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The aim of this research is to investigate the vacuum energy-momentum tensor of a quantized, massive,
nonminimally coupled scalar field induced by a uniform electric field background in a four-dimensional
de Sitter spacetime (dS4). We compute the expectation value of the energy-momentum tensor in the in-
vacuum state and then regularize it using the adiabatic subtraction procedure. The correct trace anomaly of
the induced energy-momentum tensor that confirmed our results is significant. The nonconservation
equation for the induced energy-momentum tensor imposes the renormalization condition for the induced
electric current of the scalar field. The findings of this research indicate that there are significant differences
between the two induced currents which are regularized by this renormalization condition and the minimal
subtraction condition.
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I. INTRODUCTION

In the past several decades, quantum field theory in
curved spacetime has played a major role in the study of the
effects of gravity on quantum fields; for a pedagogical
introduction, see [1–3]. A precise understanding of the
quantum effects in curved spacetime was acquired by the
late 1960s by Parker [4–6] and followed by investigations
of others. Indeed, these early investigations focused pri-
marily on the physical consequences of particle creation in
the cosmological spacetimes. It has been illustrated that
a time-varying gravitational field creates elementary par-
ticles from the vacuum. Parker discovered that this particle
creation process can be analyzed by using the Bogoliubov
transformations method [5]. Formulating a general frame-
work of quantum field theory in curved spacetime involves
nontrivial questions. The problem of particle concept is a
deep one, and it is associated with one of the most
fundamental difficulties of quantum field theory in curved
spacetime, that there is no an unambiguous or unique
vacuum state; a detailed discussion can be found in [1,2].
This ambiguity is reflected in the theory by the absence of
an unambiguous or unique preferred mode solutions of the
field equation, which is in turn a consequence of symmetry
group of the spacetime. Since in a general nonstatic curved
spacetime there is generically no any timelike Killing

vector field, it is not possible to classify modes as positive
frequency or negative frequency. Indeed, it is possible to
construct a compleat set of modes. However, the problem is
that there are many of such sets, and we will not have any
criterion available to select a unique privileged choice of
the modes. One of the key lessons learned from the
development of this subject is that the notion of particle
number does not generally have universal significant.
Hence, the expectation value of the energy-momentum
tensor in a suitable vacuum state is perhaps a more
physically relevant object to probe the structure of quantum
fields in curved spacetime rather than particle number
quantity [1]. Part of reason is that the expectation value of
the energy-momentum tensor in a fixed vacuum state
transforms according to the usual tensor transformation
law. In particular, if the vacuum expectation value of the
energy-momentum tensor vanishes for an observer, it will
vanish for all observers. On the contrary, the expectation of
particle number is an essential observer-dependent quan-
tity. The energy-momentum tensor is also important,
because it is directly relevant to explore the consequences
of the quantum field dynamics for the geometry of the
spacetime through the Einstein equation. Hence, it is
interesting to investigate the expectation value of the
energy-momentum tensor in a suitable vacuum state.
Since the mid-seventies, significant advances have been

made in the computation of the energy-momentum tensor
of the quantum fields as well as its applications in the
cosmological context. An essential feature of these com-
putations is that they all involve the ultraviolet divergen-
cies. In fact, such divergencies occur naturally in quantum
field theory calculations. Various prescriptions have been
developed for rendering the energy-momentum tensor

*bavarsad@kashanu.ac.ir

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 125001 (2023)

2470-0010=2023=107(12)=125001(22) 125001-1 Published by the American Physical Society

https://orcid.org/0000-0002-6794-2997
https://orcid.org/0000-0001-9100-4987
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.125001&domain=pdf&date_stamp=2023-06-01
https://doi.org/10.1103/PhysRevD.107.125001
https://doi.org/10.1103/PhysRevD.107.125001
https://doi.org/10.1103/PhysRevD.107.125001
https://doi.org/10.1103/PhysRevD.107.125001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


finite. Among these prescriptions, Pauli-Villars regulariza-
tion [7,8], dimensional regularization [9–11], and zeta-
function regularization [11–14] were originally developed
for use in Minkowski spacetime. Several sets of fictitious
fields may be necessary to remove all of the divergences,
making Pauli-Villars regularization rather complicated.
In [13], it was pointed out that the dimensional regulari-
zation procedure is ambiguous in curved spacetime due to
the fact that in some classes of spacetimes, there is no
natural way to generalize the dimensionality of the space-
time, and the answer would be different in different
extensions to D dimensions. This method also suffers from
limitation that one needs, in principle, to solve the field
equations exactly. Another often used regularization pro-
cedure is point-splitting technique [15–18] which is
intrinsically designed to be used in the position-space
representation of the composite operators. This regulariza-
tion is implemented by placing the two quantum fields at
distant points separated by an infinitesimal distance in a
non-null direction, and then, the divergencies that arise in
the coincidence limit are absorbed into the renormalized
parameters. Although the point-splitting technique is the
most applicable regularization scheme, it involves consid-
erable technical complication. An alternative regularization
prescription is adiabatic subtraction [19–23] which was
originally invented by Parker [5] to obtain the average
density of the scalar particles created in a spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) universe.
This approach is only applicable in spacetimes with slowly
varying curvature, and in fact, an adiabatic expansion is an
expansion in number derivatives of the spacetime metric.
Hence, it is especially useful for studies that involve
numerical techniques and problems of cosmological inter-
est [22]. In order to arrive a sensible semiclassical back-
reaction theory of quantum fields in curved spacetime,
Wald has propounded [24] a minimal set of properties that
the renormalized energy-momentum tensor should satisfy.
These properties which are often called the Wald axioms, in
the weaker set of axioms, can be expressed as follows [1,3]:
(1) The expectation value of the energy-momentum tensor in
any state at a point p in spacetime is covariant under general
coordinate transformations (diffeomorphisms) and is inde-
pendent of spacetime geometry at any point q ≠ p. (2) The
off-diagonal matrix element of the energy-momentum tensor
between any orthogonal pairs of states is finite and unam-
biguous. (3) For all states, the expectation value of the
energy-momentum tensor is covariantly conserved. (4) The
expectation value of the energy-momentum tensor vanishes
in the relevant vacuum state in the Minkowski spacetime. It
was shown in [18] that the fifth axiom of Ref. [24] cannot be
satisfied. Wald then proved a remarkable result, i.e., the
uniqueness theorem, which states that if the expectation
value of the energy-momentum tensor satisfies the Wald
axioms (1)–(3), then it is unique up to the addition of a local
conserved tensor [24]. Hence, the final results for the

renormalized energy-momentum tensor do not depend on
the employed regularization method [1,3]. Using these
regularization techniques, the regularized and renormalized
energy-momentum tensor of a neutral scalar field has been
widely investigated in FLRW universes [19–22,25–33] and
its physical implications for cosmological issues have been
explored [34–36].
It is thought that the very early universe can be approx-

imately described by de Sitter spacetime (dS) [2], which
motivates us to study the quantum field theory in this
spacetime. Gibbons and Hawking [37] originally discovered
that an inertial observer with a particle detector at rest
perceives the de Sitter invariant vacuum state as a bath of
thermal radiation which apparently comes from the cosmo-
logical event horizon. In this context, a relatively simple
model problem is that of a neutral scalar field with no
self-interactions whose regularized and renormalized
energy-momentum tensor has been analyzed [11,38–45].
In [39–41], it was subsequently shown that the vacuum state
of the quantum field in dS is unstable to particle creation.
Furthermore, the study of a semiclassical backreaction effect
of the quantum corrections onto the Hubble rate in [42]
indicated that these contributions can potentially result in a
superacceleration phase, i.e., a phase when the Hubble
rate increases as the dS expands. The spontaneous creation
of pairs of charged particles from the vacuum by a strong
electric field background in Minkowski spacetime is
a well-known nonperturbative feature of quantum field
theory [46–48]. Since the clearest version of this effect
was worked out by Schwinger, it is named the Schwinger
effect; reviews of this subject can be found in, e.g., [49,50].
The phenomenon of particle creation has revealed the
close analogy between quantum field theory in dS and a
constant, uniform electric field in Minkowski space-
time [40,41,51,52]. This analogy motivates us to explore
the combined implications of the dS Gibbons-Hawking
effect and the Schwinger effect. Aside from this analogy,
there are arguments and evidences that require the existence
of strong electromagnetic fields in the early universe [53,54].
This logical possibility provides a further reason for studying
quantum field theory in the presence of an electric field in dS.
There has been numerous studies to investigate the

Schwinger pair creation by a uniform electric field
background with the constant energy density in a dS.
Seminal contributions have been made by [55,56]. The
Bogoliubov transformation method has been used to
analyze the Schwinger effect for the charged scalar field
in two- [55–60], four- [61], and arbitrary-dimensional [62]
de Sitter spacetimes. The Bogoliubov transformation
method has been used to investigate the Schwinger effect
for the Dirac field in dS [63–67], in a manner similar to
that used for the corresponding charged scalar field. In
this method of analysis, which bring its own insights, the
expectation value for the number of particles is related
to the Bogoliubov coefficients which, in turn, can be
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determined by specifying the in-vacuum and out-vacuum
states. A reasonable definition of the out-vacuum state
requires that the parameters mass of the quantum field and
the electric field strength satisfy the semiclassical con-
dition. For a created semiclassical particle, this condition
implies that either or both the mass and the magnitude of
its electric potential energy acroses one Hubble radius
must be much greater than the energy scale determined by
the spacetime curvature [60,61]. An immediate conse-
quence of the semiclassical condition is that the entire
physical ranges of the parameters mass and electric field
strength cannot be probed by this method. A useful
alternative approach for studying the Schwinger effect
in dS was introduced in Ref. [60]. In this approach the
expectation values of the objects such as the electric
current and the energy-momentum tensor of the quantum
field in the in-vacuum state are investigated. The choice of
the in-state as the vacuum is justified from various
viewpoints; see [55]. Regarding the regularity properties,
it is a Hadamard and adiabatic state [56,60]. The regu-
larized expectation value of the electric current (also called
induced current) in the in-vacuum state of the charged
scalar field coupled to a constant, uniform electric field
background has been evaluated in two- [60], three- [62],
and four-dimensional [61,68] de Sitter spacetimes. In those
analyses, the behavior of the induced current can be probed
in the infrared regime for which the quantum field mass is
smaller than the magnitude of the electric potential energy
acroses one Hubble radius which in turn is smaller than the
energy scale determined by the spacetime curvature. The
authors found that, although the induced current has been
computed using different regularization method, in the
infrared regime the induced current increases with deceas-
ing electric field strength [60–62,68]. This peculiar behav-
ior was first observed in [60] and is called the infrared
hyperconductivity. In [69], the authors gave an alternative
derivation of the infrared hyperconductivity phenomenon
in dS4 using the uniform asymptotic approximation
method. For a charged scalar field coupled to a uniform
electromagnetic field background with a constant energy
density electric field parallel to a conserved flux magnetic
field in dS4, the Schwinger effect using the Bogoliubov
transformation method [70–72] and the induced cur-
rent [70,71] in the in-vacuum state have been investigated,
and a period of infrared hyperconductivity was found. The
in-vacuum induced current of the Dirac field coupled to a
constant, uniform electric field background in two- [65]
and four-dimensional [73] de Sitter spacetimes has been
analyzed in a manner similar to that used for the corre-
sponding scalar field. It was subsequently found that, in
contrast to the case of corresponding scalar field, the
infrared hyperconductivity phenomenon does not occur in
the induced current of the Dirac field. Another peculiar
behavior of the induced current occurs when the direction
of the induced current is opposite the direction of applied

electric field background. This phenomenon which is
called the negative current, has been reported for both
the scalar field [61,68] with essentially small mass and the
Dirac field [73] with any mass in the four-dimensional
de Sitter spacetime. For the scalar field case, the negative
current occurs in a finite interval of the electric field
strength, and for the Dirac field case, it occurs below a
certain value of the electric field strength which depends
on the mass. In Refs. [74,75], some notable attempts have
been made to explain and remedy these peculiarities of the
induced current. Beside the induced current, the regular-
ized expectation value of the energy-momentum tensor
(also called the induced energy-momentum tensor) in the
in-vacuum state of the charged scalar [76–78] and
Dirac [79] quantum fields coupled to a constant, uniform
electric field background have been analyzed in different
dimensions of dS. In two-dimensional dS, the induced
energy-momentum tensor of the charged scalar field has
been analyzed in [76], and subsequently, the nonperturba-
tive, regularized, one-loop effective Lagrangian of scalar
quantum electrodynamics (QED) has been constructed.
The induced energy-momentum tensor of the correspond-
ing Dirac field has been derived in [79] and then applied to
study of the gravitational backreaction effect. The trace of
the induced energy-momentum tensor of the charged,
massive scalar field conformally coupled to the Ricci
scalar curvature of three- [77] and four-dimensional [78]
de Sitter spacetimes has been computed, and to examine
the evolution of the Hubble constant, the induced energy-
momentum tensor has been obtained from the trace, along
with the assumption that the created pairs act like a perfect
fluid with a vacuum equation of state. By applying the
Bogoliubov transformation method, the energy-momentum
tensor of the Schwinger scalar pairs created by a constant,
uniform electric field background in an arbitrary dimen-
sional dS has been computed under the two limiting
conditions, i.e., the heavy scalar field [62] and the strong
electric field [80]. In both these cases, it was found that the
Hubble constant decays as a consequence of the Schwinger
pair creation. Before closing the present section, it is
worthwhile to mention that the Schwinger effect has been
studied in FLRW spacetimes [81] and in the framework of
cosmological models [69,82–92]. The role of strong electro-
magnetic fields in astrophysics and cosmology was
reviewed in [93]. The objectives of this article are to
investigate the induced energy-momentum tensor of the
charged scalar field coupled to a uniform electric field
background in dS4 and to analyze its nonconservation
equation. The importance and originality of this study are
that it calculates the induced energy-momentum tensor and
explores a relation between the induced energy-momentum
tensor and the induced current which leads to new insights
into the regularization and behavior of the induced current.
The remaining part of the article proceeds as follows: In

Sec. II, we define and construct the basic elements of the
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formalism that are necessary in our subsequent discussions.
We then carry out explicit computation of the induced
energy-momentum tensor in Sec. III. The properties of the
induced energy-momentum tensor are explored in detail in
Sec. IV. In Sec. V, we analyze the nonconservation equation
of the induced energy-momentum tensor; this investigation
yields a relation between the induced energy-momentum
tensor and the induced current. Then, the properties of the
resulting induced current are discussed in detail. In Sec. VI,
we present the findings of the research. In the Appendix we
present further supplementary data associated with the
calculation of the expectation values of the components
of the energy-momentum tensor.

II. BASIC DEFINITIONS AND CONSTRUCTIONS

In this section, we define and construct the basic
elements of the formalism that are necessary in our
subsequent discussions.

A. Specification of the model

We have already mentioned that we consider a massive
complex scalar field φðxÞ, coupled to the electromagnetic
vector potential AμðxÞ, which describes a uniform electric
field background with a constant energy density in the
conformal Poincaré patch of dS4. To represent this region
of dS4 which is conformally related to a region of
Minkowski spacetime, we choose the coordinates xμ ¼
ðτ;xÞ that the ranges of the conformal time τ, and the
comoving spatial coordinates x are given by

τ ∈ ð−∞; 0Þ; x ∈ R3: ð1Þ

In terms of these coordinates, the metric of the spacetime
takes the form

gμνdxμdxν ¼ Ω2ðτÞðdτ2 − dx · dxÞ; ð2Þ

with the conformal scale factor

ΩðτÞ ¼ −
1

Hτ
; ð3Þ

where H is the Hubble constant. The nonzero Christoffel
symbols for the metric (2) are given by

Γ0
00 ¼

_Ω
Ω
; Γ0

ij ¼
_Ω
Ω
δij; Γi

0j ¼
_Ω
Ω
δij; ð4Þ

where the roman indices i, j denote only three spatial
components and run from 1 to 3. We use the overdot to
denote differentiation with respect to the conformal time τ.
From Eq. (4), the Ricci tensor and hence the Ricci scalar
can be calculated,

Rμν ¼ 3H2gμν; R ¼ 12H2: ð5Þ

We put a uniform electric field background with a constant
energy density on the Poincaré patch represented in Eq. (2).
Without loss of generality, we choose our coordinates so
that this electric field to point in the x1 direction. Thus, the
nonzero components of the electromagnetic field tensor are

F01 ¼ −F10 ¼ Ω2ðτÞE; ð6Þ

where E is a constant. It is convenient to express this
electromagnetic field tensor in terms of a vector potential in
the Coulomb gauge [60–62] as

AμðτÞ ¼ −
E
H2τ

δ1μ: ð7Þ

The complete action Stot of this theory can be represented as
sum of a pure gravitational piece, an electromagnetic piece,
and a scalar field piece,

Stot ¼ Sgr þ Sem þ S: ð8Þ

Here, Sgr is the Einstein-Hilbert action that only includes
the gravitation piece of the complete action, and is given by

Sgr ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛcÞ; ð9Þ

where G is Newton’s gravitational constant, g is the deter-
minant of the metric, R is the Ricci scalar of the spacetime,
and Λc is the cosmological constant. The electromagnetic
piece of the complete action is expressed in terms of the
electromagnetic field tensor as

Sem ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν: ð10Þ

The dynamics of the complex scalar field φðxÞ of mass m
coupled to the electromagnetic vector potential (7) with
coupling e is governed by the last piece of the complete
action which can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½gμνð∂μ þ ieAμÞφð∂ν − ieAνÞφ�

− ðm2 þ ξRÞφφ��; ð11Þ

where ξ is a dimensionless nonminimal coupling constant
which describes the strength of the coupling φ to the Ricci
scalar (5). The Euler-Lagrange equations of motion give the
Klein-Gordon equation for the scalar field,

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νφÞ þ 2iegμνAμ∂νφ − e2gμνAμAνφ

þ ðm2 þ ξRÞφ ¼ 0; ð12Þ
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and the Maxwell equation for the electromagnetic field,

∇νFνμ ¼ jμ; ð13Þ

where∇ denotes the covariant derivative operator, and jμ is
the electric current of the scalar field caused by the electric
field background (6) which is defined by

jμðxÞ¼ iegμν½ð∂νφþ ieAνφÞφ�−φð∂νφ�− ieAνφ
�Þ�: ð14Þ

It is straightforward to verify that∇μjμ ¼ 0; i.e., the electric
current is conserved.

B. Preliminary definition of the
energy-momentum tensor

The classical Einstein equation can be derived from the
complete action (8) by demanding the invariance of Stot
under infinitesimal variation of the metric δgμν, or equiv-
alently, infinitesimal variation of the inverse metric δgμν.
This condition requires that

2ffiffiffiffiffiffi−gp δStot
δgμν

¼ 2ffiffiffiffiffiffi−gp
�
δSgr
δgμν

þ δSem
δgμν

þ δS
δgμν

�
¼ 0: ð15Þ

The variation of expression (9) with respect to δgμν leads to

2ffiffiffiffiffiffi−gp δSgr
δgμν

¼ 1

8πG

�
Rμν −

1

2
Rgμν þ Λcgμν

�
: ð16Þ

The variations of the electromagnetic action Sem, and the
scalar field action S, with respect to δgμν define the energy-

momentum tensor of the electromagnetic field TðemÞ
μν , and

the energy-momentum tensor of the scalar field Tμν,
respectively, as

2ffiffiffiffiffiffi−gp δSem
δgμν

¼ TðemÞ
μν ; ð17Þ

2ffiffiffiffiffiffi−gp δS
δgμν

¼ Tμν: ð18Þ

Plugging expressions (10) and (11) into Eqs. (17) and (18),
respectively, and following the standard calculus of varia-
tions procedure yields the energy-momentum tensor of the
electromagnetic field,

TðemÞ
μν ¼ 1

4
gμνFρσFρσ þ gρσFμρFσν; ð19Þ

and a preliminary expression for the energy-momentum
tensor of the scalar field,

Tμν ¼
�
ð4ξ − 1Þgρσð∂ρ þ ieAρÞφð∂σ − ieAσÞφ� þ ð1 − 4ξÞm2φφ� þ

�
1

2
− 4ξ

�
ξRφφ�

�
gμν

þ ð1 − 2ξÞð∂μφ∂νφ� þ ∂νφ∂μφ
�Þ þ ieAμðφ∂νφ� − ∂νφφ

�Þ þ ieAνðφ∂μφ� − ∂μφφ
�Þ

þ 2e2AμAνφφ
� þ 2ξΓρ

μνðφ∂ρφ� þ ∂ρφφ
�Þ − 2ξð∂μ∂νφφ� þ φ∂μ∂νφ

�Þ: ð20Þ

Plugging three expressions (16)–(18) into Eq. (15) gives
the Einstein equation,

Rμν −
1

2
Rgμν þ Λcgμν ¼ −8πGðTðemÞ

μν þ TμνÞ: ð21Þ

An important property of the Einstein equation is that both
sides of Eq. (21) have identically vanishing covariant
divergences, which implies

∇μTμν ¼ −∇μTðemÞμν: ð22Þ

Using the Klein-Gordon equation (12), it is straightforward
to show that the covariant divergence of expression (20) is
given by

∇μTμν ¼ −jμFμν: ð23Þ

Apparently, the energy-momentum tensor of the scalar field
is not covariantly conserved in the presence of the electro-
magnetic field, as the consequence of the electromagnetic

interactions. We show that the nonconservation of Tμν is

compatible with the nonconservation of TðemÞ
μν so that the

relation (22) is satisfied, and hence, the total energy
momentum tensor is covariantly conserved. By taking
the covariant divergence of the expression (19) and using
the Maxwell equation (13), it is seen that

∇μTðemÞμν ¼ jμFμν: ð24Þ

As a result of Eqs. (23) and (24), it is evident that the relation
(22) is satisfied. Hence, the total energy-momentum tensor

Tμν þ TðemÞ
μν is manifestly conserved.

It is important to state that we treat the classical
gravitational field (2) and the classical electromagnetic
field (7) as fixed field configurations which are unaffected
by the dynamics of the quantum complex scalar field
φðxÞ in response to these backgrounds. In fact, the
Einstein equation (21) describes the backreaction effects
on the gravitational field, and the Maxwell equation (13)
and Eq. (24) describe the backreaction effects on the
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electromagnetic field. Indeed, due to the conceptual impor-
tance of Eq. (23) in our subsequent discussions, we have
presented Eqs. (13), (21), and (24) to provide a fairly
detailed discussion of its derivation. It is then clear that we
do not discuss these equations further in this article.

C. Quantizing the complex scalar field

Quantizing the complex scalar field φðxÞ, in the classical
gravitational (2) and electromagnetic (7) field backgrounds,
is completely straightforward and follows exactly the same
route as that of a complex scalar field in Minkowski
spacetime. We solve the Kline-Gordon equation (12),
and then adopting the canonical quantization method, we
can define the in-vacuum state to obtain the expectation
value of the energy-momentum tensor operator.
Taking account of the fact that the gravitational (2) and

electromagnetic (7) backgrounds are invariant under spatial
translations, it is convenient to write the mode solution of
Eq. (12) as

UkðxÞ ¼ Ω−1ðτÞeik·xfðτÞ; ð25Þ

where k is the comoving momentum. Plugging Eqs. (2),
(7), and (25) into Eq. (12), we can put the differential
equation in a standard form by the change of variable
z ¼ 2ikτ so that k ¼ jkj. Then, it becomes

d2f
dz2

þ
�
−
1

4
þ κ

z
þ 1=4 − γ2

z2

�
fðzÞ ¼ 0; ð26Þ

where the dimensionless parameters are defined through

μ¼ m
H
; λ¼ −

eE
H2

; ξ̄¼ ξ−
1

6
;

r¼ kx
k
; κ ¼ −iλr; γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
− λ2 − μ2 − 12ξ̄

r
: ð27Þ

Two values of ξ are of particular interest and are the
minimally coupled case ξ ¼ 0 and conformally coupled
case ξ ¼ 1=6 which imply ξ̄ ¼ 0. The variable kx which
appears in the definition of the parameter r, denotes the
component of the comoving momentum k along the
electric field background. Equation (26) is the Whittaker
equation, and the solutions are called Whittaker functions;
see, e.g., [94]. We define the in-vacuum state jini so that in
the remote past (τ → −∞) where the spacetime is asymp-
totically Minkowskian, an inertial observer there would
identify this state with a physical vacuum. This vacuum
state may be represented by a mode solution of the
Whittaker equation (26) which behaves like a mode
function in Minkowski spacetime in the limit of
τ → −∞. Hence, the solution of Eq. (26) with the desired
asymptotic form in the limit of jzj → ∞ which can be
represented in terms of a Mellin-Barnes integral [94] is

Wκ;γðzÞ ¼
e−

z
2

Γð1
2
þ γ − κÞΓð1

2
− γ − κÞ

Z þi∞

−i∞

ds
2πi

Γ
�
1

2
þ γþ s

�

×Γ
�
1

2
− γþ s

�
Γð−κ− sÞz−s; ð28Þ

with the condition that the phase of the variable z and the
values of the parameters γ and κ must satisfy the following
inequalities

jphðzÞj < 3π

2
;

1

2
� γ − κ ≠ 0;−1;−2; � � � : ð29Þ

In expression (28), the factors denoted by Γ are the gamma
functions. The contour of the Mellin-Barnes integral (28)
consists of a straight vertical line from minus infinity to
infinity, parallel to imaginary axis in the complex plane,
and of a semicircle at infinity with indentations if necessary
to avoid poles of the integrand in a way that separates the
poles of Γð1

2
þ γ þ sÞ and Γð1

2
− γ þ sÞ from the poles of

Γð−κ − sÞ. The normalized mode functions which behave
like the positive frequency Minkowski mode functions in
the remote past are given by [61,62],

UkðxÞ ¼
1ffiffiffiffiffi
2k

p e
iπκ
2 Ω−1ðτÞeik·xWκ;γð2ikτÞ: ð30Þ

Besides, the normalized mode functions which behave like
the negative frequency Minkowski mode functions in the
remote past are found to be [61,62]

VkðxÞ ¼
1ffiffiffiffiffi
2k

p e−
iπκ
2 Ω−1ðτÞe−ik·xWκ;γð−2ikτÞ: ð31Þ

We have conventionally normalized the mode functions
(30) and (31) such that their Wronskian is

Uk
_U�
k −U�

k
_Uk ¼ V�

k
_Vk − Vk

_V�
k ¼ iΩ−2ðτÞ: ð32Þ

These mode functions will be orthonormal with respect to
the conserved scalar product integrated over the constant τ
hypersurface [62]. The usual canonical quantization will
proceed by introducing the creation a†k, and annihilation ak
operators for each of mode functions Uk, and similarly the
creation b†k, and annihilation bk operators for each of mode
functions Vk. The creation and annihilation operators
satisfy the commutation rules

½ak; a†k0 � ¼ ½bk; b†k0 � ¼ ð2πÞ3δðk − k0Þ; ð33Þ

with all other commutators vanishing. Then, the complex
scalar field operator can be expanded in terms of the creation
and annihilation operators in the standard manner as
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φðxÞ ¼
Z

d3k
ð2πÞ3 ½akUkðxÞ þ b†kVkðxÞ�: ð34Þ

The in-vacuum state jini is characterized by the fact that it is
annihilated by each of ak and bk operators

akjini ¼ bkjini ¼ 0; ∀k: ð35Þ

III. CONSTRUCTION OF THE INDUCED
ENERGY-MOMENTUM TENSOR

Having built a foundation for our discussion and
presented the definition for the energy-momentum tensor
of the scalar field in Eq. (20), we proceed to present the

regularized in-vacuum expectation value of the energy-
momentum tensor of the scalar field.

A. Unregularized expectation values
in the in-vacuum state

Integral representations for the in-vacuum expectation
values of the components of the energy-momentum tensor
can be obtained by substituting the mode expansion (34) for
the quantum scalar field φðxÞ into the definition (20), and
then calculating the expectation values in the in-vacuum
state using relations (33) and (35). By using Eq. (12) and
some algebra, we have the following integral expressions in
terms of the positive frequency mode function (30) for the
expectation values of the components. The integral expres-
sion of the timelike component is given by

hinjT00jini ¼
Z

d3k
ð2πÞ3 ½

_Uk
_U�
k − 6ξτ−1ðUk

_U�
k þ _UkU�

kÞ þ τ−2ðk2τ2 þ 2λrkτ þ λ2 þ μ2 þ 6ξÞUkU�
k�: ð36Þ

For the diagonal spacelike components, we get

hinjT11jini ¼
Z

d3k
ð2πÞ3 fð1 − 4ξÞ _Uk

_U�
k − 2ξτ−1ðUk

_U�
k þ _UkU�

kÞ þ τ−2½ð4ξ − 1þ 2r2Þk2τ2 þ 2ð4ξþ 1Þλrkτ

þ ð4ξþ 1Þλ2 þ ð4ξ − 1Þμ2 þ 6ξð8ξ − 1Þ�UkU�
kg; ð37Þ

and

hinjT22jini ¼ hinjT33jini

¼
Z

d3k
ð2πÞ3 fð1 − 4ξÞ _Uk

_U�
k − 2ξτ−1ðUk

_U�
k þ _UkU�

kÞ þ τ−2½ð4ξ − 1Þk2τ2

þ 2k2zτ2 þ 2ð4ξ − 1Þλrkτ þ ð4ξ − 1Þλ2 þ ð4ξ − 1Þμ2 þ 6ξð8ξ − 1Þ�UkU�
kg: ð38Þ

The only nonvanishing in-vacuum expectation values of the off-diagonal components can be expressed as

hinjT01jini ¼ hinjT10jini ¼ iτ−1
Z

d3k
ð2πÞ3 ðrkτ þ λÞðUk

_U�
k − _UkU�

kÞ: ð39Þ

Using the asymptotic expansion of the Whittaker function (28) for large values of its argument [94], it can be shown that the
mode function (30) is proportional to k−

1
2
−iλr in the limit of k → ∞. Then, inspection of integrals in Eqs. (36)–(39) shows

that these expressions are ultraviolet divergent. Thus, we first regulate them by cutting them off at a large momentum K. A
further description of the calculation of the expressions (36)–(38) is available in the Appendix. We find the final expression
for the unregularized in-vacuum expectation value of the timelike component

hinjT00jini ¼ Ω2ðτÞ H
4

8π2

�
Λ4 þ

�
μ2 − 6ξ̄þ 2λ2

3

�
Λ2 −

�
μ4

2
þ 6ξ̄μ2 −

λ2

6

�
logð2ΛÞ þ 54ξ̄2 −

2λ4

15
þ μ2

4
þ 6ξ̄μ2 þ μ4

8

−
19λ2

72
− 2λ2ξ̄−

λ2μ2

2
þ γ

24π

�
45

π2
− 6− 96ξ̄þ 4λ2 − 26μ2

�
coshð2πλÞ
sinð2πγÞ −

γ

48π2λ

�
45

π2
− 6− 96ξ̄þ 64λ2 − 26μ2

�

×
sinhð2πλÞ
sinð2πγÞ þ i cscð2πγÞ

Z þ1

−1
C0r

�
ðe2πλr þ e2iπγÞψ

�
1

2
þ γþ iλr

�
− ðe2πλr þ e−2iπγÞψ

�
1

2
− γþ iλr

��
dr

þ iπ
12

ð3μ4 þ 36ξ̄μ2 − λ2Þ
�
; ð40Þ
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where the coefficient C0r is given by

C0r ¼ −
5

8
λ4r4 þ 1

8
ð6μ2 þ 6λ2 þ 36ξ̄þ 1Þλ2r2 − 1

8
ðμ2 þ λ2Þðμ2 þ λ2 þ 12ξ̄Þ: ð41Þ

The final results of our evaluation of the unregularized in-vacuum expectation values of the diagonal spacelike components
are

hinjT11jini ¼ Ω2ðτÞ H
4

8π2

�
Λ4

3
þ
�
2ξ̄ −

μ2

3
þ 14λ2

15

�
Λ2 þ

�
μ4

2
þ 6ξ̄μ2 −

λ2

6

�
logð2ΛÞ − 54ξ̄2 −

26λ4

105
−
7μ4

24
− 8ξ̄μ2

−
18ξ̄

5
λ2 −

μ2

4
þ 19λ2

72
þ λ2μ2

30
−

γ

24πλ2

�
15

π2
ð105π−2 − 15 − 132ξ̄þ 35λ2 − 11μ2Þ − 66λ2 − 336ξ̄λ2 − 4λ4

− 46λ2μ2
�
coshð2πλÞ
sinð2πγÞ þ γ

48π2λ3

�
15

π2
ð105π−2 − 15 − 132ξ̄þ 175λ2 − 11μ2Þ − 366λ2 − 2976ξ̄λ2 þ 136λ4

− 266λ2μ2
�
sinhð2πλÞ
sinð2πγÞ þ i cscð2πγÞ

Z þ1

−1
C1r

�
ðe2πλr þ e2iπγÞψ

�
1

2
þ γ þ iλr

�

− ðe2πλr þ e−2iπγÞψ
�
1

2
− γ þ iλr

��
dr −

iπ
12

ð3μ4 þ 36ξ̄μ2 − λ2Þ
�
; ð42Þ

where the coefficient C1r is given by

C1r ¼
35

8
λ4r6 −

1

8
ð70λ4 þ 30λ2μ2 þ 360ξ̄λ2 þ 25λ2Þr4 þ 1

8
ð39λ4 þ 3μ4 þ 30λ2μ2 þ 396ξ̄λ2 þ 72ξ̄μ2 þ 20λ2

þ 6μ2 þ 432ξ̄2 þ 72ξ̄Þr2 − 1

8
ð4λ4 þ 4λ2μ2 þ 60ξ̄λ2 þ 12ξ̄μ2 þ 2λ2 þ 2μ2 þ 144ξ̄2 þ 24ξ̄Þ; ð43Þ

and we also have

hinjT22jini ¼ hinjT33jini

¼ Ω2ðτÞ H
4

8π2

�
Λ4

3
þ
�
2ξ̄ −

μ2

3
−
2λ2

15

�
Λ2 þ

�
μ4

2
þ 6ξ̄μ2 þ λ2

6

�
logð2ΛÞ − 54ξ̄2 þ 2λ4

35

−
7μ4

24
− 8ξ̄μ2 þ 4ξ̄

5
λ2 −

μ2

4
−
19λ2

72
þ 2

5
λ2μ2 þ γ

16πλ2

�
5

π2
ð105π−2 − 15 − 132ξ̄þ 38λ2 − 11μ2Þ − 24λ2

− 144ξ̄λ2
�
coshð2πλÞ
sinð2πγÞ −

γ

32π2λ3

�
5

π2
ð105π−2 − 15 − 132ξ̄þ 178λ2 − 11μ2Þ − 124λ2 − 1024ξ̄λ2 þ 200λ4

3

−
220

3
λ2μ2

�
sinhð2πλÞ
sinð2πγÞ þ i cscð2πγÞ

Z þ1

−1
C2r

�
ðe2πλr þ e2iπγÞψ

�
1

2
þ γ þ iλr

�

− ðe2πλr þ e−2iπγÞψ
�
1

2
− γ þ iλr

��
dr −

iπ
12

ð3μ4 þ 36ξ̄μ2 þ λ2Þ
�
; ð44Þ

where the coefficient C2r is given by

C2r ¼ −
C1r

2
−

5

16
λ4r4 þ 1

16
ð6λ2 − 6μ2 þ 36ξ̄þ 1Þλ2r2 þ 1

16
ð3μ4 þ 2λ2μ2 þ 12ξ̄λ2 þ 36ξ̄μ2 − λ2Þ: ð45Þ

Plugging the resulting expression given in Eq. (32) for the Wronskian of the mode functions Uk into Eq. (39) and
integrating over momentum phase space, we obtain the unregularized expression for the only nonvanishing off-diagonal
components,

hinjT01jini ¼ hinjT10jini ¼ Ω2ðτÞH
4λ

6π2
Λ3: ð46Þ
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The expressions (40), (42), (44), and (46) clearly have
ultraviolet divergences when Λ → ∞. This was expected,
because the expectation values in the Hadamard in-vacuum
state suffer from the same ultraviolet divergence properties
as Minkowski spacetime.

B. Construction of the counterterms
and adiabatic subtractions

To render the in-vacuum expectation values given by
Eqs. (40), (42), (44), and (46) finite, we provide a set of
needed adiabatic counterterms. The adiabatic regularization
method consists of subtracting the appropriate adiabatic
counterterms from the corresponding unregularized expres-
sions. To adjust the set of appropriate counterterms, we
treat the conformal scale factor ΩðτÞ, and the electromag-
netic vector potential AμðτÞ as quantities of zero adiabatic
order. As pointed out by Wald [18], in four dimensions, to
obtain a renormalized energy-momentum tensor which is
consistent with the Wald axioms, the subtraction counter-
terms should be expanded up to fourth adiabatic order; see
also [1,2]. Thus, to construct the expectation value of the
energy-momentum tensor with the desired physical proper-
ties, we expand the subtraction counterterms up to fourth
adiabatic order. To construct the appropriate counterterms,
we need an expansion for the mode functions up to fourth
adiabatic order. We use the definition z ¼ 2ikτ to turn the
Klein-Gordon equation (26) into the convenient form

d2FA

dτ2
þ ðω2

0ðτÞ þ ΔðτÞÞFA ¼ 0; ð47Þ

where FA is the positive frequency adiabatic solution, and
the conformal time dependent frequencies read

ω0ðτÞ ¼ ðk2 þ 2eA1krþ e2A2
1 þm2Ω2Þ12; ð48Þ

ΔðτÞ ¼ 12ξ̄

�
_Ω
Ω

�
2

: ð49Þ

It is then obvious that ω0 is of zero adiabatic order, andΔ is
of second adiabatic order. The adiabatic form of FA is the
Wentzel-Kramers-Brillouin (WKB) solution of Eq. (47).
This WKB solution can be written as

FAðτÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WðτÞp exp

�
−i

Z
τ
Wðτ0Þdτ0

�
; ð50Þ

where W satisfies the exact equation

W2 ¼ ω2
0 þ Δ −

Ẅ
2W

þ 3 _W2

4W2
: ð51Þ

To put the solution into the desired form, it is convenient to
write W as

W ¼ Wð0Þ þWð2Þ þWð4Þ; ð52Þ

where the superscript numbers in parentheses denote the
adiabatic order approximation to W. Substituting the
expansion (52) into Eq. (51), we find the zero adiabatic
order approximation

Wð0Þ ¼ ω0: ð53Þ

The next iteration gives the second adiabatic order
approximation

Wð2Þ ¼ Δ
2ω0

−
ω̈0

4ω2
0

þ 3 _ω2
0

8ω3
0

: ð54Þ

Repeated iteration yields the fourth adiabatic order
approximation

Wð4Þ ¼ −
Wð2Þ2

2ω0

−
Ẅð2Þ

4ω2
0

þ ω̈0Wð2Þ

4ω3
0

þ 3 _ω0
_Wð2Þ

4ω3
0

−
3 _ω2

0W
ð2Þ

4ω4
0

: ð55Þ

It shouldbe remarked that all terms in the adiabatic expansion
of W of odd adiabatic order vanish. Assembling the pieces
given in Eqs. (25), (50), and (52)–(55), we find the positive
frequency adiabatic solution to fourth adiabatic order
approximation,

U½4�
k ðxÞ ¼ Ω−1ðτÞ 1ffiffiffiffiffiffiffiffi

2ω0

p
�
1 −

Wð2Þ

2ω0

−
Wð4Þ

2ω0

þWð2Þ2

2ω2
0

�

× exp
�
ik · x − i

Z
τ
Wðτ0Þdτ0

�
: ð56Þ

We use the superscript symbol ½4� to indicate that the cross
terms from the field expansion products that are of adiabatic
order greater than 4 are to be discarded. To obtain expansions
of the required counterterms to adiabatic order four, it is only

necessary to calculate (36)–(39) with Uk replaced by U½4�
k .

Doing this,we find the counterterm to adiabatic order four for
the timelike component,

T ½4�
00 ¼ Ω2ðτÞ H

4

8π2

�
Λ4 þ

�
μ2 − 6ξ̄þ 2λ2

3

�
Λ2

−
�
μ4

2
þ 6ξ̄μ2 −

λ2

6

�
log

�
2Λ
μ

�
þ 72ξ̄2 −

λ4

15
þ μ2

6

þ 9ξ̄μ2 þ μ4

8
−
2λ2

9
− 2λ2ξ̄ −

λ2μ2

3
−

1

60

þ 7λ4

240μ4
þ λ2

30μ2
−
3ξ̄λ2

2μ2

�
: ð57Þ
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We find the counterterms to adiabatic order four for the diagonal spacelike components,

T ½4�
11 ¼ Ω2ðτÞ H

4

8π2

�
Λ4

3
þ
�
2ξ̄ −

μ2

3
þ 14λ2

15

�
Λ2 þ

�
μ4

2
þ 6ξ̄μ2 −

λ2

6

�
log

�
2Λ
μ

�
− 72ξ̄2 −

13λ4

105
−
7μ4

24
− 11ξ̄μ2

−
14ξ̄

5
λ2 −

μ2

6
þ 7λ2

18
−
λ2μ2

15
þ 1

60
−

7λ4

240μ4
þ λ2

18μ2
þ 3ξ̄λ2

2μ2

�
; ð58Þ

and

T ½4�
22 ¼ T ½4�

33 ¼ Ω2ðτÞ H
4

8π2

�
Λ4

3
þ
�
2ξ̄ −

μ2

3
−
2λ2

15

�
Λ2 þ

�
μ4

2
þ 6ξ̄μ2 þ λ2

6

�
log

�
2Λ
μ

�
− 72ξ̄2 þ λ4

35

−
7μ4

24
− 11ξ̄μ2 þ 2ξ̄

5
λ2 −

μ2

6
−
7λ2

18
þ λ2μ2

5
þ 1

60
þ 7λ4

720μ4
−

λ2

45μ2
−
ξ̄λ2

2μ2

�
: ð59Þ

We obtain the counterterms to adiabatic order four for the only nonvanishing off-diagonal components,

T ½4�
01 ¼ T ½4�

10 ¼ Ω2ðτÞH
4λ

6π2
Λ3: ð60Þ

Then, the adiabatic regularization procedure is carried out by subtracting the counterterms (57)–(60) from the corresponding
unregularized in-vacuum expectation values (40), (42), (44), and (46). Thus, we obtain our final expression for the timelike
component of the regularized energy-momentum tensor,

T00 ¼ hinjT00jini − T ½4�
00

¼ Ω2ðτÞ H
4

8π2

�
1

60
−

7λ4

240μ4
−

λ2

30μ2
þ 3ξ̄λ2

2μ2
− 18ξ̄2 −

λ4

15
þ μ2

12
− 3ξ̄μ2 −

λ2

24
−
λ2μ2

6

þ γ

24π

�
45

π2
− 6 − 96ξ̄þ 4λ2 − 26μ2

�
coshð2πλÞ
sinð2πγÞ −

γ

48π2λ

�
45

π2
− 6 − 96ξ̄þ 64λ2 − 26μ2

�
sinhð2πλÞ
sinð2πγÞ

þ i cscð2πγÞ
Z þ1

−1
C0r

�
ðe2πλr þ e2iπγÞψ

�
1

2
þ γ þ iλr

�
− ðe2πλr þ e−2iπγÞψ

�
1

2
− γ þ iλr

��
dr

−
�
μ4

2
þ 6ξ̄μ2 −

λ2

6

�
logðμÞ þ iπ

12
ð3μ4 þ 36ξ̄μ2 − λ2Þ

�
: ð61Þ

We obtain our final expressions for the diagonal spacelike components of the regularized energy-momentum tensor,

T11 ¼ hinjT11jini − T ½4�
11

¼ Ω2ðτÞ H
4

8π2

�
−

1

60
þ 7λ4

240μ4
−

λ2

18μ2
−
3ξ̄λ2

2μ2
þ 18ξ̄2 −

13λ4

105
þ 3ξ̄μ2 −

4ξ̄λ2

5
−
μ2

12
−
λ2

8
þ λ2μ2

10

−
γ

24πλ2

�
15

π2
ð105π−2 − 15 − 132ξ̄þ 35λ2 − 11μ2Þ − 66λ2 − 336ξ̄λ2 − 4λ4 − 46λ2μ2

�
coshð2πλÞ
sinð2πγÞ

þ γ

48π2λ3

�
15

π2
ð105π−2 − 15 − 132ξ̄þ 175λ2 − 11μ2Þ − 366λ2 − 2976ξ̄λ2 þ 136λ4 − 266λ2μ2

�
sinhð2πλÞ
sinð2πγÞ

þ i cscð2πγÞ
Z þ1

−1
C1r

�
ðe2πλr þ e2iπγÞψ

�
1

2
þ γ þ iλr

�
− ðe2πλr þ e−2iπγÞψ

�
1

2
− γ þ iλr

��
dr

þ
�
μ4

2
þ 6ξ̄μ2 −

λ2

6

�
logðμÞ − iπ

12
ð3μ4 þ 36ξ̄μ2 − λ2Þ

�
; ð62Þ

and
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T22 ¼ T33 ¼ hinjT33jini − T ½4�
33

¼ Ω2ðτÞ H
4

8π2

�
−

1

60
−

7λ4

720μ4
þ λ2

45μ2
þ ξ̄λ2

2μ2
þ 18ξ̄2 þ λ4

35
þ 3ξ̄μ2 þ 2ξ̄λ2

5
−
μ2

12
þ λ2

8
þ λ2μ2

5

þ γ

16πλ2

�
5

π2
ð105π−2 − 15 − 132ξ̄þ 38λ2 − 11μ2Þ − 24λ2 − 144ξ̄λ2

�
coshð2πλÞ
sinð2πγÞ

−
γ

32π2λ3

�
5

π2
ð105π−2 − 15 − 132ξ̄þ 178λ2 − 11μ2Þ − 124λ2 − 1024ξ̄λ2 þ 200λ4

3
−
220

3
λ2μ2

�
sinhð2πλÞ
sinð2πγÞ

þ i cscð2πγÞ
Z þ1

−1
C2r

�
ðe2πλr þ e2iπγÞψ

�
1

2
þ γ þ iλr

�
− ðe2πλr þ e−2iπγÞψ

�
1

2
− γ þ iλr

��
dr

þ
�
μ4

2
þ 6ξ̄μ2 þ λ2

6

�
logðμÞ − iπ

12
ð3μ4 þ 36ξ̄μ2 þ λ2Þ

�
: ð63Þ

We see that the nonvanishing unregularized expectation
values of the off-diagonal components, given by Eq. (46),
are exactly canceled by their counterterms (60),

T01 ¼ T10 ¼ hinjT10jini − T ½4�
10 ¼ 0: ð64Þ

Thus, we have arrived at the desired expressions for the
regularized in-vacuum expectation values of all the compo-
nents of the energy-momentum tensor, also called the
induced energy-momentum tensor.
An alternative and very fruitful approach to the issue of

scalar QED in de Sitter spacetime has been established in
the series of remarkable papers [95–97]. In this series, the
Starobinsky stochastic formulation [98] of inflationary
quantum field theory has been extended to the setup of
scalar QED in de Sitter spacetime. In the framework of the
Starobinsky stochastic formalism, the long and short wave-
length modes of the light scalar field are split via a window
function. Or equivalently, in the momentum-space, the low-
and high-momentum modes are split via an appropriate
cutoff. Then, the short-wavelength part of the field inside
the Hubble horizon is treated as a source term in the
classical equation of motion for the long-wavelength part of
the field outside the Hubble horizon; for a recent review of
this subject, see [99]. Hence, the Starobinsky stochastic
formalism treatment is in contrast to the canonical quan-
tization procedure adopted in this paper where the scalar
field operator is built from an appropriate linear super-
position of all the mode functions with an equal weight; see
Eq. (34). In [95], the Starobinsky stochastic formalism
applied to massless, minimally coupled scalar QED in
de Sitter spacetime, where the electromagnetic vector field
was integrated out, and then, the renormalized effective
potential and scalar QED energy-momentum tensor were
derived. Furthermore, the Starobinsky stochastic equation
was generalized to the effective scalar theory and solved
at late times. In particular, their result for the effective
energy-momentum tensor implies a decay of the effective

cosmological constant due to the inflationary pair creation.
In [96,97], the two-loop vacuum expectation values of the
gauge invariant bilinears and the energy-momentum tensor
of massless, minimally coupled scalar QED in de Sitter
spacetime have been evaluated using the dimensional
regularization method. It was found that the results are
in agreement with the predictions of the stochastic formal-
ism which was derived in [95]. Our result for the induced
energy-momentum tensor (61)–(63) differs considerably
from that of Refs. [95–97], because our viewpoint in this
investigation has been quite different from that of
Refs. [95–97]. First, instead of the Starobinsky stochastic
formalism, we have adopted the canonical quantization pro-
cedure, as discussed in Sec. II C. Second, in Refs. [95–97],
the electromagnetic field was considered as a dynamical
quantum field which was integrated out in Ref. [95], and
was treated perturbatively using the formalism of Feynman
diagrams at two-loop order in Refs. [96,97]. However, as
we have noted already in Sec. II B, in our analysis, the
electromagnetic field (7) is treated as a fixed classical
background field.

IV. PROBING THE INDUCED
ENERGY-MOMENTUM TENSOR

The nonvanishing components of the induced energy-
momentum tensor are given by Eqs. (61)–(63). Observe
that all the off-diagonal components of the induced energy-
momentum tensor are zero, and the components T22 and
T33 are equal as consequences of the underlying sym-
metries of the backgrounds (2) and (6). Furthermore, since
the electric field background (6) is not invariant under full
symmetries of de Sitter spacetime, this indeed violates the
time reversal symmetry [51], and causes an electric current
along its direction; we observe that T00, T11, and T22 are
not equal to one another. Thus, we expect that in the limit
of vanishing electric field background that the in-vacuum
state possesses the full set of de Sitter invariances, and the
induced energy-momentum tensor takes the maximally
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invariant form under the transformations of de Sitter group,
i.e., must be proportional to the de Sitter metric. By setting
λ ¼ 0 in Eqs. (61)–(63), which corresponds to vanishing
electric field background, the induced energy-momentum
tensor reduced to the form

Tμν ¼
H4

32π2

�
1

15
− 72ξ̄2 −12ξ̄μ2 −

2μ2

3
þ μ2ð12ξ̄þμ2Þ

×

�
ψ

�
3

2
þ γ0

�
þψ

�
3

2
− γ0

�
− logðμ2Þ

��
gμν; ð65Þ

where γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=4Þ − μ2 − 12ξ̄

p
is obtained by setting

λ ¼ 0 in the definition of γ. The expression (65) accords
with the result of computing the renormalized vacuum
energy-momentum tensor of a real scalar field in dS4
obtained in Refs. [11,38], except for the overall factor of 2
in Eq. (65). This factor of 2 is consistent with the complex
scalar field as being made of two real scalar fields with the
number of degrees of freedom doubling up.

A. Behavior of the induced energy-momentum tensor

Figures 1–3 provide some useful insight into the general
behavior of the induced energy-momentum tensor. The
absolute values of the expressions (61)–(63) as functions of
the electric field parameter λ, for various values of the scalar
field mass parameter μ, and two values of the coupling
constant ξ are shown on the graphs in Figs. 1–3, respec-
tively. Note especially that the scales are logarithmic on
both axes; hence, on the graphs, zero values of the
expressions, where the signs of the plots change, are
displayed as singularities. Therefore, these figures signal
that the induced energy-momentum tensor is analytic and
varies continuously with the parameters λ, μ, and ξ;
this statement is consistent with the requirements discussed

in [100]. Figures 1–3 also illustrate the outstanding
qualitative features of the induced energy-momentum
tensor. For fixed values of μ and ξ, the absolute values
of the nonvanishing components of induced energy-
momentum tensor are increasing functions of λ, but by
excluding a neighborhood of the zero value points, this
behavior is assured. For fixed values of λ and ξ, the absolute
values of the nonvanishing components are decreasing
functions of μ. For fixed values of λ and μ, the nonvanishing
components do not vary significantly with the parameter ξ
in the range 0 ≤ ξ ≪ λ, μ. The qualitative behaviors shown
in Figs. 1–3 can be given quantitative treatments by
inspection of expressions (61)–(63) in the limiting regimes.
We concentrate our attention on three regimes of interest:
(1) The strong electric field regime with the criterion

FIG. 1. The absolute value of T0
0 component of the induced

energy-momentum tensor is plotted in unit of H4 as a function of
the electric field parameter λ ¼ −eE=H2. The lines correspond to
different values of the mass parameter μ ¼ m=H, and the
coupling constant ξ as indicated. Both axes have logarithmic
scales.

FIG. 2. The absolute value of T1
1 component of the induced

energy-momentum tensor is plotted in unit of H4 as a function of
the electric field parameter λ ¼ −eE=H2. The lines correspond to
different values of the mass parameter μ ¼ m=H, and the
coupling constant ξ as indicated. Both axes have logarithmic
scales.

FIG. 3. The absolute value of T2
2 component of the induced

energy-momentum tensor is plotted in unit of H4 as a function of
the electric field parameter λ ¼ −eE=H2. The lines correspond to
different values of the mass parameter μ ¼ m=H, and the
coupling constant ξ as indicated. Both axes have logarithmic
scales. Recall that T2

2 ¼ T3
3.
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λ ≫ maxð1; μ; ξÞ. (2) The heavy scalar field regime with
the criterion μ ≫ maxð1; λ; ξÞ. (3) The infrared regime with
the criteria μ ≪ 1, λ ≪ 1, and ξ ¼ 0.

1. Strong electric field regime

In the strong electric field regime λ ≫ maxð1; μ; ξÞ, it is
appropriate to find the approximate behavior of the induced
energy-momentum tensor in the limit λ → ∞. By expand-
ing expressions (61)–(63) around λ ¼ ∞with μ and ξ fixed,
we find the dominant terms in the components of the
induced energy-momentum tensor,

T00 ¼ −T11 ¼ 3T22 ¼ 3T33 ¼ −Ω2
H4

8π2

�
7λ4

240μ4

�
: ð66Þ

Thus, in this regime, the absolute value of the nonvanishing
components of induced energy-momentum tensor increase
monotonically with increasing λ but decrease monotoni-
cally with increasing μ, as we see on the right end of any
graphs in Figs. 1–3.

2. Heavy scalar field regime

In the heavy scalar field regime μ ≫ maxð1; λ; ξÞ, it is
appropriate to find approximate behavior of the induced
energy-momentum tensor in the limit μ → ∞. By expand-
ing expressions (61)–(63) around μ ¼ ∞with λ and ξ fixed,
we find the dominant terms in the components of the
induced energy-momentum tensor,

T00 ¼Ω2
H4

8π2

�
a
μ2

þ b
μ4

þ c0λ2

μ4
þOðμ−6Þ

�
;

T11 ¼ −Ω2
H4

8π2

�
a
μ2

þ b
μ4

þ c1λ2

μ4
þOðμ−6Þ

�
;

T22 ¼ T33 ¼ −Ω2
H4

8π2

�
a
μ2

þ b
μ4

þ c2λ2

μ4
þOðμ−6Þ

�
; ð67Þ

where the coefficients a; b; c0; c1 and c2 are given by

a ¼ −
2

315
þ ξ̄

5
− 72ξ̄3;

b ¼ −
1

210
ð1 − 32ξ̄þ 504ξ̄2 − 90720ξ̄4Þ;

c0 ¼ −
1

315
−
7ξ̄

15
þ 12ξ̄2; c1 ¼ −

22

315
þ 3ξ̄

5
þ 12ξ̄2;

c2 ¼
2

105
−
ξ̄

3
: ð68Þ

The asymptotic forms in Eq. (67) reveal that the induced
energy-momentum tensor falls off as H2=m2 in the limit
ðm=HÞ → ∞. Thus, the behavior of the induced energy-
momentum tensor is inconsistent with the behavior of the
semiclassical energy-momentum tensor [39,62] that falls of
as expð−2πm=HÞ in the heavy scalar field regime where

m ≫ H. A similar feature arises for the induced electric
current of both scalar [61] and Dirac [73] fields in dS4.
Studies [74,75] have proposed explanations in physical
terms for this feature of the induced electric current.

3. Infrared regime

To find approximate behavior of the induced energy-
momentum tensor in the infrared regime, where μ ≪ 1,
λ ≪ 1 and ξ ¼ 0, it is appropriate to make Taylor series
expansions of the expressions (61)–(63) around μ ¼ 0 and
λ ¼ 0, and set ξ ¼ 0. We find that the dominant terms in the
expansions of (61) and (63) are given by

T00 ¼ Ω2
H4

8π2

�
61

60
−
17λ2

60μ2
−

7λ4

240μ4
þOðλ2; μ2Þ

�
; ð69Þ

T22 ¼ T33 ¼ −Ω2
H4

8π2

�
61

60
þ 11λ2

180μ2
þ 7λ4

720μ4
þOðλ2;μ2Þ

�
;

ð70Þ

which are valid for μ ≪ λ ≪ 1 as well as λ ≪ μ ≪ 1. The
expansion of expression (62) for μ ≪ λ ≪ 1 takes the form

T11 ¼ Ω2
H4

8π2

�
299

60
þ 7λ2

36μ2
þ 7λ4

240μ4
þOðλ2; μ2Þ

�
; ð71Þ

while for λ ≪ μ ≪ 1, it is approximated by

T11¼−Ω2
H4

8π2

�
61

60
−
223λ2

36μ2
þ1433λ4

240μ4
þOðλ2;μ2Þ

�
: ð72Þ

Observe that all the asymptotic expansions (69)–(71)
diverge as m−4 in the exactly massless case, i.e., m ¼ 0.
We can understand the origin of these infrared-divergent
terms by looking at the counterterms (57)–(59). These
terms arise from the contribution of the zero modes in the
massless case to the counterterms. Therefore, the signal for
the massless case of the method of adiabatic regularization
cannot be used because it leads to singularities in the
counterterms, as pointed out in [19,20,61]. We emphasize
that the result (72) is an approximation valid only for
λ ≪ μ ≪ 1, and hence, we cannot use it in the limit of zero
mass for a fixed value of λ.

B. Trace anomaly

It is reassuring to do a consistency check, to see that
whether the induced energy momentum tensor yields the
well-known predicted trace anomaly for a free, massless,
conformally invariant scalar field in dS4. Putting the metric
(2) and components (61)–(63) together, we obtain the trace
of the induced energy-momentum tensor,

INDUCED ENERGY-MOMENTUM TENSOR IN dE SITTER … PHYS. REV. D 107, 125001 (2023)

125001-13



T ¼ gμνTμν ¼
H4

8π2

�
1

15
−

7λ4

180μ4
−

λ2

45μ2
þ 2ξ̄λ2

μ2
− 72ξ̄2 þ μ2

3
− 12ξ̄μ2 −

λ2

6
−
2λ2μ2

3

−
3μ2γ

2π2λ sinð2πγÞ ð2πλ coshð2πλÞ− sinhð2πλÞÞ þ iμ2

2 sinð2πγÞ
Z þ1

−1
ð3λ2r2 − λ2 − μ2 − 12ξ̄Þ

�
ðe2πλr þ e2iπγÞ

× ψ

�
1

2
þ γþ iλr

�
− ðe2πλr þ e−2iπγÞψ

�
1

2
− γþ iλr

��
dr− μ2ðμ2 þ 12ξ̄Þ logðμ2Þ þ iπμ2ðμ2 þ 12ξ̄Þ

�
: ð73Þ

We see that the trace anomaly of the free, massless,
conformally coupled complex scalar field is given by

lim
λ→0

lim
μ→0

lim
ξ→1

6

T ¼ H4

120π2
¼ 2

2880π2

�
1

3
R2 − RμνRμν

�
; ð74Þ

and in arriving at the second equality, we have expressed
H4 in terms of a combination of the Ricci tensor and the
scalar curvature of dS4 which are given by Eq. (5), to put
the result into a familiar form. The trace anomaly (74)
is in agreement with the result of computing the trace
anomaly [101] of a free, massless, conformally coupled real
scalar field in dS4, except for the overall factor of 2 in
Eq. (74) as explained below Eq. (65).

V. IMPLICATIONS FOR THE
INDUCED CURRENT

The generalization of the nonconservation equation (23)
for the classical energy-momentum tensor of the scalar field
to the induced energy-momentum tensor Tμν, and the
induced current jμ of the scalar field has important
implications for the induced current. Recall that the non-
vanishing components of Tμν are given by Eqs. (61)–(63),
and the nonzero components of Fμν are given by Eq. (6).
The only nontrivial relation that arises from Eq. (23) is
obtained by setting ν ¼ 0, which leads to

∂0T00 þHΩð5T00 þ T11 þ T22 þ T33Þ ¼ −Ω−2Ej1; ð75Þ

where we have used Eqs. (4) and (6). The relation (75),
along with the relations

∂0T00 ¼ −2HΩðτÞT00; T ¼ gμνTμν;

−Ω−2Ej1 ¼ HΩ−1A:j; ð76Þ
suffice to show that the timelike component of the induced
energy-momentum tensor can be written in terms of the
trace T, and the effective electromagnetic potential energy
A:j as

T00 ¼
1

4
Ω2ðT þ A:jÞ: ð77Þ

The induced current jμ is defined as the regularized
expectation value of the scalar field electric current operator
(14) in the in-vacuum state specified in Eq. (35). It can be
verified that the induced current jμ is conserved and whose
only nonvanishing component is j1. Thus, the induced
current flows along the electric field background direction.
For convenience, we write the induced current as

jμ ¼ ΩðτÞJ½n�δ1μ: ð78Þ

Here, we use the subscript [n] to indicate the adiabatic order
n of the subtracted counterterms to obtain the induced
current J½n�. Comparison of Eqs. (61), (73), and (77) allows
us to read off the effective electromagnetic potential energy
A:j, and then, we use the last relation in Eq. (76) and
definition (78) to extract J½4�. This gives

J½4� ¼
eH3

8π2

�
4ξ̄λ

μ2
−

λ

9μ2
−

7λ3

90μ4
þ λ

3
logðμ2Þ − iπλ

3
−
4λ3

15
þ γ

6πλ

�
45

π2
− 6 − 96ξ̄þ 4λ2 − 8μ2

�
coshð2πλÞ
sinð2πγÞ

−
γ

12π2λ2

�
45

π2
− 6 − 96ξ̄þ 64λ2 − 8μ2

�
sinhð2πλÞ
sinð2πγÞ −

iλ
2 sinð2πγÞ

Z þ1

−1
ð5λ2r4 − ð1þ 36ξ̄þ 6λ2 þ 3μ2Þr2

þ λ2 þ μ2 þ 12ξ̄Þ
�
ðe2πλr þ e2iπγÞψ

�
1

2
þ γ þ iλr

�
− ðe2πλr þ e−2iπγÞψ

�
1

2
− γ þ iλr

��
dr

�
; ð79Þ

where the subscript ½4� indicates J½4� has been derived from
the expressions which have been regularized by the
counterterms expanded up to fourth adiabatic order. This
should be clear from Eqs. (61), (77), and (78). To verify

our result (79), we have evaluated directly the induced
current by calculating the expectation value of the current
operator (14) in the in-vacuum state and then subtracting
the corresponding counterterms expanded up to fourth
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adiabatic order. The expression for J½4� that follows from
this direct analysis reproduces exactly the expression given
by Eq. (79).
In Ref. [61], the induced current of the massive,

minimally coupled ξ ¼ 0, scalar field has been evaluated
by calculating the expectation value of the current operator
(14) in the in-vacuum state which is represented by the
mode functions given in Eqs. (30) and (31) with ξ ¼ 0 for
this case. In order to regularize the expectation value, the
method of adiabatic subtraction was employed. Those
authors expanded the required counterterm up to second

adiabatic order that it suffices to remove the divergences,
and the regularized expression resulting from use of it
reduces to the expected results in the Minkowski spacetime
limit. We refer to this prescription as minimal subtraction.
Furthermore, they argued that including the contribution
of fourth adiabatic order in the counterterm spoils the
expected behavior in the Minkowski spacetime limit.
Following these restrictions and arguments, it was sub-
sequently found in Ref. [61] that the induced current is
given in terms of J½2� as in Eq. (78) by

J½2� ¼
eH3

8π2

�
λ

3
logðμ2Þ − iπλ

3
−
4λ3

15
þ γ̄

6πλ

�
45

π2
þ 10þ 4λ2 − 8μ2

�
coshð2πλÞ
sinð2πγ̄Þ −

γ̄

12π2λ2

�
45

π2
þ 10þ 64λ2 − 8μ2

�

×
sinhð2πλÞ
sinð2πγ̄Þ −

iλ
2 sinð2πγ̄Þ

Z þ1

−1
ð5λ2r4 þ ð5 − 6λ2 − 3μ2Þr2 þ λ2 þ μ2 − 2Þ

�
ðe2πλr þ e2iπγ̄Þ

× ψ

�
1

2
þ γ̄ þ iλr

�
− ðe2πλr þ e−2iπγ̄Þψ

�
1

2
− γ̄ þ iλr

��
dr

�
; ð80Þ

where γ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − λ2 − μ2

p
is obtained by setting ξ ¼ 0 in

the definition of γ, and the subscript ½2� indicates J½2� has
been regularized by the counterterms expanded up to
second adiabatic order. It is important to note that there
are two differences between expressions (79) and (80).
First, the coupling constant ξ is treated as arbitrary real
value parameter in the expression (79), whereas the
expression (80) has been computed for fixed value
ξ ¼ 0. Second, expression (79) contains contributions from
the fourth adiabatic order expansion of the counterterm.
With these two differences, (79) is a generalization of (80).
Therefore, the difference J½4�ðξ ¼ 0Þ − J½2� would give only
the fourth adiabatic order contribution of the counterterm to
J½4�, that is

J½4�ðξ ¼ 0Þ − J½2� ¼ −
eH3

8π2

�
7λ

9μ2
þ 7λ3

90μ4

�
: ð81Þ

In our subsequent discussion, we demonstrate that the
expected behavior of J½4� in Minkowski spacetime is not
spoiled by these fourth adiabatic order contributions.
Furthermore, we show that these contributions alter the
behavior of the J½4� when compared to J½2�, especially in
the two regimes of the infrared hyperconductivity and the
strong electric field.

A. Minkowski spacetime limit

Here, we explore the behavior of the result (79) in the
Minkowski spacetime limit. Note that in the limit where the
Hubble constant tends to zero, i.e., H → 0, we recover
Minkowski spacetime. As was mentioned in the discussion
of Eq. (81), the difference between the expressions (79) and

(80) comes from the contribution of fourth adiabatic order
in the adiabatic expansion of the counterterm. Comparison
of the expressions (79) and (80) shows that these fourth
adiabatic order contributions are

δJ ¼ eH3

8π2

�
4ξ̄λ

μ2
−

λ

9μ2
−

7λ3

90μ4

�

¼ −
e
8π2

�
eE
m2

��
4ξ̄H3 −

H3

9
−
7ðeEÞ2
90m2

H
�
; ð82Þ

where the second equality comes from using the definitions
of λ and μ given in Eq. (27). It is clear from the second
equality in Eq. (82) that all these terms vanish in the limit
H → 0 for fixed and finite values of E and m. This
observation will automatically insure the validity of (79)
in the Minkowski spacetime limit. If the electric field
background E and the scalar field mass m are regarded as
fixed and finite, then by taking the limit H → 0 of the
expressions (79), we find

lim
H→0

J½4� ¼
e3

12π3H
E2e−

πm2

jeEj ; ð83Þ

which is exactly the same as the result obtained in Ref. [61]
for the behavior of J½2�, given by Eq. (80), in the Minkowski
spacetime limit. It has been argued [61] that in the
expanding dS the inverse of the Hubble constant H−1, in
fact, is equivalent to the finite time interval between
switching on and off the electric field background in
Minkowski spacetime. By this argument, we can see that
the behavior (83) of the induced current in the Minkowski
spacetime limit agrees with the electric current of the
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charged scalar particles produced by the Schwinger mecha-
nism in Minkowski spacetime [40,41].
A comparison of the result of this article for the induced

current J½4� [see Eq. (79)] to the result of Ref. [61] for the
induced current J½2� [see Eq. (80)] is shown in Fig. 4. The
figure is drawn for ξ ¼ 0, and illustrates that, for the light
scalars μ < 1, the induced currents J½4� and J½2� differ
considerably in the regime λ≳ μ. Subsequently, we set
ξ ¼ 0 and concentrate our attention on the regime λ≳ μ.
We examine the behaviors of J½4� and J½2� in the two
regimes: the infrared hyperconductivity with the criterion
μ < λ≲ 1 and the strong electric field λ ≫ maxð1; μ; ξÞ.

B. Behaviors in the infrared
hyperconductivity regime

In Ref. [61], it was pointed out that, in the infrared
hyperconductivity regime μ < λ≲ 1, the absolute value of
the induced current J½2� monotonically increases with
decreasing the electric field parameter λ, as shown in
Fig. 4. In this regime, we can approximate expression
(80) by

J½2� ≃
eH3

8π2

�
6λ

λ2 þ μ2

�
: ð84Þ

From Fig. 4, it is obvious that in the infrared hyper-
conductivity regime, the absolute value of the induced
current J½4� reduces to zero at a certain value of the electric
field parameter λ� which depends on the mass parameter μ.
Indeed, the sign of J½4� changes at λ�. This figure also
indicates that the absolute value of J½4� is a decreasing
function of λ in the interval μ < λ < λ� and is an increasing

function for λ > λ�. In the infrared hyperconductivity
regime, we can approximate expression (79) by

J½4� ≃
eH3

8π2

�
−

7λ3

90μ4
−

7λ

9μ2
þ 6λ

λ2 þ μ2

�
: ð85Þ

This expression has a zero at λ� ≃ 2.090μ. In the range of
λ > 2.090μ, the dominant contribution to J½4� comes from
the first two terms in Eq. (85) which its absolute value
increases with increasing λ. Thus, in this range, the infrared
hyperconductivity phenomenon does not occur. On the
other hand, in the interval μ < λ < 2.090μ, the dominant
contribution to J½4� comes from the last term in Eq. (85)
which increases with decreasing λ. Thus, in the interval
μ < λ < 2.090μ, the infrared hyperconductivity phenome-
non occurs. We therefore conclude that although there exist
a period of the infrared hyperconductivity in our result for
the induced current J½4�, now this phenomenon occurs in the
more restricted interval μ < λ < 2.090μ.

C. Behaviors in the strong electric field regime

Figure 4 shows that although the absolute values of the
two induced current J½2� and J½4� are increasing functions of
λ in the strong electric field regime λ ≫ maxð1; μ; ξÞ, the
induced current J½2� does not depend on the scalar field
mass, whereas the induced current J½4� is proportional to
μ−4. We find that, in the limit λ → ∞ for a fixed μ, the
induced current J½4� is given approximately by

J½4� ≃ −
eH3

8π2

�
7λ3

90μ4

�
¼ 7He4

720π2

�
E3

m4

�
: ð86Þ

We observe that the behavior of the induced current J½4� in
the Minkowski spacetime limit [see Eq. (83)] will be
different from that in the strong electric field limit, see
Eq. (86). Whereas, in [61], it was pointed out that the
induced current J½2� has the same behavior in these two
limits, indicated on the right side of Eq. (83). We note that
in the Minkowski spacetime limit, the electric field strength
E, the scalar field mass m, and the coupling constant ξ are
regarded as fixed, and the Hubble constantH, tends to zero.
Thus, in the Minkowski spacetime limit, although λ ¼
−eE=H2 and μ ¼ m=H tend to infinity, the ratio λ=μ2

remains finite. We also note that in the strong electric field
regime, the Hubble constantH, the scalar field massm, and
the coupling constant ξ are regarded as fixed, and the
electric field strength E, tends to infinity. Thus, in this
regime, λ goes to infinity while μ is regarded as a fixed and
finite value.

VI. CONCLUSIONS

The aim of the present research was to examine the
induced energy-momentum tensor of a massive, complex

FIG. 4. Dependence of the absolute values of the normalized
induced currents jJ½4�j=eH3 (solid curves) and jJ½2�j=eH3 (dashed
curves) on the electric field parameter λ ¼ −eE=H2, for the case
of minimal coupling ξ ¼ 0. The lines correspond to different
values of the scalar field mass parameter μ ¼ m=H as indicated.
Both axes have logarithmic scales.
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scalar field coupled to the electromagnetic vector potential
(7) which describes a uniform electric field background
with a constant energy density in the conformal Poincaré
patch of dS4 where the metric takes the form (2). The
dynamics of the complex scalar field is governed by the
action (11). The energy-momentum tensor of the scalar
field is not covariantly conserved in the presence of the
electromagnetic field, as the consequence of the electro-
magnetic interactions, see Eq. (23). The nonconservation of
the scalar field energy-momentum tensor is compatible
with the nonconservation of the electromagnetic field
energy-momentum tensor [see Eq. (24)], and hence, the
total energy momentum tensor of the theory is covariantly
conserved. We treated the classical gravitational field (2)
and the classical electromagnetic field (7) as fixed field
configurations which they are unaffected by the dynamics
of the quantum complex scalar field in response to these
backgrounds. We discussed canonical quantization of the
scalar field. The normalized positive and negative fre-
quency mode functions of the scalar field which behave like
the positive and negative frequency Minkowski mode
functions in the remote past are given by Eqs. (30) and
(31). These mode functions determine the in-vacuum state
of the scalar field.
We calculated the expectation values of all the compo-

nents of the energy-momentum tensor in the in-vacuum
state of the scalar field; the nonzero expectation values have
been obtained in Eqs. (40), (42), (44), and (46). It is
expected that these expectation values contain ultraviolet
divergences, because the expectation values in the
Hadamard in-vacuum state suffer from the same ultraviolet
divergence properties as Minkowski spacetime. To render
these in-vacuum expectation values finite, we employed the
adiabatic regularization method. To adjust the set of
appropriate counterterms, we treated the conformal scale
factor and the electromagnetic vector potential as quantities
of zero adiabatic order. As pointed out byWald [18], in four
dimensions, to obtain a renormalized energy-momentum
tensor which is consistent with the Wald axioms, the
subtraction counterterms should be expanded up to fourth
adiabatic order. Under these assumptions, we then con-
structed the set of the appropriate adiabatic counterterms,
which are given by Eqs. (57)–(60). The adiabatic regulari-
zation procedure was carried out by subtracting the
counterterms from the corresponding unregularized in-
vacuum expectation values. Thus, we have arrived at our
final expressions for all the nonvanishing components of
the induced energy-momentum tensor, which are given by
Eqs. (61)–(63). This research has shown that all the off-
diagonal components of the induced energy-momentum
tensor are zero, and the components T22 and T33 are equal
as consequences of the underlying symmetries of the
backgrounds (2) and (6). Furthermore, since the electric
field background (6) is not invariant under full symmetries
of dS, this indeed violates the time reversal symmetry [51],

and causes an electric current along its direction; we
observe that T00, T11, and T22 are not equal to one another.
The research has also shown that in the limit of zero electric
field, our result for the induced energy-momentum tensor
reduces to the form (65). The expression (65) accords with
the result of computing the renormalized vacuum energy-
momentum tensor of a real scalar field in dS4 obtained in
Refs. [11,38], except for the overall factor of 2 in Eq. (65).
This factor of 2 is consistent with the complex scalar field
as being made of two real scalar fields with the number of
degrees of freedom doubling up. The absolute values of the
expressions (61)–(63) as functions of the electric field
parameter λ, for various values of the scalar field mass
parameter μ, and two values of the coupling constant ξ are
shown on the graphs in Figs. 1–3, respectively. These
figures signal that the induced energy-momentum tensor is
analytic and varies continuously with the parameters λ, μ,
and ξ; this statement is consistent with the requirements
discussed in [100]. For fixed values of μ and ξ, the absolute
values of the nonvanishing components of the induced
energy-momentum tensor are increasing functions of λ, but
by excluding a neighborhood of the zero value points, this
behavior is assured. For fixed values of λ and ξ, the absolute
values of the nonvanishing components are decreasing
functions of μ. For a fixed λ and μ, the nonvanishing
components do not vary significantly with the parameter ξ
in the range 0 ≤ ξ ≪ λ, μ. The qualitative behaviors shown
in Figs. 1–3 can be given quantitative treatments by
inspection of expressions (61)–(63) in the limiting regimes.
The examination of the expressions (61)–(63) has shown
that in the strong electric field regime λ ≫ maxð1; μ; ξÞ, the
components of the induced energy-momentum tensor can
be approximated by Eq. (66). In the heavy scalar field
regime μ ≫ maxð1; λ; ξÞ, the components can be approxi-
mated according to Eq. (67). We also found that in the
infrared regime, where μ ≪ 1, λ ≪ 1, ξ ¼ 0, the compo-
nents can be approximated by Eqs. (69)–(72). To do a
consistency check, we derived the trace anomaly of the
induced energy-momentum tensor for the case of a free,
massless, conformally invariant scalar field in dS4; see
Eq. (74). This investigation shows that our result (74) is in
agreement with the earlier result of computing the trace
anomaly [101] of a free, massless, conformally coupled real
scalar field in dS4, except for the overall factor of 2 in
Eq. (74), as explained below Eq. (65).
One of the more significant findings to emerge from this

research is that the nonconservation equation (23) implies
the relation (77) between the induced energy-momentum
tensor and the induced current. This relation in turn implies
the renormalization condition for the induced current. We
derived the expression (79) for the induced current of the
scalar field by using the expressions (61), (73), and relation
(77). This result for the induced current has been derived
from the expressions which have been regularized by the
counterterms expanded up to fourth adiabatic order.
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In Ref. [61], the induced current of the massive, minimally
coupled ξ ¼ 0, scalar field has been evaluated by sub-
tracting the counterterm expanded up to second adiabatic
order; see Eq. (80). In the discussion of Eq. (83), we
remarked that our result for the induced current in the
Minkowski spacetime limit agrees with the electric current
of the charged scalar particles produced by the Schwinger
mechanism in Minkowski spacetime [40,41]. A compari-
son of the result of this article for the induced current J½4�
[see Eq. (79)] to the result of Ref. [61] for the induced
current J½2� [see Eq. (80)] is shown in Fig. 4. The figure is
drawn for ξ ¼ 0, and illustrates that, for the light scalars
μ < 1, the induced currents J½4� and J½2� differ considerably
in the regime λ≳ μ. From Fig. 4, it is obvious that in the
infrared hyperconductivity regime μ < λ≲ 1, the absolute
value of the induced current J½4� reduces to zero at a certain
value of the electric field parameter λ� which depends on
the mass parameter μ. We found that in the infrared
hyperconductivity regime, the induced current J½4� can
be approximated by Eq. (85) which has a zero at
λ� ≃ 2.090μ. In the interval μ < λ < 2.090μ, the dominant
contribution to J½4� comes from the last term in Eq. (85)
which increases with decreasing λ. Thus, the infrared
hyperconductivity phenomenon occurs in the interval
μ < λ < 2.090μ. We therefore conclude that although there
exist a period of the infrared hyperconductivity in our result
for the induced current J½4�, now this phenomenon occurs in
the more restricted interval μ < λ < 2.090μ. Figure 4 also
shows that the absolute value of the induced current J½4� is
an increasing function of λ in the strong electric field
regime λ ≫ maxð1; μ; ξÞ, but decreases as μ−4 with increas-
ing μ. We saw that in the limit λ → ∞ for a fixed μ, the
induced current J½4� is given approximately by Eq. (86). The
results of this investigation show that the behavior of
the induced current J½4� in the Minkowski spacetime limit
[see Eq. (83)] will be different from that in the strong
electric field limit, see Eq. (86).
This would be a fruitful area for further work. A natural

progression of this work is to analyze the backreaction of
the induce energy-momentum tensor on the gravitational
field of dS4 and the backreaction of the induce current J½4�

on the electromagnetic field. This is also an issue for future
research to explore the induced energy-momentum tensor
of a Dirac field in the context of our discussion.
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APPENDIX: EVALUATION OF THE
MOMENTUM INTEGRALS OVER

THE MODE FUNCTIONS

In the Appendix, we present further supplementary
data associated with the calculation of the expressions
(36)–(38). It is convenient at this stage to switch to the
three-dimensional spherical momentum space, and then,
we can perform the entire three-dimensional integrals in
three-dimensional spherical coordinates. We introduce a
transformation from the Cartesian momentum coordinates
ðkx; ky; kzÞ to the spherical momentum coordinates ðk; θ;ϕÞ
by equations

kx ¼ kcosθ; ky ¼ ksinθcosϕ; kz ¼ ksinθ sinϕ: ðA1Þ

In these coordinates, the variable r ¼ kx=k is given by
r ¼ cos θ with range −1 ≤ r ≤ 1. The integration measure
is then d3k ¼ k2 sin θdϕdθdk. It is useful to convert the
variables of integration from the momentum k to the
dimensionless physical momentum p ¼ −kτ, and from
the angle θ to the variable r. Thus, the previous expression
for the integration measure may be rewritten as

d3k ¼ −H3Ω3ðτÞdϕdrp2dp: ðA2Þ

Accordingly, we use a dimensionless physical momentum
cutoff Λ, which is related to the momentum cutoff K as
Λ ¼ −Kτ. To begin the evaluation of (36)–(38), we change
the integration measure according to (A2) and substitute
the expression (30) for UkðxÞ. After integration over
azimuth angle ϕ and some simplifications, the expressions
(36)–(38) reduce to

hinjT00jini ¼ Ω2
H4

8π2

Z þ1

−1
dr

�
2I1 − 4λrI2 þ

�
1

4
− γ2 − 18ξ̄þ λ2r2

�
I3 þ 2ℑ½I4�− 2ℜ½ð6ξ− 1− iλrÞI5� þ I6

�
; ðA3Þ

hinjT11jini ¼ Ω2
H4

8π2

Z þ1

−1
drf2r2I1 − 4λrI2 þ ½ð4ξþ 1Þλ2 þ ð4ξ − 1Þμ2 − ð4ξ − 1Þλ2r2

þ ð6ξ − 1Þð8ξ − 1Þ�I3 − 2ℑ½ð4ξ − 1ÞI4� þ 2ℜ½ð1 − 6ξþ iλr − 4iλrξÞI5� − ð4ξ − 1ÞI6g; ðA4Þ

and
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hinjT22jini ¼ hinjT33jini ¼ Ω2
H4

8π2

Z þ1

−1
drfð1 − r2ÞI1 þ ½ð4ξ − 1Þðλ2 þ μ2 − λ2r2Þ þ ð6ξ − 1Þð8ξ − 1Þ�I3

− 2ℑ½ð4ξ − 1ÞI4� þ 2ℜ½ð1 − 6ξþ iλr − 4iλrξÞI5� − ð4ξ − 1ÞI6g; ðA5Þ

where ℑ and ℜ stand for the imaginary and real parts of any expressions, respectively. In these expressions, the momentum
integrals over the Whittaker functions have been defined by

I1 ¼ eπλr
Z

Λ

0

dpp3jWκ;γð−2ipÞj2; ðA6Þ

I2 ¼ eπλr
Z

Λ

0

dpp2jWκ;γð−2ipÞj2; ðA7Þ

I3 ¼ eπλr
Z

Λ

0

dppjWκ;γð−2ipÞj2; ðA8Þ

I4 ¼
�
1

4
− γ2 − λ2r2 þ iλr

�
eπλr

Z
Λ

0

dpp2Wκ−1;γð−2ipÞW−κ;γð2ipÞ; ðA9Þ

I5 ¼
�
1

4
− γ2 − λ2r2 þ iλr

�
eπλr

Z
Λ

0

dppWκ−1;γð−2ipÞW−κ;γð2ipÞ; ðA10Þ

I6 ¼
				 14 − γ2 − λ2r2 þ iλr

				
2

eπλr
Z

Λ

0

dppWκ−1;γð−2ipÞW−κ−1;γð2ipÞ: ðA11Þ

The integrals in Eqs. (A6)–(A11) are of the same kind of those momentum integrals over the Whittaker functions which
encountered in the calculation of the induced current of a scalar field in two- [60] and four-dimensional [61] de Sitter
spacetimes. The first step in the evaluation of the integrals (A6)–(A11) by the method that explained in Ref. [61], is to plug
the Mellin-Barnes representation (28) for the Whittaker function W and make use of the theorem of residues. It is rather
straightforward, but rather lengthy, to show that our final results are

I1 ¼
Λ4

4
þ λr

3
Λ3 þ 1

16
ð4γ2 þ 12λ2r2 − 1ÞΛ2 þ λr

8
ð12γ2 þ 20λ2r2 − 7ÞΛþ 1

128
ð27þ 48γ4 þ 560λ4r4 − 120γ2

þ 480γ2λ2r2 − 520λ2r2Þ logð2ΛÞ − 7γ4

32
þ 83γ2

64
−
533

96
λ4r4 þ 1607

192
λ2r2 −

59

16
γ2λ2r2 −

351

512

−
�
55γ2

24
þ 35λ2r2

8
−
355

96

�
γλr

sinð2πγÞ ðcosð2πγÞ þ e2πλrÞ − i
256 sinð2πγÞ ð27þ 48γ4 þ 560λ4r4 − 120γ2 þ 480γ2λ2r2

− 520λ2r2Þ
�
π sinð2πγÞ þ ðe2πλr þ e−2iπγÞψ

�
1

2
− γ þ iλr

�
− ðe2πλr þ e2iπγÞψ

�
1

2
þ γ þ iλr

��
; ðA12Þ

I2 ¼
Λ3

3
þ λr

2
Λ2 þ 1

8
ð4γ2 þ 12λ2r2 − 1ÞΛþ λr

8
ð12γ2 þ 20λ2r2 − 7Þ logð2ΛÞ − 37

12
λ3r3 þ 95

48
λr −

5γ2

4
λr

− ð4γ2 þ 15λ2r2 − 4Þ γ

6 sinð2πγÞ ðcosð2πγÞ þ e2πλrÞ − iλr
16 sinð2πγÞ ð12γ

2 þ 20λ2r2 − 7Þ

×

�
π sinð2πγÞ þ ðe2πλr þ e−2iπγÞψ

�
1

2
− γ þ iλr

�
− ðe2πλr þ e2iπγÞψ

�
1

2
þ γ þ iλr

��
; ðA13Þ
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I3 ¼
Λ2

2
þ λrΛþ 1

8
ð4γ2 þ 12λ2r2 − 1Þ logð2ΛÞ − γ2

4
−
7λ2r2

4
þ 5

16
−

3γλr
2 sinð2πγÞ ðcosð2πγÞ þ e2πλrÞ

−
i

16 sinð2πγÞ ð4γ
2 þ 12λ2r2 − 1Þ

�
π sinð2πγÞ þ ðe2πλr þ e−2iπγÞψ

�
1

2
− γ þ iλr

�

− ðe2πλr þ e2iπγÞψ
�
1

2
þ γ þ iλr

��
; ðA14Þ

I4 ¼ −
i
16

ð4γ2 þ 4λ2r2 − 4iλr − 1ÞΛ2 −
1

8
ð4γ2 þ 4λ2r2 − 4iλr − 1Þð1þ 2iλrÞΛ −

3i
128

ð4γ2 þ 4λ2r2 − 4iλr

− 1Þð4γ2 þ 20λ2r2 − 20iλr − 9Þ logð2ΛÞ þ 79

32
iλ4r4 þ 47

8
λ3r3 −

409

64
iλ2r2 þ 39γ2

16
iλ2r2 −

109

32
λrþ 21γ2

8
λr

þ 7i
32

γ4 −
83i
64

γ2 þ 351i
512

þ γ

4 sinð2πγÞ
�
4γ2 þ 15

2
iλ3r3 þ 15λ2r2 þ 13

2
iγ2λr −

97

8
iλr − 4

�
ðcosð2πγÞ

þ e2πλrÞ − 3

256 sinð2πγÞ ð4γ
2 þ 4λ2r2 − 4iλr − 1Þð4γ2 þ 20λ2r2 − 20iλr − 9Þ

�
π sinð2πγÞ

þ ðe2πλr þ e−2iπγÞψ
�
1

2
− γ þ iλr

�
− ðe2πλr þ e2iπγÞψ

�
1

2
þ γ þ iλr

��
; ðA15Þ

I5 ¼ −
i
8
ð4γ2 þ 4λ2r2 − 4iλr − 1ÞΛ −

1

8
ð4γ2 þ 4λ2r2 − 4iλr − 1Þð1þ 2iλrÞ logð2ΛÞ − 2γ2 − 10λ2r2

−
16

3
iλ3r3 − 4iγ2λrþ 20

3
iλrþ 3

2
−

iγ
3 sinð2πγÞ ð8γ

2 þ 12λ2r2 − 18iλr − 8Þðcosð2πγÞ þ e2πλrÞ

þ i
16 sinð2πγÞ ð4γ

2 þ 4λ2r2 − 4iλr − 1Þð1þ 2iλrÞ
�
π sinð2πγÞ þ ðe2πλr þ e−2iπγÞψ

�
1

2
− γ þ iλr

�

− ðe2πλr þ e2iπγÞψ
�
1

2
þ γ þ iλr

��
; ðA16Þ

I6 ¼
1

64
ð16γ4 − 8γ2 þ 16λ4r4 þ 32γ2λ2r2 þ 8λ2r2 þ 1Þ logð2ΛÞ − 3γ4

16
þ 7γ2

32
−
25

48
λ4r4 −

7

8
γ2λ2r2 −

29

96
λ2r2

−
11

256
−

γ

48 sinð2πγÞ ð16γ
4 − 8γ2 þ 16λ4r4 þ 32γ2λ2r2 þ 8λ2r2 þ 1Þð12λ3r3 þ 20γ2λrþ 7λrÞðcosð2πγÞ

þ e2πλrÞ − i
128 sinð2πγÞ ð16γ

4 − 8γ2 þ 16λ4r4 þ 32γ2λ2r2 þ 8λ2r2 þ 1Þ
�
π sinð2πγÞ

þ ðe2πλr þ e−2iπγÞψ
�
1

2
− γ þ iλr

�
− ðe2πλr þ e2iπγÞψ

�
1

2
þ γ þ iλr

��
; ðA17Þ

where we use logðzÞ to denote the natural logarithm function, and ψðzÞ to denote the digamma function. By substituting
Eqs. (A12)–(A17) into expressions (A3)–(A5) and performing the integrals over r, we obtain the results (40), (42), and (44),
respectively.
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