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In the N ¼ 2, d ¼ 3 superspace, we consider a higher-derivative generalization of the supersymmetric
quantum electrodynamics, where the higher-derivative operator is a polynomial function of the
d’Alembertian with arbitrary degree. For this theory, we use the background field quantization in a
higher-derivative Rξ gauge to explicitly calculate the superfield effective potential up to two loops in the
Kählerian approximation. This superfield effective potential is obtained in a closed form and in terms of
elementary functions.

DOI: 10.1103/PhysRevD.107.125007

I. INTRODUCTION

The higher-derivative (HD) generalization of a given
Lagrangian is a quite old idea going back to Ostrogradsky’s
work [1]. In the 1940s, HD modifications to Maxwell
electrodynamics were suggested by Bopp [2] and Podolsky
[3] with the aim to prevent singularities due to point charges.
Despite being an old idea, HD theories continue to be
investigated to this day for three reasons. First, these
theories are unavoidable, in the sense that they arise
naturally in different contexts, such as counterterms neces-
sary to ensure the renormalizability of semiclassical gravity
theories [4], in the small slope expansion of string models
[5], and by integrating out heavy fields in the effective field
theory approach [6]. Second, HD theories are better behaved
than the standard field theories when it comes to classical
and quantum divergences. For example, HD gravitational
theories of order higher than four have a regular Newtonian
potential and no curvature singularities [7]. Moreover, it is
well known that HD theories of gravity are (super)renor-
malizable [8]. Third, field theories can be regularized by
means of the method of higher covariant derivatives [9],
which is a regularization scheme that preserves gauge
invariances as well as supersymmetry [10]. Recently, this
scheme has been employed in the perturbative computation
of the anomalous dimension and beta function for super-
symmetric quantum electrodynamics (SQED) and minimal
supersymmetric standard model [11].

In this context of HD theories, we will investigate the
effective potential (EP). Physically, the EP takes into
account the effect of the quantum fluctuations on the
classical theory, so that it is a quantum generalization of
the classical potential [12]. The EP is not only important for
its own sake, but it is also necessary to study spontaneous
symmetry breaking produced by radiative corrections [13],
the symmetry restoration at high temperatures [14], and the
false vacuum decay [15]. Very recently, the gauge depend-
ence of the EP for the standard model of electroweak
unification has been investigated in [16], the renormaliza-
tion-group-improved EP has been studied in the Gross-
Neveu model [17], and the one-loop EP has been calculated
for the scalar-tensor gravity in Ref. [18].
In supersymmetric field theories, the focus is shifted from

the EP to the superfield effective potential (SEP), which is a
supersymmetric generalization of the former one [19]. The
reason for this is that the SEP is defined by means of the
superfield formalism in which the supersymmetry invariance
is manifest. In view of the significance of the (superfield)
effective potential and the excellent properties of HDmodels
discussed above, many studies of the SEP were reported in
the literature for different HD extensions of supersymmetric
theories, such as chiral superfield models [20], gauge
superfield theories [21,22], and three-dimensional superfield
models [23,24]. However, all these studies were limited to
the investigation of the one-loop SEP. Recently, we have
made progress toward the explicit calculation of the two-
loop SEP for HD scalar and chiral superfield theories [25],
which are nongauge theories. The aim of the present paper is
to continue this investigation by computing the two-loop
correction to the SEP in a HD version of the N ¼ 2, d ¼ 3
SQED, which is an Abelian gauge theory. It is important to
point out that we have already calculated the one-loop
SEP of this model in our earlier paper [24]. Nonetheless, the
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one-loop SEP was given in terms of integrals over the
momenta. Thus, we also aim to improve the result of [24] by
obtaining an explicit expression for the one-loop SEP in
this work.
The structure of the paper is as follows. In Sec. II, we

introduce the HD version of the N ¼ 2, d ¼ 3 SQED
coupled to chiral matter and develop the background field
quantization necessary for performing quantum calcula-
tions. In Sec. III, we use the fundamental theorem of
algebra together with the partial fraction representation of
the propagators to explicitly calculate the SEP up to the
two-loop level. In Sec. IV, we give a short summary of the
main results obtained and suggest a possible continuation
of this study.

II. N = 2, d = 3 SQED WITH HIGHER
DERIVATIVES AND BACKGROUND FIELD

QUANTIZATION

In the N ¼ 2, d ¼ 3 superspace, the SQED describes a
gauge superfield V which mediates the interaction between
matter superfields Φþ and Φ− with nonzero Uð1Þ charge
[26]. One possible way to generalize this theory is to
include higher derivatives only in the gauge sector

SHD ¼
Z

d7z

�
−

1

8g2
Gfð□ÞGþ Φ̄þeVΦþ þ Φ̄−e−VΦ−

�
:

ð1Þ

Here, G ¼ D̄αDαV is the gauge invariant field strength.
The dimensionless scalar operator fð□Þ is assumed to be a
polynomial function with arbitrary degree. In principle, we
could also introduce HD operators into the matter sector
and add to (1) superpotential terms involving only chiral
superfields. At the one-loop level, the calculations would
be feasible and they would probably go in a very similar

way as we have done in [22]. On the other hand, the two-
loop calculations would be quite demanding due to the
more involved structure of the propagators and the large
number of vertices. We plan to tackle this problem in future
work. In the present contribution, for the sake of simplicity,
the HD generalization of the SQED that we will study is the
one defined in (1).
All quantum calculations in this work will be performed

using the background field approach [27,28]. Following
this formalism, we make the quantum/background splitting
of the linear form:

V → Vþ v; Φ� →Φ� þϕ�; Φ̄� → Φ̄� þ ϕ̄�: ð2Þ

We know by definition that the SEP depends only on chiral
and antichiral superfields and their derivatives, so we must
set the background gauge superfield to zero. Additionally,
we will study the effective action in the so-called Kählerian
approximation in which the derivatives of the background
chiral and antichiral superfields are neglected [19]. Thus,
we impose on the background superfields the constraints:

V ¼ 0; DαΦ� ¼ 0; D̄ _αΦ̄� ¼ 0;

∂α _αΦ� ¼ 0; ∂α _αΦ̄� ¼ 0: ð3Þ

Therefore, inserting Eqs. (2) into (1), we obtain

Ssplit ¼
Z

d7z

�
−

1

8g2
Gfð□ÞGþ ðΦ̄þ þ ϕ̄þÞevðΦþ þ ϕþÞ

þ ðΦ̄− þ ϕ̄−Þe−vðΦ− þ ϕ−Þ
�
: ð4Þ

Now, G ¼ D̄αDαv and we have two sets of superfields.
Consequently, the action is invariant under two types of
transformations:

Background∶ Φ0
� ¼ e�iKΦ�; Φ̄0

� ¼ e∓iKΦ̄�; ϕ0
� ¼ e�iKϕ�; ϕ̄0

� ¼ e∓iKϕ̄�; v0 ¼ v; ð5Þ

Quantum∶ Φ0
� ¼ Φ�; Φ̄0

� ¼ Φ̄�; ϕ0
� ¼ e�iΛðΦ� þ ϕ�Þ −Φ�;

ϕ̄0
� ¼ e∓iΛ̄ðΦ̄� þ ϕ̄�Þ − Φ̄�; v0 ¼ vþ iðΛ̄ − ΛÞ: ð6Þ

It is worth pointing out that the background transformations
are global because the background gauge superfield was set
to zero.
To calculate the SEP at the two-loop level, it is sufficient

to expand (4) around the background superfields up to the
fourth order in the quantum superfields. Therefore, we get

Ssplit ¼ Sð0Þ þ Sð1Þ þ Sð2Þ þ Sð3Þ þ Sð4Þ: ð7Þ

The first term is just the classical contribution to the effective
action, and the second one only leads to one-particle

reducible supergraphs [29]. Therefore, these two terms
can be dropped out. On the other hand, the quadratic terms
in the quantum superfields are given by

Sð2Þ ¼
Z

d7z
�

1

8g2
v½fð□Þð−□þ fD2; D̄2gÞ þM2

v�v

þ ϕ̄ϕþ vΦ̄σ3ϕþ vϕ̄σ3Φ
�
; ð8Þ

where σ3 is a Pauli matrix and we have introduced the
following matrix notation:

F. S. GAMA PHYS. REV. D 107, 125007 (2023)

125007-2



Φ̄ ¼ ðΦ̄þ Φ̄−Þ; Φ ¼
�Φþ
Φ−

�
;

ϕ̄ ¼ ðϕ̄þ ϕ̄−Þ; ϕ ¼
�
ϕþ
ϕ−

�
: ð9Þ

Moreover, the mass parameter M2
v is defined as

M2
v ¼ 4g2Φ̄Φ: ð10Þ

In the standard SQED (fð□Þ ¼ 1), the parameter M2
v is the

mass acquired by the gauge superfield v due to the non-
vanishing background defined by Φ. In the HD version of
the SQED, the same interpretation still holds although the
mass acquired by the gauge superfield is not given by (10)
anymore, it now also depends on the mass scales introduced
by means of the operator fð□Þ [see Eq. (60)].
The cubic and quartic terms are given by

Sð3Þ ¼
Z

d7z

�
vϕ̄σ3ϕþ 1

2
v2ðΦ̄ϕþ ϕ̄ΦÞ þ 1

3!
v3Φ̄σ3Φ

�
;

ð11Þ

Sð4Þ ¼
Z

d7z

�
1

2
v2ϕ̄ϕþ 1

3!
v3ðΦ̄σ3ϕþ ϕ̄σ3ΦÞþ 1

4!
v4Φ̄Φ

�
:

ð12Þ

Since the kinetic operator of the gauge superfield is not
invertible (4), we must remove its degeneracy fixing the
quantum gauge symmetry (6), but preserving the back-
ground invariance (5). This can be achieved by adding to
the action the higher-derivative generalization of the usual
supersymmetric Rξ gauge [30]

SGF ¼ −
1

4g2

Z
d7zF̄fð□ÞF; ð13Þ

where the suitable gauge-fixing function is defined as

F ¼ D̄2

�
vþ 4g2

1

□fð□Þ ϕ̄σ3Φ
�
; ð14Þ

which was defined in this way with the aim of canceling the
unwanted mixing of matter and gauge quantum superfields
in (8). Substituting (14) into (13), we obtain the following
explicit form:

SGF ¼ −
Z

d7z

�
1

4g2
ðD2vÞfð□ÞD̄2vþ vϕ̄σ3Φþ vΦ̄σ3ϕ

þ ϕ̄M2
1

□fð□Þϕ
�
; ð15Þ

where we have introduced the mass matrix
M2 ¼ 4g2σ3ΦΦ̄σ3, or

M2 ¼ 4g2
� jΦþj2 −ΦþΦ̄−

−Φ−Φ̄þ jΦ−j2
�
: ð16Þ

The inconvenience of the gauge choice (14) is that the
Faddeev-Popov ghosts will interact with the background
superfields, so that they must be included to maintain
the consistency of the gauge-fixing procedure. Thus,
besides Eq. (13), we also have to add to the model the ghost
action

SFP ¼
�
i
Z

d5zc0δΛF þ i
Z

d5z̄c̄0δΛF̄
�����

Λ→c;Λ̄→c̄
: ð17Þ

The variation δΛF is obtained from the infinitesimal version
of the quantum gauge transformations (6). Therefore, it is
possible to show that

δΛF¼ iD̄2

��
1−

M2
v

□fð□Þ
�
Λ̄−4g2

1

□fð□ÞðΛ̄ϕ̄ÞΦ
�
: ð18Þ

Substituting this into (17), we find the following quadratic
and cubic contributions

Sð2ÞFP ¼
Z

d7z

�
−c0

�
1 −

M2
v

□fð□Þ
�
c̄þ c̄0

�
1 −

M2
v

□fð□Þ
�
c

�
;

ð19Þ

Sð3ÞFP ¼ 4g2
Z

d7z

�
c0

1

□fð□Þ ðc̄ ϕ̄ÞΦ − Φ̄c̄0
1

□fð□Þ ðcϕÞ
�
:

ð20Þ

Finally, all of the functionals which are quadratic in the
quantum superfields (8), (15), and (19) can be combined
into a single expression

Sð2Þ þ SGF þ Sð2ÞFP ¼ 1

2
v ·Hv · vþ

1

2
ðϕT ϕ̄Þ ·Hϕ ·

�
ϕ

ϕ̄T

�

þ 1

2
ðc c0 c̄ c̄0 Þ ·HFP ·

0
BBB@

c

c0

c̄

c̄0

1
CCCA;

ð21Þ

where the symbol “·” denotes the integration over
the proper superspace [31]. Moreover, the Hessians are
given by

Hv ¼
1

4g2
ð−□fð□Þ þM2

vÞδ7ðz; z0Þ; ð22Þ
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Hϕ ¼

0
B@ 0

	
1 − M2T

□fð□Þ


D̄2

	
1 − M2

□fð□Þ


D2 0

1
CA

×

�
1δþðz; z0Þ 0

0 1δ−ðz; z0Þ

�
; ð23Þ

HFP ¼
�
1 −

M2
v

□fð□Þ
��

0 −σ1D̄2

σ1D2 0

�

×

�
1δþðz; z0Þ 0

0 1δ−ðz; z0Þ

�
: ð24Þ

Note that the Hessians (23) and (24) were also modified by
the HD operator fð□Þ. This is a consequence of the gauge
choice (14). The Hessians above are fundamental for the
one- and two-loop computations that we will do next.

III. ONE- AND TWO-LOOP CALCULATIONS

By enforcing the constraints (3) on the background
superfields, the general structure of the quantum effective
action in the N ¼ 2, d ¼ 3 superspace is given by [32]

Γ½Φ; Φ̄� ¼
Z

d7zKeffðΦ; Φ̄Þ þ
�Z

d5zWeffðΦÞ þ H:c:

�
:

ð25Þ

In this context, the SEP is characterized by two objects: the
Kähler effective potential Keff and chiral effective potential
Weff . In the Kählerian approximation, we focus only on
Keff . The typical method of calculation of Keff relies on the
use of perturbation series in powers of ℏ, the so-called loop
expansion. Thus, we write

KeffðΦ; Φ̄Þ ¼
X∞
n¼0

ℏnKðnÞðΦ; Φ̄Þ: ð26Þ

where KðnÞ denotes the n-loop quantum correction. The
tree-level EP Kð0Þ can be read from the classical action (1)
by turning off the gauge superfield V ¼ 0. Therefore,

Kð0ÞðΦ; Φ̄Þ ¼ Φ̄Φ: ð27Þ

Of course, this Kähler potential for the model (1) is
identical to the standard one [32].
Now, let us consider the one-loop correction, which can

be obtained from (21) by integrating out the quantum
superfields. Doing this, we arrive at the expression for the
one-loop euclidean effective action [33]

Γð1Þ ¼ −
1

2
Tr lnHv −

1

2
Tr lnHϕ þ

1

2
Tr lnHFP: ð28Þ

Notice in (22) that there is no spinor covariant derivative in
Hv. Thus, due to properties of the delta function over the
Grassmann variables, the first trace in Eq. (28) vanishes.
The remaining traces can be handled as follows. Let

Cϕ ¼
�

0 fð□Þ1D̄2

fð□Þ1D2 0

��
1δþðz; z0Þ 0

0 1δ−ðz; z0Þ

�

ð29Þ

be a operator which is independent of the background
superfields. Since the contribution of − 1

2
Tr lnðCϕHϕÞ for

the SEP differs from − 1
2
Tr lnHϕ by an additive constant,

this allows us to redefineHϕ such thatHϕ → CϕHϕ, where
CϕHϕ is a block diagonal matrix. Thus,

−
1

2
Tr lnðCϕHϕÞ ¼ −

1

2
Tr ln

�
□fð□Þ1 −M2 0

0 □fð□Þ1 −M2T

�

¼ −
1

2
Trþ ln ð□fð□Þ1 −M2Þ − 1

2
Tr− ln ð□fð□Þ1 −M2TÞ

¼ −
1

2
Trþ ln ð□fð□Þ−M2

vÞ þ H:c:; ð30Þ

where we have used the eigenvalues of the matrix M2 (and
M2T), which are λ1 ¼ 0 and λ2 ¼ M2

v. Moreover, Trþ and
Tr− denote the traces over the chiral and antichiral sub-
spaces, respectively.
Similarly, we can introduce the operator

CFP¼
�

0 fð□Þσ1D̄2

−fð□Þσ1D2 0

��
1δþðz;z0Þ 0

0 1δ−ðz;z0Þ

�
;

ð31Þ

so that the ghost contribution corresponds to

1

2
Tr lnðCFPHFPÞ

¼ 1

2
Tr ln

� ð□fð□Þ−M2
vÞ1 0

0 ð□fð□Þ−M2
vÞ1

�

¼ Trþ ln ð□fð□Þ−M2
vÞ þ H:c: ð32Þ

Therefore, substituting (30) and (32) into (28), we find
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Γð1Þ ¼ 1

2
Trþ ln ð□fð□Þ−M2

vÞ þ H:c: ð33Þ

Now we did all the D-algebra, the next step is to factor the
HD operator □fð□Þ −M2

v into the product of standard
wave operators □ −m2

k. This aim can be achieved by
invoking the fundamental theorem of algebra. If N denotes
the degree of the polynomial PðzÞ ¼ zfðzÞ −M2

v, then we
can write

PðzÞ ¼
XN
k¼0

akzk ¼ aN
YN
k¼1

ðz −m2
kÞ; ð34Þ

where aN is a constant andm2
k are the zeroes of PðzÞ, which

are background-dependent. Additionally, we have assumed
that all mk are distinct, real and positive for the sake of
simplicity. This assumption can be accomplished through
an appropriate choice of the coefficients of PðzÞ.
In view of the discussion above, let us split the trace (33)

into N traces involving wave operators □ −m2
k:

Γð1Þ ¼ 1

2

XN
k¼1

Trþ ln ð□ −m2
kÞ þ H:c: ð35Þ

Finally, in order to evaluate these traces, we can follow the
same approach as in [34]. Therefore, it is possible to show
that the one-loop SEP is

Kð1ÞðΦ; Φ̄Þ ¼ −
1

2π

XN
k¼1

mk: ð36Þ

Thus, we find that the one-loop SEP for the HD model (1)
is finite. Indeed, one-loop ultraviolet finiteness is a typical
characteristic of three-dimensional gauge theories [35].
Let us now move on to the calculation of the two-loop

SEP. To do this we need to determine the propagators by
inverting the Hessians (22)–(24). Therefore, we obtain

Gvðz; z0Þ ¼ Að□Þδ7ðz; z0Þ; ð37Þ

Gϕðz; z0Þ ¼
�

0 ðBð□ÞP1 −□
−1P2ÞD̄2δ−ðz; z0Þ

ðBð□ÞPT
1 −□

−1PT
2 ÞD2δþðz; z0Þ 0

�
; ð38Þ

GFPðz;z0Þ¼Bð□Þ
�

0 −σ1D̄2δ−ðz;z0Þ
σ1D2δþðz;z0Þ 0

�
; ð39Þ

where we have used the following matrix projection
operators [36]

P1 ¼
1

Φ̄Φ

� Φþ
−Φ−

�
ð Φ̄þ −Φ̄− Þ;

P2 ¼
1

Φ̄Φ

�
Φ̄−

Φ̄þ

�
ðΦ− Φþ Þ: ð40Þ

Additionally,

Að□Þ ¼ 4g2

□fð□Þ−M2
v
; Bð□Þ ¼ −

fð□Þ
□fð□Þ−M2

v
: ð41Þ

It is worth noticing that despite the HD operator fð□Þ
appearing in all propagators above, only (37) is improved at
high momentum due to fð□Þ, the other ones (38) and (39)
go as −□−1 at high momentum. This implies that super-
graphs with vertices connected by only matter and ghost

propagators should be divergent. However, such super-
graphs are not allowed by the propagators (38), (39) and
cubic vertices originating from the functional (20). On the
other hand, there are five supergraphs which are allowed by
the propagators (37), (38) and vertices originating from
(11) and (12). From all these supergraphs, only the one
drawn in Fig. 1 is not zero, because after the D-algebra we
are left with exactly two D’s and two D̄’s acting on one of
the δ-functions.
The expression for the two-loop correction to the

euclidean effective action corresponding to the supergraph
shown in Fig. 1 is given by

FIG. 1. The only nonzero contribution to the two-loop SEP.
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Γð2Þ ¼
Z

d7z1d5z̄2d5z3d7z4d5z̄5d5z6

×
δ3Sð3Þ

δvðz1Þδϕ̄iðz2Þδϕjðz3Þ
δ3Sð3Þ

δvðz4Þδϕ̄kðz5Þδϕlðz6Þ
×Gvðz1; z4ÞðG−þÞilðz2; z6ÞðGþ−Þjkðz3; z5Þ; ð42Þ

whereG−þ andGþ− are matrix propagators lying along the
antidiagonal of Gϕ [see Eq. (38)], and i, j, k, l are matrix

indices. A straightforward computation using (11) lead us
to the following three-point vertex

δ3Sð3Þ

δvðz1Þδϕ̄iðz2Þδϕjðz3Þ
¼ðσ3Þijδ−ðz1;z2Þδþðz1;z3Þ: ð43Þ

Substituting (37) and (43) into (42), and then using the anti-
and chiral delta functions to evaluate the integrals, we find

Γð2Þ ¼
Z

d7z1d7z4ðσ3Þijðσ3Þkl½Að□1Þδ3ðx1; x4Þ�δ4ðθ1; θ4ÞðG−þÞilðz1; z4ÞðGþ−Þjkðz1; z4Þ: ð44Þ

By means of the identities

δ4ðθ1; θ4ÞD2
1δþðz1; z4Þ ¼ δ7ðz1; z4Þ; δ4ðθ1; θ4ÞD̄2

1δ−ðz1; z4Þ ¼ δ7ðz1; z4Þ; ð45Þ

we are able to easily prove that

δ4ðθ1; θ4ÞðG−þÞilðz1; z4Þ ¼ ½Bð□1ÞðPT
1 Þil −□

−1
1 ðPT

2 Þil�δ3ðx1; x4Þδ4ðθ1; θ4Þ; ð46Þ

δ4ðθ1; θ4ÞðGþ−Þjkðz1; z4Þ ¼ ½Bð□1ÞðP1Þjk −□
−1
1 ðP2Þjk�δ3ðx1; x4Þδ4ðθ1; θ4Þ: ð47Þ

Therefore, after a little algebraic manipulation, the expression (44) can be rewritten as

Γð2Þ ¼
Z

d4θ1d3x1d3x4fTrðP1σ3P1σ3Þ½Að□1Þδ3ðx1; x4Þ�½Bð□1Þδ3ðx1; x4Þ�2

þ 2TrðP1σ3P2σ3Þ½Að□1Þδ3ðx1; x4Þ�½Bð□1Þδ3ðx1; x4Þ�½−□−1
1 δ3ðx1; x4Þ�

þ TrðP2σ3P2σ3Þ½Að□1Þδ3ðx1; x4Þ�½−□−1
1 δ3ðx1; x4Þ�2g: ð48Þ

The traces above are evaluated using the definitions (40),
and the results can be expressed in terms of the matrix
notation (9). Thus,

TrðP1σ3P1σ3Þ ¼ TrðP2σ3P2σ3Þ ¼
�
Φ̄σ3Φ
Φ̄Φ

�
2

;

TrðP1σ3P2σ3Þ ¼
����ΦTσ1Φ

Φ̄Φ

����2: ð49Þ

In order to get Feynman integrals with known solutions in
terms of elementary functions, we need once again to factor
the HD operator □fð□Þ −M2

v into the product of standard
wave operators □ −m2

k using the fundamental theorem of
algebra (34). This allows us to find for Að□Þ and Bð□Þ,
defined in Eq. (41), the following partial fraction repre-
sentations [37]

Að□Þ ¼ 4g2a−1NQ
N
k¼1 ð□ −m2

kÞ
¼ 4g2a−1N

XN
k¼1

ck
□ −m2

k

; ð50Þ

Bð□Þ ¼ −
a−1N fð□ÞQ

N
k¼1 ð□ −m2

kÞ
¼ −a−1N

XN
k¼1

dk
□ −m2

k

; ð51Þ

where the residues ck and dk are given by [38]

ck ¼
Y
j≠k

1

m2
k −m2

j
; dk ¼

Y
j≠k

fðm2
kÞ

m2
k −m2

j
: ð52Þ

Inserting Eqs. (49)–(51) into (48), and then passing to the
momentum space, we arrive at
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Γð2Þ ¼ −4g2a−1N

Z
d7z

Z
d3pd3q
ð2πÞ6

��
Φ̄σ3Φ
Φ̄Φ

�
2
�
a−2N

XN
k¼1

XN
l¼1

XN
m¼1

ckdldm
1

p2 þm2
k

1

q2 þm2
l

×
1

ðpþ qÞ2 þm2
m
þ
XN
k¼1

ck
1

p2 þm2
k

1

q2
1

ðpþ qÞ2
�
þ 2

����ΦTσ1Φ
Φ̄Φ

����2a−1N XN
k¼1

XN
l¼1

ckdl

×
1

p2 þm2
k

1

q2 þm2
l

1

ðpþ qÞ2
�
: ð53Þ

Even though perturbative quantum contributions to the
effective action are in general highly nonlocal in the
coordinates x [39], notice that we have ended up with a
contribution (53) that is local. This is due to the fact that the
derivatives of the background superfields with respect to x
have been neglected in our computations [see Eq. (3)].
The 2-loop vacuum integrals with arbitrary masses which

appear in Eq. (53) also arise in the 3d physics of the
electroweak phase transition [40] and spontaneous breaking
of the gauge symmetry in the Maxwell-Chern-Simons
theory [41]. They can be solved by means of the formula

Z
d3pd3q
ð2πÞ6

1

p2 þm2
1

1

q2 þm2
2

1

ðpþ qÞ2 þm2
3

¼ 1

32π2

�
1

2ε
þ 1 − 2 ln

�
m1 þm2 þm3

μ̄

��
; ð54Þ

where ε ¼ 1
2
ð3 − dÞ and μ̄ is an arbitrary mass parameter.

It is worth pointing out that despite the singularity ε−1

arising in all integrals above, they are not of concern
because they cancel in the sums due to the identity

XN
k¼1

ck ¼ 0: ð55Þ

Finally, substituting (54) into (53), and then using the
identity (55), we can infer that the two-loop SEP is

Kð2ÞðΦ;Φ̄Þ ¼ g2a−1N
4π2

��
Φ̄σ3Φ
Φ̄Φ

�
2

×

�
a−2N

XN
k¼1

XN
l¼1

XN
m¼1

ckdldm ln

�
mkþmlþmm

μ̄

�

þ
XN
k¼1

ck ln

�
mk

μ̄

��
þ2

����ΦTσ1Φ
Φ̄Φ

����2

×a−1N
XN
k¼1

XN
l¼1

ckdl ln

�
mkþml

μ̄

��
; ð56Þ

where the residues ck, dk, and the masses mk are functions
of the background superfields. Contrary to the one-loop
polynomial SEP (36), the two-loop one (56) has a

logarithmic behavior in the masses. Moreover, in contrast
to the two-loop divergent SEP for standard three-
dimensional gauge theories [35], the one for the HD
model (1) is finite.
As an illustration of our general results, let us consider a

HDmodel (1) whose explicit form of the HD operator fð□Þ
is defined as

fð□Þ ¼ 1 −
□

Λ2
; ð57Þ

where Λ > 0. In particular, when we set the parameter to
be infinitely large Λ → ∞, we recover the usual N ¼ 2,
d ¼ 3 SQED.
It follows from the example (57) that we have to find all

zeroes of the polynomial [see Eq. (34)]

−
z2

Λ2
þ z − 4g2Φ̄Φ ¼ 0: ð58Þ

The degree N of this polynomial and the coefficient a2 are
given by

N ¼ 2; a2 ¼ −
1

Λ2
: ð59Þ

If Λ2 > 16g2Φ̄Φ, then the quadratic equation (58) admits
two distinct real solutions:

m2
� ¼ Λ2

2

0
B@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16g2Φ̄Φ
Λ2

s 1
CA; ð60Þ

where m2þ is the mass of the Ostrogradsky ghost (which
is inevitable in any local HD theory) and m2

− is the mass
acquired by the gauge superfield. Indeed, notice that
m2

− ¼ 0 for a vanishing background superfield, Φ ¼ 0,
and m2

− ≃M2
v for a large mass scale, Λ → ∞.

The square roots are

m� ¼ Λffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16g2Φ̄Φ
Λ2

svuut
: ð61Þ
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To find the one-loop SEP, one can just insert Eqs. (59)
and (61) into (36). On the other hand, to obtain the two-
loop SEP, it is still necessary to determine the residues
(52). Substituting (61) into (52) and using the definition
(57), we get

c� ¼ � 1

Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − 16g2Φ̄Φ

p ;

d� ¼ �Λ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − 16g2Φ̄Φ

p
2Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − 16g2Φ̄Φ

p : ð62Þ

Finally, one can just insert Eqs. (59), (61), and (62) into
(56) to find the two-loop SEP.
Even though the formula (56) is valid for fð□Þ with

arbitrary degree, it becomes very unwieldy to write out in
full when fð□Þ is a polynomial with degree higher
than two.

IV. CONCLUSIONS

In this work, we formulated a higher-derivative generali-
zation of the N ¼ 2, d ¼ 3 supersymmetric quantum
electrodynamics, with the introduction of a higher-derivative
operator in the gauge sector, where such operator is a
polynomial function of the d’Alembertian with arbitrary
degree. For this theory, we found explicit expressions for the
one- and two-loop superfield effective potentials. All quan-
tum calculations were performed using the background field
approach in a higher-derivative Rξ gauge to remove the
unwanted mixed terms between the quantum superfields.
The two main results of our paper are as follows. First, the

derivation of an explicit exact expression for the one-loop
superfield effective potential (36). This result is relevant
because it improves the result we found in our earlier work
[24], where the one-loop superfield effective potential was
given in terms of integrals over the momenta. Second, the
full derivation of the two-loop superfield effective potential
(56) in a closed form and in terms of elementary functions.

The importance of this result lies in the fact that, in contrast
our earlier study [25], it is the first time that these two-loop
corrections were determined for a gauge superfield theory
with higher derivatives. It is worth mentioning that the
functional structures of (36) and (56) are highly dependent
of the masses and residues of the propagators (50) and (51)
that, in addition to degrees of freedom associated with the
massive vector multiplet, describe extra degrees of freedom
associated with Ostrogradsky ghosts. This nontrivial
dependence of the SEP on the masses and residues suggests
that the ground state of the theory can be modified by the
presence of the ghosts. Therefore, our results (36) and (56)
indicate that the Ostrogradsky ghosts can affect the ground
state of the theory and the physical phenomena related to it,
such as the spontaneous symmetry breaking.
The most natural continuation of this work would

consist in extending the results obtained here for a four-
dimensional version of the higher-derivative supersymmet-
ric quantum electrodynamics (1). In this case, if we insist
on working with the model defined in (1), the two-loop
SEP will not be finite. This occurs due to the fact that the
two-loop vacuum integral in four dimensions leads to
involved divergences (see Eq. (4.20) of Ref. [42]) and
these divergences are not completely canceled due to the
identity (55), in contrast to the divergences generated by the
three-dimensional integral (54). Therefore, it is obligatory
to include higher-derivative operators into the matter sector
of (1) in order to ensure the finiteness of the two-loop SEP
in four dimensions. However, the calculations become
technically more challenging due to the more involved
structure of the propagators and the large number of
vertices. For this reason, we expect to carry out these
studies in a future work.
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