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We discuss loop corrections to the electric current produced by a strong and lengthy electric pulse.
Namely we calculate the one-loop contribution to the electric current and distinguish terms which depend
on the pulse duration. We show that the one-loop correction does not lead to a strong modification of the
tree-level current, which linearly grows with the pulse duration. Meanwhile, the correction to the photon
propagator contains additional secular growth with the pulse duration. Based on the latter observation we
argue that higher-loop corrections will strongly modify the tree-level current, but that will demand a longer
duration of the pulse than if the growth was at the first-loop level.
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I. INTRODUCTION

In most of the original works on the Schwinger pair
creation in strong background electric fields the phenome-
non was treated at tree level [1–6]. However, recent studies
show that IR effects can lead to a non-negligible growing
with time corrections at the loop level [7,8], such that one
should perform a resummation of loops to obtain the
correct expression for the current.
In this paper we address the issue of loop corrections to

the current of created pairs in a lengthy and strong electric
pulse. The tree-level current of created pairs is known to
grow linearly with the duration of the pulse [9–17] (see
also [7,8,18,19]). We want to understand if loop correc-
tions, being suppressed by higher powers of the coupling
constant, contain secularly growing terms depending on
higher powers of the pulse duration. Then loop corrections
would strongly modify the tree-level current for a lengthy
enough pulse. In fact, the secular growth of loop correc-
tions to the current in a constant eternal electric field was
first observed in Refs. [7,8]. We would like to extend this
study to the case of an electric pulse. The question we

would like to address is if the current is growing with the
length of the pulse.1

Apart from being independently interesting, the situation
with strong electric fields in QED can be considered as
the model example for particle creation in the expanding
Universe and other gravitational backgrounds. In fact, the
same type of secular growth of loop corrections as in a
constant electric field [7,8] is observed e.g., in de Sitter
space in Refs. [18,21] (see [22,23] for reviews on the
related issues), in the Friedmann-Lemaître-Robertson-
Walker expanding universe [24], and in the collapsing
black hole backgrounds [25]. Of course there are other
types of secular effects in de Sitter space, which have a
different physical origin2 (see [30] for the related discus-
sion), but here we are only interested in those universal
effects which are due to a change of the state of the theory.
In fact, they are observed in many physically different
backgrounds. For example, apart from the aforementioned
situations, similar secular effects have been observed in
strong backgrounds of other origins [31–35].
Also, large-loop corrections in external fields are often

discussed in the context of the Ritus-Narozhny conjecture.
Namely, the discussion of the increase of loop contributions
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1After the pulse, when the background electric field is
switched off, we expect the thermalization process of the type
considered in [20], but the thermalization process after switching
off the pulse is a separate story beyond our main concern in the
present paper. Here we are interested in the change of the state of
the theory only during the pulse.

2Other types of infrared and/or secular effects in de Sitter-type
inflationary models, such as the effective behavior of photons and
gravitons during inflation and analytical solutions of Dyson-
Schwinger equations for light fields in OðNÞ model, have been
considered e.g., in Refs. [26–29], correspondingly.
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in a constant crossed field (E⊥H; E ¼ H) with a field
strength can be found in [36,37] (see [38] for a recent
review). The increase of loop corrections with the field
strength is also expected for the case of a constant magnetic
field, see for example [39]. Finally, it was shown in [40]
that the breakdown of perturbation theory occurs even in
classical electrodynamics. However, all these effects are not
directly related to the main subject of our paper; our main
concern is not just a breakdown of perturbation theory as
we are mostly interested in the change of the initial state of
the theory and measurable consequences of such a change.
In this paper we consider the scalar QED on a strong

background of a lengthy electric pulse and calculate the
one-loop correction to the electric current. In general we
expect that the initial state of the theory is changed under
the action of the strong background field. Hence, the
population level of the matter field and anomalous averages
are changing with time. Namely, we are mainly interested
in the dependence on the pulse duration of the population
level npðtÞ ∼ haþai and of the anomalous quantum average
κpðtÞ ∼ habi, which do contribute to the full electric
current. (It is the time dependence of these quantities which
was the reason for the origin of strong secular effects in a
constant electric field background [7,8] and in the gravi-
tational backgrounds of various types which we have
mentioned above.) The question we would like to address
here is if these contributions are growing rapidly enough
with the duration of the pulse.
As we consider the theory with the time-dependent free

Hamiltonian, we estimate the quantum averages in question
with the use of the Schwinger-Keldysh diagrammatic
technique. It turns out that in the one-loop order there is
no growth with the pulse-duration contributions to npðtÞ
and κpðtÞ. As a result, one-loop corrections bring nothing
more relevant than the UV renormalization of the tree-level
expression for the current. However, corrections to the
photon propagator contain the additional power of the pulse
duration in comparison with tree-level current which affects
the higher-loop corrections and makes them strong. We
argue that higher-loop corrections strongly modify the tree-
level current.

II. SETUP OF THE PROBLEM

In this section we consider scalar electrodynamics with
an external classical conserved source jclμ ; ∂μjclμ ¼ 0. The
action is the following:

S½ϕ;ϕ†;Aμ� ¼
Z

d4x

�
jDμϕj2−m2jϕj2 − 1

4
FμνFμν− jclμAμ

�
;

ð2:1Þ

where Fμν ¼ ∂μAν − ∂νAμ and Dμ ¼ ∂μ þ ieAμ as usual.
We choose the electric pulse as a background, which is

the solution of the classical equation ∂
μFμν ¼ jclν and is

homogeneous in space,

Acl
μ ¼ ð0;A1ðtÞ; 0; 0Þ; A1ðtÞ ¼ ET tanh

t
T
: ð2:2Þ

Dividing the vector potential into the classical and quantum
parts

Aμ ¼ Aμ
cl þ aμ; ð2:3Þ

we obtain the action

S½ϕ;ϕ†;aμ� ¼
Z

d4x

�
jDμϕþ ieaμϕj2−m2jϕj2−1

4
fμνfμν

�
;

fμν ¼ ∂μaν−∂νaμ; ð2:4Þ

where we denote Dμ ¼ ∂μ þ ieAcl
μ (we omit the subscript

“cl” below for simplicity). In the following discussion we
will use the Feynman gauge for aμ and decompose the
fields into the mode functions,

âμðt;xÞ ¼
Z

d3q

ð2πÞ3 ffiffiffiffiffiffiffiffi
2jqjp �

α̂qμe−ijqjtþiqx þ α̂†qμeijqjt−iqx
�
;

ð2:5Þ

ϕ̂ðt;xÞ ¼
Z

d3p
ð2πÞ3

�
âpeipxfpðtÞ þ b̂†pe−ipxf�−pðtÞ

�
; ð2:6Þ

where the creation and annihilation operators satisfy the
canonical commutation relations,

½α̂pμ; α̂†qν� ¼ gμνδðp − qÞ; ½âp; â†q� ¼ ð2πÞ3δðp − qÞ;
½b̂p; b̂†q� ¼ ð2πÞ3δðp − qÞ; ð2:7Þ

and the function fpðtÞ solves the equation

ð∂2t þ ðpþ eAðtÞÞ2 þm2ÞfpðtÞ ¼ 0: ð2:8Þ

It is convenient to introduce physical PðtÞ ¼ pþ eAðtÞ
and transversal p⊥¼ðp2;p3Þ momenta, so that P1ð�∞Þ ¼
p1 � eET ¼ P1�. The corresponding frequencies in the
oscillator-type equation (2.8) on the past and future
infinities are ω�ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
� þm2

p
. We require the har-

monic function fpðtÞ to be a single plane wave in the past
t → −∞,

finp ðt=T → −∞Þ ≃ e−iω−tffiffiffiffiffiffiffiffiffi
2ω−

p : ð2:9Þ

Then the corresponding solution is referred to as the in-
mode solution and has the following form [5]:
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finp ðtÞ ¼
exp½−iω−t�ffiffiffiffiffiffiffiffiffi

2ω−
p

�
1þ exp

�
2t
T

��
θ

× 2F1

�
θ − iT ·

ω− þ ωþ
2

; θ − iT

·
ω− − ωþ

2
; 1 − iω−T;− exp

�
2t
T

��
; ð2:10Þ

where

θ ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
− ðeET2Þ2

r
: ð2:11Þ

Below we will also use the following notations for the
parameters of the hypergeometric function 2F1 in (2.10):

ξ ¼ θ − iT ·
ω− þ ωþ

2
; η ¼ θ − iT ·

ω− − ωþ
2

;

δ ¼ 1 − iω−T: ð2:12Þ

We will also need the asymptotic form of the modes (2.10)
in the future infinity t → þ∞,

finp ðt=T → þ∞Þ ≃AþðpÞeiωþt þA−ðpÞe−iωþt; ð2:13Þ

where

AþðpÞ ¼
1ffiffiffiffiffiffiffiffiffi
2ω−

p ·
ΓðδÞΓðη − ξÞ
ΓðηÞΓðδ − ξÞ ;

A−ðpÞ ¼
1ffiffiffiffiffiffiffiffiffi
2ω−

p ·
ΓðδÞΓðξ − ηÞ
ΓðξÞΓðδ − ηÞ : ð2:14Þ

In addition, it is crucial to note here that the in-mode
solution (2.10) leads to the proper Hadamard behavior of
the propagators. In fact, the mode function is the
single plane wave for large momenta jpj: fp ∼ e−ijpjt;
jpj≫m; jpj≫ eET.
As we already mentioned in the introduction, in such a

time-dependent background as we consider here one has to
use the Schwinger-Keldysh diagrammatic technique rather
than the Feynman one. In this technique gauge and scalar
fields are characterized by the following propagators:

Dabðt1;x1; t2;x2Þ ¼ h0jTCϕ̂ðta1;x1Þϕ̂†ðtb2;x2Þj0i;
a; b ¼ þ;−; ð2:15Þ

Gab
μνðt1;x1; t2;x2Þ ¼ h0jTCâμðta1;x1Þâνðtb2;x2Þj0i

¼ gμνGabðt1;x1; t2;x2Þ; a; b ¼ þ;−;

ð2:16Þ

where theþ and − signs correspond to the upper and lower
branches of the Keldysh time contour C and the initial state
j0i is chosen to be the Fock space ground state, which
vanishes under the action of all annihilation operators from
(2.5) and (2.6); TC means the time ordering along the
Keldysh time contour.
In the calculations below we will use the propagators

(2.15) and (2.16) in the momentum space, which is
convenient due to the spatial homogeneity of the back-
ground field and the state under consideration:

Dþ−ðp; t1; t2Þ ¼ fpðt1Þf�pðt2Þ; D−þðp; t1; t2Þ ¼ f�pðt1Þfpðt2Þ;
D−−ðp; t1; t2Þ ¼ θðt1 − t2Þfpðt1Þf�pðt2Þ þ θðt2 − t1Þf�pðt1Þfpðt2Þ;
Dþþðp; t1; t2Þ ¼ θðt1 − t2Þf�pðt1Þfpðt2Þ þ θðt2 − t1Þfpðt1Þf�pðt2Þ; ð2:17Þ

and the same for the photon propagator. In terms of the
notation of Eq. (2.17) we can write the expression for the
electric current of the matter as

jμðt;xÞ ¼ ie½Dð1Þ
μ −Dð2Þ†

μ �Dþ−ðt1;x1; t2;x2Þjx1¼x2¼x;t1¼t2¼t;

ð2:18Þ
so that its first component along the electric field has the
form

j1ðtÞ ¼ 2e
Z

d3p
ð2πÞ3 ½p1 þ eA1ðtÞ�Dþ−ðp; t; tÞ: ð2:19Þ

Other components of the current vanish after the
normal ordering. There is a well-known expression for
the current in the long and strong pulse,

eET2 ≫ 1; eET ≫ m, which can be derived using the
asymptotics (2.13) [6,9,12,14,19],

j1ðtÞ ≃
E2e3T
2π3

· exp

�
−
πm2

eE

�
: ð2:20Þ

Our main goal in the subsequent sections is to estimate loop
corrections to the expression (2.20) starting with Eq. (2.19)
and finding out if there is an extra growth of the corrected
current on the pulse duration T. Namely, we want to check
if higher loops, being suppressed by higher powers of the
fine structure constant e2, bring higher powers of the pulse
duration T. The presence of such corrections would mean
that for a very long pulse the tree-level current (2.20) is
strongly modified.
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In the interaction picture, creation and annihilation
operators are time independent but at the loop level the
population number hâ†âi and the anomalous average hâ b̂i
may grow with time. In view of the papers [7,8], where
such a growth of loop corrections was observed in constant
and eternal electric fields, there is a reason to expect such
a growth of loop corrections in the pulse duration.3 There,
the growth of the current and of the population level
together with the anomalous averages increased during
the time of observation. Here we would like to see if there is
such a growth during the pulse.

III. ONE-LOOP CORRECTION
TO THE CURRENT

There are two contributions to the scalar propagator at
the one-loop level; the tadpole and sunset diagrams. The
loop integral for the tadpole diagram contains the same
UV divergence as we encounter in QED without a back-
ground field and can be removed by the appropriate
counterterms, which renormalize the mass of the scalar in
the bare Lagrangian (see Appendix A). The sunset diagram
(Fig. 1) can contribute to the growth of hâ†âi and hâ b̂i and
can be expressed in the momentum space as follows:

ΔDabðp; t1; t2Þ

¼
X
c;d

sgnðcÞsgnðdÞe2
Z

dτ1

Z
dτ2

×
Z

d3q
ð2πÞ3G

cdðq; τ1; τ2Þ

× Dμ
μfDacðp; t1; τ1Þ;Dcdðp − q; τ1; τ2Þ;Ddbðp; τ2; t2Þg;

ð3:1Þ
where for brevity we introduce the following operator in the
x–space

Dμν ¼ ½Dμ�†1½Dν�†2 − ½Dμ�†1Dν
2 −Dμ

1½Dν�†2 þDμ
1D

ν
2; ð3:2Þ

where the indices f1; 2g denote the action on the corre-
sponding coordinates of internal vertices respectively.
Then the derivatives without the dagger correspond to the
action on the first argument of the propagators, while
the daggered derivatives act on the second argument of
the propagators, i.e., on the fieldsϕ andϕ†, correspondingly.
Hence, inside the expression (3.1) in the momentum space
one obtains,

D ¼ Dμ
μ ¼ D0

0 þ ð2p − qþ 2eAðτ1ÞÞð2p − qþ 2eAðτ2ÞÞ:
ð3:3Þ

Finally, substituting Eqs. (2.17) and (3.1) into Eq. (2.19) we
get the following expression for the one-loop correction to
the current:

j1ðtÞ ≈ 2e
Z

d3p
ð2πÞ3 ðp1 þ eA1ðtÞÞ½jfpðtÞj2npðtÞ

þ ðf�pðtÞÞ2κpðtÞ þ ðfpðtÞÞ2κ�pðtÞ�; ð3:4Þ

where

npðtÞ ≈ −2e2
Zt

−∞

dτ1

Zt

−∞

dτ2

Z
d3q
ð2πÞ3

eijqjðτ1−τ2Þ

2jqj

· Dðf�pðτ1Þ; f�p−qðτ1Þfp−qðτ2Þ; fpðτ2ÞÞ ð3:5Þ

and

κpðtÞ ≈ 2e2
Zt

−∞

dτ1

Zτ1
−∞

dτ2

Z
d3q
ð2πÞ3

eijqjðτ1−τ2Þ

2jqj

· Dðfpðτ1Þ; f�p−qðτ1Þfp−qðτ2Þ; fpðτ2ÞÞ: ð3:6Þ

The quantities npðtÞ; κpðtÞ are the above-mentioned pop-
ulation level hâ†âi and anomalous average hâ b̂i for the
charged scalar field.

A. The contribution of npðtÞ
In this subsection we calculate the contribution of the

level population to the one-loop corrected current,

jðnÞ1 ðtÞ ¼ 2e
Z

d3p
ð2πÞ3 ½p1 þ eA1ðtÞ� · jfpðtÞj2npðtÞ: ð3:7Þ

For τ < −T, the background electric field is not yet turned
on and the modes fpðτÞ are single waves. The initial state is
the Fock space ground state and the quantum averages
hâ†âi and hâ b̂i do not yet evolve in time. For τ > T, the
electric field is switched off, but the modes fpðτÞ are linear
combinations of single waves, (2.13). As we show in
Appendix B 1, after the pulse there are no growing
contributions to hâ†âi. However, there can be a nontrivial
thermalization process generated during the pulse hâ†âi

FIG. 1. One-loop sunset diagram. In the Schwinger-Keldysh
techniques the one-loop correction contains the sum of such
diagrams with different types of vertices.

3Also such a growth is encountered in many different sit-
uations [18,21,24,25,30–35] (see [22,23] for reviews on the
related issues).

E. T. AKHMEDOV et al. PHYS. REV. D 107, 125006 (2023)

125006-4



and hâ b̂i. To move further in this direction it is convenient
to perform the Bogolubov transformation to the out-modes
(single waves in the future infinity):

ĉp ¼ ffiffiffiffiffiffiffiffiffi
2ωþ

p �
A−ðpÞâp þA�þðpÞb̂†−p

�
;

d̂†−p ¼ ffiffiffiffiffiffiffiffiffi
2ωþ

p �
AþðpÞâp þA�

−ðpÞb̂†−p
�
; ð3:8Þ

and

ϕ̂ðτ;xÞ ≃
Z

d3p
ð2πÞ3

�
ĉp

e−iωþτþipxffiffiffiffiffiffiffiffiffi
2ωþ

p þ d̂†p
eiω−τ−ipxffiffiffiffiffiffiffiffiffi

2ω−
p

�
: ð3:9Þ

A similar thermalization process was considered in [20] for
the λφ4 theory but that is a separate story which is beyond
our main interest in the present paper.
Thus, the contribution to the current can be approxi-

mated by

jðnÞ1 ðtÞ ≃ 2e
Z

d3p
ð2πÞ3 ðp1 þ eA1ðtÞÞ · jfpðtÞj2N pðTÞ;

ð3:10Þ

whereN pðTÞ differs from npðtÞ in that the integration over
τ1;2 in the former is restricted to the domain jτ1;2j < T,

N pðTÞ ¼ −2e2
ZT

−T

dτ1

ZT

−T

dτ2

Z
d3q
ð2πÞ3

eijqjðτ1−τ2Þ

2jqj

· Dðf�pðτ1Þ; f�p−qðτ1Þfp−qðτ2Þ; fpðτ2ÞÞ: ð3:11Þ

To calculate this expression we have to investigate the
behavior of the in-mode fpðtÞ in the region jtj < T. The
hypergeometric function 2F1 in (2.10) is difficult to work
with in the region jtj < T, so we will use the approximation
of the pulse with the constant electric field in this region
and find the approximate form of the modes there. The
corresponding differential equation

ð∂2τ þ ðp1 þ eEτÞ2 þ p2⊥ þm2ÞfpðτÞ ¼ 0 ð3:12Þ

has a general solution

fpðtÞ ¼ gp⊥ðp1 þ eEtÞ

¼ c1D
−1
2
þi

p2⊥þm2

2eE

�ð1 − iÞðp1 þ eEtÞffiffiffiffiffiffi
eE

p
�

þ c2D
−1
2
þi

p2⊥þm2

2eE

�
−
ð1 − iÞðp1 þ eEtÞffiffiffiffiffiffi

eE
p

�
; ð3:13Þ

where DνðzÞ is the parabolic cylinder function and the
coefficients are some functions of momenta c1;2 ¼ c1;2ðpÞ,
which should be chosen in such a way as to approximate

the exact in-mode (2.10) with (3.13) in the region jtj < T.
The integral over p1 in (3.10) is saturated within the region
jp1j < eET as for large momenta the mode reduces to the
single wave. Therefore, we equate the solutions (3.13) and
(2.10) and its derivatives around the point p1 ¼ 0; t ¼ 0, to
obtain

c1 þ c2 ¼
2ieET

2

2ξ0=2
ffiffiffiffiffiffiffiffiffi
eET

p ·
Γðδ0Þ

Γ
h
ξ0
2
þ 1 − η0

i ;

c1 − c2 ¼
ðη0 − δ0Þ2ieET2

2ξ0=2þ1e−iπ=4eET
ffiffiffiffi
T

p ·
Γðδ0Þ

Γ
h
ξ0þ3
2

− η0
i ; ð3:14Þ

where ξ0, η0, δ0 are respectively equal to ξ, η, δ from (2.12)
at p1 ¼ 0.
In order to establish the dependence of the coefficients

on T we expand all the parameters in (2.12) in powers of 1
T

and use the asymptotics of the gamma function

lnΓðzÞ ¼
�
z −

1

2

�
ln z − zþ lnð2πÞ

2
þO

�
1

z

�
; j arg zj < π

ð3:15Þ

to find that

Γðδ0Þ
Γ
h
ξ0þβ�

2
− η0

i ¼ ½eET2��1=4½eET2�−i
p2⊥þm2

4eE · e∓iπ=8

· exp

�
−
πðp2⊥ þm2Þ

8eE

�
·

�
1þO

�
1

T2

��
;

ð3:16Þ

where βþ ¼ 2; β− ¼ 3. Hence, the coefficients under con-
sideration are as follows:

c≡ c2 ≃
2ieET

2

2ξ0=2½eE�1=4 ½eET
2�−i

p2⊥þm2

4eE · e−iπ=8

· exp

�
−
πðp2⊥ þm2Þ

8eE

�
; c1 ≃ 0; ð3:17Þ

jcðp⊥Þj2 ≃
1ffiffiffiffiffiffiffiffi
2eE

p exp

�
−
πðp2⊥ þm2Þ

4eE

�
; ð3:18Þ

up to the order of Oð 1
T2Þ. Finally, let us introduce the

dimensionless variables

χ ¼ p1 þ eETffiffiffiffiffiffi
eE

p ; χi ¼
p1 þ eEτiffiffiffiffiffiffi

eE
p ; Q ¼ qffiffiffiffiffiffi

eE
p ;

X ¼ χ1 þ χ2
2

; χ̃ ¼ χ1 − χ2; ð3:19Þ

such that the integral (3.11) acquires the form
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N p⊥ðχÞ≈−2e2
Z

χ

χ−2
ffiffiffiffi
eE

p
T
dX

Z þ∞

−∞
dχ̃

Z
d3Q
ð2πÞ3

eijQjχ̃

2jQj
×Dðg�p⊥ðXþ χ̃=2Þ;g�p⊥−q⊥ðXþ χ̃=2−Q1Þ
×gp⊥−q⊥ðX− χ̃=2−Q1Þ;gp⊥ðX− χ̃=2ÞÞ: ð3:20Þ

As we are concerned only about the dependence ofN p⊥ðχÞ
on T, we can represent the integral over X in (3.20) as the
difference between the integral N∞

p⊥ over the whole real
axis X ∈ ð−∞;þ∞Þ and the integral over the redundant
domain. Since N∞

p⊥ does not depend on T, only the
integration over redundant domain is of interest. Also
due to the Hadamard behavior of the exact harmonics we
can limit ourselves to the region jp1j < ð1 − δÞeET; δ≲

1ffiffiffiffi
eE

p
T
(the narrow area around p1 ¼ eET does not bring

anything qualitatively new) and note that the integral over
Q in (3.20) is saturated at jχ̃j ∼ 1. Then we can apply the
asymptotics of the parabolic cylinder functions for large
argument in these domains [41],

gp⊥ðX − χ̃=2Þ ≃ α�ðp⊥Þ
ðX − χ̃=2Þi

m2þp2⊥
2eE

ðX − χ̃=2Þ1=2 e
iðX−χ̃=2Þ2

2 þ β�ðp⊥Þ

×
ðX − χ̃=2Þ−i

m2þp2⊥
2eE

ðX − χ̃=2Þ1=2 e
−iðX−χ̃=2Þ2

2 ; ð3:21Þ

where the sign � corresponds to the sign of X and

jα�ðp⊥Þj2 ¼
1

2
ffiffiffiffiffiffi
eE

p exp

�
−
πðp2⊥ þm2Þ

eE

�
;

jβþðp⊥Þj2 ¼
1

2
ffiffiffiffiffiffi
eE

p þ jα�ðp⊥Þj2; jβ−ðp⊥Þj2 ¼ 0:

ð3:22Þ

Finally, the estimation of (3.20) is given by

N p⊥ðχÞ≃N∞
p⊥ − 2e2

Z þ∞

χ

dX
X2

·hðp⊥Þ ¼N∞
p⊥ −

2e2hðp⊥Þ
p1þ eET

;

ð3:23Þ
where

hðp⊥Þ ¼ −
Z þ∞

−∞
dχ̃

Z
d3Q
ð2πÞ3

eijQjχ̃

2jQj ð2p⊥ − q⊥Þ2

× ½jαþðp⊥Þj2jβþðp⊥ − q⊥Þj2e−iQ1 χ̃

þ jβþðp⊥Þj2jαþðp⊥ − q⊥Þj2eiQ1χ̃ �: ð3:24Þ

Here we kept only the nonsuppressed oscillating terms in
the limit jχj ≫ 1 and the leading order in the expansion in
powers of 1

T. Hence, the contribution (3.7) to the current can
be estimated as

jðnÞ1 ðtÞ≃2e2ET
Z

d2p⊥
ð2πÞ3

�
2exp

�
−
πðp2⊥þm2Þ

eE

�
þ1

�
N∞

p⊥ :

ð3:25Þ

One can see that (3.25) does not bring an additional positive
power of T in comparison with the classical result (2.20).

B. The contribution of κpðtÞ
In this subsection we calculate the contribution of the

anomalous average to the one-loop corrected current,

jðκÞ1 ðtÞ ¼ 2e
Z

d3p
ð2πÞ3 ðp1 þ eA1ðtÞÞ½ðf�pðtÞÞ2κpðtÞ þ H:c:�:

ð3:26Þ

As we show in Appendix B 2, anomalous average κpðtÞ
grows with t, in contrast to npðtÞ. However, this growth is
canceled4 after the substitution of κpðtÞ into (3.26). Thus,
the time region after the pulse does not bring loop
corrections into the current comparable to the tree-level
contribution (2.20). Hence, we consider only the region
−T < τ2 < τ1 < T, i.e., during the pulse. The correspond-
ing contribution to the current can be approximated by

jðκÞ1 ðTÞ≃2e
Z

d3p
ð2πÞ3 ðp1þeA1ðtÞÞ · ½ðf�pðtÞÞ2KpðTÞþH:c:�;

ð3:27Þ

where KpðTÞ differs from κpðtÞ in that the integration over
τ1;2 in the former is restricted to the domain −T < τ2 <
τ1 < T,

KpðTÞ ¼ 2e2
ZT

−T

dτ1

Zτ1
−T

dτ2

Z
d3q
ð2πÞ3

eijqjðτ1−τ2Þ

2jqj

· Dðfpðτ1Þ; f�p−qðτ1Þfp−qðτ2Þ; fpðτ2ÞÞ: ð3:28Þ

Next step is analogous to the one in the calculation of
N pðTÞ. Let us use the approximate form of the modes
(3.13) and the change of variables (3.19) to write (3.28) in
the following form:

4The growth of the anomalous average has a clear physical
meaning—the initial state that we consider (the Fock space
ground state) is not going to be the final state of the theory.
Furthermore, despite the fact that anomalous average does not
contribute growing with t contribution to the current, there can be
growing with t-loop corrections to the stress-energy tensor. As we
have already mentioned above, there are certain interesting
physics after the pulse is switched off, which is related to the
thermalization process.
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KpðTÞ≡Kp⊥ðχÞ ¼ 2e2
Zχ

χ−2
ffiffiffiffi
eE

p
T

dX
Zþ∞

0

dχ̃
Z

d3Q
ð2πÞ3

eijQjχ̃

2jQj D½gp⊥ðX þ χ̃=2Þ;

g�p⊥−q⊥ðX þ χ̃=2 −Q1Þgp⊥−q⊥ðX − χ̃=2 −Q1Þ; gp⊥ðX − χ̃=2Þ�: ð3:29Þ

Unlike the contribution of the population level, expression
(3.29) contains the squared coefficient cðp⊥Þ itself rather
than its squared modulus. Even though the phase ofKp⊥ðχÞ
can depend on T, we will show further that this does not
bring additional positive powers of T into the current.
In the same way as in the previous section we extend the

integration over X and subtract the redundant domains of
integration, where we use the asymptotics (3.21) to obtain,

Kp⊥ðχÞ ≃K∞
p⊥ − 2e2

Z þ∞

χ

dX
X2

· lðp⊥Þ ¼ K∞
p⊥ −

2e2lðp⊥Þ
p1 þ eET

;

ð3:30Þ

where

lðp⊥Þ ¼
Z þ∞

0

dx
Z

d3Q
ð2πÞ3 ·

eijQjx

2jQj ð2p⊥ − q⊥Þ2

× ½αþðp⊥Þβþðp⊥Þjαþðp⊥ − q⊥ÞjeiQ1x

þ αþðp⊥Þβþðp⊥Þjβþðp⊥ − q⊥Þje−iQ1x�: ð3:31Þ

The corresponding contribution to the current is as follows:

jðκÞ1 ðTÞ≃2e2ET
Z

d2p⊥
ð2πÞ3 ·eET · ½2A

�þðpÞA�
−ðpÞK∞

p⊥ þH:c:�:

ð3:32Þ

As we have mentioned above, the phase of K∞
p⊥ depends

on T, so let us consider the integral over p⊥ in greater
detail. In the approximation p1 ≃ 0 we can write

AþðpÞA−ðpÞjp1¼0

¼ 1

2ω0

Γ2ðδ0ÞΓðη0 − ξ0ÞΓðξ0 − η0Þ
Γðη0ÞΓðδ0 − ξ0ÞΓðδ0 − η0ÞΓðξ0Þ

¼ 1

2ω0

Γ2ð1 − iω0TÞjΓðiω0TÞj2			Γh12 þ iβ
i			2Γðξ0ÞΓ

h
1
2
− iðβ þ ω0TÞ

i ; ð3:33Þ

and use the expression for the square of the modulus of the
gamma functions,

jΓðiω0TÞj2			Γh12 þ iβ
i			2 ≃

1

eET2
exp

�
−
πðm2 þ p2⊥Þ

2eE

�
: ð3:34Þ

For other multipliers, which depend on T, we apply the
asymptotics

lnΓðx − iyÞ ¼
�
x − iy −

1

2

�
ln y −

iπ
2

�
x −

1

2

�
−
yπ
2
þ iy

þ lnð2πÞ
2

þO

�
1

y

�
; x ≪ y; 1 ≪ y ð3:35Þ

to obtain

Γ2ð1 − iω0TÞ
Γ
h
1
2
− iðβ þ ω0TÞ

i ¼
ffiffiffiffiffiffi
2π

p
½eET2�1−i

m2þp2⊥
2eE · 22ieET

2þi
m2þp2⊥
2eE

· e−
iπ
2
−
πðm2þp2⊥Þ

4eE : ð3:36Þ

All together, with the expression for cðp⊥Þ (3.17) we obtain
that eET ·A�þðpÞA�

−ðpÞc2ðp⊥Þ is independent of T.
Therefore, the corresponding contribution to the current
(3.32) depends on T only via the coefficient e2ET before the
integral; thus it also does not give an additional growth in T.
In all, the one-loop contributions of the level population

and anomalous average do not lead to any additional growth
of the current T, and the relevant effect of the one loop-
correction is just the UV renormalization of the theory.

IV. ONE-LOOP CORRECTION TO THE PHOTON’S
KELDYSH PROPAGATOR

In this section we calculate the correction to the photon’s
Keldysh propagator. Despite the fact that such a quantity
has no effect on the current at the one-loop level, as we will
show below it can be relevant for higher-loop corrections.
On the other hand, the quantum dynamics of the photon
state in such a situation presents a separate interest itself.
This is the reason we consider Keldysh propagator and
ignore advanced or retarded propagators. The latter two on
the tree level are sensitive only to the spectrum of the theory
rather than the state, and hence do not contribute to the
current directly.
The expression for the diagram shown in Fig. 2 takes the

form,

Gab
μν;loopðq; τ1; τ2Þ ¼ e2

X
cd

sgnðcÞsgnðdÞ
Z

dτ3dτ4

Z
d3k
ð2πÞ3

×Gacðq; τ1; τ3ÞGdbðq; τ4; τ2Þ
×Dμν½Dcdðk; τ3; τ4ÞDdcðk− q; τ4; τ3Þ�:

ð4:1Þ
Then the Keldysh propagator in the approximation
jτ1 − τ2j ≪ jτ1 þ τ2j, which is appropriate for the further
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calculation of the two-loop correction to the current as
follows:

GK
μνðq; τ1; τ2Þ ≃ nμνðq; T Þ e

−ijqjðτ1−τ2Þ

2jqj þ κμνðq; T Þ e
−i2jqjT

2jqj
þ H:c:; ð4:2Þ

where T ¼ ðτ1 þ τ2Þ=2 and

nμνðq;T Þ≃−e2
ZT

t0

dτ3

ZT

t0

dτ4
e−ijqjðτ3−τ4Þ

2jqj
Z

d3k
ð2πÞ3

×Dμν½fkðτ3Þf�kðτ4Þ;f�k−qðτ4Þfk−qðτ3Þ�; ð4:3Þ

κμνðq;T Þ≃ 2e2
ZT

t0

dτ3

Zτ3
t0

dτ4
eijqjðτ3þτ4Þ

2jqj
Z

d3k
ð2πÞ3

×Dμν½fkðτ3Þf�kðτ4Þ;f�k−qðτ4Þfk−qðτ3Þ�: ð4:4Þ

We do not expect secular growth of κμνðq; T Þ (4.4),
because the interaction does not change the initial
Poincaré invariant vacuum state of photons. One can
explicitly see that κννðq; T Þ does not grow with T . For
this reason we ignore the calculation of κμνðq; T Þ and
concentrate on the most interesting part—nμνðq; T Þ (4.3).
In order to analyze the expression for nμνðq; T Þ let us

make the following change of variables:

T 34 ¼
τ3 þ τ4

2
; τ34 ¼

τ3 − τ4
2

: ð4:5Þ

As we have an oscillating exponent in the integrand in (4.3)
the integral over τ34 is rapidly saturated. Hence, we can
expand the integration over τ34 to the entire real axis. Next,
in the region T 34 < −T the modes f in (4.3) have the
asymptotic form of single waves. Hence, the integral over
τ34 gives delta-functions with never-vanishing arguments.
Then we can write,

nμνðq;T Þ≃−2e2
ZT

−T

dT 34

Zþ∞

−∞

dτ34
e−2ijqjτ34

2jqj
Z

d3k
ð2πÞ3

×Dμν½fkðτ3Þf�kðτ4Þ;f�k−qðτ4Þfk−qðτ3Þ�: ð4:6Þ

For jT j < T we approximate the modes by (3.13) as before
and obtain

nμνðq;T Þ

¼−2e2
ZT

−T

dT 34

Zþ∞

−∞

dτ34
e−2ijqjτ34

2jqj
Z

d3k
ð2πÞ3

×Dμν½gk⊥ðk1þeEτ3Þg�k⊥ðk1þeEτ4Þ;
g�k⊥−q⊥ðk1−q1þeEτ4Þgk⊥−q⊥ðk1−q1þeEτ3Þ�: ð4:7Þ

Performing the shift k1 ↦ k1 þ eET 34 we finally get

nμνðq;T Þ

¼−2e2ðT þTÞ
Zþ∞

−∞
dτ

e−2ijqjτ

2jqj
Z

d3k
ð2πÞ3

× D̃μν½gk⊥ðk1þeEτÞg�k⊥ðk1−eEτÞ;
g�k⊥−q⊥ðk1−q1−eEτÞgk⊥−q⊥ðk1−q1þeEτÞ�; ð4:8Þ

which explicitly grows with T and T. Hence, if we take into
account the corrected propagator for photons in the two-
loop correction to the current:

we obtain the additional growth in T for the two-loop
corrected current.

V. DISCUSSION AND CONCLUSION

In this paper we have calculated one-loop correction
to the scalar propagator and its contribution to the
current of the created pairs in the lengthy and strong
electric pulse. It turns out that the first-loop correction in
the scalar QED does not substantially alter the tree-level
current.
Furthermore, we have also calculated the one-loop

correction to the photon propagator and have shown that
it gives an additional power of growth with the duration of
the pulse for the current, T.
Despite the fact that one-loop diagrams do not bring an

additional growth in T, analysis in the last section reveals
that such a growth does have a place in higher loops.
Furthermore, the following diagrams can also grow, for the
same reason as the loop correction to the photon propagator
grows: The diagram in Fig. 3(a) is expected to grow even
with the tree-level photon propagator is used inside the
loops, as the corresponding kinetic process is Thomson
scattering. We believe that the diagram Fig. 3(b) grows
with time.

FIG. 2. One-loop correction to the photon’s propagator. In the
Schwinger-Keldysh technique one has to sum over � signs in the
internal and external vertices.
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Another way to see the same effects is as follows: Due to
the Debye screening5 the interaction of the scalars mediated
by the photon exchange is localized, and can be approxi-
mated by the λφ4 self-interaction as low-energy effective
theory. Then, if we shrink the photon lines in Fig. 3(b) into
points we will simply get a sunset diagram of λφ4 theory,
which does grow with time.
In all, we expect that loop corrections do change the tree-

level Schwinger current of created pairs for a long enough
pulse. The result of the change depends on initial con-
ditions and has to be considered separately via a resum-
mation of leading corrections from all loop levels.
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APPENDIX A: TADPOLE DIAGRAM

In this section we consider the tadpole diagram which is
shown on Fig. 4: It can be expected that this diagram brings
an additional power of T into the dependence of the current
on the pulse duration T. However, as the photon propagator
and the modes (2.5) are the same as in the situation without
a background field, one directly obtains that

ΔtadDabðp; t1; t2Þ ¼ ie2C
X
c

sgnðcÞ
Z

dτDacðp; t1; τÞ

×Dcbðp; τ; t2Þ; ðA1Þ

so that the integration over the internal momentum q
factorizes to separate the photon-loop integral,

C ¼
Z

d3q
ð2πÞ3

1

2jqj : ðA2Þ

The corresponding correction to the current has the
following form:

jðtadÞ1 ðtÞ ¼ 2e
Z

d3p
ð2πÞ3 ðp1 þ eETÞ½f2pðtÞχpðtÞ þ H:c:�;

χpðtÞ ¼ ie2C
Zt

t0

½f�pðτÞ�2dτ: ðA3Þ

Similar to the other diagrams which have been considered
earlier, the growing with the pulse duration contribution to

jðtadÞ1 ðtÞ can potentially come from the integration region
over jτj < T. Therefore, we can use the approximated
modes (3.13). Due to the proper Hadamard behavior of
the exact scalar mode functions, we also restrict the
integration over p to jp1j < eET, considering p1 ¼ 0 in
the leading order. In fact, high-momentum modes do not
feel the background field and, hence, behave as in empty
space, i.e., just lead to the UV renormalization. As a result,
we obtain

jðtadÞ1 ¼ 4e3C · eET
Z

d2p⊥
ð2πÞ3 eET

�
iAþðpÞA−ðpÞðc�ðp⊥ÞÞ2

×
ZT

−T

�
D�

−1
2
þi

p2⊥þm2

2eE

�
−
ð1− iÞðp1þ eEτÞffiffiffiffiffiffi

eE
p

��
2

dτþH:c:

�
:

ðA4Þ

Finally, we extend the integration in Eq. (A4) over τ onto
the entire real axis, which is valid up to the corrections of
the order Oð1=TÞ. Since eETAþðpÞA−ðpÞðc�ðp⊥ÞÞ2 does
not depend on T, one can see that jðtadÞ1 does not bring an
additional positive power of T in comparison with (2.20).
Hence, the only effect is the UV renormalization of the bare
constants in the theory by the loop integral C, which can be
removed by appropriate counterterms, so that the mass of
the scalar in the bare Lagrangian gets renormalized.

FIG. 3. Two-loop diagrams with expected growth.

FIG. 4. Tadpole diagram.

5To observe such an effect we have to consider either pair
creation in a medium or to wait long enough to create a gas of
pairs.
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There is another type of tadpole diagram which is shown
in Fig. 5. Similar calculations that have been performed
above for other diagrams show that this diagram does not
lead to any additional growth of the current over T. This
diagram also leads to a renormalization of the coupling
constants in the theory.6

APPENDIX B: TIME REGIONS
OUTSIDE THE PULSE

In this section we show that the integration outside the
region jτ1;2j < T in (3.5) does not bring relevant contri-
bution to (3.7).

1. Population level

First of all, let us consider the region τ1;2 > T. It is useful
to make the change of variables τ ¼ τ1−τ2

2
; T ¼ τ1þτ2

2
, which

run in the ranges ½T − t; t − T � and ½−∞; t�, correspond-
ingly. As we are concerned about the large times t ¼ t1þt2

2

we can extend the integration over τ onto the real axis due
to the fast oscillations of the integrand in (3.5), so that

npðtÞ ≃ −4e2
Zt

−∞

dT
Zþ∞

−∞

dτ
Z

d3q
ð2πÞ3

e2ijqjτ

2jqj

· Dðf�pðτ1Þ; f�p−qðτ1Þfp−qðτ2Þ; fpðτ2ÞÞ: ðB1Þ

Next, using the asymptotics (2.13) we can expand the
product of the modes in (B1) in order to analyze oscillating
terms,

e2ijqjτf�pðτ1Þf�p−qðτ1Þfp−qðτ2Þfpðτ2Þ
≃ jAþBþj2e2iðjqj−ωþ−ΩþÞτ

þ jAþB−j2e2iðjqj−ωþþΩþÞτ

þ jA−Bþj2e2iðjqjþωþ−ΩþÞτ

þ jA−B−j2e2iðjqjþωþþΩþÞτ

þ A�þB�þA−B−e2ið−ωþ−ΩþÞT e2ijqjτ

þ A�þB�
−A−Bþe2ið−ωþþΩþÞT e2ijqjτ

þ A�
−B�þAþB−e2iðþωþ−ΩþÞT e2ijqjτ

þ A�
−B�

−AþBþe2iðþωþþΩþÞT e2ijqjτ

þ jAþj2B�þB−e2iðjqj−ωþÞτe2ið−ΩþÞT

þ jAþj2B�
−Bþe2iðjqj−ωþÞτe2iðþΩþÞT

þ jA−j2B�þB−e2iðjqjþωþÞτe2ið−ΩþÞT

þ jA−j2B�
−Bþe2iðjqjþωþÞτe2iðþΩþÞT

þ jBþj2A�þA−e2iðjqj−ΩþÞτe2ið−ωþÞT

þ jB−j2A�þA−e2iðjqjþΩþÞτe2ið−ωþÞT

þ jBþj2A�
−Aþe2iðjqj−ΩþÞτe2iðþωþÞT

þ jB−j2A�
−Aþe2iðjqjþΩþÞτe2iðþωþÞT ; ðB2Þ

where we have denoted A� ¼ A�ðpÞ; B� ¼ A�ðp − qÞ;
ωþ ¼ ωþðpÞ;Ωþ ¼ ωþðp − qÞ and the action of the oper-
ator D results only in the additional factors before oscillat-
ing exponents. Now we note that the first eight terms in
(B2) after the integration over τ produce delta functions
with arguments jqj � ωþ � Ωþ, which are never zero for
jqj > 0, so that the integrals

Z
d3q

ð2πÞ3jqj δðjqj � ωþ � ΩþÞ… ¼ 0: ðB3Þ

The other eight terms in (B2) after the integration over T
contain exponents exp ð�2iΩþtÞ or exp ð�2iωþtÞ from the
upper limit of the integration, T ¼ t, and similar exponents
from the lower limit. The contributions with exponents
exp ð�2iΩþtÞ are suppressed after the integration over p
due to Riemann-Lebesgue lemma. Indeed, in the UV region
in (3.7) after the integration over τ, T , and q the integrand
can be estimated as

∼
Z

d3p
ð2πÞ3 p · p2 ·

1

p6
·
1

Ωþ
e�2iΩþt ∼

Z
d3p
ð2πÞ3

1

p4
e�2iΩþt;

ðB4Þ

where we used that the second-order operator D gives
additional p2, each coefficient in the approximation (2.13)
behaves at least as 1

p in the UV regime and Ωþ ∼ p.
Therefore, the integrand is the measurable function and
the Riemann-Lebesgue lemma is applicable. The same we
conclude about the oscillating terms produced by the
exponent exp ð�2iωþtÞ. The nonoscillating terms, which
appear after the multiplication of this exponent by jfpj2 in
(3.7) cancel each other. In fact

FIG. 5. Another tadpole diagram.

6In general, whether this tadpole diagram brings nontrivial
contribution or not is dependent on the field configuration (see
[42] for example). There are cases where it contains physics
beyond renormalization.
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jfpj2 · jBþj2δðjqj −ΩþÞ
�
A�
−Aþ

e2iωþt

2iωþ
þ H:c:

�

∼ jBþAþA−j2δðjqj −ΩþÞ
�

1

2iωþ
þ H:c:

�
¼ 0

All the terms from the lower limit of the integration over T
also do not bring relevant contribution to (3.7). Apparently,
similar considerations lead to the conclusion that there are
no important terms from the past region T < −T, where the
mode function reduces to the single plane wave (2.9).
Hence, there is no secular growth in one-loop correction to
the current. Hence, only the integration over jτ1;2j < T in
(3.5) can potentially bring a growing contribution to (3.7).

2. Anomalous quantum average

Let us now consider the κpðtÞ contribution from (3.6).
Similarly to npðtÞ we make change of variables
τ ¼ τ1−τ2

2
; T ¼ τ1þτ2

2
, extend the integration region over τ

onto the half of real axis and use that

Zþ∞

0

eixtdt ¼ πδðxÞ þ i · p:v:
1

x
: ðB5Þ

Thus, we obtain

κpðtÞ ≃ 4e2
Zt

t0

dT
Zþ∞

0

dτ
Z

d3q
ð2πÞ3

eijqjðτ1−τ2Þ

2jqj · Dðfpðτ1Þ; f�p−qðτ1Þfp−qðτ2Þ; fpðτ2ÞÞ: ðB6Þ

In this appendix wewant to consider the contribution from the time region T ∈ ½T; t�. For this region we use the asymptotics
(2.13) and obtain an expression similar to (B2). After the integration over τ we neglect terms with delta functions, as was
done for npðtÞ. Then we integrate over T and neglect oscillating terms to obtain the following expression for the upper limit
of integration:

ðf�pðtÞÞ2δκpðtÞ ¼ −e2
Z

d3q
ð2πÞ3

1

2jqj
�
½Dj

j þ ω2þ − Ω2þ� ·
jAþj4jBþj2
iðjqj −ΩþÞ

1

iðþωþÞ
þ ½Dj

j þ ω2þ −Ω2þ� ·
jAþj4jB−j2
iðjqj þ ΩþÞ

1

iðþωþÞ

þ ½Dj
j þ ω2þ −Ω2þ� ·

jA−j4jBþj2
iðjqj −ΩþÞ

1

ið−ωþÞ
þ ½Dj

j þ ω2þ − Ω2þ� ·
jA−j4jB−j2
iðjqj þ ΩþÞ

1

ið−ωþÞ

þ ½Dj
j − ðωþ þΩþÞ2� ·

4jBþj2jAþA−j2
iðjqj −Ωþ þ ωþÞ

· ðt − TÞ þ ½Dj
j − ðωþ − ΩþÞ2� ·

4jB−j2jAþA−j2
iðjqj þ Ωþ þ ωþÞ

· ðt − TÞ

þ ½Dj
j − ðωþ −ΩþÞ2� ·

4jBþj2jA−Aþj2
iðjqj −Ωþ − ωþÞ

· ðt − TÞ þ ½Dj
j − ðωþ þΩþÞ2� ·

4jB−j2jA−Aþj2
iðjqj þΩþ − ωþÞ

· ðt − TÞ
�
:

ðB7Þ
We can see that the contribution to anomalous average, δκpðtÞ from the region ½T; t�, grows with t. However this growth is
canceled if we substitute (B7) into (3.26),

δjanom;t
1 ðtÞ ¼ −4e3

Z
d3p
ð2πÞ3 ðp1 þ eETÞ

Z
d3q
ð2πÞ3

1

4ω2þjqj
½4ðp1 þ eETÞ2 − 2q1ðp1 þ eETÞ þ 4p2⊥ − 2p⊥q⊥�

×

�
4jqj · jAþBþj2
jqj2 − Ω2þ

þ jqj · jBþj2
ωþðjqj2 −Ω2þÞ

þ jAþj2
Ωþðjqj þ ΩþÞ

þ 1

4ωþΩþðjqj þ ΩþÞ
�
: ðB8Þ

The last term in the big brackets is the same as in the current without the background field. It disappears after the integration
because it is an odd function. The second term diverges as lnjpj, and leads to the current renormalization. The first term
gives a contribution of the order Oð1=TÞ, while the third one—of the order OðTÞ. Hence, the contribution from the third
term is the leading one in (B8). However, it is suppressed by e2 as compared to (2.20).
The contribution from the lower limit of the integration over T ∈ ½T; t� in (B6) is alsoOðTÞ and suppressed in comparison

with the tree-level current (2.20). Similar situation is the integration over T ∈ ½t0;−T�. Hence, we conclude that the
contribution to (3.26) from the time region outside the pulse is suppressed in comparison with the tree-level current (2.20).
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