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We develop the theory of quantum scars for quantum fields. By generalizing the formalisms of Heller
and Bogomolny from few-body quantum mechanics to quantum fields, we find that unstable periodic
classical solutions of the field equations imprint themselves in a precise manner on bands of energy
eigenfunctions. This indicates a breakdown of thermalization at certain energy scales, in a manner that
can be characterized via semiclassics. As an explicit example, we consider time-periodic nontopological
solitons in complex scalar field theories. We find that an unstable variant of Q-balls, called Q-clouds,
induces quantum scars. Some technical contributions of our work include methods for characterizing
moduli spaces of periodic orbits in field theories, which are essential for formulating our quantum scar
formula. We further discuss potential connections with quantum many-body scars in Rydberg atom arrays.
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I. INTRODUCTION

Most systems in nature are chaotic, and the interplay
between chaos and quantum mechanics has long been a
topic of intense study. While the subject of quantum chaos
is not yet in its final form, it hosts a diverse set of
phenomena [1,2] that have been essential to our under-
standing of mesoscopic systems [3,4], quantum thermal-
ization [5], and even quantum gravity [6,7].
In classical Hamiltonian mechanics, chaos provides a

mechanism for systems to exhibit ergodic behavior. For
instance, a chaotic Hamiltonian system at fixed energy is
generically expected to equitably explore all configurations
in phase space at that energy. This forms the theoretical
basis for the classical microcanonical ensemble. The
quantum analog is to consider a Hamiltonian operator H
and a projector PE onto a band of eigenstates concentrated
around E. Then the Wigner phase space distribution
corresponding to PE is expected to be approximately
uniform over all configurations in the classical phase space
with energy ≈E. This would justify the usual quantum
version of the microcanonical ensemble.

Remarkably, a large variety of chaotic, few-body quan-
tum systems fail to conform to the microcanonical ensem-
ble, even approximately. What happens is that the Wigner
phase space distribution of PE is enhanced in the vicinity of
unstable classical periodic trajectories [8–11].
The seminal analysis of Heller leveraged semiclassical

techniques and time-smeared correlators to establish that
the position-space density of eigenfunctions is enhanced
around unstable, classical periodic orbits in few-body
systems [8,11]. Building off of this, Bogomolny showed
that these imprints on the wave function could be made
visible as oscillatory fringes after smoothing over an energy
and position window [9], while Berry showed that these
fringes are also visible in phase space using Wigner
functions [10]. See [12] for a comprehensive review. The
question wewish to address is whether quantum scars occur
in quantum field theories by an analogous mechanism.
There are related phenomena [13–16] that have

received attention following experiments on Rydberg atom
arrays [17], where periodic revivals were observed after a
quantum quench. This is a situation where one might
normally expect the system to thermalize and be composed
of energy eigenstates obeying the eigenstate thermalization
hypothesis [5,18–20]. Reference [13] showed that a small
number of nonthermal eigenstates are responsible for the
periodic revivals, while Ref. [16] showed that these states
could be approximately described by matrix product
states that support unstable periodic orbits. These thermal-
ization-breaking eigenstates have been suggestively called
“quantummany-body scars” [13–16], although their precise
relation to the few-body scars of Heller and others has not
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been understood. An important question is thus: are quan-
tummany-body scars in the sense of [13–16] due to the same
mechanism as the few-body scars of Heller? To begin to
address this, we must first develop the quantum field-
theoretic version of Heller’s quantum scars. We will put
particular emphasis on the approach of Bogomolny since it
admits a rather direct generalization to field theory. This is
the goal of the present paper.
The rest of the paper is organized as follows. In Sec. II,

we generalize Bogomolny’s scar formula to quantum field
theory. In Sec. III, we pursue a particular example of
quantum field-theoretic scars, furnished by unstable peri-
odic orbits of nontopological solitons called Q-clouds. In
Sec. IV, we characterize the moduli space of time-periodic
Q-cloud solutions in a fixed energy window and show that
it satisfies the assumptions of our scar formula. Finally, in
Sec. V we conclude with a discussion.

II. SCAR FORMULA FOR QUANTUM
FIELD THEORY

We adopt the convention that capital Greek letters
Φðx; tÞ;Πðx; tÞ;… denote fields as a function of spacetime
coordinates, whereas lowercase Greek letters ϕðxÞ; πðxÞ;…
denote fields at a fixed moment of time. We will set the
speed of light to be c ¼ 1. Consider a relativistic scalar
quantum field theory with action S½Φ�, Hamiltonian
H½Φ;Π�, and associated eigenfunctions fΨn½ϕ�gn. These
eigenfunctions may, in general, come in a continuous
family, in which case n is replaced by a continuous index.
The field theory in question is assumed to be nonintegrable,
for instance, an interacting scalar field theory in dþ 1
spacetime dimensions where the potential UðΦÞ is not
fine-tuned. It will be convenient for us to consider a
complex scalar field, in particular, with a potential of the
form UðjΦj2Þ.
We are interested in rendering a semiclassical description

of the probability functional jΨn½ϕ�j2 associated with a
single eigenstate Ψn½ϕ�. However, in general, there is no
semiclassical description of individual eigenstates of a
chaotic system [9,10], but there is such a semiclassical
description of smeared bands of eigenstates. Accordingly,
in the spirit of [9], we make the following simplifications:
(i) We work with an average over probability functionals
jΨn½ϕ�j2 with energy in the range ½E − ε=2; Eþ ε=2�,
corresponding to an energy band around E of size ε. We
assume that ε is much larger than the mean level spacing
and also much less than E. We denote the energy band
average by hjΨ½ϕ�j2iE. (ii) Additionally, we smear slightly
in field space using a Gaussian functional. The smeared
version of hjΨ½ϕ�j2iE is denoted by hjΨ½ϕ�j2iE;Δ and is
given as

hjΨ½ϕ�j2iE;Δ ≔ N
Z

½dχ�hjΨ½χ�j2iEe−
1

2Δ2

R
ddxjϕðxÞ−χðxÞj2 ;

where N is the normalization. Note that we have
hjΨ½ϕ�j2iE;Δ → hjΨ½ϕ�j2iE as Δ → 0.
We can derive a semiclassical formula for hjΨ½ϕ�j2iE;Δ by

generalizing the analysis of Bogomolny that applies to the
few-body setting [9]. Bogomolny’s scar formula and its
derivation are reviewed in great detail in Appendix A; our
treatment of the derivation is organized to most readily
generalize to quantum field theory. The quantum field theory
scar formula is derived in Appendix B and has numerous
ingredients that are unique to the field theory setting. To state
our result, let us develop some further notation.
Let F be the infinite-dimensional space of field con-

figurations ϕ∶ Rd → C. We equip the tangent bundle of F
with the standard L2 inner product so that F becomes a
Riemannian manifold. Then a classical periodic orbit
Φcðx; tÞ can be regarded as a map Φcðx; ·Þ∶R → F , whose
image specifies a one-dimensional submanifold of F .
Consider the collection of periodic solutions to the classical
equations of motion such that their energies lie in the range
½E − ε=2; Eþ ε=2�, and their periods T are less than ∼ℏ=ε.
In a chaotic system, these orbits are generically unstable.
Let O denote the union of the images of these periodic
orbits; momentarily assuming that any two distinct orbits
(which are not time reversals of one another) do not
intersect, O is a union of connected submanifolds of F ,
possibly with different dimensions. We denote the indi-
vidual connected components by Oi. Each Oi is a moduli
space of periodic orbits (satisfying our above desiderata),
which are continuously deformable into one another.
With these notations at hand, we can formulate our

result. If hjΨ½ϕ�j2iE;Δ conformed to our expectations for the
microcanonical ensemble, then for small εwewould expect
it to approximately equal

Pmicro½ϕ� ¼
R ½ dπ

2πℏ�δεðE −Hðϕ; πÞÞR ½dχ�½ dπ
2πℏ�δεðE −Hðχ; πÞÞ ; ð1Þ

where ½ dπ
2πℏ� denotes the formal path integral measureQ

x∈Rd
dπðxÞ
2πℏ and similarly for ½dχ�. Here, δε is an ε smearing

of the δ function. However, our periodic orbits will provide
deviations from this microcanonical answer.
In particular, suppose we evaluate hjΨ½ϕ�j2iE;Δ at a field

configuration that lies on a periodic orbit or is only slightly
off of that periodic orbit. More precisely, let ϕ ¼ ϕc þ δϕ⊥,
where ϕc is a point inO, and δϕ⊥ is in the normal bundle of
O at ϕc, notated as Nϕc

O. The normal bundle NO can be
thought of as field fluctuations that move us off of O.
Letting Tmax be the period of the longest orbit in O, we
choose Δ to be

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax

p �
ℏ

ETmax

�
γ

for any
1

4
< γ <

1

2
ð2Þ

and consider fluctuations δϕ⊥ satisfying
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kδϕ⊥kL2 ≲ ffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax

p �
ℏ

ETmax

�
1=4

: ð3Þ

In this regime, hjΨ½ϕ�j2iE;Δ ¼ Pmicro½ϕ� þ δPscar½ϕc; δϕ⊥�,
where there is an additional scar contribution. This is

depicted in Fig. 1. Since ϕc belongs to some periodic
orbit Φcðx; tÞ, say with Φcðx; 0Þ ¼ ϕc, then let us denote
_ϕc ¼ ∂tΦcðx; tÞjt¼0. Further writing δϕ1;⊥; δϕ2;⊥ as the
real and imaginary parts of δϕ⊥, we have the scar
formula

δPscar½ϕc;δϕ⊥�≈−
2

πℏ
R ½dχ�½ dπ

2πℏ�δεðE−Hðχ;πÞÞIm
�
1

i
1

k _ϕckL2

����det
�

1

2πiℏ
δ2SðϕA;ϕB;EÞ

δϕA⊥δϕB⊥

�
ϕA¼ϕB¼ϕc

����1=2

×exp

�
−
ε

ℏ
Tðϕc;ϕc;EÞ− iνðϕc;ϕc;EÞ

π

2
þ i
ℏ

�
Sðϕc;ϕc;EÞ

þ1

2

Z
ddxddy

X2
l;m¼1

δϕl;⊥ðxÞ
�
δ2SðϕA;ϕB;EÞ
δϕA

lðxÞδϕA
mðyÞ

þ2
δ2SðϕA;ϕB;EÞ
δϕA

lðxÞδϕB
mðyÞ

þδ2SðϕA;ϕB;EÞ
δϕB

lðxÞδϕB
mðyÞ

�
ϕA¼ϕB¼ϕc

δϕm;⊥ðyÞ
��	

:

ð4Þ

This equation requires some unpacking. Above,
SðϕA;ϕB; EÞ is the Legendre transform of Hamilton’s
principal function, so that SðϕA;ϕB; EÞ ¼ R T0 dt×R
ddx

P
2
i¼1 Πiðx; tÞ∂tΦiðx; tÞ is the “abbreviated action”

of a classical solution with energy E starting at ϕA at time
zero and ending at ϕB at time T ¼ TðϕA;ϕB; EÞ. Moreover,
in (4) the term Tðϕc;ϕc; EÞ is the period of the periodic orbit
passing through ϕc with energy E. The term νðϕc;ϕc; EÞ
contains phase factors from the square root of the determi-
nant, which organize into the Maslov index. Finally, the ≈
means that the equation should be understood as including
multiplicative corrections ð1þOðεE ; ð ℏ

ETmax
ÞγÞÞ.

Notice in (4) that periodic orbits with T ≫ ℏ=ε
are exponentially suppressed on account of the
expð−εTðϕc;ϕc; EÞ=ℏÞ term. This is why we are justi-
fied in building O out of orbits with period less than
∼ℏ=ε. Interestingly, quantum scarring occurs for orbits
that are classically unstable; this is a signature feature
of quantum scars [8] and is fortuitous since generic
periodic orbits of Hamiltonian systems are unstable.
We note that our formula for corrections to the micro-
canonical ensemble also hold for stable periodic
orbits, although these are terminologically not called
quantum scars.

(a) (b)

FIG. 1. (a) A schematic of O, the union of the images of our collection of periodic orbits. We are interested in the vicinity of a
particular orbit ϕc and construct coordinates δϕk that lie in the tangent space Tϕc

O (and include a direction parallel to the orbit ϕc) and
coordinates δϕ⊥ orthogonal to the orbit that lie in the normal space Nϕc

O. (b) If we evaluate hjΨ½ϕ�j2iE;Δ at a point ϕ ¼ ϕc þ δϕ⊥ in the
vicinity of O, then we have hjΨ½ϕ�j2iE;Δ ≈ Pmicro þ δPscar, which has a scar contribution. The neighborhood of O for which the scar
contribution δPscar is sizable is shown in light blue. If we instead evaluate hjΨ½ϕ�j2iE;Δ at a point ϕ sufficiently far away fromO, then we
only have hjΨ½ϕ�j2iE;Δ ≈ Pmicro.
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It is clarifying to write out our expression for hjΨ½ϕ�j2iE;Δ in the following way:

hjΨ½ϕ�j2iE;Δ ≈

(Pmicro½ϕ� þ δPscar½ϕc; δϕ⊥� if ϕ ¼ ϕc þ δϕ⊥where ϕc ∈ O; δϕ⊥ ∈ Nϕc
O; kδϕ⊥kL2 ≲ ℏ

Δ

Pmicro½ϕ� if



�δSðϕA;ϕB;EÞ

δϕA þ δSðϕA;ϕB;EÞ
δϕB

�
ϕA¼ϕB¼ϕ





L2

≫ ℏ
Δ

: ð5Þ

This formula emphasizes that there is an additional scar
contribution on and near O. Note that there are some
regimes for which our scar formula does not directly apply.
The most interesting such regime is given by kδϕ⊥kL2 ≳ ℏ

Δ

and



ðδSðϕA;ϕB;EÞ

δϕA þ δSðϕA;ϕB;EÞ
δϕB Þ

ϕA¼ϕB¼ϕ





L2

≲ ℏ
Δ. This regime

corresponds to orbits that are nearly periodic (i.e., they
begin and end at ϕ but have slightly different initial and
final momenta), but are not nearby an exactly periodic
orbit. There is a way to account for such orbits and this is
discussed at the ends of Appendices A and B.
While (4) and (5) tell us how periodic orbits in a

(complex) scalar field theory augment the microcanonical
ensemble via quantum scars, it is incumbent on us to find
examples in which such periodic orbits arise. In the next
section, we study a particularly nice set of examples,
namely, a wide class of complex scalar field theories that
furnish periodic orbits in the form of nontopological
solitons called Q-clouds [21], which are perturbatively
unstable counterparts of Q-balls [22].

III. Q-BALLS AND Q-CLOUDS

Solitons are localized field configurations that can arise
in nonlinear theories. While static scalar solitons can be
stabilized by topological effects, in this work we will be
concerned with nonstatic solitons stabilized by a Uð1Þ
charge. Such solitons are known as Q-balls [22] when they
are classically stable and Q-clouds [21] when they are
classically unstable. We briefly review these below.
Working in dþ 1 spacetime dimensions, we consider a

complex scalar field with Uð1Þ symmetry and a nonlinear
potential, as specified by the Lagrangian L ¼ ∂μΦ�

∂
μΦ−

UðjΦj2Þ. In order for a soliton to not dissipate, it must be a
stationary point of the energy functional at fixed Uð1Þ
charge. Note that, for a potential that has a global minimum
at Uð0Þ ¼ 0, corresponding to the vacuum Φ ¼ 0, the
perturbative spectrum consists of particles of mass
m2 ¼ U00ð0Þ. To support new kinds of excitations, we
consider a polynomial potential U that has UðΦ0Þ <
1
2
m2jΦ0j2 at some Φ0 ≠ 0; i.e., the potential grows less

quickly than a quadratic mass term. In particular, we
leverage a potential of the form

UðjΦj2Þ ¼ m2jΦj2 − f
2
jΦj4 þOðjΦj6Þ; ð6Þ

where f > 0 and the OðjΦj6Þ terms serve to stabilize the
potential, although their precise form will not matter for our
analyses. This potential furnishes spherically symmetric,
time-periodic solutions Φðx; tÞ ¼ eiωtσðxÞ for a range of
ω [21,22]. The function σ only depends on r ¼ jxj, so we
will often write it as σðrÞ. The residual equations of motion
for σðrÞ are

σ00 ¼ −
dþ 1

r
σ0 − ω2σ þ σU0ðσ2Þ; ð7Þ

which has a frequency-dependent damping term in the
effective potential Ueff ¼ 1

2
ðω2σ2 −UÞ.

These periodic solutions eiωtσðrÞ are called Q-balls if
they are perturbatively stable [22] and Q-clouds if they are
perturbatively unstable [21,22]. While both kinds of peri-
odic orbits provide corrections to the microcanonical
ensemble, we choose to focus on the unstable periodic
orbits since they will give rise to quantum scars, in
particular. We emphasize that it is a novel feature of
quantum scars that they are supported by unstable classical
solutions. The unstable periodic orbits of interest in the
scalar theory, namely, the Q-clouds, occur asω2 approaches
m2 from below. Along the lines of Alford’s analysis [21],
we define ξ2 ¼ m2 − ω2 to keep track of the closeness
between m2 and ω2. In the regime ξ → 0þ, plugging the
scaling ansatz σξðrÞ ¼ ξwðξrÞ into (7) we obtain

w00 − wþ fw3 ¼ 0; ð8Þ

which is ξ independent. This means that σξðrÞ flattens out in
the ξ → 0þ limit and becomes diffuse like a “cloud,” as can
be seen in Fig. 2. In this regime, theQ-cloud decays at large r
as ∼ξe−ξr, and the Uð1Þ charge tends to infinity asQ ∼ ξ−1.

IV. MODULI SPACE OF Q-CLOUD SOLUTIONS
IN AN ENERGY WINDOW

As we explained above, our periodic orbits of interest
are often arranged in moduli spaces O with connected
components Oi. Here, we show that there is a single
connected component OQ-cloud associated with Q-clouds in
3þ 1 dimensions, which sit in an energy window
½E − ε=2; Eþ ε=2� and have periods less than ∼ℏ=ε.
Moreover, we find that OQ-cloud is a five-dimensional
submanifold of F : three of the dimensions correspond
to spatial translations, one corresponds to time translations,
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and one corresponds to deforming a Q-cloud into another
Q-cloud with slightly different energy.
Our basic strategy will be as follows. Suppose Φω is

a Q-cloud solution with period T ¼ 2π=ω in our energy
range. We will establish that any Φ̃ that is (i) a small
deformation of Φω, (ii) periodic in time, and (iii) has
energy in the appropriate window is itself a Q-cloud
solution. Note that Q-cloud solutions are localized in
space, meaning that they must decay to zero at spatial
infinity. For (i), it is sufficient to measure “smallness”
via ðRR3 d3x

R ℏ=ε
0 dtjΦωðx; tÞ − Φ̃ðx; tÞj2Þ1=2.

Since Φωðx; tÞ ¼ eiωtσωðxÞ, where we have added a
subscript to σðxÞ to make explicit its dependence on ω,
we can write Φ̃ðx; tÞ as

Φ̃ðx;tÞ¼ eiðωþδωÞtðσωðxÞþδϕ1ðxÞÞþ
X
n≠1

eiðωþδωÞntδϕnðxÞ;

which has period 2π=ðωþ δωÞ. Note that we have not
included perturbations that would cause the period to
become multiplicatively larger as T → ξT for ξ≳ 2; such
orbits are exponentially suppressed in the scar formula
relative to solutions with period nearly equal to T. For
δω sufficiently small, there is another Q-cloud solution
with the same period, namely, Φωþδω ¼ eiðωþδωÞtσωþδωðxÞ.
Writing σωþδωðxÞ ¼ σωðxÞ þ δσωðxÞ, let us redefine δϕ1 →
δϕ1 − δσω in our equation for Φ̃ðx; tÞ above to obtain

Φ̃ðx; tÞ ¼ Φωþδωðx; tÞ þ
X
n∈Z

eiðωþδωÞntδϕnðxÞ: ð9Þ

We can view this as a perturbed version of the Q-cloud
solution Φωþδω.
For Φ̃ðx; tÞ to be a solution of the equations of motion, to

first order in perturbation theory we require

ðω2n2 þ∇2 −U0 − σ2ωU00Þδϕn − σ2ωU00δϕ�
−nþ2 ¼ 0; ð10Þ

ðω2n2 þ∇2 −U0 − σ2ωU00Þδϕ�
−n − σ2ωU00δϕnþ2 ¼ 0: ð11Þ

Evidently, this system of equations couples the δϕn’s with
one another.
Fortunately, the system of equations can be mostly

decoupled. Observe that, for large jxj, we have σω → 0,
U0 → m2, and U00 → 0. Then in this regime,

−∇2δϕn ¼ m2

�
ω2

m2
n2 − 1

�
δϕn; ð12Þ

where ω=m < 1. The above is an eigenvalue equation of
the form −∇2δϕn ¼ λδϕn, which has oscillatory solutions
for λ ≥ 0, corresponding to jnj > 1. But such solutions do
not decay at infinity, and so we can rule them out and set
δϕn≠0;�1 ¼ 0. Plugging δϕn≠0;�1 ¼ 0 back into (10)
and (11), we see that δϕ0 ¼ 0 as well. This leaves us with
δϕ�1, which satisfy the system of equations

ðω2 þ∇2 − U0 − σ2ωU00Þδϕ−1 ¼ 0; ð13Þ

ðω2 þ∇2 − U0 − 2σ2ωU00Þðδϕ1 þ δϕ�
1Þ ¼ 0; ð14Þ

ðω2 þ∇2 −U0Þðδϕ1 − δϕ�
1Þ ¼ 0: ð15Þ

In Appendix E, we fully characterize the solutions to these
equations in an appropriate regime of couplings. Our
approach is to decompose the fields into spherical har-
monics, which gives us infinitely many decoupled, time-
independent Schrödinger-type equations. We show that the
equations for all of the harmonics with l > 1 do not have
normalizable solutions; we then solve the remaining
l ¼ 0, 1 equations through a combination of analytics
and numerics. The solutions to the l ¼ 0, 1 equations
reveal that δϕ is an infinitesimal spacetime translation of
the original solution Φωþδω.
Since according to (9) our perturbations are around the

Q-cloud solution Φωþδω, there is implicitly another one-
parameter family of perturbations corresponding to chang-
ing the ω of the Q-cloud solutions. This brings us to five
parameters in total. Within this five-parameter family, no

FIG. 2. Left: plot of Q-cloud profiles σωðrÞ for different values of ω ¼ 0.7, 0.95, 0.995. Right: plots of the potential UðσωðrÞ2Þ and the
effective potential UeffðrÞ ¼ 1

2
ðω2σ2ωðrÞ − UðσωðrÞ2ÞÞ for ω ¼ 0.7.
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two periodic orbits overlap. Repeating the entire analysis
starting with Φ−ω, we simply find the time-reversed
solutions of our previous analysis. Since the image of
the solutions and their time reversals coincide, we obtain
again the same moduli space OQ-cloud. This means that the
moduli space is doubly covered by orbits; this is because
our relativistic scalar field theory has t → −t symmetry.
This double covering is already accounted for in (4) with a
multiplicative factor of 2.

V. DISCUSSION

In this work, we have generalized Bogomolny’s analy-
sis [9] of Heller’s quantum scars [8] from the setting of
ordinary quantum mechanics to quantum field theory. We
focused on the case of scalar fields, and complex scalars
fields, in particular, for which we could find explicit
periodic solitons in the form of Q-clouds that furnish the
scar formula.
We emphasize that the Q-cloud solutions, which con-

tribute quantum scars, are classically unstable; it is unusual
to have unstable solutions that contribute semiclassically to
nondecay processes. In his original work on Q-clouds [21],
Alford expressed this theoretical prior, describing Q-clouds
as being “of little concern to quantum field theorists” due to
their instability. Our work suggests that this assertion is
incorrect.
Going forward, it would be desirable to find other field-

theoretic examples of quantum scars or variants such as
perturbation-induced quantum scars [23–25], along the
lines of our analysis. Perhaps it is possible to find examples
where the functional determinants are computable, even if
only approximately. The evaluation of these determinants
will require some regularization scheme, as is usual in
quantum field theory; the results will have physical import
for ascertaining the enhancement or suppression of quan-
tum scars in the field-theoretic setting. It may be valuable to
find a semiclassical explanation of the putative “scar states”
that were recently discovered numerically in [26] in an
interacting scalar field theory. While we have focused on
scalar fields for simplicity, our analysis should generalize to
other field contents. Along these lines, there are a number
of examples of very nearly periodic orbits called oscil-
lons [27–30], with various field contents. Our scar formula
also generalizes to the nearly periodic setting, and so would
suggest that oscillons may imprint themselves on bands of
energy eigenstates. In fact, recent work [31] shows that
many different kinds of oscillons have an effective field
theory description in terms of scalar field Q-balls and
Q-clouds, so perhaps the effective field theory analysis
could be combined with our analysis in the present
paper.
It would be particularly interesting to consider quantum

scars in quantum field theories with discrete spectra (e.g.,
by considering field theories on compact manifolds). In this
context, a projector onto an energy band would contain a

finite number of eigenstates, and so if the projector is
scarred then the constituent eigenstates would also exhibit
some degree of scarring.
As mentioned in the Introduction, a motivating example

for our work is the quantum many-body scars of [13–17].
To understand whether or not these are quantum scars in the
original sense of Heller [8], we generalized Heller and
Bogomolny’s style of analysis to quantum field theory. This
brings us closer to understanding the recent quantummany-
body scars that occur in Rydberg atom arrays. Such a model
of interacting Rydberg atoms is described by the PXP spin
chain and its variants. If we could formulate a version of the
PXP model in the continuum, say via some IR coarse-
graining or collective field theory approach, then we could
attempt to directly apply the techniques in the present
paper. While it may be possible to apply our methods to the
spin chain model directly (i.e., instead of working in the
continuum), the classical interpretation of putative periodic
orbits may be less clear.
Another application of our results would be to gravity

and, in particular, AdS=CFT. One might suspect that
periodic orbits (e.g., involving particles orbiting black
holes) on the gravity side of the correspondence would
indicate the presence of scarred eigenstates on the con-
formal field theory (CFT) side. There have been initial
explorations in [32,33], chiefly using CFT techniques. It
would be interesting to use our path integral methods to
gain a more refined semiclassical understanding.
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APPENDIX A: REVIEW
OF BOGOMOLNY’S FORMULA

Here we review Bogomolny’s scar formula in few-body
quantum mechanics [9] and provide a comprehensive but
self-contained derivation. We obtain the scar formula via a
series of stationary phase approximations: first we use the
expression for the Van Vleck propagator or semiclassical
Green’s function. Then we Fourier transform from time to
energy variables, performing another stationary phase
approximation in the process. Finally, we perform both
position and energy averaging to arrive at Bogomolny’s
scar formula. A detailed derivation of the Van Vleck
propagator and Gutzwiller trace formula can be found in
textbooks like [1,2], and we utilize aspects of these
analyzes.
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1. Van Vleck propagator in ordinary
quantum mechanics

The semiclassical Van Vleck propagator takes the form
of a sum over all classical paths between qA and qB, where
qA is the initial end point of the path and qB is the final end
point. For d degrees of freedom,

hqBjUðtÞjqAi≈
X
paths c

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πiℏÞd

p ����det
�
∂
2ScðzA;zB;tÞ
∂zA∂zB

�����1=2
zA¼qA

zB¼qB

×exp

�
i
ℏ
ScðqA;qB;tÞ− iνc

π

2

�
: ðA1Þ

Here, ScðqA;qB; tÞ denotes the action with end points qA,
qB evaluated on the classical path c. The reason for the c
subscript is that ScðqA;qB; tÞ can be multivalued on
account of having multiple classical solutions that go from
qA to qB in a time t. As such, we can regard the subscript c
as indicating a choice of branch of Scðq;q0; tÞ, namely, the
branch for which the classical path labeled by c is assigned
the correct action. Also, νc is the Maslov index, which
explicitly keeps track of the number of negative eigenvalues
of ∂2Sc=ð∂qA

∂qBÞ.

Next we transform our Green’s function from time to
energy variables,

GðqA;qB; EÞ ¼ 1

iℏ

Z
∞

0

dteiEt=ℏhqBjUðtÞjqAi: ðA2Þ

Plugging (A1) into (A2) and taking the stationary phase
approximation in t forces

Eþ ∂ScðqA;qB; tÞ
∂t

¼ 0: ðA3Þ

Here, ∂ScðqA;qB;tÞ
∂t ¼ −HðqA;qB; tÞ is the energy of the

classical trajectory beginning at qA at time zero and ending
at qB at time t. We can invert this to solve for t; we call the
solution tc. Here, tc ¼ tcðqA;qB; EÞ is the time it takes to
traverse a classical solution beginning at qA and ending at
qB having energy E, where the solution is restricted to the c
branch of Hamilton’s principal function. Performing a
stationary phase approximation in t for the Green’s func-
tion, we find

GðqA;qB; EÞ ≈ 1

iℏ

X
pathsc

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πiℏÞd−1

p ���� det
�
∂
2ScðqA;qB; tÞ

∂t2

�����−1=2
t¼tc

���� det
�
∂
2ScðzA; zB; tcÞ

∂zA∂zB

�����1=2
zA¼qA

zB¼qB

× exp

�
i
ℏ
ðScðqA;qB; tcÞ þ EtcÞ − iνc

π

2

�
; ðA4Þ

where now νc accounts for a possible additional phase. Next, we perform the Legendre transform from t to E coordinates,

ScðqA;qB; EÞ ¼ ScðqA;qB; tcðqA;qB; EÞÞ þ EtcðqA;qB; EÞ; ðA5Þ

to obtain

GðqA;qB; EÞ ≈ 1

iℏ

X
paths c

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πiℏÞd−1

p ���� det
�
∂
2ScðqA;qB; tÞ

∂t2

�����−1=2
t¼tc

���� det
�
∂
2ScðzA; zB; tcÞ

∂zA∂zB

�����1=2
zA¼qA

zB¼qB

× exp

�
i
ℏ
ScðqA;qB; EÞ − iνc

π

2

�
: ðA6Þ

Above, ScðqA;qB; EÞ ¼ R tc0 dtPcðtÞ · _QcðtÞ is the abbrevi-
ated action of a classical solution ðQcðtÞ;PcðtÞÞ with
energy E, starting at qA and ending at qB. Here, tc ¼
tcðqA;qB; EÞ is the time extent of the orbit.
For our next simplification, we rewrite the amplitude

factor using the following matrix:

 
∂
2Sc

∂zA∂zB
∂
2Sc

∂zA∂E0

∂
2Sc

∂zB∂E0
∂
2Sc
∂E02

!�����zA¼qA

zB¼qB

E0¼E

¼
 
− ∂pA

∂zB − ∂pA

∂E0

∂tc
∂zB

∂tc
∂E0

!�����zA¼qA

zB¼qB

E0¼E

; ðA7Þ

whose determinant corresponds to the change of variables
from ð−pA; tÞ to ðqB; EÞ. By the chain rule for determinants,
the Jacobian for the change of variables can be rewritten as

− det

�
∂ðpA; tÞ
∂ðzB; E0Þ

�����zA¼qA

zB¼qB

E0¼E

¼ − det

�
∂ðpA; tÞ
∂ðzB; tÞ

∂ðzB; tÞ
∂ðzB; E0Þ

�����zA¼qA

zB¼qB

E0¼E

¼
�
det

∂pA

∂qB

�����
zA¼qA

zB¼qB

�
∂
2Sc
∂t2

�−1����
t¼tc

:

ðA8Þ
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Next we use the fact that Hðq;pÞ ¼ E is fixed to see that

∂

∂zB
HðzA;pAðzA; zB; EÞÞ

����
zA¼qA

zB¼qB

¼ 0 ¼ ∂pA

∂zB
·
∂H
∂pA

����
zA¼qA

zB¼qB

⇒
∂
2Sc

∂zB∂zA

����
zA¼qA

zB¼qB

· _qA ¼ 0; ðA9Þ

∂

∂zA
HðzB;pBðzA; zB; EÞÞ

����
zA¼qA

zB¼qB

¼ 0 ¼ ∂H
∂pB ·

∂pB

∂zA

����
zA¼qA

zB¼qB

⇒ _qB ·
∂
2Sc

∂zB∂zA

����
zA¼qA

zB¼qB

¼ 0: ðA10Þ

It is convenient to decompose fluctuations around qA and qB

in the following manner: using similar notation as above,
consider a classical trajectoryQcðtÞ, indexed by c, that goes
from qA to qB in a time t. We can decompose a fluctuation
δqA around qA as δqA

k þ δqA⊥, where δqA
k is along the

classical trajectory and δqA⊥ is orthogonal to it. We adopt
a similar notation for fluctuations around qB. With this
notation at hand, note that the _qA on the far right in (A9) is in
fact Q0

cð0Þ≕ _qA
c , which is parallel to the orbit. As such,

0 ¼ ∂
2ScðzA; zB; EÞ

∂zB∂zA

����
zA¼qA

zB¼qB

· _qA
c ¼ ∂

2ScðzA; zB; EÞ
∂zB∂zAk

����
zA¼qA

zB¼qB

k _qA
ck2

⇒
∂
2ScðzA; zB; EÞ

∂zB∂zAk

����
zA¼qA

zB¼qB

¼ 0: ðA11Þ

Similarly defining Q0
cðtÞ≕ _qB

c , we have

0 ¼ _qB
c ·

∂
2ScðzA;zB;EÞ

∂zB∂zA

����
zA¼qA

zB¼qB

¼ k _qB
c k2

∂
2ScðzA;zB;EÞ

∂zBk ∂z
A

����
zA¼qA

zB¼qB

⇒
∂
2ScðzA;zB;EÞ

∂zBk ∂z
A

����
zA¼qA

zB¼qB

¼ 0: ðA12Þ

These identities allow us to rewrite the determinant as

det

0
BBB@

0 0 ∂
2Sc

∂zAk ∂E
0

0 ∂
2Sc

∂zA⊥∂zB⊥
∂
2Sc

∂zA⊥∂E0

∂
2Sc

∂zBk ∂E
0

∂
2Sc

∂zB⊥∂E0
∂
2Sc
∂E02

1
CCCA

zA¼qA

zB¼qB

E0¼E

¼ −
�
∂tc
∂zAk

∂tc
∂zBk

det

�
∂
2Sc

∂zA⊥∂zB⊥

��
zA¼qA

zB¼qB

; ðA13Þ

where we used the fact that

∂
2Sc

∂zAk ∂E
0 ¼

∂tc
∂zAk

;
∂
2Sc

∂zBk ∂E
0 ¼

∂tc
∂zBk

: ðA14Þ

To understand these expressions, note that for any function
F ¼ FðzA; zBÞ we have

∂F
∂zAk

����
zA¼qA

zB¼qB

≔
_qA
c

j _qA
c j1=22

·
∂F
∂zA

����
zA¼qA

zB¼qB

;

∂F
∂zBk

����
zA¼qA

zB¼qB

≔
_qB
c

j _qB
c j1=22

·
∂F
∂zB

����
zA¼qA

zB¼qB

: ðA15Þ

Accordingly, we have

∂tc
∂zAk

����
zA¼qA

zB¼qB

¼ 1

j _qA
c j1=22

;
∂tc
∂zBk

����
zA¼qA

zB¼qB

¼ 1

j _qB
c j1=22

: ðA16Þ

Thus, the Green’s function may be rewritten as

GðqA;qB; EÞ ≈ 1

iℏ

X
paths c

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πiℏÞd−1

p 1

j _qA
c j1=2j _qB

c j1=2

×

���� det
�
∂
2ScðzA; zB; EÞ

∂zA⊥∂zB⊥

�����1=2
zA¼qA

zB¼qB

× exp

�
i
ℏ
ScðqA;qB; EÞ − iνc

π

2

�
; ðA17Þ

whereweused ∂ScðzA;qB;tÞ
∂zA⊥

���
zA¼qA

¼ ∂ScðqA;zB;EÞ
∂zA⊥

���
zA¼qA

, aswell as

∂ScðqA;zB;tÞ
∂zB⊥

���
zB¼qB

¼ ∂ScðqA;zB;EÞ
∂zB⊥

���
zB¼qB

. We note that our sta-

tionary phase approximation in t given by (A17) is only valid
for qA ≠ qB; in particular, there is an extra term proportional
to δðqA − qBÞ that vanishes forqA ≠ qB. Thismeanswehave
to bemore careful about our approximations belowwhenwe
compute the trace of the Green’s function wherein we
set qA ¼ qB.

2. Trace of the Van Vleck propagator

Let us commence with taking the trace over the end
points of the Van Vleck propagator. The starting point is the
following approximation, which is valid in the semiclass-
ical regime [1,34]:

Z
∞

t0

dtAðtÞeiBðtÞ=ℏ ≈ iAðt0ÞeiBðt0Þ=ℏ
B0ðt0Þ

þ ½stationary phase contributions�:
ðA18Þ

We can apply this to the trace of the Green’s function and
write the result as

JORDAN COTLER and ANNIE Y. WEI PHYS. REV. D 107, 125005 (2023)

125005-8



Z
ddqGðq;q;EÞ≈

Z
ddqG0ðq;q;EÞþ

Z
ddqGoscðq;q;EÞ

¼G0ðEÞþGoscðEÞ; ðA19Þ

whereG0ðEÞ corresponds to the first term on the right-hand
side of (A18), and GoscðEÞ corresponds to the stationary
phase terms. For G0ðEÞ we will take the t0 → 0þ limit of

1

iℏ

Z
∞

t0

dt
Z

ddqhqje−iðH−EÞt=ℏjqi

≈
Z

ddq
hqje−iðH−EÞt0=ℏjqi
E −Hðq;q; t0Þ

ðA20Þ

¼
Z

ddqddq0 δðq − q0Þ
E −Hðq;q0; t0Þ

hqje−iðH−EÞt0=ℏjq0i

ðA21Þ

¼
Z

ddqddp
ð2πℏÞd ddq0 e−ip·ðq−q0Þ=ℏ

E −Hðq;q0; t0Þ
hqje−iðH−EÞt0=ℏjq0i

ðA22Þ

¼
Z

ddqddp
ð2πℏÞd ddq0 e−ip·ðq−q0Þ=ℏ

E −Hðq;q0; t0Þ
N t0e

iðSðq;q0;t0Þ−Et0Þ=ℏ;

ðA23Þ

where N t0 is a normalization depending on t0. The q0

integral admits a stationary phase approximation, which
sets p ¼ −∂q0Sðq;q0; t0Þ. This forces the variable p to be
identified with the momentum, and so the above approx-
imately equals

Z
ddqddp
ð2πℏÞd ddq0 e

−ip·ðq−q0Þ=ℏ

E −Hðq;pÞN t0e
iðSðq;q0;t0Þ−Et0Þ=ℏ

¼
Z

ddqddp
ð2πℏÞd ddq0 e

−ip·ðq−q0Þ=ℏ

E −Hðq;pÞ hqje
−iðH−EÞt0=ℏjq0i:

ðA24Þ

Finally, taking the limit t0 → 0þ, we have
hqje−iðH−EÞt0=ℏjq0i→ δðq− q0Þ and so the integral becomesZ

ddqddp
ð2πℏÞd ddq0 e

−ip·ðq−q0Þ=ℏ

E −Hðq;pÞ δðq − q0Þ

¼
Z

ddqddp
ð2πℏÞd

1

E −Hðq;pÞ : ðA25Þ

In summary, we have found

G0ðEÞ ≈
Z

ddqddp
ð2πℏÞd

1

E −Hðq;pÞ : ðA26Þ

Next we consider the GoscðEÞ term, which comes from
performing a stationary phase analysis of the trace of the
Green’s function. We haveZ

ddqGoscðq;q; EÞ

¼ 1

iℏ

X
orbits c

Z
ddq

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πiℏÞd−1

p 1

j _qj

×

���� det
�
∂
2ScðqA;qB; EÞ

∂qA⊥∂qB⊥

�����1=2
qA¼qB¼q

× exp

�
i
ℏ
Scðq;q; EÞ − iνc

π

2

�
: ðA27Þ

Since the initial and final points of the trajectory are taken
to be q, we have set _qA ¼ _qB ¼ _q in the formula. Applying
the stationary phase approximation in q yields

0 ¼
�
∂ScðqA;qB; EÞ

∂qA þ ∂ScðqA;qB; EÞ
∂qB

�
qA¼qB¼q

¼ −pA þ pB: ðA28Þ
Thus, the stationary points belong to periodic orbits
beginning and ending at ðqA;pAÞ ¼ ðqB;pBÞ. Suppose
that ðqc;pcÞ is a point along a periodic orbit. Then
letting q ¼ qc þ δq⊥ be a small fluctuation about qc
perpendicular to the periodic orbit, we have the expansion

Scðq;q; EÞ ≈
�
Scðqc;qc; EÞ þ

1

2
δq⊥ ·

�
∂
2ScðqA;qB; EÞ

∂qA⊥∂qA⊥
þ 2

∂
2ScðqA;qB; EÞ

∂qA⊥∂qB⊥
þ ∂

2ScðqA;qB; EÞ
∂qB⊥∂qB⊥

�
qA¼qB¼qc

· δq⊥
�
: ðA29Þ

We then use this to write the trace of the Green’s function as

Z
ddqGoscðq;q; EÞ ≈

1

iℏ

X
orbits c

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πiℏÞd−1

p Z
Tc

0

dt
Z

dd−1δq⊥
���� det

�
∂
2ScðqA;qB; EÞ

∂qA⊥∂qB⊥

�����1=2
qA¼qB¼QcðtÞ

× exp

�
i
ℏ

�
ScðQcðtÞ;QcðtÞ; EÞ þ

1

2
δq⊥ ·

�
∂
2ScðqA;qB; EÞ

∂qA⊥∂qA⊥
þ 2

∂
2ScðqA;qB; EÞ

∂qA⊥∂qB⊥

þ ∂
2ScðqA;qB; EÞ

∂qB⊥∂qB⊥

�
qA¼qB¼QcðtÞ

· δq⊥
�
− iνc

π

2

�
; ðA30Þ
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where here we are summing over periodic orbits c with period Tc. Integrating over the fluctuations δq⊥ perpendicular to the
orbit QcðtÞ at time t, we are left with

Z
ddqGoscðq;q; EÞ ≈

1

iℏ

X
orbits c

Z
Tc

0

dt
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðMðQcðtÞÞ − 1Þjp exp

�
i
ℏ
ScðQcðtÞ;QcðtÞ; EÞ − iνc

π

2

�
; ðA31Þ

where M ¼ MðQcðtÞÞ is the monodromy matrix for the
closed orbit QcðtÞ [1], and νc has been augmented to
accommodate for the number of negative eigenvalues of the
determinant prefactor. A key property of the monodromy
matrix for a closed orbit is that its spectrum is independent
of where it is evaluated along the closed orbit, namely,
specðMðQcðtÞÞÞ ¼ specðMðQcðt0ÞÞÞ for any t and t0. More-
over, the term ScðQcðtÞ;QcðtÞ; EÞ appearing in the ex-
ponential in (A31) likewise satisfies ScðQcðtÞ;QcðtÞ; EÞ ¼
ScðQcðt0Þ;Qcðt0Þ; EÞ, since the action only depends on
the total trajectory. We will often write the action
as Scðqc;qc; EÞ where Qð0Þ ¼ qc is taken to be a
“representative” point on the closed orbit QcðtÞ.
In light of these above facts about time dependencies, we

observe that the integrand of the t integral in (A31) actually
does not depend on T at all; as such, we can perform the
t integral to findZ

ddqGoscðq;q; EÞ ≈
1

iℏ

X
orbits c

Tcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðMðQcÞ − 1Þjp
× exp

�
i
ℏ
Scðqc;qc; EÞ − iνc

π

2

�
:

ðA32Þ
Finally, adding Gosc to G0, we obtainZ

ddqGðq;q;EÞ≈ 1

ð2πℏÞd
Z

ddqddp
1

E−Hðq;pÞ
þ 1

iℏ

X
orbitsc

TcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetðMðQcÞ−1Þjp
×exp

�
i
ℏ
Scðqc;qc;EÞ− iνc

π

2

�
: ðA33Þ

This is the Gutzwiller trace formula.

3. Bogomolny’s scar formula

The scar formula of Bogomolny [9], which involves both
position and energy averaging, ultimately computes the
expression

hjψðqÞj2iE;Δ ¼
P

nhjψnðqÞj2iΔδεðE − EnÞP
nδεðE − EnÞ

: ðA34Þ

Here, the ψnðqÞ are energy eigenfunctions, the expression
hjψnðqÞj2iΔ indicates position averaging over a window of
size Δ, and

δεðxÞ ≔
1

π

ε

ε2 þ x2
ðA35Þ

is a δ function, which is smeared out to have width ε. Thus,
(A34) is an average over position-smeared eigenfunctions
in the energy window ½E − ε=2; Eþ ε=2�.
Our goal is to write hjψðqÞj2iE;Δ in terms of the Green’s

function GðqA;qB; EÞ. To see how to do this, we first
observe a few properties of the Green’s function. To
simplify the analysis slightly (and in a manner that will
be appropriate for the field-theoretic setting), we assume
that, for any triple qA;qB; E with qA ≠ qB, there is only a
single orbit starting at qA and ending at qB having energy E.
For qA ¼ qB and fixed E, we assume that if there are any
nontrivial orbits (i.e., not a fixed point of the dynamics)
beginning and ending at qA ¼ qB with energy E, then there
must be exactly two such orbits that are time reverses of one
another. In particular, it is sufficient to assume that the
classical system has time-reversal symmetry. These con-
ditions imply that there is a single branch of ScðqA;qB; EÞ
that correctly reproduces the actions of all the classical
trajectories. As such, we will drop the c subscript from
ScðqA;qB; EÞ henceforth. It is easy to reintroduce the
multivalued structure if needed.
First, note that the Green’s function solves the equation

ðEþ iε −Hðq̂B; p̂BÞÞGðqA;qB; EÞ ¼ δðqB − qAÞ; ðA36Þ

and so the solution is

GðqA;qB; Eþ iεÞ ¼
X
n

ψnðqAÞψ�
nðqBÞ

Eþ iε − En
: ðA37Þ

It follows immediately that

−
1

π
ImGðq;q; Eþ iεÞ ¼

X
n

jψnðqÞj2δεðE − EnÞ; ðA38Þ

and moreover the trace gives

−
1

π
Im
Z

ddqGðq;q; Eþ iεÞ ¼
X
n

δεðE − EnÞ: ðA39Þ

Putting aside for the moment ourΔ-spatial smearing, (A38)
and (A39) reproduce the numerator and denominator
of (A34).
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We essentially already computed the denominator termP
n δεðE − EnÞ in the subsection above, albeit for ε → 0.

Working instead at small but finite ε, we obtain

X
n

δεðE − EnÞ ≈
1

ð2πℏÞd
Z

ddqddp
1

Eþ iε −Hðq;pÞ

þ 1

iℏ

X
orbits c

Tcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðMðQcÞ − 1Þjp
× exp

�
i
ℏ
Sðqc;qc; EÞ − iνc

π

2

�
× expð−εTc=ℏÞ: ðA40Þ

Notice the presence of the expð−εTc=ℏÞ, which suppresses
orbits with large periods; this term was not present in (A33)
where ε was zero.
We now turn to the numerator of (A34), which has a

Gaussian smearing of width Δ. Suppose that Tmax is the
period of the longest orbitwith energy in ½E − ε=2; Eþ ε=2�.
Moreover, suppose that our classical Hamiltonian Hðq;pÞ
describes nonrelativistic particles of m. Then we take

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax

m

r �
ℏ

ETmax

�
γ

for any
1

4
< γ <

1

2
; ðA41Þ

which we will justify shortly. A key assumption of our
analysis is that we are in a semiclassical regime where
ETmax=ℏ is large. The main role of theΔ-spatial smearing is
to pick out periodic orbits (or very nearly periodic orbits) and
suppress the contribution of nonperiodic orbits to the scar
formula. Explicitly, we compute

X
n

hjψnðqÞj2iΔδεðE− EnÞ

¼ −
1

π
Im

�
1

ð2πΔ2Þd=2
Z

ddzGðz;z; Eþ iεÞe− 1

2Δ2
ðq−zÞ2

	
:

ðA42Þ

Let us consider the argument of the Imf·g and analyze the
integral. We have

1

ð2πΔ2Þd=2
Z

ddzGðz; z; Eþ iεÞe− 1

2Δ2
ðq−zÞ2

≈
1

ð2πΔ2Þd=2
1

ð2πℏÞd
Z

ddzddp
1

Eþ iε −Hðz;pÞ e
− 1

2Δ2
ðq−zÞ2

þ 2

ð2πΔ2Þd=2
1

iℏ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πiℏÞd−1
p Z

ddz
1

j_zj
���� det

�
∂
2SðzA; zB; EÞ
∂zA⊥∂zB⊥

�����1=2
zA¼zB¼z

e
i
ℏSðz;z;EÞ−iνðz;z;EÞπ2−1

ℏεTðz;z;EÞe−
1

2Δ2
ðq−zÞ2 : ðA43Þ

The term in the last line has a factor of 2 to account
for the time reverse of orbits beginning and ending at
the same z, with energy E. We have also dropped
multiplicative ð1þOðε=EÞÞ corrections on the right-
hand side. For each integral on the right-hand side, the
only part of the integration domain that substantially
contributes is

kq − zk2 ≲ Δ: ðA44Þ

Since Δ <
ffiffiffiffiffiffiffiffiffi
ℏTmax
m

q
ð ℏ
ETmax

Þ1=4 for ETmax=ℏ large, we can

make the approximation

1

ð2πΔ2Þd=2
1

ð2πℏÞd
Z

ddzddp
1

Eþ iε −Hðz;pÞ e
− 1

2Δ2
ðq−zÞ2

≈
1

ð2πℏÞd
Z

ddp
1

Eþ iε −Hðq;pÞ : ðA45Þ

For the second integral on the right-hand side of (A43),
we can make a similar approximation as follows:

2

ð2πΔ2Þd=2
1

iℏ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πiℏÞd−1
p Z

ddz
1

j_zj
���� det

�
∂
2SðzA; zB; EÞ
∂zA⊥∂zB⊥

�����1=2
zA¼zB¼z

e
i
ℏSðz;z;EÞ−iνðz;z;EÞπ2−1

ℏεTðz;z;EÞe−
1

2Δ2
ðq−zÞ2

≈
2

iℏ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πiℏÞd−1
p 1

j _qj
���� det

�
∂
2SðqA;qB; EÞ
∂qA⊥∂qB⊥

�����1=2
qA¼qB¼q

e−iνðq;q;EÞπ2−1
ℏεTðq;q;EÞ ·

1

ð2πΔ2Þd=2
Z

ddze
i
ℏSðz;z;EÞe−

1

2Δ2
ðq−zÞ2 : ðA46Þ

Focusing on the residual integral on the right-hand side, it is natural to expand Sðz; z; EÞ around z ¼ q. We have
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1

ð2πΔ2Þd=2
Z

ddze
i
ℏSðz;z;EÞe−

1

2Δ2
ðq−zÞ2

≈
1

ð2πΔ2Þd=2
Z

ddze
− 1

2Δ2
ðq−zÞ2þ i

ℏ

�
Sðq;q;EÞþðz−qÞ·

�
∂SðzA;zB;EÞ

∂zA
þ∂SðzA;zB;EÞ

∂zB

�
zA¼zB¼q

þ1
2
ðz−qÞ·AðqÞ·ðz−qÞþ���

�
; ðA47Þ

where

�
∂SðzA; zB; EÞ

∂zA
þ ∂SðzA; zB; EÞ

∂zB

�
zA¼zB¼q

¼ −pA þ pB ðA48Þ

is the difference between the initial and final momenta of the trajectory beginning and ending at q, and we define the d × d
matrix AijðqÞ by

AijðqÞ ≔
�
∂
2SðzA; zB; EÞ
∂zAi ∂z

A
j

þ 2
∂
2SðzA; zB; EÞ
∂zAi ∂z

B
j

þ ∂
2SðzA; zB; EÞ
∂zBi ∂z

B
j

�
zA¼zB¼q

: ðA49Þ

Defining

kAðqÞk ≔
m

ℏTmax
sup

kvk2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax=m

p jv ·AðqÞ · vj; ðA50Þ

we show in Appendix D that we have

kAðqÞk≲ m
Tmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ETmax

ℏ

r
: ðA51Þ

Note that kAk ∝ maxfjλmaxj; jλminjg, where λmax and λmin
are the largest and smallest eigenvalues of A, respectively.
We assume that the norms of the higher-order derivatives of
the abbreviated action evaluated on periodic orbits are

similarly bounded by m
Tmax

ffiffiffiffiffiffiffiffiffi
ETmax

ℏ

q
. Since we have imposed

Δ <
ffiffiffiffiffiffiffiffiffi
ℏTmax
m

q
ð ℏ
ETmax

Þ1=4, the term i
2ℏ ðq − zÞ ·AðqÞ · ðq − zÞ

as well as the higher-order terms contribute negligibly to
the integral in the regime that ETmax=ℏ is large. Then we
are left with

≈
1

ð2πΔ2Þd=2
Z

ddze−
1

2Δ2
ðq−zÞ2þ i

ℏðSðq;q;EÞþðq−zÞ·ð−pAþpBÞÞ:

ðA52Þ

Performing the z integral, we find

exp

�
i
ℏ
Sðq;q; EÞ − 1

2

Δ2

ℏ2
ðpB − pAÞ2

�
: ðA53Þ

But this is only sizable when

kpB − pAk2 ≲ ℏ
Δ
; ðA54Þ

which is a nontrivial bound since Δ >
ffiffiffiffiffiffiffiffiffi
ℏTmax
m

q
ð ℏ
ETmax

Þ1=2. To
unpack this, let us rewrite Δ as

Δ ¼ ℏ
p̄

�
ETmax

ℏ

�1
2
−γ

for any
1

4
< γ <

1

2
; ðA55Þ

where

p̄2 ≔ mE ðA56Þ

can be regarded as squared momentum associated with E.
Then we can rewrite (A54) as

kpB − pAk2 ≲ p̄

�
ℏ

ETmax

�1
2
−γ
: ðA57Þ

In this regime, we see that (A53) can be replaced with

exp

�
i
ℏ
Sðq;q; EÞ

�
: ðA58Þ

Note that there is an intermediate regimewherekpB−pAk2¼
cℏ
Δ, where c ∼ 1. In this regime, exp ð− 1

2
Δ2

ℏ2 ðpB − pAÞ2Þ only
gives rise to a moderate amount of decay. We will not
consider this regime in our analysis here; i.e., we will
assume c ≪ 1 so that we can use (A58) instead of (A53).
Since the above formula assumes that kpB − pAk2 ≲ ℏ

Δ
or, equivalently,






�
∂SðzA; zB; EÞ

∂zA
þ ∂SðzA; zB; EÞ

∂zB

�
zA¼zB¼q






2

≲ ℏ
Δ
; ðA59Þ

it is natural to ask: for which q does this inequality hold? A
partial answer is that if we let O be the union of the images
of all exactly periodic solutions of the classical equations of
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motion, then the inequality in (A59) occurs for q in the
vicinity of O. However, there can be other points q that
achieve the desired inequality but are not near O. If the
domain of q was compact, then we could simply make ℏ
small enough to avoid the latter possibility. (In the billiards
setting of Bogomolny [9], this compactness condition
holds.) If the domain of q is not compact, it could be
the case that there are infinitely many points where the left-
hand side of (A59) is arbitrarily small. This is not allowed if
the left-hand side of (A59) is uniformly bounded, but in
general, we do not have this guarantee. Let us avoid this
possibility for now and focus only on the former setting
where we look at points near O.
To proceed, we make some reasonable assumptions

about O. Suppose that it is a disjoint union of smooth,
connected manifolds of nonzero codimension, where the
minimum over the pairwise distances between the mani-
folds is lower bounded by a nonzero constant. Consider one
of these manifolds that comprises a single connected
component, calling it M, with dimension k where
1 ≤ k < d. Let us focus on the vicinity of q in M, so
that locally M looks like a k hyperplane.
Now we pick some q nearM for which (i) q ¼ qc þ δq

where qc ∈ M, and (ii) kδqk2 ≲ ℏ
Δ. In fact, this implies the

inequality in (A59) for the following reason. We have

�
∂SðzA; zB; EÞ

∂zA
þ ∂SðzA; zB; EÞ

∂zB

�
zA¼zB¼q

≈ δq ·AðqcÞ ðA60Þ

because ð∂SðzA;zB;EÞ
∂zA þ ∂SðzA;zB;EÞ

∂zB Þ
zA¼zB¼qc

¼ 0, and since the

higher derivatives of S at qc are tensorially contracted with
δq’s which leads to suppression in the semiclassical regime.
The norm of the right-hand side is upper bounded by

kδqk2kAðqcÞk≲p̄ð ℏ
ETmax

Þ1=4 because kAðqcÞk≤ m
Tmax

ffiffiffiffiffiffiffiffiffi
ETmax

ℏ

q
.

But then (A60) implies




�
∂SðzA; zB; EÞ

∂zA
þ ∂SðzA; zB; EÞ

∂zB

�
zA¼zB¼q






2

≲ ℏ
Δ
; ðA61Þ

which indeed reproduces the inequality in (A59) as
claimed.
In the aforementioned regimes of (i) and (ii), we have

exp

�
i
ℏ
Sðq;q; EÞ

�

≈ exp

�
i
ℏ
Sðqc;qc; EÞ þ

i
2ℏ

δq ·AðqcÞ · δq
�
; ðA62Þ

where the higher-order terms are dropped since
kδqk2 ≲ ℏ

Δ. Let us make a few observations about the
above equation. First, we observe that since the gradient

ð∂SðzA;zB;EÞ
∂zA þ ∂SðzA;zB;EÞ

∂zB Þ
zA¼zB¼q

is constant (i.e., zero) along

M, tangent vectors to M are in the kernel of the
Hessian AðqcÞ for any qc ∈ M. Decomposing Rd ≃
TqcM ⊕ NqcM, where NqcM is the normal bundle to
M at qc, we can can orthogonally decompose δq as
δq ¼ δqk þ δq⊥ so that the right-hand side of (A62)
becomes

exp

�
i
ℏ
Sðqc;qc; EÞ þ

i
2ℏ

δq⊥ ·AðqcÞ · δq⊥
�
: ðA63Þ

However, note that q only equals qc þ δq⊥ if δqk ¼ 0. But
we can find a point q0

c on M that is the point on the
manifold closest to q; this will mean that q ¼ q0

c þ δq0⊥
since δq0

k ¼ 0. We will have that the right-hand side of

(A62) equals

exp

�
i
ℏ
Sðq0

c;q0
c; EÞ þ

i
2ℏ

δq0⊥ ·Aðq0
cÞ · δq0⊥

�
: ðA64Þ

This is our desired expression.
For self-consistency, we would like to check that,

within the regime of validity of our approximations,
(A63) is close to (A64). First, we observe that since

ð∂SðzA;zB;EÞ
∂zA þ ∂SðzA;zB;EÞ

∂zB Þ
zA¼zB¼q

¼ 0 for q in M, we must

have Sðqc;qc; EÞ ¼ Sðq0
c;q0

c; EÞ. This can be readily seen
by the fundamental theorem of calculus: if rðtÞ is a
differentiable path satisfying rð0Þ¼qc and rð1Þ ¼ q0

c, then
Sðq0

c;q0
c;EÞ−Sðqc;qc;EÞ¼

R
1
0 dtr

0ðtÞ ·∇SðrðtÞ;rðtÞ;EÞ¼0.
Next, we note that, since δq and δq0 only differ in the
directions along the tangent space to the manifold, we have
δq⊥ ¼ δq0⊥. Finally, since the third- and higher-order

derivatives of S are assumed to be at most m
Tmax

ffiffiffiffiffiffiffiffiffi
ETmax

ℏ

q
in

norm, it follows that the Hessian does not significantly vary
when we change q0

c to qc since they are at most a distance
of ℏ

Δ apart; in particular, the change in the Hessian is
subleading relative to the terms shown in the exponential
above. Thus, we can replace Aðq0

cÞ with AðqcÞ.
In summary, we have the formula
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1

ð2πΔ2Þd=2
Z

ddze
i
ℏSðz;z;EÞe−

1

2Δ2
ðq−zÞ2

≈

8<
:

e
i
ℏSðqc;qc;EÞþ i

2ℏδq⊥·AðqcÞ·δq⊥ if q ¼ qc þ δq⊥where qc ∈ O; δq⊥ ∈ Nqc
O; kδq⊥k2 ≲ ℏ

Δ

0 if






�

∂SðzA;zB;EÞ
∂zA þ ∂SðzA;zB;EÞ

∂zB

�
zA¼zB¼q






2

≫ ℏ
Δ

: ðA65Þ

Note that there are some domains of q not covered by the above, namely, kð∂SðzA;zB;EÞ
∂zA þ ∂SðzA;zB;EÞ

∂zB Þ
zA¼zB¼q

k
2
≈ ℏ

Δ, and also

kδq⊥k2 ≳ ℏ
Δ but kð∂SðzA;zB;EÞ

∂zA þ ∂SðzA;zB;EÞ
∂zB Þ

zA¼zB¼q
k
2
≲ ℏ

Δ. The first type of domain is not very interesting and just corresponds

to a regime in which we need to use (A53) instead of (A58) since we are considering points q, which are a bit too far away
from exactly periodic orbits. The second type of domain is more interesting and corresponds to certain kinds of nearly
periodic orbits that are not nearby any exactly periodic orbits. We will comment on this further below.
Finally, let us put everything together to get our equation for quantum scars. Defining

PmicroðqÞ ≔
R ddp

ð2πℏÞd δεðE −Hðq;pÞÞR
ddz ddp

ð2πℏÞd δεðE −Hðz;pÞÞ
ðA66Þ

and also

δPscarðqc; δq⊥Þ ≔ −
2

πℏ
R
ddz ddp

ð2πℏÞd δεðE −Hðz;pÞÞ
Im

�
1

i
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πiℏÞd−1
p 1

j _qj
���� det

�
∂
2SðqA;qB; EÞ
∂qA⊥∂qB⊥

�����1=2
qA¼qB¼q

×exp

�
−
ε

ℏ
Tðqc;qc; EÞ − iνðqc;qc; EÞ

π

2
þ i
ℏ

�
Sðqc;qc; EÞ þ

1

2
δq⊥ ·AðqcÞ · δq⊥

��	
; ðA67Þ

we have our desired equation

hjψðqÞj2iE;Δ ≈

8<
:

PmicroðqÞ þ δPscarðqc; δq⊥Þ if q ¼ qc þ δq⊥where qc ∈ O; δq⊥ ∈ NqcO; kδq⊥k2 ≲ ℏ
Δ

PmicroðqÞ if






�

∂SðzA;zB;EÞ
∂zA þ ∂SðzA;zB;EÞ

∂zB

�
zA¼zB¼q






2

≫ ℏ
Δ

: ðA68Þ

The ≈ means that the formula includes multiplicative
corrections ð1þOðεE ; ð ℏ

ETmax
ÞγÞÞ, where the formula is

further subject to our assumptions listed above. We will
summarize these assumptions here. We have assumed that
(i) for each triplet qA;qB; E with qA ≠ qB, there is a single
classical trajectory starting at qA, ending at qB, and having
energy E; if there are any nontrivial orbits beginning and
ending at qA ¼ qB with energy E, then there must be
exactly two that are time reverses of one another;

(ii) kAðqÞk ≤ m
Tmax

ffiffiffiffiffiffiffiffiffi
ETmax

ℏ

q
for q ∈ O and similarly for the

third- and higher-order derivatives of S; (iii) O is a disjoint
union of smooth manifolds (which by definition do not
have any self-intersections, otherwise they would not be
smooth); and (iv) the only values of q for which

kð∂SðzA;zB;EÞ
∂zA þ ∂SðzA;zB;EÞ

∂zB Þ
zA¼zB¼q

k
2
≲ ℏ

Δ are those that are

close to O.

We end this section with a comment about certain kinds
of nearly periodic orbits. Suppose that we found a
collection of nearly periodic orbits whose image in
position space forms a manifold Onearly, but such that
none of the nearly period orbits sit near any exactly
periodic orbits. By “nearly periodic” we mean that the
orbits begin and end at the same spatial point and satisfy

kð∂SðzA;zB;EÞ
∂zA þ∂SðzA;zB;EÞ

∂zB Þ
zA¼zB¼q

k
2
≲ ℏ

Δ. Then, for q’s on or

near Onearly, we could write an essentially identical expres-
sion for hjψðqÞj2iE;Δ as the boxed scar formula above.

APPENDIX B: DERIVATION OF QUANTUM
SCAR FORMULA FOR A QUANTUM

FIELD THEORY

In this appendix, we generalize Bogomolny’s scar
formula [9] to the quantum field theory setting. Our

JORDAN COTLER and ANNIE Y. WEI PHYS. REV. D 107, 125005 (2023)

125005-14



analysis here closely mirrors that of Appendix A above, but
is reformulated to work in field theory. Along the way, we
will require field-theoretic versions of the Van Vleck
propagator and Gutzwiller trace formula; we derive these
results by adapting the analyses in [1,2].

1. Notation in field theory

Here, we will consider complex scalar fields in
dþ 1 spacetime dimensions with spatial profiles ϕðxÞ ¼
1ffiffi
2

p ðϕ1ðxÞ þ iϕ2ðxÞÞ. It will often be convenient to treat this
as a two-component object ϕ ≔ ðϕ1ðxÞ;ϕ2ðxÞÞ. We will
use a similar bolded notation for π ≔ ðπ1ðxÞ; π2ðxÞÞ.
It is useful to introduce two different kinds of norms.

First, we have a more ordinary 2-norm on R2, given by

kða; bÞk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
: ðB1Þ

For instance, we will sometimes write expressions like

kϕAðxÞ − ϕBðxÞk22 ¼ ðϕA
1 ðxÞ − ϕB

1 ðxÞÞ2
þ ðϕA

2 ðxÞ − ϕB
2 ðxÞÞ2: ðB2Þ

Another very useful norm for our analysis is a type of L2

norm for two-component functions f ðxÞ ¼ ðf1ðxÞ; f2ðxÞÞ,
namely,

kfkL2 ≔
�Z

ddxðf1ðxÞ2 þ f2ðxÞ2Þ
�

1=2
: ðB3Þ

This norm has an associated inner product, given by

hf ; giL2 ≔
Z

ddxðf1ðxÞg1ðxÞ þ f2ðxÞg2ðxÞÞ: ðB4Þ

This inner product will be so useful that, in the field theory
analysis below, we will simply define the dot product
between two vector-valued functions as

f · g ≔ hf ; giL2
: ðB5Þ

Similarly, if we have some kernel Aijðx; yÞ for i, j ¼ 1, 2,
then we use the notation

f · A · g ≔
Z

ddxddy
X2
i;j¼1

fiðxÞAijðx; yÞgjðyÞ ðB6Þ

and, relatedly,

A · g ≔
Z

ddy
X2
j¼1

Aijðx; yÞgjðyÞ: ðB7Þ

We have an analogous expression for f · A.

Next, we require some functional derivative notation,
which will interface well with our L2 inner product
notation. Given a functional F ½f ðxÞ�, we use the functional
derivative notation δF

δf to denote the infinite-dimensional

vector with components δF
δfiðxÞ for i ¼ 1, 2 and x ∈ Rd. This

is analogous to vector derivative notation in finite dimen-
sions. If G½gðxÞ� is another functional, then using our dot
product notation we have

δF
δf

·
δG
δg

¼
Z

ddx
X2
i¼1

δF
δfiðxÞ

δG
δgiðxÞ

: ðB8Þ

These notations will make our quantum field-theoretic
derivations look more like the ordinary quantum mechani-
cal setting.

2. Van Vleck propagator in quantum field theory

The derivation of the scar formula in quantum field
theory proceeds analogously to the derivation in the
ordinary quantum mechanical setting in Appendix A.
We start by deriving the Van Vleck propagator, which
we subsequently transform from time to energy variables.
The scar formula is then obtained by a functional smearing
over field configurations in conjunction with an energy
average over a window ½E − ε=2; Eþ ε=2�. As explained
above, we restrict our attention to complex scalar field
theories in dþ 1 spacetime dimensions; an analysis for
real-valued scalar field theories is essentially identical. We
further assume our complex scalar field theory has time-
reversal symmetry.
We begin by approximating the field-theoretic propagator,

hϕBjUðtÞjϕAi ¼
Z

Φðx;tÞ¼ϕBðxÞ

Φðx;0Þ¼ϕAðxÞ
½dΦ� exp

�
i
ℏ
S½Φ�

�
: ðB9Þ

Some explanation of our terminology is required. In field
theory, the propagator usually denotes the two-point
function of fields (usually in the ground state), e.g.,
hΩjΦ̂ðx; tÞΦ̂ðy; 0ÞjΩi, where we have written the operators
in the Heisenberg picture. This two-point function depends
on the initial and final times, as well as x and y. By contrast,
we will be interested in K½t;ϕB; 0;ϕA� ≔ hϕBjUðtÞjϕAi,
which not only depends on the initial and final times, but is
also a functional of the field configurations ϕAðxÞ and
ϕBðxÞ. Our goal is to develop the Van Vleck formula for
K½t;ϕB; 0;ϕA� and, thereafter, a Gutzwiller trace formula
based upon it. A useful reference for the Van Vleck
propagator in the ordinary quantum mechanical setting
is [35], which emphasizes a symplectic geometry point of
view. Below we will use field-theoretic generalizations of
parts of [35].
It is perhaps most intuitive to motivate the Van Vleck

propagator in field theory in an anachronistic way, starting
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with the path integral. (Indeed, the Van Vleck propagator in
ordinary quantum mechanics predates Feynman’s path
integral for ordinary quantum mechanics by two decades.)
We observe that (B9) can be evaluated in the path integral
framework using a stationary phase approximation as

hϕBjUðtÞjϕAi ≈
X
paths c

1ffiffiffiffiffiffi
Dc

p e
i
ℏScðϕA;ϕB;tÞ; ðB10Þ

where we are summing over classical paths c that begin at
ϕA at time zero and end at ϕB at time t. Above,
ScðϕA;ϕB; tÞ denotes the classical action of the path c,
i.e., Hamilton’s principal function (here it is a functional),
and 1=

ffiffiffiffiffiffi
Dc

p
denotes a corresponding functional determi-

nant factor. Let us regard the c in ScðϕA;ϕB; tÞ as
designating a choice of “branch” of Hamilton’s principal
function; the function is multivalued on account of having
multiple classical paths that begin at ϕA and end at ϕB in
the same amount of time. Our desired generalization of the
Van Vleck formula comes about by establishing that

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dc½ϕB; t;ϕA; 0�

p
¼ 1

ð2πiℏÞV
�
det

δ2ScðχA; χB; tÞ
δχAδχB

�
1=2

χA¼ϕA

χB¼ϕB

e−iνc
π
2; ðB11Þ

where V is the number of points in space and νc is the
Maslov index. Let us analyze a single term in the sum
in (B10), e.g., for a fixed branch c of Hamilton’s principal
function that contains a single classical path going from ϕA

to ϕB in a time t. If we consider the classical path up to an
infinitesimal amount of time δt, then the end point will be
some ϕ̃B. Then, we have

1ffiffiffiffiffiffiffiffiffiffi
Dc;δt

p e
i
ℏScðϕA;ϕ̃B;δtÞ ≈

�
1

2πiℏδt

�
V
exp

�
i
ℏ

�
1

2δt
kϕ̃B − ϕAk22

−
�
1

2
∇ϕ̃B ·∇ϕ̃B þ Vðϕ̃BÞ

�
δt

��
:

ðB12Þ

Letting πðxÞ be the momentum conjugate to ϕðxÞ, for
infinitesimal times we have

πAi ðxÞ ¼ −
δScðϕA; ϕ̃B; δtÞ

δϕA
i ðxÞ

¼ 1

δt
ðϕ̃B

i ðxÞ − ϕA
i ðxÞÞ; ðB13Þ

δπAi ðxÞ
δϕ̃B

j ðyÞ
¼ 1

δt
δijδðx − yÞ; ðB14Þ

det
δπAi ðxÞ
δϕ̃B

j ðyÞ
¼
�
1

δt

�
2V
; ðB15Þ

where the factor of 2 in the exponent of (B15) accounts
for the fact that the complex scalar has two components.
The infinitesimal-time propagator in (B12) can then be
written as

1ffiffiffiffiffiffiffiffiffiffi
Dc;δt

p e
i
ℏScðϕA;ϕ̃B;δtÞ ¼ 1

ð2πiℏÞV
���� det δπA

δϕ̃B

����1=2ei
ℏScðϕA;ϕ̃B;δtÞ;

ðB16Þ

where equality here is meant in the sense of the infinitesi-
mal δt limit. We have opted to put absolute values around
the determinant term since it is already positive. We would
like to generalize this formula to noninfinitesimal times.
Let us suggestively write

1ffiffiffiffiffiffiffiffi
Dc;t

p e
i
ℏScðϕA;ϕB;tÞ ¼ Fcðϕ̃B; δt;ϕB; tÞ 1ffiffiffiffiffiffiffiffiffiffi

Dc;δt

p
× e

i
ℏðScðϕ̃B;ϕB;t−δtÞþScðϕA;ϕ̃B;δtÞÞ ðB17Þ

or, equivalently,

1ffiffiffiffiffiffiffiffi
Dc;t

p e
i
ℏScðϕA;ϕB;tÞ ¼ Fcðϕ̃B; δt;ϕB; tÞ 1

ð2πiℏÞV
���� det δπA

δϕ̃B

����1=2
× e

i
ℏScðϕA;ϕB;tÞ: ðB18Þ

In particular, we know how the phase transforms as we
increase δt to t: we simply accumulate phase by integrating
the action of the classical path from ϕA toϕB in a time t that
is indexed by the branch c of Hamilton’s principal function.
The remaining mystery is the Fcðϕ̃B; δt;ϕB; tÞ function. To
see what it is, we note that the amplitude prefactor 1ffiffiffiffiffiffi

Dc;t

p
transforms like the square root of a density. In fact, defining

ρc½ϕ; t� ≔
1

jDc½ϕA; 0;ϕ; t�j ðB19Þ

for ϕA fixed and ϕ on the c branch of Hamilton’s principal
function, and evolving 1ffiffiffiffiffiffi

Dc;t

p e
i
ℏSc½ϕA;ϕ;t� according to the

functional Schrödinger evolution, we find in the semi-
classical limit that

H

�
ϕ;

δSc½ϕA;ϕ; t�
δϕ

�
þ ∂Sc½ϕA;ϕ; t�

∂t
¼ 0; ðB20Þ

∂ρc½ϕ; t�
∂t

þ ρc½ϕ; t�
δ

δϕ
· vc½ϕ; t� þ vc½ϕ; t� ·

δ

δϕ
ρc½ϕ; t� ¼ 0;

vc½ϕ; t� ¼
δH½ϕ;π�

δπ

����
π¼δSc ½ϕA;ϕ;t�

δϕ

: ðB21Þ

The first equation is just the Hamilton-Jacobi equation,
which is solved by Hamilton’s principal function (i.e., the
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integrated action along a classical path beginning at ϕA at
time zero and ending at ϕ at time t). The second equation is
a transport equation for ρc½ϕ; t�, where vc½ϕ; t� acts as a
velocity field in infinite dimensions. Such a transport
equation is solved by

ρc½ϕ0; t0� ¼ j det δϕ½ϕ
0; t; t0�

δϕ0

����ρc½ϕ½ϕ0; t; t0�; t�; ðB22Þ

whereϕ½ϕ0; t; t0�means the following: we consider the point

in phase space ðϕ0; δSc½ϕ
A;χ ;t�

δχ jχ¼ϕ0 Þ where δSc½ϕA;χ ;t�
δχ jχ¼ϕ0 is

the momentum and then evolve the point in phase space
backward from t0 to t; the resulting point in field space has
its field configuration (i.e., we ignore the momentum)
as ϕ½ϕ0; t; t0�. But this means that our mysterious
Fcðϕ̃B; δt;ϕB; tÞ is just

Fcðϕ̃B; δt;ϕB; tÞ ¼
�
det

δϕ̃B½ϕB; δt; t�
δϕB

�1=2

; ðB23Þ

since jFcðϕ̃B; δt;ϕB; tÞj2 ¼ j det δϕ̃B

δϕB j. One subtlety with the
above is that we need to decide which square root of det δϕ̃

B

δϕB

we are to take; depending on the number of negative

eigenvalues of δϕ̃B

δϕB, the choice of square root can lead to

overall factors of �1 or �i. Such a factor is packaged into
the Maslov index νc as

Fcðϕ̃B; δt;ϕB; tÞ ¼
���� det δϕ̃B½ϕB; δt; t�

δϕB

����1=2e−iνcπ2: ðB24Þ

The value of νc is prescribed by a more detailed analysis,
but we will not delve into this further here. In the ordinary
quantum mechanics setting, a very useful reference is [35].
In any case, (B18) becomes

1ffiffiffiffiffiffiffiffi
Dc;t

p e
i
ℏScðϕA;ϕB;tÞ

¼ 1

ð2πiℏÞV
����detδϕ̃B

δϕB

����1=2
����detδπA

δϕ̃B

����1=2ei
ℏScðϕA;ϕB;tÞ−iνcπ2

¼ 1

ð2πiℏÞV
����detδπA

δϕB

����1=2ei
ℏScðϕA;ϕB;tÞ−iνcπ2

¼ 1

ð2πiℏÞV
����detδ2ScðχA;χB;tÞδχAδχB

����1=2
χA¼ϕA

χB¼ϕB

e
i
ℏScðϕA;ϕB;tÞ−iνcπ2: ðB25Þ

The above indeed establishes (B11), and so summing
over c’s the full Van Vleck propagator in quantum field
theory is just

hϕBjUðtÞjϕAi ≈
X
paths c

1

ð2πiℏÞV
���� det δ2ScðχA; χB; tÞδχAδχB

����1=2
χA¼ϕA

χB¼ϕB

× e
i
ℏScðϕB;ϕA;tÞ−iνcπ2; ðB26Þ

where the ≈ is in the sense of a semiclassical limit.
Next let us transform our equation for the quantum field-

theoretic Van Vleck propagator in (B26) from time vari-
ables to energy variables,

GðϕA;ϕB; EÞ ¼ 1

iℏ

Z
∞

0

dt eiEt=ℏhϕBjUðtÞjϕAi: ðB27Þ

We consider the stationary phase approximation in t, which
picks out fixed energy paths,

Eþ ∂ScðϕA;ϕB; tÞ
∂t

¼ 0 ⇒ E ¼ HðϕA;ϕB; tcÞ: ðB28Þ

Here, tc is the time extent of the path along the c branch of
Hamilton’s principal function that starts at ϕA, ends at ϕB,
and has energy E. Then, it is useful to define the Legendre
transform of Hamilton’s principal function as

ScðϕA;ϕB; EÞ ≔ ScðϕA;ϕB; tcðϕA;ϕB; EÞÞ
þ EtcðϕA;ϕB; EÞ; ðB29Þ

where, as before, ScðqA;qB; EÞ ¼ R tc0 dt
R
ddx×P

2
i¼1Πi;cðx; tÞΦi;cðx; tÞ is the abbreviated action of a

classical solution ðΦcðx; tÞ;Πcðx; tÞÞ with energy E, begin-
ning at ϕA and terminating at ϕB.
Performing the time integral in (B27) and using the

stationary phase approximation in (B28), the Green’s
function in energy variables becomes

GðϕA;ϕB; EÞ ≈ 1

iℏ

X
paths c

1

ð2πiℏÞV−ð1=2Þ

×

���� det
�
δ2ScðχA; χB; EÞ

δχAδχB

�����1=2
χA¼ϕA

χB¼ϕB

×

���� det
�
∂
2ScðϕA;ϕB; tÞ

∂t2

�����−1=2
t¼tc

× exp

�
i
ℏ
ScðϕA;ϕB; EÞ − iνc

π

2

�
; ðB30Þ

where νc accounts for an additional possible phase. As in
the ordinary quantum mechanics case, we next want to
repackage the amplitude factor. We start by writing the
matrix

� δ2Sc
δχAδχB

δ∂Sc
δχA∂E0

δ∂Sc
δχB∂E0

∂
2Sc
∂E02

�����
χA¼ϕA

χB¼ϕB

E0¼E

¼
�− δπA

δχB − ∂πA
∂E0

δt
δχB

∂t
∂E0

�����
χA¼ϕA

χB¼ϕB

E0¼E

; ðB31Þ
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which has a determinant corresponding to the change of
variables from ð−πA; tÞ to ðϕB; EÞ. Using the chain rule for
determinants, this can be rewritten as

− det
∂ðπA; tÞ
∂ðχB; E0Þ

����
χA¼ϕA

χB¼ϕB

E0¼E

¼ − det

�
∂ðπA; tÞ
∂ðχB; tÞ

∂ðχB; tÞ
∂ðχB; E0Þ

�����χA¼ϕA

χB¼ϕB

E0¼E

¼
�
det

δπA

δϕB

��
∂
2Sc
∂t2

�−1����
t¼tc

: ðB32Þ

To further simply this determinant, we use the fact that the
energy Hðϕ; πÞ ¼ E is fixed, namely,

δ

δχB
HðχA; πA½χA; χB; E�Þ

����
χA¼ϕA

χB¼ϕB

¼ 0 ¼ δπA

δχB
·
δH
δπA

����
χA¼ϕA

χB¼ϕB

⇒
δ2Sc

δχBδχA

����
χA¼ϕA

χB¼ϕB

· _ϕA ¼ 0; ðB33Þ

δ

δχA
HðχB; πB½χA; χB; E�ÞjχA¼ϕA

χB¼ϕB
¼ 0 ¼ δH

δπB ·
δπB

δχA

����
χA¼ϕA

χB¼ϕB

⇒ _ϕB ·
δ2Sc

δχBδχA

����
χA¼ϕA

χB¼ϕB

¼ 0: ðB34Þ

As in the ordinary quantum mechanical setting, we now
decompose fluctuations around ϕA and ϕB. Let us focus on
a classical trajectoryΦcðx; tÞ, which goes from ϕA to ϕB in
an amount of time t. Fluctuations δϕA around ϕA can be
decomposed as δϕA

k þ δϕA⊥. Here, δϕA
k is parallel to the

classical trajectory and δϕA⊥ is orthogonal to the classical
trajectory. As such, δϕA

k corresponds to a single coordinate

direction in field space, and δϕA⊥ corresponds to all of the
residual orthogonal coordinate directions in field space.
(Later on, when we define the moduli space O, we will
redefine δϕA

k as being in the coordinate directions in field

space tangent to O and δϕA⊥ as being in the coordinate
directions in field space normal to O.) Our notation for
fluctuations around ϕB follows analogously. Using this
notation, the _ϕA on the far right of (B33) is equivalent to
∂sΦcðx; sÞjs¼0≕ _ϕA

c ðxÞ. Clearly, _ϕA
c is parallel to the orbit

since it is a tangent vector. Then, we have

0 ¼ δ2Sc
δχBδχA

����
χA¼ϕA

χB¼ϕB

· _ϕA
c ¼ δ2Sc

δχBδχAk

����
χA¼ϕA

χB¼ϕB

· _ϕA
c

⇒
δ2ScðχA; χB; EÞ

δχBδχAk

����
χA¼ϕA

χB¼ϕB

¼ 0: ðB35Þ

In the same vein, letting ∂sΦcðx; sÞjs¼t≕ _ϕB
c ðxÞ gives us

0 ¼ _ϕB
c ·

δ2Sc
δχBδχA

����
χA¼ϕA

χB¼ϕB

¼ _ϕB
c ·

δ2Sc
δχBk δχ

A

����
χA¼ϕA

χB¼ϕB

⇒
δ2ScðχA; χB; EÞ

δχBk δχ
A

����
χA¼ϕA

χB¼ϕB

¼ 0: ðB36Þ

Then the left-hand side of (B31) can be further decom-
posed as

0
BBBBB@

δ2Sc
δχAk δχ

B
k

δ2Sc
δχAk δχ

B⊥
δ∂Sc

δχAk ∂E
0

δ2Sc
δχA⊥δχBk

δ2Sc
δχA⊥δχB⊥

δ∂Sc
δχAk ∂E

0

∂δSc
∂E0δχBk

∂δSc
∂E0δχB⊥

∂
2Sc
∂E02

1
CCCCCA

�����������
χA¼ϕA

χB¼ϕB

E0¼E

¼

0
BBBBB@

0 0 δ∂Sc
δχAk ∂E

0

0 δ2Sc
δχA⊥δχB⊥

δ∂Sc
δχA⊥∂E0

∂δSc
∂E0δχBk

∂δSc
∂E0δχB⊥

∂
2Sc
∂E02

1
CCCCCA

�����������
χA¼ϕA

χB¼ϕB

E0¼E

:

ðB37Þ

We can write the determinant of the above in a compact
manner, using several identities. First, note that

δ∂Sc
δχAk ∂E

0 ¼
δtc
δχAk

;
∂δSc
∂E0δχBk

¼ δtc
δχBk

: ðB38Þ

To understand these expressions, note that for any func-
tional F ¼ F½χA; χB� we have

δF
δχAk

����
χA¼ϕA

χB¼ϕB

≔
_ϕA
c

k _ϕA
ck1=22

·
δF
δχA

����
χA¼ϕA

χB¼ϕB

;

δF
δχBk

����
χA¼ϕA

χB¼ϕB

≔
_ϕB
c

k _ϕB
c k1=22

·
δF
δχB

����
χA¼ϕA

χB¼ϕB

: ðB39Þ

Accordingly, we have

δtc
δχAk

����
χA¼ϕA

χB¼ϕB

¼ 1

k _ϕA
ck1=22

;
δtc
δχBk

����
χA¼ϕA

χB¼ϕB

¼ 1

k _ϕB
c k1=22

: ðB40Þ

Then, the determinant terms in (B30) become

−
1

k _ϕA
ckL2

1

k _ϕB
c kL2

det

�
δ2Sc

δχA⊥δχB⊥

�
χA¼ϕA

χB¼ϕB

: ðB41Þ

Thus, we have rewritten the Green’s function in energy
variables as
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GðϕA;ϕB; EÞ ≈ 1

iℏ

X
orbits c

1

ð2πiℏÞV−ð1=2Þ
1

k _ϕA
ckL2k _ϕB

c kL2

×

���� det
�
δ2ScðχA; χB; EÞ

δχA⊥δχB⊥

�����1=2
χA¼ϕA

χB¼ϕB

× exp

�
i
ℏ
ScðϕA;ϕB; EÞ − iνc

π

2

�
; ðB42Þ

where the νc terms account for the phase of the determinant.
Absorbing the Gaussian normalization factor into the
determinant, we can rewrite the above equation as

GðϕA;ϕB; EÞ ≈ 1

iℏ

X
orbits c

1

k _ϕA
ckL2k _ϕB

c kL2

×

���� det
�

1

2πiℏ
δ2ScðχA; χB; EÞ

δχA⊥δχB⊥

�����1=2
χA¼ϕA

χB¼ϕB

× exp

�
i
ℏ
ScðϕA;ϕB; EÞ − iνc

π

2

�
: ðB43Þ

3. Trace of the Van Vleck propagator
in quantum field theory

Consider Eq. (B27) for the Van Vleck propagator in
energy variables, which we worked to write in a very
explicit form in (B43) by using a stationary phase approxi-
mation. Note that this analysis neglects δ½ϕA − ϕB�-type
contributions at ϕA ¼ ϕB which will be important when we
imminently take the trace of the Van Vleck propagator. In
particular, we must be careful to consider both the con-
tributions to (B27) from the stationary paths [i.e., (B43)], as
well as the contribution from the t → 0þ end point of the
time integral. We again use the following approximation,
which is valid in the semiclassical regime:

Z
∞

t0

dtAðtÞeiBðtÞ=ℏ

≈
iAðt0ÞeiBðt0Þ=ℏ

B0ðt0Þ
þ½stationary phase contributions�: ðB44Þ

Thus, the trace of the propagator will contain two terms,

Z
½dϕ�Gðϕ;ϕ; EÞ ≈

Z
½dϕ�G0ðϕ;ϕ; EÞ

þ
Z

½dϕ�Goscðϕ;ϕ; EÞ

¼ G0ðEÞ þ GoscðEÞ: ðB45Þ

Here, the first term G0ðEÞ corresponds to the contribution
from the t0 → 0þ end point, whereas the second term
GoscðEÞ contains the stationary phase contributions. As

with the ordinary quantum mechanical setting, for G0ðEÞ
we consider the t0 → 0þ limit of the following:

1

iℏ

Z
∞

t0

dt
Z

½dϕ�hϕje−iðH−EÞt=ℏjϕi

≈
Z

½dϕ� hϕje
−iðH−EÞt0=ℏjϕi

E −Hðϕ;ϕ; t0Þ
ðB46Þ

¼
Z

½dϕ�½dϕ0� δðϕ − ϕ0Þ
E −Hðϕ;ϕ0; t0Þ

hϕje−iðH−EÞt0=ℏjϕ0i

ðB47Þ

¼
Z ½dϕ�½dπ�

ð2πℏÞV ½dϕ0� e−iπðϕ−ϕ0Þ=ℏ

E −Hðϕ;ϕ0; t0Þ
hϕje−iðH−EÞt0 jϕ0i

ðB48Þ

¼
Z ½dϕ�½dπ�

ð2πℏÞV ½dϕ0� e−iπðϕ−ϕ0Þ=ℏ

E−Hðϕ;ϕ0;t0Þ
N t0e

iðSðϕ;ϕ0;EÞ−Et0Þ=ℏ:

ðB49Þ

Here,N t0 is a normalization factor. Performing a stationary
phase approximation in the ϕ0 integral, which sets
π ¼ − δ

δϕ0 Sðϕ;ϕ0; EÞ, the π variable is identified with the
momentum. Then, we obtain

Z ½dϕ�½dπ�
ð2πℏÞV ½dϕ0� e−iπðϕ−ϕ0Þ=ℏ

E −Hðϕ;ϕ0; t0Þ
N t0e

iðSðϕ;ϕ0;EÞ−Et0Þ=ℏ

¼
Z ½dϕ�½dπ�

ð2πℏÞV ½dϕ0� e−iπðϕ−ϕ0Þ=ℏ

E −Hðϕ; π; t0Þ
hϕje−iðH−EÞt0 jϕ0i:

ðB50Þ

Taking t0 → 0þ limit so that hϕje−iðH−EÞt0 jϕ0i →
δðϕ − ϕ0Þ, we have

Z ½dϕ�½dπ�
ð2πℏÞV ½dϕ0� e−iπðϕ−ϕ0Þ=ℏ

E −Hðϕ;ϕ0; t0Þ
δðϕ − ϕ0Þ

¼
Z

½dϕ�
�
dπ
2πℏ

�
1

E −Hðϕ; πÞ : ðB51Þ

Altogether, we find

G0ðEÞ ≈
Z

½dϕ�
�
dπ
2πℏ

�
1

E −Hðϕ; πÞ : ðB52Þ

Now we compute Gosc, which involves taking the trace of
the Green’s function over ϕ as
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Z
½dϕ�Goscðϕ;ϕ; EÞ

¼ 1

iℏ

X
orbits c

Z
½dϕ�

�
1

k _ϕA
ckL2k _ϕB

c kL2

���� det
�

1

2πiℏ
δ2ScðϕA;ϕB; EÞ

δϕA⊥δϕB⊥

�����1=2
ϕA¼ϕB¼ϕ

exp

�
i
ℏ
ScðϕA;ϕB; EÞ − iνc

π

2

��
: ðB53Þ

Performing the stationary phase approximation in ϕ that is induced by the trace yields the condition

0 ¼
�
δScðϕA;ϕB; EÞ

δϕA þ δScðϕA;ϕB; EÞ
δϕB

�
ϕA¼ϕB¼ϕ

¼ −πA þ πB: ðB54Þ

This means that the stationary ϕ’s belong to periodic orbits with end points ðϕA; πAÞ ¼ ðϕB;πBÞ in phase space. Letting
ðϕc; πcÞ be a point along a periodic orbit, and letting ϕ ¼ ϕc þ δϕ⊥, where δϕ⊥ is a small fluctuation about ϕc
perpendicular to the periodic orbit, we have the expansion

Scðϕ;ϕ;EÞ≈
�
Scðϕc;ϕc;EÞþ

1

2
δϕ⊥ ·

�
δ2ScðϕA;ϕB;EÞ

δϕAδϕA þ2
δ2ScðϕA;ϕB;EÞ

δϕAδϕB þδ2ScðϕA;ϕB;EÞ
δϕBδϕB

�
ϕA¼ϕB¼ϕc

·δϕ⊥
�
: ðB55Þ

Thus, the GoscðEÞ term evaluates to

Z
½dϕ�Goscðϕ;ϕ; EÞ ≈

1

iℏ

X
orbits c

Z
Tc

0

dt
Z

½dδϕ⊥�
���� det

�
1

2πiℏ
δ2ScðϕA;ϕB; EÞ

δϕA⊥δϕB⊥

�����1=2
ϕA¼ϕB¼ϕc

ðB56Þ

× exp

�
i
ℏ

�
Scðϕc;ϕc; EÞ

þ 1

2
δϕ⊥ ·

�
δ2ScðϕA;ϕB; EÞ

δϕAδϕA þ 2
δ2ScðϕA;ϕB; EÞ

δϕAδϕB þ δ2ScðϕA;ϕB; EÞ
δϕBδϕB

�
ϕA¼ϕB¼Φcðx;tÞ

· δϕ⊥
�
− iνc

π

2

�
: ðB57Þ

Here, we have summed over periodic orbits Φcðx; tÞ with period Tc, i.e., Φcðx; 0Þ ¼ Φcðx; TcÞ ¼ ϕc, each labeled by c.
Performing the integral over δϕ⊥, we obtain

Z
½dϕ�Goscðϕ;ϕ; EÞ ≈

1

iℏ

X
orbits c

Z
Tc

0

dt
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðMðΦcðx; tÞÞ − 1Þjp exp

�
i
ℏ
Scðϕc;ϕc; EÞ − iνc

π

2

�
; ðB58Þ

whereM ¼ MðΦcðx; tÞÞ is the monodromy matrix forΦcðx; tÞ, and we have absorbed the contribution of minus signs from
negative eigenvalues in the determinant into the exponential phase term νc. As in the ordinary quantum mechanical setting,
the spectrum of MðΦcðx; tÞÞ does not depend on t and so we can perform the t integral above to obtain

Z
½dϕ�Goscðϕ;ϕ; EÞ ≈

1

iℏ

X
orbits c

Tcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðMðΦcðx; tÞÞ − 1Þjp exp

�
i
ℏ
Scðϕc;ϕc; EÞ − iνc

π

2

�

¼ 1

iℏ

X
orbits c

Tcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðMðΦcðx; tÞÞ − 1Þjp exp

�
i
ℏ
ScðΦcðx; tÞ;Φcðx; tÞ; EÞ − iνc

π

2

�
; ðB59Þ

where in the second line we have used Scðϕc;ϕc; EÞ ¼ ScðΦcðx; tÞ;Φcðx; tÞ; EÞ, since the Legendre transform of
Hamilton’s principal function is independent of the t of Φcðx; tÞ.
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Adding the G0 and Gosc terms together, we arrive at the following expression for the trace of the Green’s function:

Z
½dϕ�Gðϕ;ϕ; EÞ ≈

Z
½dϕ�

�
dϕ
2πℏ

�
1

E −Hðϕ; πÞ

þ 1

iℏ

X
orbits c

Tcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðMðΦcðx; tÞÞ − 1Þjp exp

�
i
ℏ
ScðΦcðx; tÞ;Φcðx; tÞ; EÞ − iνc

π

2

�
: ðB60Þ

4. Scar formula in quantum field theory

Finally, we consider the quantum field theory scar
formula, noting that by analogy to the quantum mechanics
case, we average over an energy window of size ε centered
at E and a window Δ (defined in the L2 norm) centered on
ϕ. Again, we work with energy eigenstates Ψn½ϕ� with
energy En that solve the Schrödinger equation (here n is a
possibly continuous index), where now Ψ½ϕ� is a wave
functional. The objective is to compute the expression

hjΨ½ϕ�j2iE;Δ ¼
P

nhjΨn½ϕ�j2iΔδεðE − EnÞP
nδεðE − EnÞ

: ðB61Þ

In this equation, hjΨnðϕÞj2iΔ indicates position averaging
with a window of size Δ, and δεðxÞ ≔ 1

π
ε

ε2þx2 is a smeared δ
function.
Analogous to the ordinary quantum mechanical setting,

we desire to write hjΨnðϕÞj2iE;Δ using GðϕA;ϕB; EÞ. As
before, we make a useful assumption: for any triple ϕA, ϕB,
E with ϕA ≠ ϕB, there is only a single orbit starting at ϕA

and ending at ϕB with energy E. For ϕA ¼ ϕB and E fixed,
if there are any nontrivial orbits (i.e., nonfixed points)
beginning and ending at ϕA ¼ ϕB, then there must be
exactly two such orbits that are time reverses of one
another. This holds because we have imposed time-reversal
symmetry. Indeed, these assumptions mean that Sc has a
single branch, and so we can drop the c subscript.
We proceed by recalling that the Green’s function solves

the equation

ðEþiε−Hðϕ̂B;π̂BÞÞGðϕA;ϕB;EÞ¼δðϕB−ϕAÞ; ðB62Þ

and so we can write the Green’s function as

GðϕA;ϕB; Eþ iεÞ ¼
X
n

Ψn½ϕA�Ψ�
n½ϕB�

Eþ iε − En
: ðB63Þ

It follows that

−
1

π
ImGðϕ;ϕ; Eþ iεÞ ¼

X
n

jΨn½ϕ�j2δεðE − EnÞ; ðB64Þ

and

−
1

π
Im
Z

½dϕ�Gðϕ;ϕ; Eþ iεÞ ¼
X
n

δεðE − EnÞ: ðB65Þ

If we take the ratio of (B64) and (B65) and perform a Δ
smearing of ϕ, then we recover the right-hand side of
(B61). We already know how to compute (B65) from the
previous subsection; using our formula for

P
n δðE − EnÞ

from there and putting in iε’s, we have

X
n

δεðE−EnÞ≈
Z

½dϕ�
�
dπ
2πℏ

�
1

Eþ iε−Hðϕ;πÞ

þ 1

iℏ

X
orbitsc

TcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetðMðΦcðx; tÞÞ−1Þjp
×exp

�
i
ℏ
ScðΦcðx; tÞ;Φcðx; tÞ;EÞ− iνc

π

2

�
×exp ð−εTc=ℏÞ; ðB66Þ

where the expð−εTc=ℏÞ suppresses longer orbits.
Next, let us consider the Gaussian smearing of ϕ with

widthΔ in the sense of L2. As before, we suppose that Tmax
is the period of the longest orbit with energy in
½E − ε=2; Eþ ε=2�. Taking1

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax

p �
ℏ

ETmax

�
γ

for any
1

4
< γ <

1

2
; ðB67Þ

we write

X
n

hjΨn½ϕ�j2iΔδεðE−EnÞ

¼ −
1

π
Im

�
1

ð2πΔ2ÞV
Z

½dχ �Gðχ ; χ ;Eþ iεÞe− 1

2Δ2
kϕ−χk2

L2

	
;

ðB68Þ

where the argument of Imf·g can be written approximately
in the semiclassical regime ETmax

ℏ ≫ 1 as

1Restoring the speed of light, Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmaxc2

p �
ℏ

ETmax

�
γ
.
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1

ð2πΔ2ÞV
Z

½dχ �
�
dπ
2πℏ

�
1

Eþ iε−Hðχ ;πÞe
− 1

2Δ2
kϕ−χk2

L2

þ 2

ð2πΔ2ÞV
1

iℏ

Z
½dχ � 1

k _χkL2

����det
�
δ2SðχA;χB;EÞ

δχA⊥δχB⊥

�����1=2
χA¼χB¼χ

×e
i
ℏSðχ ;χ ;EÞ−iνðχ ;χ ;EÞπ2−1

ℏεTðχ ;χ ;EÞe−
1

2Δ2
kϕ−χk2

L2 : ðB69Þ

There is a factor of 2 in the second line that accounts for the
time-reversal symmetry of our system. In particular, if there
is a nontrivial orbit beginning and ending at χ with energy
E, then there are two such orbits.
In (B69) we only receive non-negligible contributions to

the integrals when

kϕ − χkL2 ≲ Δ; ðB70Þ

on account of the Gaussian decay induced by the Δ
smearing. Since Δ <

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax

p ð ℏ
ETmax

Þ1=4, in the semiclass-

ical regime ETmax
ℏ ≫ 1, we can approximate

1

ð2πΔ2ÞV
Z

½dχ �
�
dπ
2πℏ

�
1

Eþ iε −Hðχ ; πÞ e
− 1

2Δ2
kϕ−χk2

L2

≈
Z �

dπ
2πℏ

�
1

Eþ iε −Hðϕ; πÞ : ðB71Þ

By contrast, the second line of (B69) contains the term
e

i
ℏSðχ ;χ ;EÞ, which can have nontrivial stationary phase con-
tributions in the semiclassical regime. We can approximate
all of the other terms in that integral by setting χ ¼ ϕ as

2

ð2πΔ2ÞV
1

iℏ

Z
½dχ � 1

k _χkL2

���� det
�
δ2SðχA; χB; EÞ

δχA⊥δχB⊥

�����1=2
χA¼χB¼χ

e
i
ℏSðχ ;χ ;EÞ−iνðχ ;χ ;EÞπ2−1

ℏεTðχ ;χ ;EÞe−
1

2Δ2
kϕ−χk2

L2

≈
2

iℏ
1

k _ϕkL2

���� det
�
δ2SðϕA;ϕB; EÞ

δϕA⊥δϕB⊥

�����1=2
ϕA¼ϕB¼ϕ

e−iνðϕ;ϕ;EÞπ2−1
ℏεTðϕ;ϕ;EÞ ·

1

ð2πΔ2ÞV
Z

½dχ �ei
ℏSðχ ;χ ;EÞe−

1

2Δ2
kϕ−χk2

L2 : ðB72Þ

We can analyze the 1
ð2πΔ2ÞV

R ½dχ �ei
ℏSðχ ;χ ;EÞe−

1

2Δ2
kϕ−χk2

L2 integral by expanding the Legendre transform of Hamilton’s principal

function around χ ¼ ϕ,

1

ð2πΔ2ÞV
Z

½dχ �ei
ℏSðχ ;χ ;EÞe−

1

2Δ2
kϕ−χk2

L2

≈
1

ð2πΔ2ÞV
Z

½dχ �e−
1

2Δ2
kϕ−χk2

L2
þ i

ℏ

�
Sðϕ;ϕ;EÞþðχ−ϕÞ·

�
δSðχA;χB;EÞ

δχA
þδSðχA;χB;EÞ

δχB

�
χA¼χB¼ϕ

þ1
2
ðχ−ϕÞ·A½ϕ�·ðχ−ϕÞþ���

�
: ðB73Þ

In the second line, we have

�
δSðχA; χB; EÞ

δχA
þ δSðχA; χB; EÞ

δχB

�
χA¼χB¼ϕ

¼ −πA þ πB; ðB74Þ

and we define the kernel

Aij½ϕ�ðx; yÞ ≔
�
δ2SðχA; χB; EÞ
δχAi ðxÞδχAj ðyÞ

þ 2
δ2SðχA; χB; EÞ
δχAi ðxÞδχBj ðyÞ

þ δ2SðχA; χB; EÞ
δχBi ðxÞδχBj ðyÞ

�
χA¼χB¼ϕ

: ðB75Þ

The eigenvalues of A are bounded in magnitude when E is finite; a proof of this fact appears in Appendix D. More
specifically, defining the operator norm

kA½ϕ�k ≔
1

ℏTmax
sup

kχkL2¼
ffiffiffiffiffiffiffiffiffi
ℏTmax

p jχ ·A · χ j; ðB76Þ

from Appendix D we have

kAk≲ 1

Tmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ETmax

ℏ

r
: ðB77Þ
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We will also assume that the higher derivatives of S have a
corresponding tensor norm upper bounded by the same
quantity, although we will not prove this. Notice that
because Δ <

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax

p ð ℏ
ETmax

Þ1=4, the quadratic term
i
2ℏ

1
2
ðχ − ϕÞ ·A½ϕ� · ðχ − ϕÞ and the higher-order terms

“� � �” in the exponential in the second line of (B73)
contribute negligibly to the integral in the semiclassical
regime. As such, a good approximation to (B73) is

exp

�
i
ℏ
Sðϕ;ϕ; EÞ − 1

2

Δ2

ℏ2
kπB − πAk2L2

�
: ðB78Þ

However, the right-hand side is exponentially suppressed
unless

kπA − πBkL2 ≲ ℏ
Δ
: ðB79Þ

To better unpack this bound, we can rewrite (B67) as

Δ ¼ ℏ
π̄

�
ETmax

ℏ

�1
2
−γ

for any
1

4
< γ <

1

2
; ðB80Þ

where

π̄2 ≔ E: ðB81Þ
With this notation, we can express (B79) as

kπA − πBkL2 ≲ π̄

�
ℏ

ETmax

�1
2
−γ
: ðB82Þ

Then, in the semiclassical regime, we can approximate
(B73) by

exp

�
i
ℏ
Sðϕ;ϕ; EÞ

�
: ðB83Þ

As in the ordinary quantum mechanical setting, there is an
intermediate regime where kπB − πAk2 ¼ c ℏ

Δ for c ∼ 1.

Within this regime, exp ð− 1
2
Δ2

ℏ2 kπB − πAk2L2Þ provides a
moderate amount of decay. Wewill not consider this regime
further and restrict ourselves to c ≪ 1 so that we can use
(B83) in place of (B78).
As we have seen, a crucial condition in the simplification

above is kπA − πBkL2 ≲ ℏ
Δ, or equivalently,





�
δSðχA;χB;EÞ

δχA
þδSðχA;χB;EÞ

δχB

�
χA¼χB¼ϕ






L2

≲ ℏ
Δ
: ðB84Þ

As explained in the ordinary quantum mechanical setting in
Appendix A 3, these inequalities are satisfied for exactly
periodic solutions to the classical equations of motion, as
well as nearby nearly periodic orbits (i.e., beginning and
ending at the same ϕ but having different initial and final
momenta πA and πB). There may be other nearly periodic

orbits that are not in the vicinity of any exactly periodic
orbit, and these can satisfy the inequalities as well.
However, these latter kinds of orbits are difficult to find
analytically, and so we confine our attention to exactly
periodic orbits and nearby nearly periodic orbits.
As before, letO be the union of the images of all exactly

periodic solutions to the equations of motion. If F is the
space of complex fields ϕ∶ Rd → C, then O can be
regarded as a subset of F . We equip F with the L2 inner
product we have defined previously. Let us assume that O
is a disjoint union of smooth, connected manifolds of finite
dimension (and hence infinite codimension since they sit in
an infinite-dimensional space), and that the minimum
pairwise distance between these manifolds (using the L2

norm as a distance) is upper bounded by some positive
constant. We denote each component of O by Oi. Let us
pick a particularOi to study and call itM, and suppose that
it has dimension k.
We further pick some ϕ nearby the submanifold M

such that (i)ϕ¼ ϕc þ δϕ forϕc ∈ M, and (ii) kδϕkL2 ≲ ℏ
Δ.

Such a ϕ will satisfy (B84) since ðδSðχA;χB;EÞ
δχA þ

δSðχA;χB;EÞ
δχB ÞχA¼χB¼ϕ ≈ δϕ ·A½ϕc� and kδϕ ·A½ϕc�kL2 ≤

kδϕkL2kA½ϕc�k≲ ℏ
Δ.

For ϕ in the regimes of (i) and (ii) above, we can perform
an expansion in the exponent of (B83) as

exp

�
i
ℏ
Sðϕ;ϕ; EÞ

�

≈ exp

�
i
ℏ
Sðϕc;ϕc; EÞ þ

i
2ℏ

δϕ ·A½ϕc� · δϕ
�
: ðB85Þ

We have dropped the terms at higher than quadratic order
since we have assumed that they are upper bounded by
1

Tmax

ffiffiffiffiffiffiffiffiffi
ETmax

ℏ

q
in the tensor norm and also kδϕkL2 ≲ ℏ

Δ. Let us

decompose F ≔ Tϕc
M ⊕ Nϕc

M, which enables us to
orthogonally decompose δϕ ¼ δϕk þ δϕ⊥, where δϕk ∈
Tϕc

M and δϕ⊥ ∈ Nϕc
M. Note that, since dimM ¼ k,

we have dimTϕc
M ¼ k and dimNϕc

M ¼ ∞. Since

kðδSðχA;χB;EÞ
δχA

þδSðχA;χB;EÞ
δχB Þ

χA¼χB¼ϕc
k
L2
≲ℏ

Δ is constant (namely,

zero) along M, for any ϕc ∈ M we have that Tϕc
M is in

the null space ofA½ϕc�. Accordingly, the right-hand side of
(B85) equals

exp

�
i
ℏ
Sðϕc;ϕc; EÞ þ

i
2ℏ

δϕ⊥ ·A½ϕc� · δϕ⊥
�
: ðB86Þ

Given a point ϕ ¼ ϕc þ δϕ satisfying the assumptions of
(i) and (ii) above, we can opt to find a ϕ0

c such that
ϕ ¼ ϕ0

c þ δϕ0, where δϕ0 lies only in the normal bundle
Nϕ0M, i.e., δϕ0 ¼ δϕ0⊥. In particular, we can choose ϕ0

c to
be the point on M closest to ϕ. Identical arguments as
those in Appendix A 3 tell us that
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exp

�
i
ℏ
Sðϕ0

c;ϕ0
c; EÞ þ

i
2ℏ

δϕ0⊥ ·A½ϕ0
c� · δϕ0⊥

�
ðB87Þ

and (B86) agree in the semiclassical limit.
We end this subsection by collecting all of our results and writing down the scar formula for quantum field theory. We

have found that

1

ð2πΔ2ÞV
Z

½dχ �ei
ℏSðχ ;χ ;EÞe−

1

2Δ2
kϕ−χk2

L2

≈

8<
:

e
i
ℏSðϕc;ϕc;EÞþ i

2ℏδϕ⊥·A½ϕc�·δϕ⊥ if ϕ ¼ ϕc þ δϕ⊥ where ϕc ∈ O; δϕ⊥ ∈ Nϕc
O; kδϕ⊥kL2 ≲ ℏ

Δ

0 if






�

δSðχA;χB;EÞ
δχA

þ δSðχA;χB;EÞ
δχB

�
χA¼χB¼q






L2

≫ ℏ
Δ

: ðB88Þ

The two cases above do not cover two different types of

domains of ϕ: one domain such that kðδSðχA;χB;EÞ
δχA

þ
δSðχA;χB;EÞ

δχB ÞχA¼χB¼qkL2 ≈ ℏ
Δ, and another domain such that

kδϕ⊥kL2 ≳ ℏ
Δ, but kðδSðχA;χB;EÞ

δχA
þ δSðχA;χB;EÞ

δχB Þ
χA¼χB¼ϕ

k
2
≲ ℏ

Δ.

Here, the first type of domain is not physically interesting,
since it corresponds to ϕ, which are just far away enough
from exactly periodic orbits such that we need to use (B78)
in place of of (B83). However, the second type of domain is
quite interesting and corresponds to nearly periodic orbits

(i.e., periodic in ϕ, but not in π), which are not nearby
exactly periodic orbits.
To write down the actual scar formula, we require the

definitions

Pmicro½ϕ� ≔
R ½dπ�δεðE −Hðϕ; πÞÞR ½dϕ�½dπ�δεðE −Hðϕ; πÞÞ ðB89Þ

and

δPscar½ϕc; δϕ⊥� ≔ −
2

πℏ
R ½dχ �½ dp

2πℏ�δεðE −Hðχ ; πÞÞ Im
�
1

i
1

k _ϕkL2

���� det
�

1

2πiℏ
δ2SðϕA;ϕB; EÞ

δϕA⊥δϕB⊥

�����1=2
ϕA¼ϕB¼ϕ

× exp

�
−
ε

ℏ
Tðϕc;ϕc; EÞ − iνðϕc;ϕc; EÞ

π

2
þ i
ℏ

�
Sðϕc;ϕc; EÞ þ

1

2
δϕ⊥ ·A½ϕc� · δϕ⊥

��	
: ðB90Þ

The functional determinant term must be regularized, as is standard in quantum field theory. The scar formula can be
written as

hjΨ½ϕ�j2iE;Δ ≈

8>><
>>:

Pmicro½ϕ� þ δPscar½ϕc; δϕ⊥� if ϕ ¼ ϕc þ δϕ⊥where ϕc ∈ O; δϕ⊥ ∈ Nϕc
O; kδϕ⊥kL2 ≲ ℏ

Δ

Pmicro½ϕ� if






�

δSðχA;χB;EÞ
δχA

þ δSðχA;χB;EÞ
δχB

�
χA¼χB¼ϕ






L2

≫ ℏ
Δ

: ðB91Þ

The approximate nature of the scar formula above means that it includes multiplicative corrections ð1þOðεE ; ð ℏ
ETmax

ÞγÞÞ.
Moreover, we recall the assumptions that went into the derivation of the quantum field theory scar formula, which are
directly analogous to those we used in the ordinary quantummechanical setting: (i) for each tripletϕA;ϕB; EwithϕA ≠ ϕB,
there is a single classical trajectory starting at ϕA, ending at ϕB, and having energy E; if there are any nontrivial orbits
beginning and ending at ϕA ¼ ϕB with energy E, then there must be exactly two that are time reverses of one another;

(ii) kAðϕÞk ≤ 1
Tmax

ffiffiffiffiffiffiffiffiffi
ETmax

ℏ

q
for ϕ ∈ O and likewise for the third- and higher-order derivatives of S; (iii) O is a disjoint union

of smooth manifolds of finite dimension (for instance, this means the manifolds do not have self-intersections); and (iv) the

only values of ϕ for which kðδSðχA;χB;EÞ
δχA

þ δSðχA;χB;EÞ
δχB Þ

χA¼χB¼ϕ
k
L2

≲ ℏ
Δ are those that are close to O.
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The comments at the end of Appendix A about nearly
periodic orbits in the ordinary quantum mechanical setting
also generalize to the quantum field theory setting. In
particular, if Onearly is a manifold in field space F that
consists of nearly periodic orbits [in the sense of

kðδSðχA;χB;EÞ
δχA

þ δSðχA;χB;EÞ
δχB Þ

χA¼χB¼ϕ
k
L2

≲ ℏ
Δ ], which are not

nearby any exactly periodic orbits, then for ϕ’s on or near
Onearly we could write an expression for hjΨðϕÞj2iE;Δ that is
nearly identical to the boxed scar formula. This may be
useful for studying so-called oscillons [27–30], which are
examples of nearly periodic orbits in quantum field
theories. However, in many cases, it is hard to ascertain
whether or not an oscillon is nearby (or perhaps equal to) an
exactly periodic solution due to numerical precision.
Moreover, it seems difficult to classify moduli spaces of
nearly periodic oscillons that are not nearby exactly

periodic orbits. These difficulties aside, the broader point
is that oscillons may indeed contribute to quantum scarring
in bands of eigenfunctions in quantum field theories.

APPENDIX C: DIMENSIONAL ANALYSIS

Here, we discuss dimensional analysis for both the
ordinary quantum mechanical scar formula as well as its
quantum field theory counterpart.
The ordinary quantum mechanical scar formula in (A68)

has two cases. In the second case, we only need to consider
PmicroðqÞ, defined in (A66). We see from the definition that
PmicroðqÞ has dimensions of 1=½L�d, as expected. In the first
case of the scar formula (A68), there is also a contribution
from δPscarðq; δq⊥Þ. This should also have dimensions of
1=½L�d, but let us check this. We recall the formula (A67),
namely,

δPscarðqc; δq⊥Þ ≔ −
2

πℏ
R
ddz ddp

ð2πℏÞd δεðE −Hðz;pÞÞ
Im

�
1

i
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πiℏÞd−1
p 1

j _qj
���� det

�
∂
2SðqA;qB; EÞ
∂qA⊥∂qB⊥

�����1=2
qA¼qB¼q

× exp

�
−
ε

ℏ
Tðqc;qc; EÞ − iνðqc;qc; EÞ

π

2
þ i
ℏ

�
Sðqc;qc; EÞ þ

1

2
δq⊥ ·AðqcÞ · δq⊥

��	
:

A short inspection shows that this term has dimension

½E�
ℏðdþ1Þ=2

½T�
½L�
�

ℏ
½L�2

�ðd−1Þ=2
¼ 1

½L�d
½E�½T�
ℏ

¼ 1

½L�d ; ðC1Þ

which gives the expected answer.
Now let us turn to the quantum field theory setting. The

corresponding scar formula is given by (B91), which again
has two cases. In the second case, we only need to examine
Pmicro½ϕ�, which is given above in (B89). This has dimen-
sions of 1=½ϕ�2V , where V can be regarded as the “number
of points in space.” The factor of 2 in the exponent accounts
for ϕ being a complex scalar field (i.e., it has two
components). Indeed, 1=½ϕ�2V is the expected answer since
Pmicro½ϕ� is a probability functional in ϕ ¼ ðϕ1;ϕ2Þ.
In the first case of (B91), we also need to contend with

δPscar½ϕc; δϕ⊥�, which is defined in (B89) above. Since this
equation was given previously, we do not rewrite it here.
Examining the form of the equation reveals that it has
dimension

½E�
ℏ

½T�
½ϕ�
�
1

ℏ
ℏ
½ϕ�2
�ð2V−1Þ=2

¼ 1

½ϕ�2V ; ðC2Þ

which is the expected answer.

APPENDIX D: BOUNDEDNESS OF HESSIAN
FOR FIXED ENERGY TRAJECTORIES

In this appendix, we bound the norm of theA operator in
both the ordinary quantum mechanical setting and the
quantum field theory setting. The bounds and their deri-
vations are very similar to one another.

1. Boundedness in the ordinary quantum
mechanical setting

In (A49) in Appendix A, we defined the operator

AijðqÞ ≔
�
∂
2SðzA; zB; EÞ
∂zAi ∂z

A
j

þ 2
∂
2SðzA; zB; EÞ
∂zAi ∂z

B
j

þ ∂
2SðzA; zB; EÞ
∂zBi ∂z

B
j

�
zA¼zB¼q

: ðD1Þ

In (A50) we further defined the operator norm kAijðqÞk,
which we reprise here in slightly more explicit notation,

kAijðqÞk ≔ sup
vi

����
P

i;jviAijðqÞvjP
iv

2
i

����: ðD2Þ

Our goal here is to show that kAijðqÞk is bounded when q is
on a periodic orbit with energy E. As in Appendix A, we
assume that our quantum mechanical theory has canonical
momentum terms with mass m, and that the theory is
invariant under time reversal. Our approach to bounding the
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norm is to show that the three terms in (D1) are individually
bounded. In particular, we use the triangle inequality,

kAijðqÞk ≤





�
∂
2SðzA; zB; EÞ
∂zAi ∂z

A
j

þ ∂
2SðzA; zB; EÞ
∂zBi ∂z

B
j

�
zA¼zB¼q






þ 2





 ∂2SðzA; zB; EÞ
∂zAi ∂z

B
j

����
zA¼zB¼q





: ðD3Þ

We start with the definition of the Legendre transform of
Hamilton’s principal function to fixed energy,

SðzA; zB; EÞ ≔ SðzA; zB; tðzA; zB; EÞÞ
þ EtðzA; zB; EÞ: ðD4Þ

Let us begin with a bound on the second term on the right-
hand side of (D3), which contains the mixed A and B
derivatives.

a. Mixed derivative term

Letting d
dz denote a total derivative (as opposed to a

partial derivative), we can leverage (D4) to write

∂

∂zAi

∂

∂zBj
SðzA;zB;EÞ

����
zA¼zB¼q

¼ d
dzAi

d
dzBj

ðSðzA;zB; tðzA;zB;EÞÞ þEtðzA;zB;EÞÞ
����
zA¼zB

¼ ∂pB
j

∂zAi
þ ∂pB

j

∂t
∂t
∂zAi

����
zA¼zB¼q

; ðD5Þ

∂

∂zBj

∂

∂zAi
SðzA;zB;EÞ

����
zA¼zB¼q

¼ d
dzBj

d
dzAi

ðSðzA;zB;tðzA;zB;EÞÞþEtðzA;zB;EÞÞ
����
zA¼zB¼q

¼−
∂pA

i

∂zBj
−
∂pA

i

∂t
∂t
∂zBj

����
zA¼zB¼q

: ðD6Þ

But since ∂

∂zBj
∂

∂zAi
SðzA; zB; EÞ ¼ ∂

∂zAi

∂

∂zBj
SðzA; zB; EÞ, we can average (D5) and (D6) to obtain

∂

∂zAi

∂

∂zBj
SðzA; zB; EÞ

����
zA¼zB¼q

¼ 1

2

�
−
∂pA

i

∂zBj
þ ∂pB

j

δzAi

�
zA¼zB¼q

þ 1

2

�
−
∂pA

i

∂t
∂t
∂zBj

þ ∂pB
j

∂t
∂t
∂zAi

�
zA¼zB¼q

: ðD7Þ

Thus, we have





 ∂2SðzA; zB; EÞ
∂zAi ∂z

B
j

����
zA¼zB¼q





 ¼ m
ℏTmax

sup
kδzkL2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax=m

p
1

2

X
i;j

δzi

�
−
∂pA

i

∂zBj
þ ∂pB

j

∂zAi
−
∂pA

i

∂t
∂t
∂zBj

þ ∂pB
j

∂t
∂t
∂zAi

�
zA¼zB¼q

δzj: ðD8Þ

The right-hand side can be simplified. Since q is on a periodic orbit with energy E, we have zA ¼ zB, and hence ∂pA
∂t ¼ ∂pB

∂t .
Moreover, since our theory is time-reversal symmetric, tðzA; zB; EÞ ¼ tðzB; zA; EÞ, and so ∂t

∂zBi
j
zA¼zB¼q

¼ ∂t
∂zAi

j
zA¼zB¼q

.

Accordingly, the last two terms in the parentheses in (D8) cancel, and so we are left with





 ∂2SðzA; zB; EÞ
∂zAi ∂z

B
j

����
zA¼zB¼q





 ¼ m
ℏTmax

sup
kδzkL2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax=m

p
X
i;j

δzi

�
−
∂pA

i

∂zBj
þ ∂pB

j

∂zAi

�
zA¼zB¼q

δzj

≤
1

2





∂pA
i

∂zBj

����
zA¼zB¼q





þ 1

2





∂pB
j

∂zAi

����
zA¼zB¼q





: ðD9Þ

Let us bound the first of the two terms on the right-hand side of the inequality; a bound on the second term will follow by a
nearly identical argument.
We have





∂pA
i

∂zBj

����
zA¼zB¼q





 ¼ m
ℏTmax

sup
kδzkL2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax=m

p
X
i;j

δzi

�
∂pB

j

∂zAi

�
zA¼zB¼q

δzj: ðD10Þ
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Defining

δpB
j ≔

X
i

δzi

�
∂pB

j

∂zAi

�
zA¼zB¼q

; ðD11Þ

which depends on δzi, we can rewrite (D10) as

m
ℏTmax

sup
kδzkL2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax=m

p
X
j

δpB
j δzj

≤
m

ℏTmax
sup

kδzkL2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax=m

p kδpBkL2
kδzkL2

≤
ffiffiffiffiffiffiffiffiffiffiffiffi
m

ℏTmax

r
sup

kδzk2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax=m

p kδpBk2; ðD12Þ

where we have used the Cauchy-Schwarz inequality.
Finally, we bound kδpBk2. To do so, we note the inter-
pretation of the definition of δpB in (D11): it is the change
in momentum at the final time (i.e., at B) if we perturb our
periodic orbit by qj → qj þ δzj at the initial time (i.e., at
A), but still insist that it ends at the same qj and has the
same energy E. Letting qA ¼ qB ¼ q be the unperturbed
initial position as usual, and further letting pA ¼ pB ¼ p be
the unperturbed initial and final momentum, we have

E ¼ 1

2m
ðpþ δpBÞ2 þ UðqÞ: ðD13Þ

Letting Umin ≔ minqUðqÞ, we assume this value to be
finite. Without loss of generality, we also assume Umin ≥ 0.
Then, we obtain

kpþ δpBk22 ≤ 2mðE −UminÞ: ðD14Þ

By the reverse triangle inequality, we have

kδpBk2 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE − UminÞ

p
þ kpk2

≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE −UminÞ

p
; ðD15Þ

which is finite. In total, we have the bound





 ∂2SðzA; zB; EÞ
∂zAi ∂z

B
j

����
zA¼zB¼q





 ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
m

ℏTmax

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE − UminÞ

p
;

ðD16Þ

as we desired.

b. Nonmixed derivative terms

Now we turn to bounding the first term on the right-hand
side of (D3). By similar arguments as in the previous
subsection, we have

�
∂
2SðzA;zB;EÞ
δzAi δz

A
j

þδ2SðzA;zB;EÞ
∂zBi δz

B
j

�
zA¼zB¼q

¼
�
−
∂pA

i

∂zAj
þ∂pB

i

∂zBj
−
∂pA

i

∂t
∂t
∂zAj

þ∂pB
i

∂t
∂t
∂zBj

�
zA¼zB¼q

: ðD17Þ

Noting as before that for our periodic orbit pA ¼ pB and by
time-reversal symmetry tðzA; zB; EÞ ¼ tðzB; zA; EÞ, the
above simplifies to

�
∂
2SðzA; zB; EÞ
∂zAi ∂z

A
j

þ ∂
2SðzA; zB; EÞ
∂zBi ∂z

B
j

�
zA¼zB¼q

¼
�
−
∂pA

i

∂zAj
þ ∂pB

i

∂zBj

�
zA¼zB¼q

: ðD18Þ

Taking the norm of both sides, we have






�
∂
2SðzA; zB; EÞ
∂zAi ∂z

A
j

þ ∂
2SðzA; zB; EÞ
∂zBi ∂z

B
j

�
zA¼zB¼q






¼





�
−
∂pA

i

∂zAj
þ ∂pB

i

∂zBj

�
zA¼zB¼q






≤




 ∂pA

i

∂zAj

����
zA¼zB¼q





þ




 ∂pB

i

∂zBj

����
zA¼zB¼q





: ðD19Þ

Let us bound the first term on the right-hand side of the
inequality, since a bound on the second term will follow by
the same argument. We have





∂pA
i

∂zAj

����
zA¼zB¼q






¼ m
ℏTmax

sup
kδzk2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax=m

p
X
i;j

δzi

�
∂πAj
∂zAi

�
zA¼zB¼q

δzj: ðD20Þ

To simplify this, we define

δpA
j ≔

X
i

δzi

�
∂pA

j

∂zAi

�
zA¼zB¼q

; ðD21Þ

which depends on δzi. We find that (D20) simplifies to

m
ℏTmax

sup
kδzk2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax=m

p
X
j

δpA
j δzj

≤
m

ℏTmax
sup

kδzk2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax=m

p kδpAk2kδzk2

≤
ffiffiffiffiffiffiffiffiffiffiffiffi
m

ℏTmax

r
sup

kδzk2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax=m

p kδpAk2: ðD22Þ
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It remains to bound kδpAk2. From the definition in (D21),
we can interpret δpA

j as follows: it is the change in
momentum at the initial time (i.e., at A) if we perturb
our periodic orbit by qj → qj þ δzj at the initial time (i.e.,
at A), but still insist that we have the same energy E.
Accordingly,

E ¼ 1

2m
ðpþ δpAÞ2 þ Uðqþ δzÞ ðD23Þ

implies

kpþ δpAk22 ≤ 2mðE −UminÞ; ðD24Þ

and by an identical reverse triangle inequality argument as
in the previous subsection, we have

kδpAk2 ≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE −UminÞ

p
: ðD25Þ

Altogether, we have






�
∂
2SðzA; zB; EÞ
∂zAi ∂z

A
j

þ ∂
2SðzA; zB; EÞ
∂zBi ∂z

B
j

�
zA¼zB¼q






≤ 4

ffiffiffiffiffiffiffiffiffiffiffiffi
m

ℏTmax

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE −UminÞ

p
; ðD26Þ

which is indeed finite.

c. Putting the bounds together

In total, for ϕ a periodic orbit with energy E, we have the
bound

kAijðqÞk ≤
6
ffiffiffi
2

p
mffiffiffiffiffiffiffiffiffiffiffiffi

ℏTmax
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − Umin

p

≤
6
ffiffiffi
2

p
m

Tmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE −UminÞTmax

ℏ

r
: ðD27Þ

Since we have assumed Umin ≥ 0, we have thus shown that

kAijðqÞk≲ m
Tmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ETmax

ℏ

r
ðD28Þ

as we wanted.

2. Boundedness in the quantum field theory setting

Recall that in (B75) in Appendix B we had the definition

Aij½ϕ�ðx; yÞ ≔
�
δ2SðχA; χB; EÞ
δχAi ðxÞδχAj ðyÞ

þ 2
δ2SðχA; χB; EÞ
δχAi ðxÞδχBj ðyÞ

þ δ2SðχA; χB; EÞ
δχBi ðxÞδχBj ðyÞ

�
χA¼χB¼ϕ

: ðD29Þ

We equipped this operator with an operator norm
kAij½ϕ�ðx; yÞk in (B76), which can be equivalently writ-
ten as

kAij½ϕ�ðx; yÞk

≔ sup
χiðxÞ

����
R
ddx

P
2
i;j¼1 χiðxÞAij½ϕ�ðx; yÞχjðyÞR
ddx

P
2
i¼1 χiðxÞ2

����: ðD30Þ

In the present subsection, we will show that if ϕ is a
periodic orbit with energy E, then the norm kAij½ϕ�ðx; yÞk
is bounded. We take an identical approach as in the
ordinary quantum mechanical setting explained above,
namely, by using the triangle inequality as

kAij½ϕ�ðx; yÞk

≤





�
δ2SðχA; χB; EÞ
δχAi ðxÞδχAj ðyÞ

þ δ2SðχA; χB; EÞ
δχBi ðxÞδχBj ðyÞ

�
χA¼χB¼ϕ






þ 2





 δ2SðχA; χB; EÞδχAi ðxÞδχBj ðyÞ
����
χA¼χB¼ϕ





 ðD31Þ

and bounding the individual terms on the right-hand side.
As before, we begin by recalling the definition of the
Legendre transform of Hamilton’s principal function to
fixed energy, namely,

SðχA; χB; EÞ ≔ SðχA; χB; tðχA; χB; EÞÞ
þ EtðχA; χB; EÞ: ðD32Þ

In what follows, we will bound the second term on the
right-hand side of (D31).

a. Mixed derivative term

Similar to before, we let D
Dχ denote a total functional

derivative (as opposed to a partial functional derivative).
Using (D32) we have

δ

δχAi

δ

δχBj
SðχA; χB; EÞ

����
χA¼χB¼ϕ

¼ D
DχAi

D
DχBj

ðSðχA; χB; tðχA; χB; EÞÞ þ EtðχA; χB; EÞÞ
����
χA¼χB

¼ δπBj
δχAi

þ ∂πBj
∂t

δt
δχAi

����
χA¼χB¼ϕ

; ðD33Þ
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δ

δχBj

δ

δχAi
SðχA;χB;EÞ

����
χA¼χB¼ϕ

¼ D
DχBj

D
DχAi

ðSðχA;χB;tðχA;χB;EÞÞþEtðχA;χB;EÞÞ
����
χA¼χB¼ϕ

¼−
δπAi
δχBj

−
∂πAi
∂t

δt
δχBj

����
χA¼χB¼ϕ

: ðD34Þ

Noting that δ
δχBj

δ
δχAi

SðχA; χB; EÞ ¼ δ
δχAi

δ
δχBj

SðχA; χB; EÞ, by averaging (D33) and (D34) we arrive at

δ

δχAi

δ

δχBj
SðχA; χB; EÞ

����
χA¼χB¼ϕ

¼ 1

2

�
−
δπAi
δχBj

þ δπBj
δχAi

�
χA¼χB¼ϕ

þ 1

2

�
−
∂πAi
∂t

δt
δχBj

þ ∂πBj
∂t

δt
δχAi

�
χA¼χB¼ϕ

; ðD35Þ

which gives



 δ2SðχA; χB; EÞδχAi ðxÞδχBj ðyÞ
����
χA¼χB¼ϕ






¼ 1

ℏTmax
sup

kδχkL2¼
ffiffiffiffiffiffiffiffiffi
ℏTmax

p
1

2

Z
ddxddy

X2
i;j¼1

δχiðyÞ
�
−
δπAi ðxÞ
δχBj ðyÞ

þ δπBj ðxÞ
δχAi ðyÞ

−
∂πAi ðxÞ
∂t

δt
δχBj ðyÞ

þ ∂πBj ðxÞ
∂t

δt
δχAi ðyÞ

�
χA¼χB¼ϕ

δχjðxÞ:

ðD36Þ

We will simplify the right-hand side of the above equation. By assumption, ϕ belongs to a periodic orbit that has energy E,
and accordingly πA ¼ πB. This implies ∂πA

∂t ¼ ∂πB
∂t . Since we have assumed our theory is time-reversal symmetric, we have

tðχA; χB; EÞ ¼ tðχB; χA; EÞ, which gives δt
δχBi ðyÞ

j
χA¼χB¼ϕ

¼ δt
δχAi ðyÞ

j
χA¼χB¼ϕ

. This means that the last two terms in the

parentheses in (D36) cancel one another. The simplified result is then





 δ2SðχA; χB; EÞδχAi ðxÞδχBj ðyÞ
����
χA¼χB¼ϕ





 ¼ 1

ℏTmax
sup

kδχkL2¼
ffiffiffiffiffiffiffiffiffi
ℏTmax

p
1

2

Z
ddxddy

X2
i;j¼1

δχiðyÞ
�
−
δπAi ðxÞ
δχBj ðyÞ

þ δπBj ðxÞ
δχAi ðyÞ

�
χA¼χB¼ϕ

δχjðxÞ

≤
1

2





δπAi ðxÞδχBj ðyÞ
����
χA¼χB¼ϕ





þ 1

2





δπBj ðxÞδχAi ðyÞ
����
χA¼χB¼ϕ





: ðD37Þ

We proceed by bounding the first term on the right-hand side of the inequality, since the second term follows by the
same steps.
Explicitly, we have





δπAi ðxÞδχBj ðyÞ
����
χA¼χB¼ϕ





 ¼ 1

ℏTmax
sup

kδχkL2¼
ffiffiffiffiffiffiffiffiffi
ℏTmax

p
Z

ddxddy
X2
i;j¼1

δχiðyÞ
�
δπBj ðxÞ
δχAi ðyÞ

�
χA¼χB¼ϕ

δχjðxÞ; ðD38Þ

and so defining

δπBj ðxÞ ≔
Z

ddy
X2
i¼1

δχiðyÞ
�
δπBj ðxÞ
δχAi ðyÞ

�
χA¼χB¼ϕ

; ðD39Þ

which has dependence on δχiðxÞ, (D38) can be rewritten as

1

ℏTmax
sup

kδχkL2¼
ffiffiffiffiffiffiffiffiffi
ℏTmax

p
Z

ddx
X2
j¼1

δπBj ðxÞδχjðxÞ≤
1

ℏTmax
sup

kδχkL2¼
ffiffiffiffiffiffiffiffiffi
ℏTmax

p kδπBkL2
kδχkL2 ≤

1ffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax

p sup
kδχkL2¼

ffiffiffiffiffiffiffiffiffi
ℏTmax

p kδπBkL2
: ðD40Þ
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Here, we used the Cauchy-Schwarz inequality in the first
inequality. Now we bound kδπBkL2

, and as in the ordinary
quantummechanical setting it is convenient to take stock of
the interpretation of the definition of δπB in (D39). Notice
that δπB is the change in momentum at the final time (i.e.,
at B) if we perturb our periodic orbit by ϕj → ϕj þ δχj at
the initial time (i.e., at A), but require that it ends in the
same field configuration ϕj and has the same energy E.
Using our usual notation ϕA ¼ ϕB ¼ ϕ for the unperturbed
initial position, we additionally notate πA ¼ πB ¼ π for the
unperturbed initial and final momentum. With these nota-
tions, we write

E¼
Z

ddx

�
1

2

X2
i¼1

ðπþδπBÞ2þ1

2

X2
i¼1

ð∇ϕiÞ2þU

�X2
i¼1

ϕ2
i

��
:

ðD41Þ

As in the quantum mechanical case, we define
Umin ≔ minx∈R≥0

UðxÞ, which for us is always finite. Let
us further suppose without loss of generality that Umin ≥ 0.
Then, we have

kπ þ δπBk2L2 ≤ 2ðE −UminÞ: ðD42Þ

Leveraging the reverse triangle inequality gives us

kδπBkL2 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE −UminÞ

p
þ kπkL2

≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE −UminÞ

p
: ðD43Þ

We have thus obtained the total bound





 δ2SðχA; χB; EÞδχAi ðxÞδχBj ðyÞ
����
χA¼χB¼ϕ





 ≤ 2
1ffiffiffiffiffiffiffiffiffiffiffiffi

ℏTmax
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE −UminÞ

p
:

ðD44Þ

b. Nonmixed derivative terms

Going back to (D31), we now bound the first term on its
right-hand side. Using nearly identical arguments as above,
we have

�
δ2SðχA;χB;EÞ
δχAi ðxÞδχAj ðyÞ

þδ2SðχA;χB;EÞ
δχBi ðxÞδχBj ðyÞ

�
χA¼χB¼ϕ

¼
�
−
δπAi
δχAj

þδπBi
δχBj

−
∂πAi
∂t

δt
δχAj

þ∂πBi
∂t

δt
δχBj

�
χA¼χB¼ϕ

: ðD45Þ

Since for our periodic orbitwehaveπA ¼ πB and byvirtue of
time-reversal symmetry we have tðχA;χB;EÞ¼ tðχB;χA;EÞ,
we can simplify the form of the above equation to obtain

�
δ2SðχA; χB; EÞ
δχAi ðxÞδχAj ðyÞ

þ δ2SðχA; χB; EÞ
δχBi ðxÞδχBj ðyÞ

�
χA¼χB¼ϕ

¼
�
−
δπAi
δχAj

þ δπBi
δχBj

�
χA¼χB¼ϕ

: ðD46Þ

By taking the norm of both sides of the above equation, we
have






�
δ2SðχA; χB; EÞ
δχAi ðxÞδχAj ðyÞ

þ δ2SðχA; χB; EÞ
δχBi ðxÞδχBj ðyÞ

�
χA¼χB¼ϕ






¼





�
−
δπAi
δχAj

þ δπBi
δχBj

�
χA¼χB¼ϕ






≤




 δπAiδχAj

����
χA¼χB¼ϕ





þ




 δπBiδχBj

����
χA¼χB¼ϕ





: ðD47Þ

We now bound the first term on the right-hand side of the
inequality. An identical bound the second term follows by the
same steps. We explicitly write out





δπAiδχAj

����
χA¼χB¼ϕ





¼ 1

ℏTmax
sup

kδχkL2¼
ffiffiffiffiffiffiffiffiffi
ℏTmax

p
Z

ddxddy
X2
i;j¼1

δχiðyÞ

×

�
δπAj ðxÞ
δχAi ðyÞ

�
χA¼χB¼ϕ

δχjðxÞ ðD48Þ

and define

δπAj ðxÞ ≔
Z

ddy
X2
i¼1

δχiðyÞ
�
δπAj ðxÞ
δχAi ðyÞ

�
χA¼χB¼ϕ

; ðD49Þ

which has dependence on δχiðxÞ. With this notation, (D48)
becomes

1

ℏTmax
sup

kδχkL2¼
ffiffiffiffiffiffiffiffiffi
ℏTmax

p
Z

ddx
X2
j¼1

δπAj ðxÞδχjðxÞ

≤
1

ℏTmax
sup

kδχðxÞkL2¼
ffiffiffiffiffiffiffiffiffi
ℏTmax

p kδπAkL2
kδχjkL2

≤
1ffiffiffiffiffiffiffiffiffiffiffiffi

ℏTmax
p sup

kδχðxÞkL2¼
ffiffiffiffiffiffiffiffiffi
ℏTmax

p kδπAkL2
: ðD50Þ

To finish the bound we need to treat kδπAkL2
. Using the

definition in (D49), let us interpret δπAj : it represents the
change in momentum at the initial time (i.e., at A) if we
perturb our periodic orbit byϕj → ϕj þ δχj at the initial time
(i.e., at A), but maintain the same energy E. Then,
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E ¼
Z

ddx

�
1

2

X2
i¼1

ðπi þ δπAi Þ2 þ
1

2

X2
i¼1

ð∇ðϕi þ δχiÞÞ2

þ U

�X2
i¼1

ðϕi þ δχiÞ2
��

ðD51Þ

gives us

kπ þ δπAk2L2 ≤ 2ðE −UminÞ: ðD52Þ
Using the reverse triangle inequality argument from above,
we find

kδπAkL2 ≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE −UminÞ

p
: ðD53Þ

In total, we have




�
δ2SðχA; χB; EÞ
δχAi ðxÞδχAj ðyÞ

þ δ2SðχA; χB; EÞ
δχBi ðxÞδχBj ðyÞ

�
χA¼χB¼ϕ






≤ 4

1ffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE − UminÞ

p
: ðD54Þ

c. Putting the bounds together

Putting together the previous results, assuming that ϕ is a
periodic orbit with energy E, we have

kAij½ϕ�ðx; yÞk ≤
6
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffi
ℏTmax

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E −Umin

p
≤
6
ffiffiffi
2

p

Tmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ETmax

ℏ

r
:

ðD55Þ

Since by assumption Umin ≥ 0 we have

kAij½ϕ�ðx; yÞk≲ 1

Tmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ETmax

ℏ

r
ðD56Þ

as claimed in the main text.

APPENDIX E: CHARACTERIZATION
OF MODULI SPACE OF Q-CLOUD

SOLUTIONS IN AN ENERGY WINDOW

In this appendix, we elaborate on the arguments made in
Sec. IV where we characterized the moduli space of

Q-cloud solutions. There we showed that it is five dimen-
sional, wherein any two points in the moduli space are
related by some combination of spacetime translations and
energy deformation. We work with the usual Q-cloud
Lagrangian in 3þ 1 dimensions with a sextic potential
given by

Uðσ2Þ ≔ m2σ2 −
1

2
fσ4 þ gσ6: ðE1Þ

For concreteness, we can take m ¼ 1, f ¼ 1, and
g ¼ 1=20, although the parameters are flexible.
We begin by recalling some of the setup from Sec. IV in

the main body of the paper. Let Φωðx; tÞ ¼ eiωtσωðxÞ be a
Q-cloud solution with period T ¼ 2π=ω in our desired
energy range. Then, we wanted to show that if Φ̃ is (i) a
small deformation of Φω, (ii) time periodic, and (iii) in our
desired energy window, then Φ̃ is itself a Q-cloud solution.
When we say that Φ̃ is a “small deformation” of Φω, we
mean that

�Z
R3

d3x
Z

ℏ=ε

0

dtjΦωðx; tÞ − Φ̃ðx; tÞj2
�

1=2
ðE2Þ

is small. This is sufficient because we are only considering
periodic orbits of length at most ∼ℏ=ε on account of the
exponential decay factor expð−εT=ℏÞ in the scar formula.
Recalling the discussion around (9), we can write Φ̃ as

Φ̃ðx; tÞ ¼ Φωþδωðx; tÞ þ
X
n∈Z

eiðωþδωÞntδϕnðxÞ; ðE3Þ

or more compactly as

Φ̃ðx; tÞ ¼ Φωþδωðx; tÞ þ δΦðx; tÞ; ðE4Þ

which can be viewed as a perturbed version of the Q-cloud
Φωþδω with period 2π=ðωþ δωÞ.
For Φωþδω þ δΦ to be a solution to the equations of

motion, δΦ must be a zero mode. This is equivalent to the
condition

� −ðΦ�
ωþδωÞ2U00 −∂μ∂μ −U0 − jΦωþδωj2U00

−∂μ∂μ −U0 − jΦωþδωj2U00 −Φ2
ωþδωU

00

��
δΦ
δΦ�

�
¼
�
0

0

�
: ðE5Þ

Next, we plug in the mode expansion of δΦ and expand the
result to first order in the δϕn’s and δω. The δω terms only
contribute at second order in fluctuations, and so at first
order in fluctuations we have

ðω2n2 þ∇2 −U0 − σ2ωU00Þδϕn − σ2ωU00δϕ�
−nþ2 ¼ 0; ðE6Þ

ðω2n2 þ∇2 −U0 − σ2ωU00Þδϕ�
−n − σ2ωU00δϕnþ2 ¼ 0: ðE7Þ
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These equations simplify significantly upon making the
following observation. For large jxj, we have σω → 0,
U0 → m2, and U00 → 0, and so in this regime we find

−∇2δϕn ¼ m2

�
ω2

m2
n2 − 1

�
δϕn: ðE8Þ

Here, ω=m < 1, and so as explained in Sec. IV if we want
solutions that decay at infinity (i.e., are nonoscillatory), we
require δϕn≠0;�1 ¼ 0. If we plug δϕn≠0;�1 ¼ 0 into the zero
mode equations, we find that δϕ0 ¼ 0. The remaining
equations are given by

ðω2 þ∇2 − U0 − σ2ωU00Þδϕ−1 ¼ 0; ðE9Þ

ðω2 þ∇2 −U0 − 2σ2ωU00Þðδϕ1 þ δϕ�
1Þ ¼ 0; ðE10Þ

ðω2 þ∇2 −U0Þðδϕ1 − δϕ�
1Þ ¼ 0: ðE11Þ

We would like to show that the only solutions to the
above three equations are given by perturbative spacetime
translation zero modes. This can be done in two steps: First,
we show that the perturbative spacetime translation
zero modes solve the above equations. Second, we prove
that these are the only solutions. The first step is easy.
The perturbative time translation zero mode [which for
Q-clouds coincides with a perturbative global Uð1Þ trans-
formation] is given by

δΦðx; tÞ ¼ ϵ · iωeiωtσωðxÞ ðE12Þ

for ϵ a small parameter. Here, we have δϕ1 ¼ ϵ · iωσω,
δϕ�

1 ¼ −ϵ · iωσω, δϕ−1 ¼ 0, and δϕ�
−1 ¼ 0. It is readily

checked that these modes solve (E9)–(E11). Similarly, for
spatial translations we have

δΦðx; tÞ ¼ ϵeiωt∂jσωðxÞ ðE13Þ

for j ¼ 1, 2, 3, giving δϕ1 ¼ ϵ∂jσω, δϕ�
1 ¼ ϵ∂jσω, and

δϕ−1 ¼ 0, δϕ�
−1 ¼ 0, which likewise solve (E9)–(E11).

For the second step, we need to show that there are no
other solutions to (E9)–(E11). We expand the δϕ�1 modes
in spherical harmonics as

δϕ�1ðr; θ;ϕÞ ¼
X∞
l¼0

Xl
k¼−l

1

r
δφlk

�1ðrÞYlmðθ;ϕÞ; ðE14Þ

where the 1=r factor is for convenience. In these variables,
we can decouple (E9)–(E11) into an infinite tower of 1D
Schrödinger-type equations, namely,

�
−

d2

dr2
þ Vl

−1ðrÞ
�
δφlk

−1ðrÞ ¼ 0;

Vl
−1ðrÞ ¼ −ω2 þm2 − 2fσ2ωðrÞ þ 3gσ4ωðrÞ þ

lðlþ 1Þ
r2

;

ðE15Þ�
−

d2

dr2
þ VlþðrÞ

�
ðδφlk

1 ðrÞ þ δφ�lk
1 ðrÞÞ ¼ 0;

VlþðrÞ ¼ −ω2 þm2 − 3fσ2ωðrÞ þ 5gσ4ωðrÞ þ
lðlþ 1Þ

r2
;

ðE16Þ�
−

d2

dr2
þVl

−ðrÞ
�
ðδφlk

1 ðrÞ− δφ�lk
1 ðrÞÞ ¼ 0;

Vl
−ðrÞ ¼−ω2þm2−fσ2ωðrÞþ gσ4ωðrÞþ

lðlþ 1Þ
r2

: ðE17Þ

Our goal is to show that (i) (E15) has no nontrivial,
normalizable solutions for all l; (ii) (E16) has only the
single normalizable solution σ0ωðrÞ at l ¼ 1, with no other
nontrivial normalizable solutions for l ≠ 1; and (iii) (E17)
has only the single normalizable solution rσωðrÞ at l ¼ 0,
with no other nontrivial normalizable solutions for l ≥ 1.
We achieve these goals by numerically solving the

eigenvalue problems�
−

d2

dr2
þ Vl

−1ðrÞ
�
δφlk

−1ðrÞ ¼ El
−1δφ

lk
−1ðrÞ; ðE18Þ

�
−

d2

dr2
þ VlþðrÞ

�
ðδφlk

1 ðrÞ þ δφ�lk
1 ðrÞÞ

¼ Elþðδφlk
1 ðrÞ þ δφ�lk

1 ðrÞÞ; ðE19Þ
�
−

d2

dr2
þ Vl

−ðrÞ
�
ðδφlk

1 ðrÞ − δφ�lk
1 ðrÞÞ

¼ El
−ðδφlk

1 ðrÞ − δφ�lk
1 ðrÞÞ; ðE20Þ

and looking for zero energy solutions corresponding to
normalizable eigenstates. We have elected to choose
m ¼ 1, f ¼ 1, and g ¼ 1=20, and scan across ω’s from
ω ¼ 0.85 to ω ¼ 0.95. Our results can be found in
Tables I–III, respectively. These results can be understood
as follows.

(i) For (E18) pertaining to the Vl
−1ðrÞ potential, we find

two bound states with negative energy at l ¼ 0, and
a continuum of unbound states with strictly positive
energy. Thus, there is no state of zero energy at
l ¼ 0. For l ≥ 1, the lowest energy state has
positive energy (which increases as l increases),
and so there are no states of zero energy for l ≥ 1.

(ii) For (E19) corresponding to the VlþðrÞ potential, at
l ¼ 0 we find three bound states with negative
energy, and a continuum over unbound states at
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TABLE I. Eigenspectra for ω ¼ 0.85 and potentials Vl
−1ðrÞ, VlþðrÞ, and Vl

−ðrÞ, for relevant values l.

Vl
−1ðrÞ E0

−1 E1
−1 E2

−1 E3
−1

l ¼ 0 −4.09609 −1.16907 First unbound (0.224325) Unbound
l ¼ 1 First unbound (0.295918) Unbound Unbound Unbound

VlþðrÞ E0þ E1þ E2þ E3þ
l ¼ 0 −6.32877 −2.68596 −0.299762 First unbound (0.281553)
l ¼ 1 0 First unbound (0.296584) Unbound Unbound
l ¼ 2 First unbound (0.314928) Unbound Unbound Unbound

Vl
−ðrÞ E0

− E1
− E2

− E3
−

l ¼ 0 −1.93887 0 First unbound (0.283307) Unbound
l ¼ 1 First unbound (0.296226) Unbound Unbound Unbound

TABLE II. Eigenspectra for ω ¼ 0.9 and potentials Vl
−1ðrÞ, VlþðrÞ, and Vl

−ðrÞ, for relevant values l.
Vl
−1ðrÞ E0

−1 E1
−1 E2

−1 E3
−1

l ¼ 0 −3.31383 −0.910297 First unbound (0.145222) Unbound
l ¼ 1 First unbound (0.208235) Unbound Unbound Unbound

VlþðrÞ E0þ E1þ E2þ E3þ
l ¼ 0 −5.22681 −2.12991 −0.273849 First unbound (0.193224)
l ¼ 1 0 First unbound (0.209239) Unbound Unbound
l ¼ 2 First unbound (0.227407) Unbound Unbound Unbound

Vl
−ðrÞ E0

− E1
− E2

− E3
−

l ¼ 0 −1.48428 0 First unbound (0.195745) Unbound
l ¼ 1 First unbound (0.208676) Unbound Unbound Unbound

TABLE III. Eigenspectra for ω ¼ 0.95 and potentials Vl
−1ðrÞ, VlþðrÞ, and Vl

−ðrÞ, for relevant values l.
Vl
−1ðrÞ E0

−1 E1
−1 E2

−1 E3
−1

l ¼ 0 −2.01353 −0.533926 First unbound (0.0698135) Unbound
l ¼ 1 First unbound (0.115038) Unbound Unbound Unbound

VlþðrÞ E0þ E1þ E2þ E3þ
l ¼ 0 −3.23551 −1.27336 −0.179464 First unbound (0.0996173)
l ¼ 1 0 First unbound (0.117283) Unbound Unbound
l ¼ 2 First unbound (0.134789) Unbound Unbound Unbound

Vl
−ðrÞ E0

− E1
− E2

− E3
−

l ¼ 0 −0.855891 0 First unbound (0.103121) Unbound
l ¼ 1 First unbound (0.115994) Unbound Unbound Unbound
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higher energies. Accordingly, there is no normal-
izable state of zero energy atl ¼ 0. Atl ¼ 1, there is
a single bound state rσ0ωðrÞ with zero energy corre-
sponding to the spatial translation zero modes. All of
the other states in the spectrum are unbound states,
and so there are no other zero energy states at l ¼ 1.
For l ≥ 2 there are no bound states at all, and hence
no normalizable solutions at zero energy.

(iii) For (E20), which has the Vl
−ðrÞ potential,

at l ¼ 0 there is one negative energy bound

state and one zero energy bound state rσωðrÞ
corresponding to the time translation zero
mode. For l ≥ 1, all of the energies are greater
than zero.

Our numerical results are reliable until the level spacing
becomes too small to distinguish between the bound and
unbound states, which occurs for ω too close to m. For the
parameters m ¼ 1, f ¼ 1, and g ¼ 1=20, our numerics can
resolve the difference between bound and unbound states
up to around ω ¼ 0.999.
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