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Loop corrections to the current of pairs created in a lengthy electric pulse
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We discuss loop corrections to the electric current produced by a strong and lengthy electric pulse.
Namely we calculate the one-loop contribution to the electric current and distinguish terms which depend
on the pulse duration. We show that the one-loop correction does not lead to a strong modification of the
tree-level current, which linearly grows with the pulse duration. Meanwhile, the correction to the photon
propagator contains additional secular growth with the pulse duration. Based on the latter observation we
argue that higher-loop corrections will strongly modify the tree-level current, but that will demand a longer

duration of the pulse than if the growth was at the first-loop level.
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I. INTRODUCTION

In most of the original works on the Schwinger pair
creation in strong background electric fields the phenome-
non was treated at tree level [1-6]. However, recent studies
show that IR effects can lead to a non-negligible growing
with time corrections at the loop level [7,8], such that one
should perform a resummation of loops to obtain the
correct expression for the current.

In this paper we address the issue of loop corrections to
the current of created pairs in a lengthy and strong electric
pulse. The tree-level current of created pairs is known to
grow linearly with the duration of the pulse [9-17] (see
also [7,8,18,19]). We want to understand if loop correc-
tions, being suppressed by higher powers of the coupling
constant, contain secularly growing terms depending on
higher powers of the pulse duration. Then loop corrections
would strongly modify the tree-level current for a lengthy
enough pulse. In fact, the secular growth of loop correc-
tions to the current in a constant eternal electric field was
first observed in Refs. [7,8]. We would like to extend this
study to the case of an electric pulse. The question we
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would like to address is if the current is growing with the
length of the pulse.1

Apart from being independently interesting, the situation
with strong electric fields in QED can be considered as
the model example for particle creation in the expanding
Universe and other gravitational backgrounds. In fact, the
same type of secular growth of loop corrections as in a
constant electric field [7,8] is observed e.g., in de Sitter
space in Refs. [18,21] (see [22,23] for reviews on the
related issues), in the Friedmann-Lemaitre-Robertson-
Walker expanding universe [24], and in the collapsing
black hole backgrounds [25]. Of course there are other
types of secular effects in de Sitter space, which have a
different physical origin2 (see [30] for the related discus-
sion), but here we are only interested in those universal
effects which are due to a change of the state of the theory.
In fact, they are observed in many physically different
backgrounds. For example, apart from the aforementioned
situations, similar secular effects have been observed in
strong backgrounds of other origins [31-35].

Also, large-loop corrections in external fields are often
discussed in the context of the Ritus-Narozhny conjecture.
Namely, the discussion of the increase of loop contributions

'After the pulse, when the background electric field is
switched off, we expect the thermalization process of the type
considered in [20], but the thermalization process after switching
off the pulse is a separate story beyond our main concern in the
present paper. Here we are interested in the change of the state of
the theory only during the pulse.

*Other types of infrared and/or secular effects in de Sitter-type
inflationary models, such as the effective behavior of photons and
gravitons during inflation and analytical solutions of Dyson-
Schwinger equations for light fields in O(N) model, have been
considered e.g., in Refs. [26-29], correspondingly.
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in a constant crossed field (E L H, E = H) with a field
strength can be found in [36,37] (see [38] for a recent
review). The increase of loop corrections with the field
strength is also expected for the case of a constant magnetic
field, see for example [39]. Finally, it was shown in [40]
that the breakdown of perturbation theory occurs even in
classical electrodynamics. However, all these effects are not
directly related to the main subject of our paper; our main
concern is not just a breakdown of perturbation theory as
we are mostly interested in the change of the initial state of
the theory and measurable consequences of such a change.

In this paper we consider the scalar QED on a strong
background of a lengthy electric pulse and calculate the
one-loop correction to the electric current. In general we
expect that the initial state of the theory is changed under
the action of the strong background field. Hence, the
population level of the matter field and anomalous averages
are changing with time. Namely, we are mainly interested
in the dependence on the pulse duration of the population
level (1) ~ (a™a) and of the anomalous quantum average
kp(t) ~ (ab), which do contribute to the full electric
current. (It is the time dependence of these quantities which
was the reason for the origin of strong secular effects in a
constant electric field background [7,8] and in the gravi-
tational backgrounds of various types which we have
mentioned above.) The question we would like to address
here is if these contributions are growing rapidly enough
with the duration of the pulse.

As we consider the theory with the time-dependent free
Hamiltonian, we estimate the quantum averages in question
with the use of the Schwinger-Keldysh diagrammatic
technique. It turns out that in the one-loop order there is
no growth with the pulse-duration contributions to n,(z)
and k(). As a result, one-loop corrections bring nothing
more relevant than the UV renormalization of the tree-level
expression for the current. However, corrections to the
photon propagator contain the additional power of the pulse
duration in comparison with tree-level current which affects
the higher-loop corrections and makes them strong. We
argue that higher-loop corrections strongly modify the tree-
level current.

II. SETUP OF THE PROBLEM

In this section we consider scalar electrodynamics with
an external classical conserved source j¢', 05! = 0. The
action is the following:

1

St i) = [ @3 D0 =Pl - S F - i

(2.1)

where F,, =d,A, —0d,A, and D, = 9, + ieA, as usual.
We choose the electric pulse as a background, which is

the solution of the classical equation 0F,, = j< and is
homogeneous in space,

t
A = (0;A,(1);0;0), A(t) = ETtanh?. (2.2)

Dividing the vector potential into the classical and quantum
parts

Ar = AR 4 at, (2.3)

we obtain the action

1
Sipt'sat)= [ &3] Dt ica, g =g |

f/,w = aﬂal/ - azxa;u (24)
where we denote D, = d, + ieAf,l (we omit the subscript
“cl” below for simplicity). In the following discussion we
will use the Feynman gauge for a” and decompose the

fields into the mode functions,

y o e—ildlrriax o AT ilgli—igx
(aqﬂe + aque ,

, _ d’q
9= | G

(2.5)

3
D1, x) = / ”p (apefPXfp(t)+B;e-fwf*_p(z)), (2.6)

where the creation and annihilation operators satisfy the
canonical commutation relations,

(G 0] = 9,,0(P — Q). [ap. a¢] = (27)%(p — q),

[by. BY] = (27)*5(p - @), 2.7)
and the function f,(z) solves the equation
(07 + (P + eA(1)* + m?)fp(1) = 0. (2.8)

It is convenient to introduce physical P(7) = p + eA(r)
and transversal p, = (p,, p3) momenta, so that P, (+oc0) =
p1 £ eET = P,. The corresponding frequencies in the
oscillator-type equation (2.8) on the past and future

infinities are @, (p) = /P2 + m?. We require the har-
monic function f,(#) to be a single plane wave in the past
I —> —00,

()T - —o0) = (2.9)

Then the corresponding solution is referred to as the in-
mode solution and has the following form [5]:
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in(r) = —e"%—t] {1 +exp [%He

szlk—JT-glgfﬁge—iT

_ - 2t
%;1 —iw_T;—exp {?”, (2.10)
where
9—1+ ! (eET?)? (2.11)
=3 1 e . .

Below we will also use the following notations for the
parameters of the hypergeometric function ,F, in (2.10):

o_ + oy

. . w_ — W
§=0-i > n=0-i I
5=1-io_T. (2.12)

We will also need the asymptotic form of the modes (2.10)
in the future infinity r — +oo,

fgl(t/T — +o0) = A, (p)e! + A_(p)e~®+!, (2.13)
where
1 Tr(-9
AP) = e Tre =8
1 T@rE-n)
AP = e TerG - 21

D (psty, 1) = fp(t1)f3(t2),
D= (p:t;. 1)) = 0(t, = 1,
D (pity, 1) = 0(1) — 1)

)fp
o

I
I

and the same for the photon propagator. In terms of the
notation of Eq. (2.17) we can write the expression for the
electric current of the matter as

. . 1 2)F1 ye

ju(t.x) = ie[D}) = DD (1, x13 12, %)

‘Xlzxzix,tl:l‘z:[?
(2.18)

so that its first component along the electric field has the
form

. &’p .

70 = 2¢ [ S Belpi+ enr (01 (p. 1.0,
(27)

Other components of the current vanish after the

normal ordering. There is a well-known expression for

the current in the long and strong pulse,

(2.19)

(1)
p(11)

In addition, it is crucial to note here that the in-mode
solution (2.10) leads to the proper Hadamard behavior of
the propagators. In fact, the mode function is the
single plane wave for large momenta [pl: f), ~ eilplr
Ip| > m, |p| > €ET.

As we already mentioned in the introduction, in such a
time-dependent background as we consider here one has to
use the Schwinger-Keldysh diagrammatic technique rather
than the Feynman one. In this technique gauge and scalar
fields are characterized by the following propagators:

D (1), X312, %) = (O|ch?5(t‘f, Xl)ﬁ?’%(fgvxz)m%

ab=+- (2.15)

Gy (11.x1: 12, %2) = (O[Tt (1. x1)a, (15, %2)[0)
= g,G(t1.X1:10.%,),  a.b=+,—,
(2.16)

where the + and — signs correspond to the upper and lower
branches of the Keldysh time contour C and the initial state
|0) is chosen to be the Fock space ground state, which
vanishes under the action of all annihilation operators from
(2.5) and (2.6); T means the time ordering along the
Keldysh time contour.

In the calculations below we will use the propagators
(2.15) and (2.16) in the momentum space, which is
convenient due to the spatial homogeneity of the back-
ground field and the state under consideration:

D™ (psty. 1) = f(t1)fp(12);
Fo(ta) +0(t — 11) f5(t1) fp(t2);
fp(tZ

) +0(t, — 1)) fp(t1)fp(12)s (2.17)

eET? > 1,eET > m, which can be derived using the
asymptotics (2.13) [6,9,12,14,19],

(1) E2e3T zm?
~ cexp |———|.
i 273 P eE

Our main goal in the subsequent sections is to estimate loop
corrections to the expression (2.20) starting with Eq. (2.19)
and finding out if there is an extra growth of the corrected
current on the pulse duration 7. Namely, we want to check
if higher loops, being suppressed by higher powers of the
fine structure constant 2, bring higher powers of the pulse
duration 7. The presence of such corrections would mean
that for a very long pulse the tree-level current (2.20) is
strongly modified.

(2.20)

125006-3
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In the interaction picture, creation and annihilation
operators are time independent but at the loop level the
population number (4" a) and the anomalous average (a b)
may grow with time. In view of the papers [7,8], where
such a growth of loop corrections was observed in constant
and eternal electric fields, there is a reason to expect such
a growth of loop corrections in the pulse duration.” There,
the growth of the current and of the population level
together with the anomalous averages increased during
the time of observation. Here we would like to see if there is
such a growth during the pulse.

III. ONE-LOOP CORRECTION
TO THE CURRENT

There are two contributions to the scalar propagator at
the one-loop level; the tadpole and sunset diagrams. The
loop integral for the tadpole diagram contains the same
UV divergence as we encounter in QED without a back-
ground field and can be removed by the appropriate
counterterms, which renormalize the mass of the scalar in
the bare Lagrangian (see Appendix A). The sunset diagram
(Fig. 1) can contribute to the growth of (a'a) and (& b) and
can be expressed in the momentum space as follows:

AD(p; 1y, 1,)

:;sgn(c)sgn(d)ez/drl/dh

d’q

X Du{D*(p, t;.7,): D“(p — q.71,72):

Ddb(pvf% tZ)}’
(3.1)

where for brevity we introduce the following operator in the
x—space

D = [D)i[D*]; - [D¥]1D5 = DY[D¥]; + D{Ds, (3.2)
where the indices {1,2} denote the action on the corre-
sponding coordinates of internal vertices respectively.
Then the derivatives without the dagger correspond to the
action on the first argument of the propagators, while
the daggered derivatives act on the second argument of
the propagators, i.e., on the fields ¢ and ¢ ", correspondingly.
Hence, inside the expression (3.1) in the momentum space
one obtains,

D =D} =D)+ (2p —q+2eA(z]))(2p — q + 2eA(r;)).

(3.3)

JAlso such a growth is encountered in many different sit-
uations [18,21,24,25,30-35] (see [22,23] for reviews on the
related issues).

q

P p—qa P

FIG. 1. One-loop sunset diagram. In the Schwinger-Keldysh
techniques the one-loop correction contains the sum of such
diagrams with different types of vertices.

Finally, substituting Egs. (2.17) and (3.1) into Eq. (2.19) we
get the following expression for the one-loop correction to
the current:

h@z%/gﬁmn+mmmmm%mw

+ (fp(0)kp (1) + (fp(1)) k5 (1)), (3.4)
where
d3q el\fﬂ 71-173)
ny (1) & —Zez/drl/drz/ g 2|q‘
(fp(Tl);fp—q(Tl)fp—q(TZ);fp(TZ)) (3'5)
and
o . . dzq eilal(mi—72)
N%Q/d'/dZ/ ) 2l
(fp(Tl);f;—q(fl)fp—q(fz);fp(72>)‘ (3'6)

The quantities n, (1), () are the above-mentioned pop-

ulation level (a'a) and anomalous average (ab) for the
charged scalar field.

A. The contribution of n, ()

In this subsection we calculate the contribution of the
level population to the one-loop corrected current,

3
A%ﬂ#%mwwmmewn

For 7 < —T, the background electric field is not yet turned
on and the modes f,(z) are single waves. The initial state is
the Fock space ground state and the quantum averages
(a*a) and (ab) do not yet evolve in time. For z > T, the
electric field is switched off, but the modes f},(z) are linear
combinations of single waves, (2.13). As we show in
Appendix B 1, after the pulse there are no growing
contributions to (a'a). However, there can be a nontrivial
thermalization process generated during the pulse (a'a)

125006-4
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and (@ b). To move further in this direction it is convenient
to perform the Bogolubov transformation to the out-modes
(single waves in the future infinity):

tp = V20, (A(p)ay + A (DB, ):
&1y = 2o (AL (D) + A (P)B):

and

R d3p e—iwﬂﬂ'px ng eiw_‘r—ipx 39
,X) ~ ¢ + . .
#lrx) / <2n)3<" N ¢2w_> (39)

A similar thermalization process was considered in [20] for
the Ap* theory but that is a separate story which is beyond
our main interest in the present paper.

Thus, the contribution to the current can be approxi-
mated by

(3.8)

3
(1) = 2 / (;’7‘;3@1 €Ay (1) 1o () PN (T).
(3.10)

where N, (T) differs from n,(7) in that the integration over
71, in the former is restricted to the domain |7 ,| < T,

d3q e’|q| 71=173)
/ dﬁ/ oo | G

‘D(fp(fl);fp—q(Tl)fp—q(TZ);fp(TZ))' (3'11)

To calculate this expression we have to investigate the
behavior of the in-mode f,(#) in the region |¢| < T. The
hypergeometric function ,F; in (2.10) is difficult to work
with in the region |¢| < T, so we will use the approximation
of the pulse with the constant electric field in this region
and find the approximate form of the modes there. The
corresponding differential equation

(02 + (p1 + €Er)? +p1 +m?)fp(r) =0 (3.12)
has a general solution
fo(t) = gp, (p1 + €El)
1—i Et
b {( (P +e >]
i — veE
(1—)(ps + eEt)]

+aD ., . (3.13
? i~ sz2|: VeE ( )

where D, (z) is the parabolic cylinder function and the
coefficients are some functions of momenta ¢y, = ¢y ,(p),
which should be chosen in such a way as to approximate

the exact in-mode (2.10) with (3.13) in the region |7| < T.
The integral over p; in (3.10) is saturated within the region
|p1| < eET as for large momenta the mode reduces to the
single wave. Therefore, we equate the solutions (3.13) and
(2.10) and its derivatives around the point p; = 0,¢ =0, to
obtain

2t'eET2 1—‘(50)
Cq + Cyr = &2 . s
20/°\/eET F[%—I— 1 _,70}
-5 21'eET2 (s
€l —Cy = (770 0) ( 0) (314)

260/2+1 g=in/4 o ET\/T ' F[% - ,10} ’

where &, 179, &, are respectively equal to &, 7, 6 from (2.12)
at p; =0.

In order to establish the dependence of the coefficients
on T we expand all the parameters in (2.12) in powers of%
and use the asymptotics of the gamma function

In(27)
2

1 1
InT"(z) = {z—ﬂ Inz—z+ —1—0[2], largz| <z
(3.15)

to find that

p2 +m?
IO ey i
F|: 0 5 +

) o)

(3.16)

e:Fiﬂ/S
- ’lo}

. exp |:_

where . =2, f_ = 3. Hence, the coefficients under con-
sideration are as follows:

2ieET2 ) p? 2 /s
= ~ l - . —Ul'
c=a= 25/2[ ]I/ [eET?) -

_z(pi +m?) .

exp [ ek | c;~0, (3.17)
1 n(p? + m?)

c L~ ex [—J‘i ,  (3.18

up to the order of O(). Finally, let us introduce the
dimensionless variables

_ p1teET '_p1+eEri Q- q
vVeE ' Xi VeE VeE’
X1+ -
X:%, X=X1—X2 (3-19)

such that the integral (3.11) acquires the form

125006-5
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Notom2e 7 ax [ T | észlerZﬁ(

xD(gp, (X+7/2):9p,—q, X +7/2-01)

XgpL—qL(X_)?/z_Ql);ng_(X_)?/z))' (320)

As we are concerned only about the dependence of NV, ()
on T, we can represent the integral over X in (3.20) as the
difference between the integral N'y> over the whole real
axis X € (—o0;+00) and the integral over the redundant
domain. Since N p, does not depend on T, only the
integration over redundant domain is of interest. Also
due to the Hadamard behavior of the exact harmonics we
can limit ourselves to the region |p| < (1 —8)eET,5 <

\/EI_ET (the narrow area around p; = ¢ET does not bring

anything qualitatively new) and note that the integral over
Q in (3.20) is saturated at |7| ~ 1. Then we can apply the
asymptotics of the parabolic cylinder functions for large
argument in these domains [41],

(X ~z/2/
(xX-7/2)""

2 2
« (X -x/2)" i e—i(X—zymz
(X-z/2)'? ’

where the sign + corresponds to the sign of X and

2 2
n(p +m
oxp <_ ol + >>7

B-(pL)I> = 0.
(3.22)

i(X=7/2)%

Gp, X =7/2) ~a,(p,) +pA:(p1)

(3.21)

|a¢(PL)|2 = 2\/]—

B(p))* = 2\/—~+|ai(pi)‘ ,

Finally, the estimation of (3.20) is given by

~ oo __ 2 d_X 00 _m
NPL ()()_NPL 2€ /); X h<p ) NPL 2 +€ET’
(3.23)

where

+oo d3Q el \QI;( B 5
/ / EECT R

x [l (o) |ﬁ+(m —q)Pei0

+ 184 (PPl (P — q1) e, (3.24)

Here we kept only the nonsuppressed oscillating terms in
the limit || > 1 and the leading order in the expansion in

powers of % Hence, the contribution (3.7) to the current can
be estimated as

2 2 2
j(ln)(t)zzezET/é:)é {ZGXP <——ﬂ(ple_£m )> + 1}/\/;‘1.
(3.25)

One can see that (3.25) does not bring an additional positive
power of T in comparison with the classical result (2.20).

B. The contribution of «, (¢)

In this subsection we calculate the contribution of the
anomalous average to the one-loop corrected current,

10 = 2¢ [ S 2+ eA O30y l0) + el

(3.26)

As we show in Appendix B2, anomalous average (1)
grows with 7, in contrast to n, (). However, this growth is
canceled” after the substltutlon of k,(t) into (3.26). Thus,
the time region after the pulse does not bring loop
corrections into the current comparable to the tree-level
contribution (2.20). Hence, we consider only the region
-T <7, <11 <T,i.e., during the pulse. The correspond-
ing contribution to the current can be approximated by

ATy ~2e / %(pl +eA; (1) [(f3(1))*Ky(T) +H.cl,
(3.27)

where /C, (T) differs from «, () in that the integration over
71, in the former is restricted to the domain -7 < 7, <
T < T,

T Ty

d*q e'lln—n)
/dﬁ/drz/@ﬂ)3 2lq

-T -7

lD(fp(Tl);f;—q(fl)fp—q(TZ);fp(T2))'

Kp(T) = 2¢?

(3.28)

Next step is analogous to the one in the calculation of
N,(T). Let us use the approximate form of the modes
(3.13) and the change of variables (3.19) to write (3.28) in
the following form:

“The growth of the anomalous average has a clear physical
meaning—the initial state that we consider (the Fock space
ground state) is not going to be the final state of the theory.
Furthermore, despite the fact that anomalous average does not
contribute growing with ¢ contribution to the current, there can be
growing with #-loop corrections to the stress-energy tensor. As we
have already mentioned above, there are certain interesting
physics after the pulse is switched off, which is related to the
thermalization process.

125006-6
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X +oo

Ko(T) = Ky, () = 267 / dx / d / (dg(){ezl:))I(

x—2VeET 0

g;;l—ql(x'i_)?/z_ Ql)gpL—qL(X_)?/z_ Ql);gpL(X_)?/z)]‘

Unlike the contribution of the population level, expression
(3.29) contains the squared coefficient c(p ) itself rather
than its squared modulus. Even though the phase of IC,, (x)
can depend on 7', we will show further that this does not
bring additional positive powers of T into the current.

In the same way as in the previous section we extend the
integration over X and subtract the redundant domains of
integration, where we use the asymptotics (3.21) to obtain,

~ JC® © dX 0 Zezl(pl)
Ky, () = K - 262/1 e =Kp -
(3.30)
where
+oo d3 i|Q|x
i(pL) = / Q3 %( PL—q.)°
X [a+(PL)ﬁ+(PL)|a+(pL —q)|e9*
+a (pL)B(pL)IA(PL —qu)le@].  (3.31)

The corresponding contribution to the current is as follows:

Ji (1) =2ET / TPL BT (241 (p) A (p)KCE: +Hc),

(27)*
(3.32)
As we have mentioned above, the phase of Cf° depends

on T, so let us consider the integral over p, in greater
detail. In the approximation p; ~ 0 we can write

AL (P)A-(P)]p,—0
_ e 2(80)C (110 = &0)T' (€0 = 10)
200 T(170)T (89 — &o)T (89 — 10)T(&o)
1 2(1 = iwoT)|T(iwoT)?

20y ‘r [% + iﬂ] ﬁ(go)r [% —i(f+ wOT)}

. (333)

and use the expression for the square of the modulus of the
gamma functions,

ol |
NI 7 €Xp | —
A

n(m* + pi)] '

3.34
2¢E ( )

For other multipliers, which depend on 7', we apply the
asymptotics

[gpl(X +)~(/2)§

(3.29)

1
Inl'(x —iy) = [x—ly—i}lny—%[x—ﬂ—T—l—ly

In(2 1
+¥+ ()H r<y l<y (3.35)
y
to obtain
2 . m= -+ m
*(1 - iwoT) — \27[eETY]~ zg;’ . DRieET>+i Zzg,?i
r [5 —i(f+ on)}
" n(szrpi)
- e 2 4E (336)

All together, with the expression for ¢(p ) (3.17) we obtain
that eET - A% (p)A“(p)c*(p.) is independent of T.
Therefore, the corresponding contribution to the current
(3.32) depends on T only via the coefficient e’ ET before the
integral; thus it also does not give an additional growth in 7.
In all, the one-loop contributions of the level population
and anomalous average do not lead to any additional growth
of the current 7', and the relevant effect of the one loop-
correction is just the UV renormalization of the theory.

IV. ONE-LOOP CORRECTION TO THE PHOTON’S
KELDYSH PROPAGATOR

In this section we calculate the correction to the photon’s
Keldysh propagator. Despite the fact that such a quantity
has no effect on the current at the one-loop level, as we will
show below it can be relevant for higher-loop corrections.
On the other hand, the quantum dynamics of the photon
state in such a situation presents a separate interest itself.
This is the reason we consider Keldysh propagator and
ignore advanced or retarded propagators. The latter two on
the tree level are sensitive only to the spectrum of the theory
rather than the state, and hence do not contribute to the
current directly.

The expression for the diagram shown in Fig. 2 takes the
form,

&’k
G aop (@71:72) = €7_sgn(c)sgn(d) [are, | Cay

X G(q;71,73) G (q; 74, 72)
X B, [D(k;73,74) DY (K — q.74,73)].
(4.1)

Then the Keldysh propagator in the approximation
|7, — 75| < |71 + 75|, which is appropriate for the further
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7_1 T2

FIG. 2. One-loop correction to the photon’s propagator. In the
Schwinger-Keldysh technique one has to sum over = signs in the
internal and external vertices.

calculation of the two-loop correction to the current as
follows:

o — T)e—i\(ﬂ(fl—fz) ( T)e—izw

(@371, 72) 21 (Q, T) ————— + K, (0, T) —=——

pp T R 2(q] . 2|q]
Y He., (4.2)

where 7 = (7, +7,)/2 and

o lal—r) [ Pk
—ilq|(73—14
(q.T)~—¢ | d / dz, S /
n,u (q ) e / TS[ Ty 2|q| (2”)3
0 0

X DB [fi(73) fic (7a)i freq (7a) fr—q(73)],  (4.3)
T 73
) ilq|(z3+74) &Ik
Kﬂy(q,T)ﬁzéz/dT3/dT4e 2l /(2;1)3
Do lfk(73) fic(7a): frmq (Ta) fr—q(73)]. (4.4)
We do not expect secular growth of «,(q.7) (4.4),

because the interaction does not change the initial
Poincaré invariant vacuum state of photons. One can
explicitly see that x,,(q,7) does not grow with 7. For
this reason we ignore the calculation of «x,,(q,7) and
concentrate on the most interesting part—mn,, (q.7) (4.3).

In order to analyze the expression for n,,(q,7) let us
make the following change of variables:

T3+T4 'z' 71'3—’2'4
34 —
: 2

(4.5)

As we have an oscillating exponent in the integrand in (4.3)
the integral over 734 is rapidly saturated. Hence, we can
expand the integration over 734 to the entire real axis. Next,
in the region 734, < —T the modes f in (4.3) have the
asymptotic form of single waves. Hence, the integral over
734 gives delta-functions with never-vanishing arguments.
Then we can write,

T 5 dT 4 —2'|‘l|734 d3k
A(a.7)= “3/ / T /(27:)

XDy [ (1) (4): fi—q (7a) fr—q(73)]. (4.6

For |7| < T we approximate the modes by (3.13) as before
and obtain

n,(q.7)
T +o0
e~2ila|zs I’k
=20 [ dTy, | deyy—— | =
“J / g

Dyulgx, (ki +eEzs)gy (ki +eEzy);

Gk —q, (ki =1 +eEty) g, —q, (ki —q) +eEz3)].  (4.7)

Performing the shift k; — k; + eE7 3, we finally get
n;w(q’T)

—+00
—21\q\r PPk
= 26T +T) / as
J 2l @

X [E[);w[gkj_ (kl + eET)giil (k] - €ET);

9k -q, (k1 =q1 —€ET)gx g, (k1 — g1 +€ET)],  (4.8)

which explicitly grows with 7" and 7. Hence, if we take into
account the corrected propagator for photons in the two-
loop correction to the current:

L0

we obtain the additional growth in T for the two-loop
corrected current.

V. DISCUSSION AND CONCLUSION

In this paper we have calculated one-loop correction
to the scalar propagator and its contribution to the
current of the created pairs in the lengthy and strong
electric pulse. It turns out that the first-loop correction in
the scalar QED does not substantially alter the tree-level
current.

Furthermore, we have also calculated the one-loop
correction to the photon propagator and have shown that
it gives an additional power of growth with the duration of
the pulse for the current, 7.

Despite the fact that one-loop diagrams do not bring an
additional growth in 7', analysis in the last section reveals
that such a growth does have a place in higher loops.
Furthermore, the following diagrams can also grow, for the
same reason as the loop correction to the photon propagator
grows: The diagram in Fig. 3(a) is expected to grow even
with the tree-level photon propagator is used inside the
loops, as the corresponding kinetic process is Thomson
scattering. We believe that the diagram Fig. 3(b) grows
with time.
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FIG. 3.

Another way to see the same effects is as follows: Due to
the Debye screening5 the interaction of the scalars mediated
by the photon exchange is localized, and can be approxi-
mated by the Agp* self-interaction as low-energy effective
theory. Then, if we shrink the photon lines in Fig. 3(b) into
points we will simply get a sunset diagram of 1p* theory,
which does grow with time.

In all, we expect that loop corrections do change the tree-
level Schwinger current of created pairs for a long enough
pulse. The result of the change depends on initial con-
ditions and has to be considered separately via a resum-
mation of leading corrections from all loop levels.
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APPENDIX A: TADPOLE DIAGRAM

In this section we consider the tadpole diagram which is
shown on Fig. 4: It can be expected that this diagram brings
an additional power of T into the dependence of the current
on the pulse duration 7. However, as the photon propagator
and the modes (2.5) are the same as in the situation without
a background field, one directly obtains that

AugD(p. 1. 1;) = ie’CY sgn(c) / deD“(p,1,,7)
x D (p,1.1,), (A1)

so that the integration over the internal momentum ¢
factorizes to separate the photon-loop integral,

d*q 1
= /——
(2m)*2|q

The corresponding correction to the current has the
following form:

(A2)

>To observe such an effect we have to consider either pair
creation in a medium or to wait long enough to create a gas of
pairs.

(b)

Two-loop diagrams with expected growth.

p : : p
t T ty

FIG. 4. Tadpole diagram.

A () =2e / éjgg(pl + eET)[f3()xp (1) + Heel;

1p(t) = ieZC/ [f3 (7)) dr. (A3)

Similar to the other diagrams which have been considered

earlier, the growing with the pulse duration contribution to

jgtad)(t) can potentially come from the integration region

over |z| < T. Therefore, we can use the approximated
modes (3.13). Due to the proper Hadamard behavior of
the exact scalar mode functions, we also restrict the
integration over p to |p;| < eET, considering p; =0 in
the leading order. In fact, high-momentum modes do not
feel the background field and, hence, behave as in empty
space, i.e., just lead to the UV renormalization. As a result,
we obtain

i =aec-ebT [CREeET iA- A ) (p.))

/ o [ B ]

2¢E

(A4)

Finally, we extend the integration in Eq. (A4) over 7 onto
the entire real axis, which is valid up to the corrections of
the order O(1/T). Since eETA_(p)A_(p)(c*(p.))? does

not depend on 7, one can see that j(ltad) does not bring an
additional positive power of 7' in comparison with (2.20).
Hence, the only effect is the UV renormalization of the bare
constants in the theory by the loop integral C, which can be
removed by appropriate counterterms, so that the mass of
the scalar in the bare Lagrangian gets renormalized.
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tl T2 to

FIG. 5. Another tadpole diagram.

There is another type of tadpole diagram which is shown
in Fig. 5. Similar calculations that have been performed
above for other diagrams show that this diagram does not
lead to any additional growth of the current over 7. This
diagram also leads to a renormalization of the coupling
constants in the theory.6

APPENDIX B: TIME REGIONS
OUTSIDE THE PULSE

In this section we show that the integration outside the
region |z;,| < T in (3.5) does not bring relevant contri-
bution to (3.7).

1. Population level

First of all, let us consider the region z; , > T Itis useful
to make the change of variables 7 = 152, 7 = %, which
run in the ranges [7 —t;¢ — 7| and [—oo, ], correspond-
ingly. As we are concerned about the large times t = %
we can extend the integration over = onto the real axis due
to the fast oscillations of the integrand in (3.5), so that

t +oo
d3q e2i|q|1
n t:—462/d7/d1/
)= =4 ] AT ] 4 | oy alg

' D(fi;(fl);f;;—q('[l)fp—q(TZ);fp(72)>’

(B1)

Next, using the asymptotics (2.13) we can expand the
product of the modes in (B1) in order to analyze oscillating
terms,

e2i\q\ffl*) (1) fp-q(T1)fp-q(72)fp(72)
~|A, B, [Pe¥ilal-0:—2)r

+ |A B_|Pe2illal-o+Q.)e

+ |A_B  |?e¥lal+o—Q)r

+ |A_B_ |262i(\q|+w++§2+)r

°In general, whether this tadpole diagram brings nontrivial
contribution or not is dependent on the field configuration (see
[42] for example). There are cases where it contains physics
beyond renormalization.

+ A% BY A_B_e% (- =27 p2ildlr
+ A% B*A_B, (-0 Q)T 2ilale
+ A*B% A, B_ei(t0.~Q.)T p2ilale
+ AiBiA+B+e25(+w++9+)7625|Q|T
+ |A,|2B%B_e2illal=01)r02i(-Q)T
+ |A,2B* B e2illal=o1)7 2i(+)T
+ |A_|2B% B_ealto)7p2i(-2,)T
+ |A_|2B* B_ e¥lalto )7 2i(+)T

+ |B,[2A% A_e2lal=Q )7 p2i(~0)T

+ |B_ |2A1A_€2i(\q\+9+)162i(—w+)7

+ |B+ |ZA»:A+eZi(\q\—Q+)Te2i(+w+)T

+ |B_ |2AiA+eZi(\q\+Q+)162i(+(1J+)T’ (B2)

where we have denoted A, = A, (p),By = A.(p—q),
o, =w,(p).Q, =w,(p—q)and the action of the oper-
ator D results only in the additional factors before oscillat-
ing exponents. Now we note that the first eight terms in
(B2) after the integration over = produce delta functions
with arguments |q| £ w, £+ Q. , which are never zero for
lq] > 0, so that the integrals

d’q _
/m5(|q|ia)+ig+)...—o. (B3)

The other eight terms in (B2) after the integration over 7°
contain exponents exp (+2iQ, r) or exp (£2iw, ) from the
upper limit of the integration, 7 = ¢, and similar exponents
from the lower limit. The contributions with exponents
exp (£2iQ, ) are suppressed after the integration over p
due to Riemann-Lebesgue lemma. Indeed, in the UV region
in (3.7) after the integration over 7, 7, and q the integrand
can be estimated as

N d’p RN ST d’p 1 i
@ "7 et @ p*C

(B4)

where we used that the second-order operator D gives
additional p?, each coefficient in the approximation (2.13)

behaves at least as % in the UV regime and Q, ~ p.

Therefore, the integrand is the measurable function and
the Riemann-Lebesgue lemma is applicable. The same we
conclude about the oscillating terms produced by the
exponent exp (£2iw_t). The nonoscillating terms, which
appear after the multiplication of this exponent by |f, | in
(3.7) cancel each other. In fact
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eZia)+t

2. Anomalous quantum average
ol B-Pal - 2.)[az4, 5 ‘ ’
+

+ H.c.
] Let us now consider the x,(#) contribution from (3.6).

) 1 Similarly to n,(f) we make change of variables
~[B.A4A[F5(lq] - Q) [ﬂ t H'C‘] =0 r=922 T =720 extend the integration region over 7
onto the half of real axis and use that
All the terms from the lower limit of the integration over 7°
also do not bring relevant contribution to (3.7). Apparently,
similar considerations lead to the conclusion that there are to |
no important terms from the past region 7 < —7, where the / e™Mdt = z5(x) +i-p.v.—. (BS)
mode function reduces to the single plane wave (2.9). X
Hence, there is no secular growth in one-loop correction to
the current. Hence, only the integration over |7 ,| < T in
(3.5) can potentially bring a growing contribution to (3.7).  Thus, we obtain
|

BPa el 72)
o (1) 2 de? / JT / / o7 g PO (0 g (2): Fo(e2). (B6)

In this appendix we want to consider the contribution from the time region 7 € [T, 7]. For this region we use the asymptotics
(2.13) and obtain an expression similar to (B2). After the integration over 7 we neglect terms with delta functions, as was
done for n, (). Then we integrate over 7 and neglect oscillating terms to obtain the following expression for the upper limit
of integration:

ABLE 1 - AJBE 1

. : + [0+ % — Q2] - - .

gl =) iy B o =500 Yitrey)
A_[*IBL? 1 : A_*B_? 1

. : + D)+ 0} — Q1] - - .

ilal =@ oy T Do~ B ey ey

3 .
a0t == [ |0+ 0 -

+ [0+ w? - Q2]

. 4B, 2|4 AP . 4B_P|A.A_
+ D) = (0, + Q)] (t=T)+ [0 = (0, — Q)] -~ (t=T
[ Jj ( + +) ] z(|q|—§2++a)+) ( ) [ J ( + +) } l(|q|+§2++a)+) ( )
: 4B.P|AA, P 4 4B PlA_AL |
+ D) = (0, — Q)] ——+ Y =T+ D) - (0, + Q)] - . (r=T)|.
[ J ( + +) ] l(lq‘ —Q+ —(1)+) ( ) [ J ( + +) } l(|q| —|—Q+ —(1)+) ( )
(B7)

We can see that the contribution to anomalous average, 6k, () from the region [T, ], grows with 7. However this growth is
canceled if we substitute (B7) into (3.26),

d’p dq 1
8™ (1) = / (21)° (p1 + €ET) / ) 402 ]q] [4(p1 + eET)* = 2q,(p) + €ET) + 4p7 —2p . q,]
+
{4|Q| -|A B, |? lq| - |B.|? A, |? 1 (BS)
lq* - Q2 o (lqf-Q1) Q. (lq/+Q;) 40,Q.(lq| +Q.)

The last term in the big brackets is the same as in the current without the background field. It disappears after the integration

gives a contribution of the order O(1/T), while the third one—of the order O(T'). Hence, the contribution from the third
term is the leading one in (B8). However, it is suppressed by e? as compared to (2.20).

The contribution from the lower limit of the integration over 7 € [T, ¢] in (B6) is also O(T) and suppressed in comparison
with the tree-level current (2.20). Similar situation is the integration over 7 € [fo, —T]. Hence, we conclude that the
contribution to (3.26) from the time region outside the pulse is suppressed in comparison with the tree-level current (2.20).
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