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In this paper all the defect-type solutions in a family of scalar field theories with a real and a complex
field in (1þ 1)-dimensional Minkowski spacetime have been analytically identified. Three types of
solutions have been found: (a) topological kinks without the presence of Q-balls, (b) defects that consist of
a topological kink coupled with a Q-ball, and (c) a one-parameter family of solutions where a Q-ball is
combined with a nontopological soliton. The properties of these solutions and its linear stability are also
discussed.
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I. INTRODUCTION

Q-balls are time-dependent nontopological solitons aris-
ing in nonlinear field theories that, in addition, conserve a
Noether charge associated with a global Uð1Þ symmetry
[1,2]. One of the most relevant roles of Q-balls in physics
involves the explanation of baryogenesis in cosmology. In
some supersymmetric extensions of the standard model
it was shown that Q-balls can be produced in the early
Universe in such a way that the production mechanism of
the baryon asymmetry and the presence of dark matter can
be explained at once, see [3]. In these theories, the lightest
supersymmetric particles are ideal candidates for dark
matter. The nature of these particles depends on the specific
model and the supersymmetry breaking process that are
considered in the cosmological evolution. For this reason,
Higgsino-, bino-, or winolike neutralinos have been pro-
posed as dominant components of the dark matter in
different scenarios. The Affleck-Dine (AD) mechanism,
which can be used to explain baryogenesis, is based on the
dynamics of a complex scalar field ϕ (called the AD field).
This field carries a conserved charge, which can be
interpreted as the baryon number. During inflation, the
expectation value of the AD field takes very large values
but, after the end of inflation, this field starts a coherent
oscillation. Then, the AD field gets a internal rotation
frequency, which leads to a baryon number generation. The
coherent oscillation of the AD field is generally unstable
and fragments into small Q-balls [4]. However, in some

models these solutions have a long lifetime and its decay
temperature is likely to be well below the freeze-out
temperature of the lightest supersymmetric particles.
This leads to the nonthermal production of the dark matter.
The number density of these particles depends on the
lifetime of the Q-ball. It has been found that to explain
the experimental abundance of baryons and dark matter in
the Universe, it is needed that Q-balls have a very long
lifetime [5–9].
On the other hand, the existence of Q-balls has been

proposed in high temperature superconductors in the
“nested Hubbard model” by Mukhin [10]. In some materi-
als, when temperature is higher than a critical temperature
Tc, superconductivity emerges related with the presence of
a pseudogap (where, within the band-theory approxima-
tion, some regions of the Fermi surface become gapped,
while other parts retain their conducting properties, and
when doping is increased, the gapped portion diminishes
and the materials become more metallic). In this situation,
Cooper pairs are formed because couples of fermions form
a bound state by exchanging fluctuations of charge/
spin density waves (CDWs/SDWs). In these conditions,
Q-balls can arise as a condensate of these elementary
bosonic excitations. Because all the Fourier components of
the CDWs/SDWs have a Uð1Þ symmetry, the conserved
Noether charge Q carried by these nontopological solitons
corresponds with the total number of these excitations. In
this case, the internal rotation frequency is identified with
the frequency of the fundamental Fourier component of
the CDWs/SDWs, which is called the “bosonic Matsubara
frequency,” see [10–13].
Another scenario in condensed matter where Q-balls

arise is given by some magnetic materials at low temper-
ature. When a magnetic field is applied to these materials,
spins tend to align toward the magnetic field direction.
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However, small precession movements emerge in these
spins. These spin excitations behave as quasiparticles,
which are referred to as magnons. At this stage, the material
manifests a phase coherence giving place to a super-
conductor with homogeneous precession density. At low
temperature, this configuration develops instabilities
(called “Suhl instabilities“) and pairs of spin waves are
formed at some points, which travel along the substrate.
These are named “persistent signals” and can be interpreted
as a condensate of magnons. These persistent signals can
be described as Q-balls, where the Noether charge Q
is the total number of magnons, and the internal rotation
frequency is identified with the precession frequency,
see [14,15].
In the pioneering paper [16], Friedberg et al. investigated

the presence of this class of solutions in a theoretical model
involving a complex scalar field coupled to a real scalar
field in three space dimensions. The nonlinear couplings
between the fields arising in this model are characterized by
a quartic polynomial, which means that the theory is
renormalizable. The authors describe the Q-balls present
in the model and provide a thorough scheme to analyze
the linear stability of these solutions when small fluctua-
tions that maintain the conserved Noether charge constant
are applied. Theorem 3 in that paper establishes that the
necessary and sufficient conditions to guarantee the
classical stability of Q-balls are that the small fluctuation
operator evaluated on these solutions has only one negative
eigenvalue and that the derivative of the Noether charge Q
with respect to the internal rotation frequency ω is negative.
In this prescription, the frequency ω is chosen as positive.
A similar theorem was proven for the first time by
Vakhitov [17] and Kolokolov [18] in a different framework.
The authors found the same stability criterion for the
principal mode of nonlinear wave equations in a medium
with nonlinearity saturation. The existence of Q-balls and
their properties have been studied in different contexts,
see [19] and references therein. Some of these particular
scenarios involve complex scalar field theories [20–24],
Abelian gauge theories [25–28], Chern-Simons theories
[29–31], non-Abelian theories [32–34], etc.
In general, models involving Q-balls are so complicated

that it is not possible to obtain analytical expressions for
these nontopological solitons. In recent works [35–37],
Q-balls have been exactly calculated for some theories with
one complex scalar field in (1þ 1) dimensions. In this
paper, we address the study of a one-parameter family of
field theories in (1þ 1) dimensions, which involves the
coupling between a real and a complex field. The model
parameter can be understood as a measure of the deforma-
tion of the model with respect to an Oð3Þ invariant linear
sigma model. Remarkably, all the defect-type solutions can
be analytically identified, which makes it easier to study
their properties. There exist three different types of these
solutions. First, a standard topological kink living in the

real field component emerges without the presence of
Q-balls. The second class can be described as defects
consisting of one topological kink defined in the real
component and one Q-ball spinning along the complex
field axis. From our point of view, this is a new type of
solution endowed with novel properties. For example, this
coupling between a topological kink and a Q-ball deter-
mines a new scenario that seems to elude the applicability
of the previously mentioned Theorem 3. These solutions do
not verify any of the hypotheses introduced in Theorem 3.
Despite this fact, they are stable, as it will be proved in this
paper. Finally, a one-parametric family of defects involving
the presence of a nontopological soliton together with a
Q-ball is also identified. In this case, Theorem 3 can be
applied to demonstrate that these solutions are unstable.
The organization of this paper is as follows: the family of

deformed Oð3Þ linear sigma models addressed in this work
and its properties are introduced in Sec. II. The previously
mentioned defects composed of kinks and Q-balls are
analytically identified and described in Sec. III. Section IV
is dedicated to investigate the linear stability of these
composite solitons. Finally, the conclusions of this work
are summarized in Sec. V.

II. THE MODEL

We shall deal with a field theory immersed in a (1þ 1)-
dimensional Minkowski spacetime, which involves the
coupling between one real and one complex scalar field.
The dynamics of this model is characterized by the action
functional

S ¼
Z

d2x

�
1

2
∂μϕ∂

μϕþ 1

2
∂μψ̄∂

μψ −Uðϕ; jψ jÞ
�
; ð1Þ

where ϕ and ψ ¼ ψ1 þ iψ2 are, respectively, the real and
the complex scalar fields, that is, ϕ ∈ MapsðR1;1;RÞ and
ψ ∈ MapsðR1;1;CÞ. In (1), ψ̄ stands for the complex
conjugate of ψ . As usual in this context, the Minkowski
metric gμν is chosen as g00 ¼ −g11 ¼ 1 and g12 ¼ g21 ¼ 0.
The potential term Uðϕ; jψ jÞ which will be investigated in
this paper is given by the positive semidefinite expression

Uðϕ; jψ j; σÞ ¼ 1

2

�
ϕ2 þ jψ j2 − 1

�
2

þ 1

2
σ2jψ j2; ð2Þ

with σ ∈ R. The relation (2) is a quartic polynomial in the
real field ϕ and the modulus of the complex field ψ . Note
that, for σ ¼ 0,

Uðϕ; jψ j; 0Þ ¼ 1

2

�
ϕ2 þ ψ2

1 þ ψ2
2 − 1

�
2

; ð3Þ

and, therefore, this system can be understood as a defor-
mation of anOð3Þ linear sigma model, where the parameter
σ measures the asymmetry with respect to the rotationally
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invariant situation. The potential has two critical points at
ðϕ;ψÞ ¼ v� ¼ ð�1; 0Þ, where the potential vanishes,
Uðv�Þ ¼ 0. The Hessian matrix of (2) evaluated at these
points is

H½v�� ¼

0
B@ ∂

2U
∂ϕ2

∂
2U

∂ϕ∂jψ j
∂
2U

∂ϕ∂jψ j
∂
2U

∂jψ j2

1
CA
��������
v�

¼
�

4 0

0 σ2

�
;

which means that v� are minima of the potential, as
expected. Despite the fact that the Oð3Þ symmetry asso-
ciated with (3) is broken for σ ≠ 0, a Uð1Þ symmetry
remains. Clearly, the model is invariant with respect to the
global transformation ψ → eiβψ , which leads to the con-
served Noether charge

Q ¼ 1

2i

Z
ðψ̄∂tψ − ψ∂tψ̄Þdx: ð4Þ

The field equations obtained from the action functional (1)
read

∂
2ϕ

∂t2
−
∂
2ϕ

∂x2
þ ∂Uðϕ; jψ jÞ

∂ϕ
¼ 0;

∂
2ψ

∂t2
−
∂
2ψ

∂x2
þ ψ

jψ j
∂Uðϕ; jψ jÞ

∂jψ j ¼ 0: ð5Þ

In this paper, we are interested in searching for solutions
that comprise a kink (defined by the real field) and a Q-ball
(defined by the complex field). For this reason, the ansatz

ϕðx; tÞ ¼ fðxÞ; ψðx; tÞ ¼ gðxÞeiωt ð6Þ

is substituted into the field equations (5). This leads to the
system of ordinary differential equations

∂
2f
∂x2

¼ ∂Uðf; gÞ
∂f

;
∂
2g
∂x2

¼ ∂Uðf; gÞ
∂g

− ω2g ð7Þ

for the real functions fðxÞ and gðxÞ. The quantity ω in (6) is
the internal rotation frequency of the Q-ball. Without loss
of generality, we can consider that ω is positive. The
potential term U in (7) becomes now

Uðf; g; σÞ ¼ 1

2

�
f2 þ g2 − 1

�
2 þ 1

2
σ2g2; ð8Þ

while the conserved Noether charge (4) is

Q ¼ ω

Z
∞

−∞
ðgðxÞÞ2dx: ð9Þ

The energy functional E½f; g� is written in this case as the
integral over the space coordinate of the energy density
E½f; g�, i.e.,

E½f; g� ¼
Z

∞

−∞
E½f; g�dx

¼
Z

∞

−∞
dx

�
1

2

�
∂f
dx

�
2

þ 1

2

�
∂g
dx

�
2

þ 1

2
ω2g2 þUðf; g; σÞ

�
; ð10Þ

which implies that the solutions of the system must satisfy
the following asymptotic conditions:

lim
x→�∞

fðxÞ ∈ M; lim
x→�∞

df
dx

¼ 0;

lim
x→�∞

gðxÞ ¼ lim
x→�∞

dg
dx

¼ 0; ð11Þ

in order to keep the total energy (10) finite. In (11),
M ¼ f−1; 1g, the set of possible values of the real field
leading to zeros of the potential termUðf; gÞ. It is also clear
from (7) that the problem involves the effective potential

Ūðf; g; σÞ ¼ Uðf; g; σÞ − 1

2
ω2g2

¼ 1

2

�
f2 þ g2 − 1

�
2 þ 1

2
ðσ2 − ω2Þg2

¼ Uðf; g;ΩÞ; ð12Þ

which has the same functional form as (8), but with a new
model parameter Ω defined as

Ω2 ¼ σ2 − ω2: ð13Þ

Now, Eqs. (7) can be written in the more compact form

∂
2f
∂x2

¼ ∂Ūðf; gÞ
∂f

;
∂
2g
∂x2

¼ ∂Ūðf; gÞ
∂g

: ð14Þ

The effective potential (12) depends on the internal rotation
frequency. In Fig. 1, the potential Ūðf; g; σÞ has been
depicted for several values of ω with a fixed value of the
model parameter σ. The Hessian matrix of this effective
potential evaluated on the points v� reads

H̄½v�� ¼

0
B@ ∂

2Ū
∂ϕ2

∂
2Ū

∂ϕ∂jψ j
∂
2Ū

∂ϕ∂jψ j
∂
2Ū

∂jψ j2

1
CA
��������
v�

¼
�
4 0

0 σ2 − ω2

�
:

This means that v� are absolute minima of Ūðf; gÞ for
ω2 < σ2, but they become saddle points in the other case.
For this reason, a necessary condition for the existence of
the topological defects (which we are interested in) is
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ω2 < σ2:

Solving the system (14) together with the conditions (11)
is tantamount to finding solutions asymptotically beginning
and ending at the vacuum points v� for Newton equations
in which x plays the role of time, the particle position is
determined by ðf; gÞ, and the potential energy of the
particle is Vðf; gÞ ¼ −Uðf; gÞ. Note that the differential
equations (14), or equivalently (7), can be derived from the
effective functional

Ē½f; g; σ� ¼
Z

dx

�
1

2

�
df
dx

�
2

þ 1

2

�
dg
dx

�
2

þ Ūðf; g; σÞ
�
;

ð15Þ

keeping ω fixed, i.e., δĒ½f; g; σ�jω ¼ 0. Note that the
following relation between the functionals (10) and (15)

E½f; g; σ� ¼ Ē½f; g; σ� þ ωQ ð16Þ

holds. Alternatively, Eqs. (7) can be derived as a stationary
point of the functional (10), keeping Q fixed, i.e,
ðδEÞjQ ¼ 0. All of this means that Ē½f; g; σ� is a
Legendre transformation derived from the functional
(10), see [16], which leads to the relations

dĒ
dω

¼ −Q and
dEðQÞ
dQ

¼ ω: ð17Þ

III. FAMILIES OF DEFECTS COMPOSED
OF KINKS AND Q-BALLS

In this section, we shall analytically identify the pre-
viously mentioned defects involving the coexistence of a
kink and a Q-ball. Equations (7) [or, equivalently, (14)] are
written for our model as

∂
2f
∂x2

¼ 2fðf2 þ g2 − 1Þ; ∂
2g
∂x2

¼ 2gðf2 þ g2 − 1Þ þΩ2g:

ð18Þ

These equations have been well studied in the context of
multicomponent kink solutions arising in the Montonen-
Sarker-Trullinger-Bishop model. A thorough summary of
the history and the analytical properties of this model can
be found in [38] and references therein. The key point is
that Eqs. (18) can be solved by introducing elliptic
variables in the internal space ðf; gÞ whose isocoordinate
curves consist of ellipses and hyperbolas with foci
F� ¼ ð�Ω; 0Þ. In these variables the differential equa-
tions (18) are separable. It can be checked that for Ω2 ¼
σ2 − ω2 ≥ 1 only a topological kink and its antikink arise
and there is no room for Q-balls in the system. These
topological defects can be expressed as

K1ðxÞ ¼ ðð−1Þα tanh x̄; 0Þ; α ¼ 0; 1; ð19Þ

which carry a total energy E½K1ðxÞ� ¼ 4=3. In (19),
x̄ ¼ x − x0, where x0 can be interpreted as the center of
the solution. Note that the multicomponent notation
ðf; eiωtgÞ has been employed in (19) to write the solutions.
Therefore, if the second component is zero, the solution
does not involve Q-balls. Note that

Q½K1ðxÞ� ¼ 0: ð20Þ

On the other hand, for the regime 0 < Ω2 < 1, the presence
of Q balls is possible. This implies that the necessary and
sufficient condition for the existence of defects consisting
of kinks and Q-balls in the model (2) is

maxf0; σ2 − 1g < ω2 < σ2: ð21Þ

The previously described solutions are simply given by the
expression

K2ðx; tÞ ¼
�
ð−1Þα tanhðΩx̄Þ; eiωt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2

p
sechðΩx̄Þ

�
;

α ¼ 0; 1; ð22Þ

FIG. 1. Graphics of the effective potential Ūðf; g; σÞ for the model parameter σ ¼ 1.5 and several values of the internal rotation
frequency: (a) ω ¼ 0, (b) ω ¼ 1.2, and (c) ω ¼ 1.8.
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which has been illustrated in Fig. 2. It can be observed that
the solution consists of a kink profile in the real field axis
and a nontopological soliton (Q-ball) spinning in the
complex component of the internal space with rotational
frequency ω.1

For the sake of completeness, the Noether charge (9) for
this type of defect is

Q½K2ðx; tÞ� ¼
2ωð1 −Ω2Þ

Ω
¼ 2ω

1 − σ2 þ ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − ω2

p ; ð23Þ

while its total energy follows the form

E½K2ðx; tÞ� ¼
2ð2ω4 − σ4 − σ2ðω2 − 3ÞÞ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − ω2

p : ð24Þ

The previous expressions are restricted to the range ω2 ∈
ðσ2 − 1; σ2Þ where the solutions (22) are well defined. Note
that dQ½K2ðx;tÞ�

dω ¼ Ω−3½2σ2ð1 −Ω2Þ þ 4ω2Ω2� > 0. In the
usual models found in the literature, this condition implies
that the Q-balls are unstable, as stated by Theorem 3
in [16]. However, as it will be proved in the next section,
the solutions (22) elude the hypotheses of this theorem
and, indeed, they are stable against small fluctuations that
preserve theNoether charge (23). It seems that the topological
nature of the kink living in the real component protects theQ-
ball constituent fromdecaying into thevacuumconfiguration.
From our point of view, this behavior turns the composite
defects (22) into a new type of solution in this context.
In addition to solutions (19) and (22), there exists a one-

parametric family of solutions, which turn out to be a
combination of a nontopological kink and a Q-ball. It can
be checked that the expression

K3ðx; t; γÞ ¼
�
ð−1Þα Ω− coshðΩþxþÞ −Ωþ coshðΩ−x−Þ

Ω− coshðΩþxþÞ þ Ωþ coshðΩ−x−Þ
;

2ΩþΩ−eiωt sinh x̄
Ω− coshðΩþxþÞ þΩþ coshðΩ−x−Þ

�
ð25Þ

with Ω� ¼ 1�Ω, x� ¼ x̄ − γΩðΩ ∓ 1Þ and α ¼ 0,
1 satisfies the field equations (5). Every member of
the K3ðx; t; γÞ family is determined by the value of the
parameter γ ∈ R. All of them are characterized by the
presence of a nontopological kink in the real component
(asymptotically beginning and ending at the same vacuum)
and the appearance of a node in theQ-ball profile located at
x̄ ¼ 0. In Fig. 3, the defect K3ðx; t; 0Þ is depicted. For this
case with γ ¼ 0 the profiles of the solution are symmetric
with respect to the spatial point x̄ ¼ 0. If the two partial
Noether charges

Q1 ¼ ω

Z
0

−∞
ðgðx̄ÞÞ2dx̄; Q2 ¼ ω

Z
∞

0

ðgðx̄ÞÞ2dx̄

are defined (such that Q ¼ Q1 þQ2), it is clear that for the
K3ðx; t; 0Þ solution the relation Q1 ¼ Q2 ¼ Q=2 holds. In

Fig. 4, the member of the K3ðx; t; γÞ family with γ ¼ 3 is
plotted. Now, the solution is asymmetric and the partial
charges Qi are different. In this particular case, the partial
chargeQ1 is greater thanQ2. This behavior continues as the
value of the family parameter γ increases. Indeed, when γ is
very large, the value ofQ2 tends to zero andQ1 tends to the
Noether charge of theK2ðx; tÞ solution. This means that the
K3ðx; t; γÞ defects can be understood as a nonlinear
combination of a K2ðx; tÞ and a K1ðx; tÞ solution.
Another remarkable property of the previously men-

tioned solutions is expressed as sum rules connecting the
total energies and the Noether charges of the defects. All
the members of the K3ðx; γÞ family have the same Noether
chargeQ and the same total energy E. In addition to this, its
conserved charge Q amounts to that of the K2ðxÞ solution,
while its energy is equal to the sum of the energies of the
K1ðxÞ and K2ðxÞ solutions,

Q½K3ðx; t; γÞ� ¼ Q½K2ðx; tÞ�; ð26Þ

FIG. 2. Graphics of the solution K2ðx; tÞ composed by a topological kink in the real component and a Q-ball in the complex
component of the internal space for the particular value Ω ¼ 0.5 and α ¼ 0.

1The solution (22) for the special case σ ¼ 0 was described by
Montonen in [39].
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E½K3ðx; t; γÞ� ¼ E½K1ðx; tÞ� þ E½K2ðx; tÞ�: ð27Þ

These results can be analytically proved from the Legendre
transformations introduced in Sec. II. From (17), it is clear
that

Q½K3ðx; γÞ� ¼ −
dĒ½K3ðx; γÞ�

dω
¼ −

dĒ½K1ðxÞ�
dω

−
dĒ½K2ðxÞ�

dω
¼ Q½K1ðxÞ� þQ½K2ðxÞ� ¼ Q½K2ðxÞ�;

which justifies (26). Here, we have used that
Ē½K3ðx; γÞ� ¼ Ē½K1ðxÞ� þ Ē½K2ðxÞ�, which can be mani-
festly demonstrated by exploiting the separability of the
functional Ēðf; gÞ in elliptic coordinates, see [38]. From
(16) and (26), the relation (27) is directly obtained. The
identities (26) and (27) corroborate the previously men-
tioned interpretation of the K3ðx; t; γÞ solutions and lead to
the following results:

Q½K3ðx; γÞ� ¼ 2ω
1 − σ2 þ ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − ω2
p and

E½K3ðx; γÞ� ¼
4

3
þ 2ð2ω4 − σ4 − σ2ðω2 − 3ÞÞ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − ω2

p :

A. Stability analysis of the Q-balls

In this section, the (classical) linear stability of the
solutions described in Sec. II is investigated following
the prescription established in the seminal paper [16].

In this scheme, a static solution KðxÞ ¼ ðfðxÞ; gðxÞÞ is
perturbed by applying a small fluctuation ðδf; δgÞ, which
conserves the Noether charge Q. In order to attain this
condition, the internal rotation frequency of the perturbed
solution must be varied by the magnitude

δω ¼ −
2ω2

Q

Z
∞

−∞
gδgdx:

Now, the effect of these fluctuations on the energy func-
tional (10) is analyzed. If the total energy E½KðxÞ þ
ðδf; δgÞ� of the perturbed configuration is less than
E½KðxÞ�, then the solution KðxÞ will be unstable. It can
be checked that the variation of the energy functional E at
second order is given by

δEð2ÞjQ¼
Z

∞

−∞
dx

1

2
ðδFÞtH½KðxÞ�δFþ2ω3

Q

�Z
∞

−∞
gδgdx

�
2

;

ð28Þ

where the compact notation δF ¼ ðδf; δgÞt has been used.
The second-order small fluctuation operator H½KðxÞ� aris-
ing in the previous expression reads

H½KðxÞ� ¼

0
BB@

− d2

dx2 þ ∂
2U
∂f2

���
KðxÞ

∂
2U

∂f∂g

���
KðxÞ

∂
2U

∂f∂g

���
KðxÞ

− d2

dx2 þ ∂
2U
∂g2

���
KðxÞ

− ω2

1
CCA:

ð29Þ

FIG. 3. Graphics of the solution K3ðx; t; γÞ composed of a nontopological soliton in the real component and a Q-ball in the complex
component of the internal space for the particular values σ ¼ 0.5, ω ¼ 0.25, α ¼ 0, and γ ¼ 0.

FIG. 4. Graphics of the solution K3ðx; t; γÞ composed of a nontopological soliton in the real component and a Q-ball in the complex
component of the internal space for the particular values σ ¼ 0.5, ω ¼ 0.25, α ¼ 0, and γ ¼ 3.
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In particular, for our model where the field potential term Uðf; gÞ is determined by the expression (8), the operator (29) can
be written as

H½KðxÞ� ¼

0
B@− d2

dx2 þ 2ð3f2 þ g2 − 1Þ 4fg

4fg − d2

dx2 þ 2ðf2 þ 3g2 − 1Þ þ Ω2

1
CA
��������
KðxÞ

: ð30Þ

1. Linear stability analysis for the K2ðxÞ solutions
To study the linear stability of the defects K2ðxÞ, composed by a topological kink and a Q-ball, the expression (22) is

substituted into the operator (30). This leads to the particular Schrödinger-type matrix operator

H½K2ðxÞ� ¼
 
− d2

dx2 þ 4 − 2ð2þ Ω2Þsech2ðΩxÞ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2

p
sechðΩxÞ tanhðΩxÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ω2

p
sechðΩxÞ tanhðΩxÞ − d2

dx2 þ Ω2 þ 2ð2 − 3Ω2Þsech2ðΩxÞ

!
; ð31Þ

which depends on the parameter Ω. It can be analytically
proved that dK2ðxÞ

dx is a zero mode of the operator (31).
However, the rest of the eigenvalues of H½K2ðxÞ� must be
numerically calculated. In Fig. 5 the spectrum of this
operator is displayed as a function of the parameter Ω.
The presence of the previously mentioned zero mode with
eigenvalue λ0 ¼ 0 can be observed. The continuous spectra
emerge on the threshold values Ω2 and 4. Note that a
discrete eigenfunction with eigenvalue λ1 emerges for
Ω > 0.6 approximately. The crucial point here is that there
are no negative eigenvalues. Therefore, the two contribu-
tions in (28) are positive, which means that no linear
fluctuations can decrease the energy of the solution K2ðxÞ.
We have proved that this defect is stable. We recall that
Theorem 3 in [16] states that the necessary and sufficient
conditions for δEð2ÞjQ > 0 are (i) H½KðxÞ� has only one

negative eigenvalue and (ii) dQ½KðxÞ�
dω < 0. However, in our

case there are no negative eigenvalues of the operator
H½K2ðxÞ� and dQ½K2ðxÞ�

dω > 0. As a consequence, the K2ðxÞ
solutions in our model constitute a counterexample
of the universality of the previously mentioned
theorem. From our point of view, the assumption that all
Q-ball-type solutions have at least one negative eigenvalue

associated with the second-order small fluctuation operator
H undermines the generality of the aforementioned theo-
rem. This is clearly valid for models with only one scalar
field, where such solutions are nontopological solitons,
implying that they must begin and arrive at the vacuum
located at the origin of the internal space. In (1þ 1)
dimensions, this involves the fact that the solution has a
maximum point that characterizes the returning point.
Recall that the derivative of the solution with respect to
the spatial coordinate is a zero mode, which as mentioned
before must have a node. This, in turn, implies that the
ground state of the operator H must have a negative
eigenvalue. However, this does not work in the more
general cases, for example, in theories involving a complex
scalar field and a real one, since the latter can have a
solution that connects two distinct vacuum points, opening
the possibility that its small fluctuation operator lacks
negative eigenvalues.

2. Linear stability analysis for the K3ðx; γÞ solutions
The situation is more complicated for the K3ðx; γÞ

solutions. Now, the components of the fluctuation operator
(30) are

H11½K3ðx; γÞ� ¼ −
d2

dx2
− 2þ 6ð−Ωþ coshðΩ−x−Þ þ Ω− coshðΩþxþÞÞ2 þ 8Ω2

−Ω2þsinh2x
ðΩþ coshðΩ−x−Þ þ Ω− coshðΩþxþÞÞ2

;

H12½K3ðx; γÞ� ¼
8ΩþΩ−ðΩ− coshðΩþxþÞ −Ωþ coshðΩ−x−ÞÞ sinh x

ðΩþ coshðΩ−x−Þ þ Ω− coshðΩþxþÞÞ2
;

H22½K3ðx; γÞ� ¼ −
d2

dx2
− 2þΩ2 þ 2ð−Ωþ coshðΩ−x−Þ þ Ω− coshðΩþxþÞÞ2 þ 24Ω2

−Ω2þsinh2x
ðΩþ coshðΩ−x−Þ þ Ω− coshðΩþxþÞÞ2

:
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Despite the intricate form of this operator, some results can
be formulated. For example, it can be checked that the
expressions ∂K3ðx;γÞ

∂x and ∂K3ðx;γÞ
∂γ are zero modes of the

operator H½K3ðx; γÞ�. The remaining eigenvalues of this
operator must be identified by using numerical analysis.
Note that the spectral problem now depends on two
parameters: the coupling constant Ω and the family
parameter γ. In all investigated cases, the existence of a
unique negative eigenvalue has been verified. Figure 6
shows the eigenvalues of the H½K3ðx; γÞ� operator as a
function of the family parameter γ for the values Ω ¼ 0.3
and Ω ¼ 0.8.
The previous result is theoretically supported by apply-

ing Morse theory to the space of the orbits traced by the
solutions. It can be verified that all the members of the
K3ðx; γÞ family cross the point ðð−1ÞαΩ; 0Þ [depending on
the value of α in (25)]. This implies the existence of a
negative eigenvalue in the spectrum of the operator
H½K3ðx; γÞ�. In this scenario, the hypotheses of
Theorem 3 in [16] are recovered and the claim stated there
is now valid. Because these solutions verify that
dQ½K3ðx;γÞ�

dω > 0, this means that the solutions in the
K3ðx; γÞ family are unstable.
We complete this stability analysis by noting that the

K2ðxÞ solutions involve absolute stability. Again, the
topological nature of the kink in the real component
provides these defects with this property. A heuristic
argument proving this fact is as follows. The energy of
plane wave solutions around the vacua v� in the complex
component with Noether charge Q is given by Efree ≈ σQ,

see [2,19]. However, the topological kink in the real
component cannot decay into one of the vacua. Indeed,
the fact that plane waves are defined in the complex
component implies that the topological kink found in
this configuration must correspond to that of the K1ðxÞ
solution (19). Now, we have to compare the energy of the
K2ðxÞ defect with that of this vibrating K1ðxÞ solution. It
can be checked that

E½K2ðx; tÞ� < E½K1ðx; tÞ� þ σQ½K2ðxÞ�;

which confirms that the K2ðx; tÞ defects are stable with
respect to decay into free particles.

IV. SUMMARY

In this paper, the existence of defects involving the
coupling between kinks and Q-balls has been investigated
in a one-parameter family of field theories in (1þ 1)
dimensions with a real and a complex field. It has been
found that there exist three types of solutions: K1ðxÞ
solutions (formed by only one topological kink), K2ðxÞ
solutions (which consist of a topological kink together with
a Q-ball), and the one-parameter family of K3ðx; γÞ
solutions (where a Q-ball is combined with a nontopo-
logical soliton). All of these solutions have been analyti-
cally identified. In addition, the second of the previously
mentioned solutions can be considered as a counterexample
of the universality of the Theorem 3 introduced in the
seminal paper [16]. The small fluctuation operator evalu-
ated on theK2ðxÞ solutions has no negative eigenvalues and
the derivative of the Noether charge of these defects with
respect to the frequency is positive. However, the K2ðxÞ
solutions are stable. The topological charge of the kink
living in the real component seems to prevent the Q-ball
from decaying into the vacuum. From this point of view,
these solutions involve novel properties with respect to the
usual Q-balls arising in the literature. Finally, the family of
K3ðx; γÞ defects are unstable. In this case, the previously
mentioned theorem can be applied to prove this behavior.

FIG. 6. Spectrum of the second-order small fluctuation operatorH½K3ðxÞ� as a function of the family parameter γ for the values of the
coupling constant Ω ¼ 0.3 and Ω ¼ 0.8.

FIG. 5. Spectrum of the second-order small fluctuation operator
H½K2ðxÞ� as a function of the parameter Ω.
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