. However, an underlying difference between
the two theories is the mass term. It must be noted that
Galilean quantum electrodynamics does not lead to any
mass term. This is because the Galilean quantum electro-
dynamics is obtained as a null reduction of Lorentzian
quantum electrodynamics in one higher dimension. It is
well known that in a relativistic setting, the photon does
not acquire mass under renormalization, courtesy of Ward
identities. Thus the renormalization of gauge fields in the
Galilean limit is modeled in such a way that the gauge fields
do not acquire mass. The Galilean Yukawa theory is the
first example of a Galilean field theory where mass
crops up.
Note that the scalar field in this theory exhibits non-

dynamical degrees of freedom. The emergence of the mass
term at the quantum level calls for further investigations
since there is no precise notion of mass in the Galilean
setting. However, the theory shares similar features with
Galilean quantum electrodynamics. It must be noted that
further studies on global conformal anomalies, especially
regarding anomalous Ward identities in the context of
Galilean field theories, might be more tractable with
the Galilean Yukawa theory than the gauge theory such
as Galilean quantum electrodynamics. Also, the quantum
field description presented in this paper is only valid up to
one-loop in the perturbation. It shall also be very interest-
ing to establish the renormalizability at all orders of the
perturbations.

ADITYA SHARMA PHYS. REV. D 107, 125009 (2023)

125009-10



Note that many of the recent studies [14,22,23] on the
quantization program of interacting Galilean field theories
deal with matter-induced degrees of freedom. One of our
future goals is to extend the quantization program devel-
oped in this paper to non-Abelian gauge theories such as
Galilean Yang Mills (GYM) [11]. GYM is an example of a
self-interacting theory; hence it shall be interesting to
explore the quantization of pure GYM in this setting.
Also, studying the quantum properties of Galilean QCD
will be an avenue of future research.
We also wish to extend the quantization program for

Carrollian field theories (c → 0, a degenerate twin of
Galilean field theories) by developing a prescription similar
to the one described in this paper. Carrollian physics has
recently gained attention much to the fact that it plays an
essential role in understanding gravity in asymptotically flat
spacetime [42–44]. Carrollian theories are promising can-
didates to study flat space holography. Also, recent study

carried out with Carroll fluid allows one to model Carroll
fluid as a possible dark energy candidate [45]. It shall be
interesting if we can manage to uncover some interesting
physics by probing the quantum properties of Carrollian
field theories developed (see, for example, [46–49] and
references therein) in recent years. Our recent work on the
renormalization of scalar Carrollian electrodynamics [50] is
a step in this direction.
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