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Eccentricity has become an increasingly important parameter in gravitational wave studies as it can clearly
reflect the dynamics of compact object mergers. Obtaining an accurate and fast gravitational waveform
template is of paramount importance for accurately estimating gravitational wave parameters. This paper
aims to conduct an extensive study of the phenomenological fitting model proposed by Setyawati and Ohme
[Phys. Rev. D 103, 124011 (2021)] for adding eccentricity into quasicircular orbital waveforms. We expand
the scope of this research by studying the waveform for a mass ratio range of [1, 7], an initial eccentricity
range of [0, 0.4], and a continuous time period beyond the fixed time period of ½−1500M;−29M�. We also
investigate the model in higher-order harmonic modes, as well as spin-aligned and spin-precessing
waveforms. After expanding some fitting parameters, we have discovered that the model can be applied
to mass ratios q ∈ ½1; 7�. Additionally, it can be applied to almost the entire time period of numerical
relativity, including up to 12000M prior to merger. It can accommodate higher eccentricities up to e0 ¼ 0.4,
but its accuracy decreases with increasing initial eccentricity. For a specific initial eccentricity e0 and time
period such as ½−2000M;−300M�, mismatches obtained are approximately less than 10−4 for e0 ∈ ½0; 0.1�,
less than 10−3 for e0 ∈ ½0.1; 0.2�, less than 10−2 for e0 ∈ ½0.2; 0.3�, and less than 10−1 for e0 ∈ ½0.3; 0.4� for
mass ratio 1-3, and an order of magnitude worse for mass ratio 4-7. The dependence of the mismatch on
eccentricity is due to the fact that as the initial eccentricity increases, the eccentricity estimator eX deviates
further from the expected cosine function, leading to a larger deviation in the morphology of the eccentric
waveform and a reduced accuracy in the model’s fitting. It can be applied to higher-order modes and yields
similar overlap results. Furthermore, by introducing a shift parameter g, it can be approximately applied to
spin-aligned waveforms. After obtaining spin-precession effects for the special case of strong precession, our
model can also be applied to the general spin-precessing case. In summary, this phenomenological model
allows for the construction of eccentric gravitational wave templates for nonspinning, spin-aligned or spin-
precessing binary systems. It provides an efficient method for generating templates and sheds light on the
phenomenological and universal relationship between eccentric and quasicircular waveforms.
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I. INTRODUCTION

Since the first detection of the binary black hole merger
event GW150914 in 2015, the field of gravitational wave
astronomy has entered a new era [1]. To date, ground-based
gravitational wave detectors LIGO [2], Virgo [3], and
KAGRA [4] have detected 93 gravitational wave events,
including binary black holes (BHHs), two black hole-
neutron star (BHNS) mergers, and two binary neutron star
(NSNS) mergers [5].
Currently, gravitational wave signals are extracted

using circular orbital waveform templates, as it is gen-
erally assumed that the evolution of isolated binary stars

circularizes due to gravitational wave radiation. Thus, the
eccentricity of the binary system is expected to be
negligible when it enters the gravitational wave detection
frequency band, at around 10 Hz [6–9]. However, there are
several ways in which BBHs can gain eccentricity before
merging. In dense regions of stars such as globular clusters
[10–16] and galactic nuclei [17,18], BBHs can acquire
eccentricity due to double-single [19], double-double
interactions [20], and gravitational capture [17]. In addi-
tion, in a three-body system, such as binary objects in the
vicinity of a supermassive black hole, the eccentricity of
the inner binary objects will oscillate due to the Kozai-
Lidov mechanism [21–23], which will be detectable once
they enter the detection frequency band.
Gravitational waves of BBHs mergers in globular

clusters entering the LIGO sensitive band, 10% of them
still maintain an eccentricity more than 0.1 according to
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Refs. [14,15]. GW190521 [24] is considered to be possible
a BBH merger with high mass and high eccentricity e ¼
0.69þ0.17

−0.22 through 611 numerical relativity simulations
[25]. With the improvement of detector sensitivity, more
and more eccentric BBHs mergers will be detected by
next-generation ground-based gravitational-wave detec-
tors Einstein Telescope (ET) [26] or Cosmic Explorer
(CE) [27].
Errors may exist or signal-to-noise ratio will be

reduced when using circular orbital waveforms for param-
eter estimation [28,29]. At present, there are some
numerical relativistic simulations of eccentric BBHs
mergers [30–33]. Parameter estimation of gravitational
waves requires millions of waveform templates. In gen-
eral, full nonlinear numerical relativity (NR) simulation
yields the most precise gravitational waveform, but each
NR simulation takes several weeks and months and is
computationally expensive.
Numerous analytical gravitational waveforms based on

the post-Newtonian (PN) approximation have been devel-
oped in various studies, such as those referenced in [34–48],
or based on the effective-one-body (EOB) method in studies
such as those cited in [49–53]. Islam et al. [54] developed a
waveform based on the calibration of full numerical
relativity. State-of-the-art surrogate models of full inspi-
ral-merger-ringdown (IMR) eccentric gravitational wave-
forms have also been developed using a hybrid of PN and
numerical relativity (NR), as described in studies such
as [55–58], or based on the EOBNR method, as shown
in studies such as [51–53,59–62]. Special cases, such as
eccentric extreme-mass-ratio inspirals (EMRIs) [63–68],
and gravitational wave bursts with high eccentricity [69],
have also been studied.
However, full numerical relativity simulations of binary

black hole mergers with eccentricity are rare and not
publicly available, which makes it both convenient and
necessary to develop phenomenological models that can
generate fast and accurate numerically relativistic eccentric
gravitational waveforms.
The main objective of this paper is to perform an

extensive investigation of the phenomenological model
proposed by that converts a circular [70] that converts a
circular orbital waveform into an eccentric orbital wave-
form. This model is capable of rapidly and easily producing
a full numerical relativistic eccentric orbital waveform based
on the corresponding circular orbital waveform. In addition
to the eccentric waveform from the Simulating eXtreme
Spacetime (SXS) catalog, we include some eccentric
waveforms from the Rochester Institute of Technology
(RIT) catalog, which extends the range of mass ratio to
q ∈ ½1; 7� and the initial eccentricity range to e0 ∈ ½0; 0.4�.
Furthermore, we extend the time range of the waveform
from the fixed time period t ∈ ½−1500M;−29M� to other
continuous time periods, including even 12000M before
merging. We found that the model is not limited to the

dominant mode, but it can also be applied to higher-order
modes, including 3-3, 2-1, 4-4, 5-5, 3-2, and 4-3 modes. We
also applied the model to the spin-aligned case, but it
required some adjustments. When we applied this model to
the most complex eccentric spin precession situation, we
were able to construct a more complete approximate model
that converts the waveform without spin and eccentricity
into the waveform with eccentricity and spin precession.
This suggests a phenomenological and universal relation-
ship between the eccentric waveform and the circular orbit
waveform, which can help us better understand the relation-
ship between eccentricity, spin and precession in binary
black hole mergers.
This article is structured as follows: In Sec. II, we first

introduce the numerical relativity waveform data we used,
as well as some basic concepts related to gravitational waves
in Sec. II A. We then provide a detailed description of the
eccentricity estimators in Sec. II B, followed by a method
to measure eccentricity from the eccentric waveform in
Sec. II C. Finally, we describe the fitting process for the
dominant mode in Sec. II D, and the extended research on
higher-order modes in Sec. II E, spin-aligned cases in
Sec. II F, and spin-precessed waveforms in Sec. II G. In
Sec. III, we present the fitting parameters and overlap results
for each case, and analyze them. In Sec. IV, we provide
conclusions and outlook. Throughout this article, we use
geometric units where G ¼ c ¼ 1. The component masses
of the binary black holes are denoted bym1 andm2, and the
total mass is denoted by M, which is set to unity for
simplicity. The mass ratio q is defined as q ¼ m1=m2,
where m1 is greater than m2, and q only takes positive
integers. The black hole’s dimensionless spin vectors are
denoted by χ⃗i ¼ S⃗i=m2

i for i ¼ 1, 2.

II. METHOD

By incorporating new waveforms, we have expanded the
range of parameters we studied, including the mass ratio,
initial eccentricity, time period, and spin, allowing us to
comprehensively investigate the model and its applicability.
In this article, we aim to provide sufficient details and add
significant content to fully present the essence of the model,
which differs in some aspects from that of Ref. [70].

A. Numerical relativity data

There are numerous numerical relativity collaborations
that have conducted extensive simulations of black hole
binary mergers. However, publicly available simulations
with eccentricity or high mass ratios are scarce. The data
we utilized in our study are sourced from two collabora-
tions. The first is the Simulating eXtreme Spacetimes
(SXS) Collaboration, which uses a multi-domain spectral
method [71–75] with a first-order version of the generalized
harmonic formulation [75–78] of Einstein’s equations with
constraint damping to evolve the initial data. The Spectral
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Einstein Code (SpEC) [79] is used for the simulation. The
SXS catalog has published 23 sets of nonspinning eccentric
waveforms with mass ratios q ∈ ½1; 3� and eccentricity
range e0 ∈ ½0; 0.2�. The second set of waveforms we used
was obtained from the Rochester Institute of Technology
(RIT) [80]. The simulations in the RIT catalog were evolved
using the LazEv code [81] implementation of the moving
puncture approach [82] and the BSSNOK formalism of
evolution systems [81,83,84]. The LazEv code uses the Cactus

[85] /Carpet [86] /EinsteinToolkit [87] infrastructure. The 4th
release of the RIT catalog published 824 eccentric black
hole binary NR simulations, including spinning, spin-
aligned, and spin-precessing cases with eccentricities rang-
ing from 0 to 1 [33].
In numerical relativity, waveforms are obtained by

computing the Newman-Penrose scalar Ψ4 at a finite radius
and then extrapolating to null infinity. Ψ4 can be expanded
by the spin-weighted spherical harmonic function

−2Yl;mðθ;ϕÞ with spin weight s ¼ −2 as

rΨ4 ¼
X
l;m

rΨ4ðlmÞ−2Yl;mðθ;ϕÞ; ð1Þ

where r is the extraction radius. The gravitational wave
strain h can also be expressed as

rh ¼ rðhþ − ih×Þ ¼
X
l;m

rhlm−2Yl;mðθ;ϕÞ; ð2Þ

where hþ and h× represent the two polarizations of
gravitational waves, respectively. As r goes to infinity,
there is a relationship between them, given by

Ψ4ðtÞ ¼
∂
2

∂t2
hðtÞ: ð3Þ

Therefore, we can obtain h from Ψ4 using Eq. (3). We can
download all the higher harmonics modes rhlm and rΨ4ðlmÞ
from the SXS and RIT catalog databases, which have been
normalized with r set to unity for simplicity. We decom-
poseΨ4 and h into a combination of amplitude and phase as
follows:

Ψ4ðlmÞ ¼ AlmðtÞ exp ½−iφlmðtÞ�; ð4Þ

hlm ¼ AlmðtÞ exp ½−iΦlmðtÞ�; ð5Þ

and the amplitude and phase of hlm can be obtained using
the following equations:

Alm ¼ jhlmj; ð6Þ

ωlm ¼ dΦlm

dt
: ð7Þ

We define the effective spin in the z direction, which is
aligned with the direction of the orbital angular momentum
L, as

χeff ¼
m1χ1;z þm2χ2;z

m1 þm2

; ð8Þ

where χ1;z and χ2;z are the dimensionless spins in the z
direction for the two black holes. We obtained the gravi-
tational wave strain rh from both the SXS and RIT catalogs
instead of rΨ4. However, our analysis in Sec. II B shows
that the model is applicable to both. During the waveform
processing, we removed the first 300 and 100 of the SXS
and RIT waveforms, respectively, to eliminate junk radia-
tion. The rest of the waveform processing followed
Ref. [70]. Taking the 2-2 mode waveform as an example,
we first obtained the amplitude and frequency using Eqs. (6)
and (7), found the maximum amplitude valueA, and set that
moment as t ¼ 0. We then aligned all amplitudes and
frequencies with the same mass ratio at t ¼ 0. Next, we
chose an initial time t0, and the research time period was
½t0; 0�. However, we needed to select a long enough wave-
form so that, after removing the junk radiation, the wave-
form was still longer than the research range of ½t0; 0�. The
waveforms used and their associated parameters in the RIT
and SXS catalogs are listed in Tables I and II in the
Appendix. As the SXS waveform catalog does not provide
initial eccentricity, we measured the eccentricity of the
waveform at the first 300 using the method in Sec. II C. For
the RIT waveform, we directly used the reference eccen-
tricity given in the catalog. However, the initial eccentricity
e0 only indicates the eccentricity at the initial moment of the
waveform, representing the approximate research range of
the eccentricity in this article. For subsequent studies, each
research period ½t0; 0� had a corresponding initial eccen-
tricity e0 ¼ eðt0Þ. The distributions of waveform parameters
for mass ratio q, effective spin χeff , and initial eccentricity e0
are shown in Fig. 1. We only show the range of initial

FIG. 1. Waveform parameter distribution of the data for mass
ratio q, effective spin χeff and initial eccentricity e0 coming from
SXS and RIT catalog.
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eccentricity e0 ∈ ½0; 0.45� as the model depends on the
length of the waveform, so many shorter waveforms were
excluded. Relevant analysis can be found in Sec. II C.

B. Eccentricity estimator

It is necessary to introduce eccentricity estimator in
detail. According to Ref. [88], eccentricity estimator is
derived from Newton’s formula containing distance, orbital
phase or orbital frequency that can be used to estimate
eccentricity. In the Ref. [88], an eccentricity estimator is
defined as an oscillatory function

eXðtÞ ¼ e cos ðΩtþ ϕÞ; ð9Þ

where X represents the object used to measure eccentricity,
and e, Ω, and ϕ is eccentricity, frequency and phase
respectively. It can be promoted that X can be separation,
frequency, amplitude, phase, or derivative of frequency
from orbital dynamics or waveform. Based on separation

dðtÞ ¼ d0½1þ e cos ðΩtþ ϕ0Þ� þOðe2Þ; ð10Þ

where d0 and ϕ0 are the average distance and initial
phase in Newtonian orbit. We get separation eccentricity
estimator:

edðtÞ ¼ ð1Þ
�
dðtÞ − d̄ðtÞ

d̄ðtÞ
�
; ð11Þ

where d̄ðtÞ represents the secular average to dðtÞ, and d̄ðtÞ
equals d0 in Newtonian gravity, and 1 is its coefficient.
Based on orbital phase:

ΦðtÞ ¼ Φ0 þΩ0tþ 2e sin ðΩtÞ þOðe2Þ; ð12Þ

where Φ0 and Ω0 are phase offset and average frequency.
We get orbital phase eccentricity estimator:

eΦðtÞ ¼
�
1

2

�
ðΦðtÞ − Φ̄ðtÞ −Φ0Þ; ð13Þ

where Ω0t is replaced by Φ̄ðtÞ which is the secular average
to ΦðtÞ. Taking the first time derivative with respect to the
phase, we get orbital frequency eccentricity estimator:

eΩðtÞ ¼
�
1

2

��
ΩðtÞ − Ω̄ðtÞ

Ω̄ðtÞ
�
; ð14Þ

where Ω0 is replaced by Ω̄ðtÞ which is the secular average
to ΩðtÞ. We can not only get the eccentricity estimator
based on the orbital dynamical quantities, but we can get it
from the waveform. According to Ref. [89], based on the
frequency, amplitude and phase of the Weyl scalar Ψ4, we
can also define the associated eccentricity estimators. In the

Ref. [89], according to Eq. (4), Weyl scalar Ψ4 of the 2-2
mode and its frequency can be expressed as

Ψ4ð22Þ ¼ A22ðtÞ exp ½iφ22ðtÞ� ð15Þ

ϖ22 ¼ dφ22=dt; ð16Þ

where

A22ðtÞ ¼ K1

�
1þ 39

8
e cosΩt

�
þOðe2Þ

φ22ðtÞ ¼ −2Ωt −
21

4
e sinΩtþOðe2Þ

ϖ22ðtÞ ¼ −2Ω
�
1þ 21

8
e cosΩt

�
þOðe2Þ; ð17Þ

which are first-order approximation of the eccentricity,
where K1 is a constant. The associated eccentricity estima-
tors are:

eA22
ðtÞ ¼

�
8

39

��
A22ðtÞ − Ā22ðtÞ

A22ðtÞ
�

eφ22
ðtÞ ¼

�
4

21

�
½φ22ðtÞ − φ̄22ðtÞ þ φ220�

eϖ22
ðtÞ ¼

�
8

21

��
ϖ22ðtÞ − ϖ̄22ðtÞ

ϖ22ðtÞ
�
; ð18Þ

where φ220 represents a phase offset to φ22. According to
Eq. (5), the 2-2 mode of gravitational waves strain h and its
frequency can be expressed as

h22 ¼ A22ðtÞeiΦ22ðtÞ ð19Þ

ω22 ¼ dΦ22=dt; ð20Þ

where

A22ðtÞ ¼ K2

�
1þ 3

2
e cosΩt

�
þOðe2Þ

Φ22ðtÞ ¼ −2Ωt − 3e sinΩtþOðe2Þ

ω22ðtÞ ¼ −2Ω
�
1þ 3

2
e cosΩt

�
þOðe2Þ; ð21Þ

which are first-order approximation of the eccentricity,
where K2 is a constant. The associated eccentricity
estimators are
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eA22
ðtÞ ¼

�
2

3

��
A22ðtÞ − Ā22ðtÞ

A22ðtÞ
�

eΦ22
ðtÞ ¼

�
1

3

�
½Φ22ðtÞ − Φ̄22ðtÞ þΦ220�

eω22
ðtÞ ¼

�
2

3

��
ω22ðtÞ − ω̄22ðtÞ

ω22ðtÞ
�
: ð22Þ

We can see forms are different for Eqs. (11), (13), (14), (18),
and (22). Reference [88] puts the average on the denom-
inator, but Ref. [89] not. What they express is the difference
between a certain quantity of the eccentric waveform and its
average value, and the meaning is the same. In fact, as we
will see later, no matter it is based on the orbital dynamical
quantity e.g. orbital distance, phase and frequency, or the
gravitational waveform h and Ψ4, whether it is based on the
2-2 mode or the high-harmonics-order modes, it turns out
that we can obtain the associated eccentricity estimator, and
they can be summed up in the form:

eX1
ðtÞ ¼ ðk1Þ

�
X1ðtÞ − X̄1ðtÞ

X̄1ðtÞ
�

ð23Þ

eX2
ðtÞ ¼ ðk2Þ½X2ðtÞ − X̄2ðtÞ þ X20�; ð24Þ

where X1 represents the quantity relative to orbital dis-
tance, frequency and amplitude or frequency and ampli-
tude of waveform, X2 represents the quantity relative to
phase, and X20 is a phase offset, and k1, k2 can be some
constant. Then we will find that X̄ is the quantity Xc come
from its corresponding circular orbit waveform which has
the same time length, mass ratio and spin as the eccentric
waveform. We need to emphasize that there is a difference
between quantities relative to waveform and orbital
dynamics, which is reflected in the different constant
coefficients of the eccentricity estimator derived as we can
see in Eqs. (11), (13), (14), (18), and (22). However, the
difference in the constant coefficients k1 only affects the
magnitude of the Eq. (23), not the overall morphological
behavior of the eccentricity estimator. So the phenom-
enological fitting model which we will introduce later is
applicable for them.

C. Measuring eccentricity of waveform

There are many definitions of eccentricity, and many
ways to measure eccentricity [88–90]. Each of them have
their own scope of application. In general, estimating
eccentricity is mainly from the perspectives of waveform
and orbital dynamics. The eccentricity estimators Eqs. (11),
(13), and (14) to estimate the eccentricity is based on some
orbital dynamical quantities. The eccentricity estimators
Eqs. (19) and (23) to estimate the eccentricity is based on
some quantities of waveform. In the Ref. [33], RIT catalog
estimates the eccentricity by the dynamical coordinate
distance d:

ed ¼ d2d̈=M; ð25Þ

where d̈ represents the second derivative with respect to
time. We can obtain the eccentricity at each moment by
interpolating the amplitude of the eccentricity estimator in
Eq. (9). But the larger the eccentricity, the more the
eccentricity estimator deviates from the behavior of the
cosine or sine function, so that it is not suitable for
measuring moderate or high eccentricity. When we study
high eccentricity, we have to introduce a new method
capable of measuring high eccentricity according to the
Ref. [91]:

eΩðtÞ ¼
Ω1=2

p −Ω1=2
a

Ω1=2
p þ Ω1=2

a

; ð26Þ

where Ω is orbital frequency, and Ωa and Ωp are orbital
frequency at apastron Ωa and periastron Ωp, respectively.
Although it is orbital frequency Ω here, it can apply to
frequency ω of waveforms. Our approach is similar to
Ref. [57]. First We use the python function find_peaks
to find the apastron and periastron of thewaveform.We then
measure the eccentricity of the waveform at the apastron and
periastron. Next we use the python function cubic_spline
interpolation to obtain a continuous evolution of the
eccentricity. Figure 2 shows the evolution of frequency
ω, apastron ωa, periastron ωp, and eccentricity eðtÞ of the
waveform SXS:BBH:1360. According to error propagation
formula:

δeω ¼ δω

ðω1=2
a þ ω1=2

p Þ2
�
ω1=2
a

ω1=2
p

þ ω1=2
p

ω1=2
a

�
; ð27Þ

conservatively estimated error of frequency in the Ref. [57]
is about δωa ¼ δωp ¼ δω ¼ 0.0001 caused by the different
resolutions of the numerical simulations. The statistical error
introduced by it in the measurement of eccentricity is
δeω ≈ 0.001, which is not the main error. The main error
is caused by interpolation when we use the method in Fig. 2

FIG. 2. Time evolution of waveform frequency ω, apastron ωa,
periastron ωp, and eccentricity eðtÞ for numerical simulation
SXS:BBH:1360.

PHENOMENOLOGICAL RELATIONSHIP BETWEEN ECCENTRIC … PHYS. REV. D 107, 124061 (2023)

124061-5



to measure eccentricity, but it is not easy to quantify it. When
the initial eccentricity is about 0.4, the interpolation error can
be as high as 0.1. The fewer points that can be interpolated,
the higher the error. For the research in this paper, if a
waveform has more than 6 cycles and the eccentricity is
lower than 0.3, the measurement error for eccentricity is not
very large, but as the eccentricity increases, the measurement
error becomes larger and larger. We pick frequencies of
some representative waveforms which have the same initial
orbital distance and large initial eccentricity, so that their
number of cycles is very few. In Fig. 3, we show the
frequency of waveforms RIT:eBBH:1289, RIT:eBBH:1290,
RIT:eBBH:1294, RIT:eBBH:1299, RIT:eBBH:1305, and
RIT:eBBH:1310 separately, which have 5 cycles, 4 cycles,
3 cycles, 2 cycles, 1 cycle, 0 cycle. For a waveform, when
initial eccentricity e0 is small or initial distance between the
BBH is large, we can get more cycles, such as SXS:
BBH:1360 in the Fig. 2. On the contrary, we can only
get a few cycles. If initial eccentricity e0 of the waveform is
very large and close to 0.55,and initial distance is small,
BBHwill merge directly without any cycle such as 0 cycle in
the Fig. 3. The way we measure eccentricity is by inter-
polating with cubic_splines, which requires at least four
points to be interpolated. At the same time, fitting of the
eccentricity estimator in Sec. II D also requires enough
waveform cycles to get enough information about mass ratio
and initial eccentricity, so that we can obtain a sufficiently
accurate waveform, which also determines the length of the
waveform that we used is at least ½−1500; 0� to be reliable.
Therefore, for cases such as 0 cycle, 1 cycle, 2 cycles, and
3 cycles in the Fig. 3, we cannot obtain the initial eccentricity
of the waveforms, and for cases such as 4 cycles and
5 cycles, the error of the obtained initial eccentricity is large.
For these reasons, the waveforms we can use are limited, and
the range of their initial eccentricity is limited to less than
moderate initial eccentricity e0 ∼ 0.4, but for higher initial
eccentricity till to 1, the phenomenological model will no
longer apply due to limitations in length of waveforms and
eccentricity measurements. So we only list waveforms used

in subsequent research in the Sec. II A and many high
eccentricity waveforms are omitted in RIT catalog.

D. Fitting process

Due to the circularization of the gravitational radiation,
eccentric waveform has the same properties as the circular
orbit waveform near merger [8]. We only study the wave-
form before merger for this article. If we want to construct
the complete gravitational waveform, we need to combine
the circular orbital merger and ringdown waveform. We
use the same notation as Ref. [70] for eccentricity estimator
equivalent to taking k1 ¼ 1

2
in the Eq. (23):

eXðtÞ ¼
XeðtÞ − XcðtÞ

2XcðtÞ
; ð28Þ

where X represents the amplitudeA or frequency ω, and the
subscripts e and c represent the eccentric and the circular
orbital waveform, respectively. We use Eq. (3) in Ref. [70]
to fit functional relationship between eccentricity estimator
and circular orbit frequency or amplitude with same mass
ratio in a specific time period prior to merger. Due to the
monotonic correspondence between frequency, amplitude
and time for circular orbital waveform, there is an
assumption implicit in the Ref. [70] for the fitting model:

eXðtÞ ¼ eXðtðXcÞÞ ¼
XeðtðXcÞÞ − Xc

2Xc

¼ XeðXcÞ − Xc

2Xc
¼ AeBX

κ
c sin ðfXκ

c þ φÞ; ð29Þ

where A, B, f, φ, and κ are fitting parameters. We explicitly
write the functional relationship between the quantities,
because it is not obvious that there is a functional relation-
ship between the eccentric quantities Xe and the circular
quantities Xc. Instead of taking κ as a fixed value −59=24
for amplitude or −83=24 for frequency as in the Ref. [70],
we regard κ as a parameter which will allow us to generalize
the fitting to other time periods, mass ratio and higher-order
modes. It is some coincident that the Ref. [70] uses κ as a
fixed constant to fit and obtain good results, because they
only use the 2-2 mode with time period t ∈ ½−1500;−29�
and mass ratio q ∈ ½1; 3�. According to the analysis in
Sec. II B, the constant k1 ¼ 1

2
in the formula can be any other

constant, which does not affect the fitting result of the
Eq. (29) to the waveform. We still use it for convenience.
Unlike any other fitting model to get a local fitting to
waveform, the model is a global fitting to the waveform,
which reflects global nature of waveform. The fitting uses
the python function op. curve_fit that uses the nonlinear
least square fitting method to obtain the best fit.
We can fit the quantities such as amplitude A and

frequency ω of waveform well through Eq. (29), and then
look for relationships between initial eccentricity e0, mass

FIG. 3. Frequency of waveforms which have 5 cycles, 4 cycles,
3 cycles, 2 cycles, 1 cycle, 0 cycle. For 0 cycle, 1 cycle, 2 cycles,
and 3 cycles, we cannot obtain the eccentricity of the waveforms,
and for 4 cycles and 5 cycles, the error of the obtained eccentricity
is large.
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ratio q and fitting parameters A, B, f, φ, and κ in a specific
time period. When the data of the waveforms is not so
much, it is difficult for us to discover the relationships
between them. After adding waveforms from RIT catalog,
the data is more and the relationship between the param-
eters is more obvious. Obtained the relationship between
fitting parameters and waveform parameters, we can cover
the entire parameter range by interpolation or polynomial
fitting. Then by inverting Eq. (29), we get the amplitude or
frequency of the eccentric waveform we want as follows:

XeðtÞ ¼ XeðtðXcÞÞ ¼ XeðXcÞ
¼ 2XceXðtðXcÞÞ þ Xc

¼ 2XcAeBX
κ
c sin ðfXκ

c þ φÞ þ Xc: ð30Þ

In order to improve the fitting effect, we may set κ to
different κ1 and κ2:

eXðtÞ ¼ AeBX
κ1
c sin ðfXκ2

c þ φÞ: ð31Þ

But the results of the fitting show that it does not work,
because

(i) Larger fitting parameter space makes it difficult to
find relationships between fitting parameters and
waveform parameters. The error is larger when we
obtain eccentric waveforms through the Eq. (30).

(ii) Existence of parameter κ1 makes eBX
κ1
c ≈ 1 unsta-

ble, thus destroying the magnitude relationship
A ≈ AeBX

κ
c , thereby destroying the proportional

relationship between A and eccentricity e0, and
introducing a larger error. It is very important that
eccentricity e0 is proportional to A, because it
makes the fitting more accurate. So we must
maintain the relationship.

Unlike the Ref. [70], we do not want to construct a
complete inspiral-merger-ringdown waveform, but study
the waveform of 300 prior to merger. Near merging,
eccentricity is very small and negligible. Fitting results

show that the part close to merging cannot be well fitted,
and forced fitting will only bring errors. We give the fitting
results of several different cases as follows:

(i) The same mass ratio q ¼ 1, the same time period
t ∈ ½−2000;−300�, and different initial eccentricity
e0 (see Fig. 4).

(ii) Different mass ratios q ∈ ½1; 7�, the same time period
t ∈ ½−2000;−300�, and similar initial eccentricity e0
(see Figs. 4(b) and 5).

(iii) The same mass ratio q ¼ 1, different time periods,
and different initial eccentricity e0 for numerical
simulation RIT:eBBH:1422 (see Fig. 6).

From fitting results of each case, we can draw some
conclusions:

(i) From Fig. 4, we find the larger the initial eccentricity,
the worse the fitting effect. When the initial eccen-
tricity is very small, for e0 ¼ 0.0522, we can almost
achieve perfect fitting, but when e0 ¼ 0.3592, we
cannot achieve good fitting. For the case with larger
e0, it is not easy to obtain a waveform in time period
t ∈ ½−2000;−300�, because it requires BBH to have
a larger initial separation.

(ii) From Figs. 4(b) and 5, we can see the fitting model
can be applied to mass ratios q ∈ ½1; 7�. We find that
a poor fitting result is obtained in Fig. 5(e), because
there are some problems with the numerical simu-
lation RIT:eBBH:1357 itself, not with the fit-
ting model.

(iii) From Fig. 6, we find the fitting model can be
applied to a very long time period. Even for
t ∈ ½−12000;−300�, the morphology of the wave-
form can be roughly grasped.

For Fig. 4, in the following Sec. III we will discuss how
good the results are for different eccentricity fits, and how
much initial eccentricity can be applied. For Fig. 5, we only
list fitting results of mass ratio 1-7 waveforms here, due to
the limitation of waveform data. However, based on the
origin of the eccentricity estimator using Newton’s approxi-
mation to estimate eccentricity, we believe that this model

FIG. 4. Fitting results for amplitudeA of waveforms of 2-2 mode of the same q ¼ 1, time range t ∈ ½−2000;−300� but different initial
eccentricities.
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can be extended to other situations beyond mass ratio 7. For
Fig. 6, we found that for very long waveforms, this
phenomenological model can roughly capture its morphol-
ogy. However, the longer the waveform, the worse the fit
for the tail of the waveform. We found it increasingly
difficult to obtain optimal fit parameters as longer wave-
forms were used. The fit to the waveform will also get
worse and worse, as discussed in subsequent Sec. III. So
the fit is finite and cannot extend the time period to negative
infinity. In fact, 3000M is already a long enough waveform
for numerical relativity.

E. Extend to higher-order modes

In fact, this model can be applied not only to 2-2 mode,
but also to higher-order modes. Exactly the same as 2-2
mode, we must maintain the one-to-one correspondence
between the eccentric waveform and the circular waveform.
As an example, when we study the eccentric nonspinning
2-1 mode, we have to use the associated circular non-
spinning 2-1 mode. Here, we only list the 3-3, 2-1, 4-4, 5-5,
3-2, 4-3 modes of some waveforms given in the SXS
catalog, because some other modes are not given in the
catalog, and there are not many high-order modes of

waveforms in the RIT catalog. In Fig. 7, we can see that
there is a one-to-one correspondence between the eccentric
nonspinning high-order modes and circular ones, which
makes the same fitting model applicable to them. Here, we
only take numerical simulation SXS:BBH:1368 with mass
ratio q ¼ 2, time period t ∈ ½−2000;−300� and initial
eccentricity e0 ¼ 0.0929 as an example to give fitting
result for higher-order modes. In Fig. 8, we present the
fitting results of amplitude eccentricity estimator eA for
each modes, which are consistent with the low eccentricity
of the 2-2 mode. In fact, we can also consider other
situations, and will find the variation behavior of all the
higher-order modes is exactly the same as the 2-2 mode,
which means that the model can also be applied to higher-
order modes with other mass ratios, other eccentricities,
and other time period.

F. Extend to spin-aligned

Spin is an important parameter of gravitational waves,
which is very necessary to contain to characterize nature
of source. From eccentric numerical simulations RIT:
eBBH:1282, RIT:eBBH:1740, RIT:eBBH:1763, and
RIT:eBBH:1899, we can see that in these waveforms

FIG. 6. Fitting results for frequency ω of waveforms of 2-2 mode of RIT:eBBH:1422 for different time range.

FIG. 5. Fitting results for frequency ω of waveforms of 2-2 mode of the similar initial eccentricity, time range t ∈ ½−2000;−300� but
different mass ratio q ∈ ½2; 7�.
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anti-aligned spin has the same effect as eccentricity to
speed up BBHs merger compared to circular orbital non-
spinning waveform. We discover that we can establish a
relationship between eccentric spin-aligned or spin-anti-
aligned waveforms and circular orbit waveforms from two
perspectives with the phenomenological fit model. For the

convenience of description, we now collectively refer to
spin alignment or spin antialignment as spin alignment,
which is the same for this model.

(i) As in the previous case, we can establish a relation-
ship as Eq. (29) between eccentric spin-aligned
waveforms and circular orbit spin-aligned wave-
forms. We must maintain the consistency of spins
for eccentric waveforms and circular waveforms.
For example, if initial dimensionless spins of BBH
χz1 ¼ −0.5, χz2 ¼ −0.5 for one of the waveforms, it
must be the same for another. Here, we take the
eccentric waveform as RIT:eBBH:1899, whose
q ¼ 1, two dimensionless spins are χz1 ¼ −0.5,
χz2 ¼ −0.5, time period is t ∈ ½−3000;−300� and
initial eccentricity e0 ¼ 0.1110, and the circular
orbit waveform as SXS:BBH:0325, which has the
same mass ratio, time range and dimensionless
spin. In Fig. 9(a), we present the fitting result.

(ii) We try another way. We keep the waveform RIT:
eBBH:1899, but we take the nonspinning circular
orbital waveform SXS:BBH:0180 not the spin-
aligned circular orbital SXS:BBH:0325 as seed
circular orbital waveform. We find that if we want
to fit the waveform, we have to introduce a shift
parameter g in the Eq. (29) as follows:

FIG. 8. Fitting results for amplitude A of 3-3,4-4,5-5,3-2,4-3,2-1 modes of waveform SXS:BBH:1368 for the same time period
t ∈ ½−2000;−300� and initial eccentricity e0 ¼ 0.0929.

FIG. 9. From left to right. Panel (a) is the fitting result of the amplitude eccentricity estimator of waveform RIT:eBBH:1899, which
comes from a circular orbit waveform with the same spin as it. Panel (b) is the fitting result of the amplitude eccentricity estimator of
waveform 1899, which comes from a circular orbit waveform without spin, the line g shows the effect of aligned-spin on it. Panel (c) are
amplitude eccentricity estimators of waveform RIT:eBBH:1282, RIT:eBBH:1740, RIT:eBBH:1763, RIT:eBBH:1899, which come
from a circular orbit waveform without spin, the corresponding colors horizontal lines g shows the effect of aligned-spin on them.

FIG. 7. Amplitude A of high-order modes including 3-3, 2-1,
4-4, 5-5, 3-2, 4-3 modes of waveform SXS:BBH:1368 expressed
as e and its corresponding circular orbit waveform SXS:
BBH:1165 expressed as c.
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eXðtÞ ¼ AeBX
κ
c sin ðfXκ

c þ φÞ þ g: ð32Þ

The parameter g reflects the influence of aligned
spin on the waveform and straight line eA ¼ g is
the approximate axis of symmetry of the waveform.
The phenomenological shift parameter “g” intro-
duced here is only an approximate attempt, and its
applicability depends on the result of the fitting. In
Fig. 9(b), we show the fitting result and the position
of the parameter g. We discover we can obtain a
good fit for spin-aligned waveform. We select the
waveforms RIT:eBBH:1282, RIT:eBBH:1740, RIT:
eBBH:1763, RIT:eBBH:1899 to further study the
influence of spin on the fitting effect. We find that,
aligned spin makes the entire waveform translate g to
the negative half axis of the eA-axis. The larger the
effective spin, the greater the translation effect [see
Fig. 9(c)]. We discover there is a strictly proportional
relationship between g and the absolute value of
effective spin χeff of BBH (see Fig. 10). It can be
expressed as

g ¼ ajχeff j; ð33Þ

where a ¼ −0.04355, obtained by linear fitting.
What we need to emphasize is that the waveforms
in the Fig. 9(c) do not have the same initial
eccentricity at time t ¼ −3000, because both eccen-
tricity and spin have an impact on the evolution of the
waveform. If we want to obtain a counterpart of RIT:
eBBH:1899 with the same eccentricity from RIT:
eBBH:1282, we can use the method introduced in
Sec. III A.

The above is just take amplitude as an example. For
frequenciy we can also achieve the same result. With a

simple shift parameter “g,” we are able to obtain a good fit
to eccentric spin-aligned waveform, which is surprisingly
successful. In the circular orbit limit and PN approxima-
tion, relationship between spinning waveform and non-
spinning waveform cannot be described by a simple shift
constant. Based on Ref. [92], we observe that at the zero
eccentricity limit, the effective spins and g are proportion-
ally related to the contribution from the leading 1.5PN,
2.5PN, and 3PN orders of align-spin. However, a nonlinear
relationship exists with the spin, as the quadratic term only
emerges at the 3.5PN order. As a result, we conclude that
this approach can achieve a certain level of accuracy. In the
waveform database, there are only three sets of spin-aligned
waveforms with moderate eccentricity and mass ratio of 1,
which may be a loss of generality for linear fits. But
combining the results for nonspinning waveform RIT:
eBBH:1282, we find that they showing good linearity,
and we can get the same linear result for the frequency fit,
which also implies that although there are few data points,
they do have such a relationship.
To summarize, for the case of spin-align waveform, we

can use two kinds of seed circular orbital waveforms, one
with spin and the other with no spin. The former reflects the
phenomenonal model can be applied to the waveform with
spin, and the latter is an approximate attempt to generate
eccentric spinning waveform through nonspinning circular
orbital waveform. In both cases, we have obtained good
fitting result in Sec. III. If we need to obtain a spin-aligned
eccentricity-orbit waveform amplitudeAe;s from a circular-
orbit nonspinning waveform amplitude Ac, we can use the
following equation:

Ae;s ¼ 2Ac½AeBAκ
c sin ðfAκ

c þ φÞ þ ajχeff j� þAc; ð34Þ

where e and s represent the eccentricity and align-spin,
respectively. For frequency ωe;s we also have the same
equation as Eq. (34). In the zero eccentricity limit, Eq. (34)
reduces to

As ¼ 2Acajχeff j þAc; ð35Þ

which is from PN leading orders contribution.

G. Extend to spin-precession

When the spin direction of BBHs is inconsistent with the
direction of orbital angular momentum, it will cause orbital
plane precession. Just like effective spin χeff , Ref. [93]
introduces an effective precession spin parameter to
describe the precession effect:

χp ¼ Sp
A2m2

2

; ð36Þ

where

FIG. 10. The red “x’s” are the relationship between g from the
Fig. 8(c) and effective spin jχeff j, and the blue line represents a
linear fit to them.
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Sp ≔
1

2
ðA1S1⊥ þ A2S2⊥ þ jA1S1⊥ − A2S2⊥jÞ

≡max ðA1S1⊥; A2S2⊥Þ; ð37Þ

where Si⊥ (i ¼ 1, 2) represents the component perpen-
dicular to the orbital angular momentum, A1 ¼ 2þ 3q=2
and A2 ¼ 2þ 3=ð2qÞ.
The spin-precessing eccentric waveform in RIT catalog is

extremely rare. In principle, we can generate a eccentric
waveform from two perspectives of spin and nonspinning
circular orbital waveform as in Sec. II F, but since the
corresponding waveform of the circular orbit with similar
spin is lacking, here we only study nonspinning case. We
take the numerical simulation BBH:eBBH:1631 as study
object which has spin χ1x ¼ 0.7 and χ2x ¼ 0.7, long time
range t ∈ ½−12000; 0�, and low initial eccentricity e0 ¼
0.19 and the other spin components are 0. In Fig. 11(a), we
present the waveform BBH:eBBH:1631, which has been
shifted jgj ¼ 0.03 toward the positive semi-axis of the eA-
axis. We obtained this value through Eq. (33), where the
effective spin of the x component is jχxeff j ¼ 0.7. Here, we
note that prior to this work, there was no concept of an
effective spin on the x component, denoted as χxeff , and it is
different from the effective precession spin parameter χp.
We introduce this concept since χxeff plays a similar role to
χeff , but to illustrate its physical origin, we add a superscript
x. According to Eq. (4.17a) in Ref. [94], for the 2-2 mode,
the precessing spin effect is from the 1PN order, and the
align-spin effect is from the 1.5PN order. They are para-
meterized as the symmetric spin χxs ¼ ðχ1x þ χ1xÞ=2 and
antisymmetric spin χxa ¼ ðχ1x − χ1xÞ=2 on the x component,
with the y and z components being the same. We note that
the waveform BBH:eBBH:1631 has a special configuration,
leading to χxa and other components being zero. Thus, χxeff
and the effective spin parameter χeff play a similar role. In
principle, χxeff and χeff come from different PN orders, and
the proportional coefficient a in Eq. (33) should have
different magnitudes. However, the circular-orbit nonspin-
ning waveforms amplitude Ac and frequency ωc in front of
a rescale the process, making the factors a of both
approximately equal [see Eqs. (35) and (42)]. We note that
they should not be absolutely equal due to the contribution
of PN higher-order terms. Shifting g ¼ 0.03 removes the
effective spin effect χxeff of the waveform, leaving only the

eccentricity and precession effects. In general, spin pre-
cession effect is very complicated. Equation (36) quantita-
tively describes that the strength of the precession effect is
related to the effective precession spin. But it only repre-
sents the average value of the strength of the precession
effect, from which we cannot get complex modulation
brought by the precession effect to the gravitational wave-
form. It is not easy to obtain the precessing effect of the
waveform unless we have the corresponding circular orbital
precession waveform. However, since the spin setting
of BBH:eBBH:1631 corresponds to a strong precession
effect in which spin angular momentum and orbital angular
momentum are perpendicular, its precession effect is very
obvious because timescale of precession and timescale of
eccentricity can be clearly distinguished. When the eccen-
tricity of the waveform is relatively low, we can interpolate
the peaks of the waveform, and obtain the midpoint of the
upper and lower peaks. The reason for this operation is that
the symmetry axis of the nonspinning waveform is
approximately located at the midpoint of peaks of the
waveform. We can accurately model the precession effect
by a polynomial fit, but any other analytical method is also
possible. We analytically express the precession effect as
follows:

fp ¼
Xn
i¼0

aiAc
i; ð38Þ

where ai is polynomial fit coefficient. In Fig. 11(a), for the
sake of accuracy, we fit the precession effect by a 10 order
polynomial fit. If we express the effective spin effect χxeff as
fs ¼ g, then we can get a nonspinning and nonprecessing
amplitude eccentricity estimator by

eAnons;nonp ¼ eAs;p − fs − fp; ð39Þ

where the subscripts nons and nonp stand for nonspinning
and nonprecessing, respectively, and s and p stand for
effective spin and precession. If we want to obtain a
precessing and spining amplitude eccentricity estimator,
we just invert Eq. (39). In the Fig. 11(b), we subtract the
precession effect and then obtain an eA without effective
spin or precession. This leads to a new eccentricity estimator
that is exactly morphologically similar to nonspinning

FIG. 11. (a) is amplitude eccentricity estimator of waveform BBH:eBBH:1631 which has been shifted jgj ¼ 0.03 toward the positive
semiaxis of eA-axis. fp represents the precession effect from an analytical polynomial fit. (b) is a nonspinning, nonprecessing amplitude
eccentricity estimator of waveform after subtracting the precession effect fp.
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eccentricity estimator we encountered earlier. This basically
proves that our operation of “fitting out” the precession
effect is correct, and the results in Sec. III B verify its
correctness. However, what wewant to emphasize is that the
waveforms in Fig. 11(b) are not the same as nonspinning
RIT:eBBH:1282, due to the influence of spin and eccen-
tricity on the evolution of the waveform, whose imprints
have been left in it.
In summary, incorporating Eqs. (29), (33), and (38), if

we denote the eccentricity effects as fe, we can obtain an
eccentric spin-precessing eA by gradually adding these
effects to a nonspinning circular orbit waveform, which can
be described as follows:

eAe;s;p ¼Ac þ fe þ fsþ fp

¼ AeBA
κ
c sin ðfAκ

c þφÞþ ajχxeff j þ
Xn
i¼0

aiAc
i: ð40Þ

Then, we obtain the corresponding amplitude by the
Eq. (30)

Ae;s;p ¼ 2AcðAc þ fe þ fs þ fpÞ þAc

¼ 2Ac

�
AeBA

κ
c sin ðfAκ

c þ φÞ þ ajχxeff j

þ
Xn
i¼0

aiAc
i

�
þAc: ð41Þ

We can also get the frequency ωe;s;p by the same procedure.
Both of them are fundamental components of gravita-
tional waves.
It seems miraculous that Eq. (41) can use some simple

ideas and parameters to generate a spin-precession wave-
form of eccentricity from a nonspinning waveform of a
circular orbit. But it should be noted that, as we mentioned
in Sec. II F, for the treatment of effective spin, we adopted
the leading-orders approximation, and for the precession
effect, we only considered the simplest case of strong
precession in special configurations. How accurate this
approximation depends on the comparison of the generated
waveform to the original waveform.
Equation (41) may also be applicable to the effective spin

of the y component, denoted as χyeff , since x and y are at the
same level and have the same form in Eq. (4.17a) of
Ref. [94]. However, we present only the x component here,
as the applicability of the y component remains to be
verified. Such verification is left for future research, after
obtaining the eccentric waveform of the corresponding
configuration.
In the zero eccentricity limit, Eq. (41) reduces into

As;p ¼ 2Ac

�
ajχxeff j þ

Xn
i¼0

aiAi
c

�
þAc: ð42Þ

References [95,96] propose that by transforming the spin-
precession gravitational waveform into a co-precessing
frame and obtains a spin-aligned waveform based on a
map to analytical precessing PN waveform. We believe that
the operation fp for removing precession and Eq. (42)
basically represent the same meaning. Here, fp can also be
understood as a similar mapping. We think Eq. (42) is an
inspiration toward a more general case, that is, to establish a
transformation relationship between the nonspinning or
spin-aligned circular orbit waveform and spin-precessing
eccentric waveform. However, it requires more numerical
relativistic simulations of eccentric orbit and spin preces-
sion, which we leave for future research.

III. RESULTS

A. 2-2 mode

1. Fitting results

In this part, we organize the fitting parameters obtained
in Sec. II. Some waveforms with large errors need to be
discarded. The q ¼ 6 waveforms are not shown due to
speculated numerical simulation data issue. As shown in
Fig. 5(e), they deviate far from the behavior shown by the
parameters of other waveforms. And what is more, as in
panel f of the same figure, the deviation is not large, while
the mass ratio q ¼ 7 is going larger.
We only show the behavior here for amplitude and time

period t ∈ ½−2000;−300�, but the fitting parameters for
frequency or other time period share the same behavior.
Here, we only show fitting parameter results of the 2-2
mode to amplitude eccentricity estimatorA, and it is similar
for other cases. The fitting results of parameters AA, BA, fA,
κA for different mass ratio q are shown in Fig. 12, where the
subscript A represents that it is the fitting of amplitude. We
take the values of AA and fA as positive, and BA and κA as
positive and negative. In fact, the values of AA and fA can
be positive or negative, depending on the parity of the sine
function, while BA and κA must be positive and negative.
The sign of AA and fA does not affect the relationship
between them and initial eccentricity e0. The parameter φA
has no effect on the morphological properties of the
amplitude and frequency of the waveform, but only trans-
lates the frequency and amplitude on the Ac coordinate.
That is, it does not reflect nature of initial eccentricity e0 and
mass ratio q of the waveform. So φA is a free parameter. We
also discover it has a certain periodicity.
As we see in Fig. 12, the parameters AA, BA, fA, and κA

are related to the mass ratio q and can be judged by the
hierarchical phenomenon of the curves. In Fig. 12, we
can see

(i) There is a strict proportional relationship between
AA and eccentricity e0. The larger the eccentricity e0
is, the larger AA is, which comes from the relation-
ship between the amplitude eccentricity estimator eA
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and the eccentricity e0. In Fig. 12(a), we see that AA
is not only related to eccentricity, but also to mass
ratio q.

(ii) The correspondences between BA and fA and
eccentricity e0 are very similar, but their magnitudes
are not the same. They are distinctly stratified at
different mass ratios [see in Figs. 12(b) and 12(c)].
And there is a slightly monotonic relationship be-
tween them and eccentricity e0. However, we cannot
ignore this monotonic relationship, because the
accuracy of the waveform is extremely demanding
on these two parameters.

(iii) Parameter κA is also related to both mass ratio q and
eccentricity e0. When we obtain the fitting result of
higher-order modes, we will find that the function of
κA, fA and BA is to adjust the Eq. (28), making it
suitable for different mass ratios and higher-
order modes.

(iv) The larger the eccentricity, the more spread out the
points are, which means larger errors due to inter-
polation to measure eccentricity and fitting, as
analyzed in the Sec. II C.

These parameters have a strong dependence on eccen-
tricity e0 and mass ratio q. When the amount of data is
relatively small, it is difficult for us to judge it as in
Ref. [70]. When the amount of data is large, we can see it
clearly. Since the parameters have a complex relationship
not only with the mass ratio but also with the eccentricity,
which makes it very difficult to cover the parameter space of
q and e0 at the same time. Reference [70] tries to establish
the relationship between q, e0 and parameters respectively
to cover the parameter space of q, e0, but Fig. 12 shows that
it is not accurate enough. We can only fix the mass ratio q
and then cover the eccentricity e0 space. As shown in the
Fig. 12, due to there are too many data points and very
scattered, it is difficult to interpolate them. So we obtain a
relationship between parameters AA, BA, fA, κA, and e0 by
polynomial fitting. We use linear fit for AA. For BA, fA, and
κA, the results are obtained by a second order polynomial
fitting, and higher orders are also possible. It is worth

emphasizing that polynomial fitting does not mean that
there must be a continuous monotonic relationship between
these four parameters and eccentricity, which is only an
approximation. If we want to get a more accurate relation-
ship between them, we need more eccentric waveform data.

2. Mismatch

Since our purpose is to reproduce the full numerically
relativistic waveforms, they are naturally our comparison
target. We use leave-one-out method, setting one waveform
of all data as test data and the other waveforms as training
data in order to use enough training data. First we generate
fitting parameters AA, BA, fA, and κA by training data like
Fig. 12. Then, correspondence between eccentricity and
these fitting parameters is obtained by polynomial fitting in
the Fig. 12. Next we obtain a new set of parameters AA, BA,
fA, and κA through value of eccentricity e0 of test waveform
through this correspondence in Fig. 12. After we get the new
fitting parameters, we can obtain the corresponding ampli-
tudeA and frequencyω through Eq. (29). The leave-one-out
method traverses all waveform data, that is to say, each
waveform has been used as test data. The new fitting
parameters Aω, Bω, fω, and κω of frequency ω of all
gravitational waveform are also generated by the same
method. After this, we have to integrate the frequency to
get phase by

Φ ¼
Z

t2

t1

ωdt; ð43Þ

where t1 and t2 are the integral lower and upper limits. Then
we can reconstruct the test waveform by Eq. (19). In order to
evaluate the similarity between the test waveform and the
newly reconstructed waveform, we need to calculate overlap
as in Ref. [30]:

O ¼ max
t0;Φ0;φA;φω

hh1; h2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1; h1ihh2; h2i
p ; ð44Þ

where hh1; h2i is the inner product of waveform h1 and h2
defined as

FIG. 12. Fitting results of parameters AA, BA, fA, κA for different mass ratio q eccentricity e0 for amplitude of 2-2 mode.
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hh1; h2i ¼
����
Z

tmax

tmin

h1ðtÞh�2ðtÞdt
����; ð45Þ

where h�2ðtÞ is complex conjugate of h2ðtÞ. t0 and Φ0 are
given time and phase φA and φω are free parameters
inherited from the construction of waveform. We calculate
the overlap in time domain because the waveform we
constructed is a time domain waveform and each fitting
parameter related to eccentricity is equivalent to related to
time. At the same time, we choose a uniform power spectral
density (PSD) set to unity instead of the noise PSD of LIGO
or other gravitational wave detectors in calculation, in order
to reflect the fitting effect in the entire time domain because
we do not care about the application on detection of
gravitational waves, but only care about the waveform itself.
For convenience, we can also define mismatch or unfaithful-
ness as

M ¼ 1 −O: ð46Þ

We do not calculateM for all time periods, but choose four
typical time periods t ∈ ½−3000;−300�, t ∈ ½−2500;−300�,
t ∈ ½−2000;−300�, and t ∈ ½−1500;−300� as examples.

However, we think it is common for any other continuous
time period like t ∈ ½−1501;−300�. Here, we need not to
consider the total mass M, because all units have been
canceled in Eq. (44). In Fig. 13, we show theM between the
waveform obtained by leave-one-out method and the test
waveform in different eccentricities e0 ∈ ½0; 0.4�, different
mass ratios q ∈ ½1; 3� and different time ranges presented in
the left panel. For mass ratio q ∈ ½4; 7�, since there are few
(only two or three) waveforms which cannot generate
enough fitting parameters for polynomial fitting, we can
only use the fit of the test waveform to calculateM, which is
also meaningful to reflect the fitting effect of the model. We
remind the reader not to confuse the two fitting procedures,
one to amplitude and frequency, and the other to polynomial
fitting to the fitting parameters obtained from the former.

3. Analysis

M reflects the similarity of the waveforms. From the
Fig. 13, we can see that

(i) For waveforms with different time periods, we get
almost similar mismatch but there are also subtle
differences. When time period is very long, such as
t ∈ ½−3000;−300� or longer, or time period is short,

FIG. 13. M between the waveform obtained by leave-one-out method and the test waveform in different eccentricities e0 ∈ ½0; 0.4�,
different mass ratios q ∈ ½1; 3� and different time ranges. For mass ratio q ∈ ½4; 7�, since there are few waveforms, we can only use the fit
of the test waveform to calculate M.
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such as t ∈ ½−1500;−300� or shorter, the fitting
effect we obtained are not so good as time range
t ∈ ½−2000;−300� and t ∈ ½−2500;−300�. The rea-
son for it is that when the waveform is very long, the
model cannot fully capture all the overall properties
of it, and when the waveform is short, the model
gives a large error due to too little information given
by the waveform.

(ii) For the waveforms with mass ratio q ∈ ½1; 3� in the
left panel in Fig. 13, we obtain a relatively smallM,
but when the mass ratio is in q ∈ ½4; 7� in the right
panel in Fig. 13, we cannot get a small M which is
an order of magnitude higher for all initial eccen-
tricities even using fit of the waveform itself. It is not
because the model is not suitable for mass ratio
q ∈ ½4; 7�, but the some errors in the waveforms
themselves in the RIT catalog, which is particularly
obvious in the amplitude eccentricity estimator eA.
So we do not show it in Fig. 5 but present frequency
eccentricity estimator eω. Some eAs come from RIT
catalog has a strong local ups and downs which
cannot be removed using the method of filtering
high-frequency noise, which is obviously caused by
errors of the waveforms themselves. It can be found

that the eccentric waveforms with mass ratio of 4-7
are from the RIT which used a different numerical
method with SXS and have not been calibrated with
other numerical relativity groups.

(iii) We can find that as the initial eccentricity e0
increases, M becomes larger. If we only pay
attention to the part with a mass ratio of 1-3 in
the left panels of Fig. 13, we find that when e0 is
small,M is warped. This is because when using the
leave-one-out method, there are errors in the process
of generating parameters using polynomials for the
waveform near the edge of the parameter. Therefore,
the initial eccentricity is in the middle part to obtain
a lower M. Ignoring the initial warping part, for
waveforms with mass ratio of 1-3, when the
eccentricity e0 ∈ ½0; 0.1�, we obtain an M approx-
imately less than 10−4, and when the eccentricity
e0 ∈ ½0.1; 0.2�, we obtain an M approximately less
than 10−3, and when the eccentricity e0 ∈ ½0.2; 0.3�,
we obtain an M approximately less than 10−2, and
when the eccentricity e0 ∈ ½0.3; 0.4�, we obtain an
M approximately less than 10−1. This implies that
as the eccentricity becomes larger, the model fits
the waveform worse, which is consistent with the
conclusion we have drawn in the Sec. II D. For the
part with a mass ratio of 4-7 in the right panels of
Fig. 13, the results obtained for M are an order of
magnitude worse than 1-3.

4. Morphology of eccentric waveform

In this subsection, we try to explain the behavior ofM as
the initial eccentricity e0 varies. There is a clear difference
in morphology between the eccentric waveform and the
circular orbit waveform because of modulation effects on
gravitational wave amplitude and frequency oscillations
due to eccentricity. The separation of BBHs is relatively
close and far away at the periastron and apastron. So the
amplitude and frequency of the waveform is relatively large
at the periastron and relatively small at the apastron, which
is the same for dominant mode in Fig. 2 or higher order
modes in Fig. 7. However, not only the eccentric waveform
and the circular orbit waveform are morphologically differ-
ent, but also the low eccentricity waveform and the high
eccentricity waveform are very different in morphology.
It is difficult for us to see this morphological difference

only through the comparison between the eccentric wave-
forms, but the circular orbit waveform and the eccentricity
estimator provide us with a new perspective. The eccen-
tricity estimator is defined as a cosine function by Eq. (9).
That is, when the eccentricity estimator deviates from the
behavior of the cosine function, measuring eccentricity
by the eccentricity estimator will introduce errors [88].
In Fig. 14, we show the amplitudes of the waveforms
with mass ratio q ¼ 1, time period t ∈ ½−2000;−300� and
initial eccentricities of e0 ¼ 0 (circular), e0 ¼ 0.0522

FIG. 14. Amplitudes of the waveforms with mass ratio q ¼ 1,
time period t ∈ ½−2000;−300� and initial eccentricities of e0 ¼ 0
(circular), e0 ¼ 0.0522 (1355), e0 ¼ 0.2014 (1362), and e0 ¼
0.3653 (1286), respectively. Tp1 and Ta1 represent the time of the
periastron passage and apastron passage of the first and second
half cycle of the waveform 1355 based on the circular orbit
waveform. Tp2, Ta2 and Tp3, Ta3 are for 1362 and 1286. From the
figure, we can find that the eccentric behavior of the cosine
function is passed from panel (a) to panel (b) and then passed to
panel (c).
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(1355), e0 ¼ 0.2014 (1362), and e0 ¼ 0.3653 (1286),
respectively. Tp1 and Ta1 represent the time of the periastron
passage and apastron passage of the first and second half
cycle of the waveform 1355 based on the circular orbit
waveform. Tp2, Ta2 and Tp3, Ta3 are for 1362 and 1286.
From Fig. 14(a), we can find that, the greater the eccentricity
of the waveform, the stronger the oscillation in amplitude.
As the eccentricity increases, the periastron passage and
apastron passage of the waveform gradually show different
behaviors. The former becomes sharper and the latter
becomes smoother. We can get the ratio Ta3=Tp3 > Ta2=
Tp2 > Ta2=Tp2, which means that the time of the apastron
passage is getting longer and longer than the time of the
periastron passage.
It is not obvious to describe the deviation of the

eccentricity estimator from the cosine function, because
the eccentricity is a function of time. When using the
eccentricity estimator to estimate the eccentricity, we obtain
its eccentricity by taking the amplitude of the eccentricity
estimator eA. This approach relies on the fact that the
pericentric and apocentric values of the eccentricity esti-
mator must decay in the same behavior, rather than there is
an obvious hierarchical behavior. This hierarchical behavior
shows the eccentricity estimator deviating from the sinus-
oidal decay. Behavior in amplitude in Fig. 14(a) is passed to
the associated amplitude eccentricity estimator. In order to
show this effect, in Fig. 14(b), we take the absolute value of
the eccentricity estimator, so that periastron and apastron are
at the same level, and then we connect all the points to draw
a trend line, where diamonds a1, p1, etc. are the corre-
sponding periastron and apastron in the Fig. 14(a). If the
eccentricity estimator had no deviating cosine behavior,
then all periastron and apastron values a1; a2…an, and
p1; p2…pn (we only marked two of them as examples)
would decrease in a line that approximately coincides, since
eccentricity is a decreasing function of time. Conversely, if it
deviates from the cosine function, the line connecting the
two values will not coincide and will behave like a polyline.
The ups and downs of these trend lines indicate how far the
eccentricity estimator deviates from the cosine function. The
trend line of waveform 1355 is roughly a straight line,
implying that it does not deviate from cosine behavior, but
the trend line of waveform 1286 is an obvious broken line,
implying that it deviates from cosine behavior.
Due to the monotonic relationship between the ampli-

tude of the circular orbit and time, the behavior of the
amplitude eccentricity estimator with respect to timewill be
passed to the behavior of the amplitude eccentricity
estimator with respect to the amplitude of the circular
orbit [see in Fig. 14(c)]. We can derive the behavior of the
Eq. (28) by magnitude analysis. From the Fig. 12, we get
B ∼ 10−3, Xc

κ ∼ 103, and eBX
κ
c ∼ 1. So the overall behavior

of Eq. (29) is a sine or cosine function which is similar to
Fig. 4(a). The trend lines in Fig. 14(c) show that 1355 does
not deviate from sinusoidal behavior, while 1286 does. All

in all, the degree of deviation of the eccentricity estimator
from the sinusoidal function determines the scope of
application of the phenomenological fitting model. The
greater the eccentricity, the greater the deviation of the
eccentricity estimator from the sinusoidal behavior, which
also determines the model cannot be used for high
eccentricity. This result is consistent with our previous
analysis of overlapping. As we can see in the Fig. 13,
different eccentricities give different fitting effects, so when
we want to obtain higher accuracy, we generally need to
keep the eccentricity at different intervals in [0, 0.4].

B. Other situations

1. Higher-order modes

Compared with the 2-2 mode, the high-order modes have
a large difference in amplitude and frequency, which leads
to different magnitudes of parameters, but their related
behavior with eccentricity and mass ratio is the same as the
2-2 mode. Similarly, we can also obtain it according to the
method in the Sec. III A. Here we will not go into details.
The calculation of mismatch M can be obtained through

the Eq. (46). We take fitting of the high-order modes 3-3,
2-1, 4-4, 5-5, 3-2, 4-3 mode with mass ratio q¼2, eccen-
tricity e0 ∈ ½0; 0.1� and time period t ∈ ½−2000;−300� as an
example to show the mismatch M we get (see in Fig. 15).
The situation is similar for other parameters. Here we only
use fitting to calculateM because there is too little data for
the high-order modes of the eccentric waveforms. When we
get enough high-order modes data of the eccentric wave-
forms, we can also do the same procedure as the Sec. III A.
From Fig. 15, we can see that the mismatch M of high-
order modes and the 2-2 mode share roughly the same
behavior with the eccentricity. Therefore, this model is able
to fit the higher order modes very well.

2. Spin-aligned

As stated in the Sec. II F, the waveform of spin aligned
can be obtained in two ways, one is the circular orbit
waveform with spin, and the other is the circular orbit

FIG. 15. Mismatch M for 3-3, 2-1, 4-4, 5-5, 3-2, 4-3
modes with mass ratio q ¼ 2, eccentricity e0 ∈ ½0; 0.1� and time
period t ∈ ½−2000;−300�.
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waveform without spin. We can fit waveforms by Eq. (29)
or Eq. (32). Since the number of eccentric spinning
waveforms is few, and it is not easy to find an eccentric
waveform whose magnitude and direction of component
spins are exactly the same as a circular orbital waveform,
we can only present the fitting effect for two cases here. We
show mismatch M of different time range with mass ratio
q ¼ 1 in the Fig. 16 in which RIT:eBBH:1740, RIT:
eBBH:1763, and RIT:eBBH:1899 are for circular orbit
waveforms without spin, and the other two RIT:
eBBH:1763 and RIT:eBBH:1899 are for circular orbit
waveforms with spin. Due to the limited number of
spin-aligned waveforms, we cannot demonstrate the varia-
tion of M with eccentricity e0. Instead, we take the time
range from [−3000, −300] to [−1500, −300], where we
choose the middle time range every 250, such as [−2750,
−300], [−2500, −300], and so on. Since the initial
eccentricities of the waveforms in Fig. 16 are similar
and located within e0 ∈ ½0; 0.1�, we observe that their
corresponding M values are approximately less than
10−4. This observation suggests that the proposed model
can fit these waveforms well.

3. Spin-precession

The eccentric spin-precessing BBHs merger is one of the
most complicated cases in numerical relativity, and there
are few studies on it. Their waveforms are interspersed with
multiple complex effects and are difficult to analyze. In the
Sec. II G, we propose a method for separating the eccentric
spin-precessing waveform into different effects as in
Eq. (39). Now, we select 2-2 mode of the waveform
RIT:eBBH:1361 in the time period t ∈ ½−3000;−300�.
We can test this model by doing a fit to the nonspinning
waveform in Fig. 11(b). Then we obtain the values of each
parameter AA ¼ 0.03459, BA ¼ 0.000786, fA ¼ 0.04617,
κA ¼ −3.15750. Next we obtain an eccentricity estimator
with mass ratio q ¼ 1, no spin and precession via the

Eq. (39). The results are shown in Fig. 17(a), where the blue
solid line is named “removed,” because we removed the
effective spin and precession effects inside it, and the dark
orange dashed line is what we “fit.” Then we add the
effective spin effect −g ¼ 0.3 and the precession effect fp
to the “fit” waveform to obtain an eccentricity estimator
with spin-precession through the Eq. (40), which precisely
recovers the characteristics of the eccentricity estimator of
original waveform 1631 [see in Fig. 17(b)]. Finally, we get
the amplitude of a waveform with eccentricity and spin
precession by the Eq. (41), which has a good overlap with
the amplitude of waveform 1631 [see in Fig. 17(c)]. For
frequency ω, the manipulations are the same. Substitute the
resulting frequency ω and amplitude A into the Eq. (19)
and compare with the original waveform RIT:eBBH:1361
we get a mismatch M ¼ 0.0016, which means that we
accurately and self-consistently reproduce the original
waveform 1631. A phenomenological comparison between
hreal we “fit” and original waveform RIT:eBBH:1361 is
shown in Fig. 18, where hreal is the real part of h.

FIG. 16. Mismatch M of different time range with mass ratio
q ¼ 1. RIT:eBBH:1740, RIT:eBBH:1763, and RIT:eBBH:1899
come from circular orbit waveforms without spin, and the other
two RIT:eBBH:1763 and RIT:eBBH:1899 come from circular
orbit waveforms with spin.

FIG. 17. In panel (a), the blue solid line represents the part
of the waveform RIT:eBBH:1361 in the time range
t ∈ ½−3000;−300�, which is named “removed,” because we
removed the effective spin and precession effects inside it. The
dark orange dashed line represents a new amplitude eccentricity
estimator we “fit.” In panel (b), the blue solid line represents the
“fit” amplitude eccentricity estimator of waveform that we add
the effective spin effect −g ¼ 0.3 and the precession effect fp.
The dark orange dashed line represents the 1631 amplitude
eccentricity estimator. In panel (c), The dark orange dashed line is
the fit the amplitude of a waveform with eccentricity and spin
precession by the Eq. (41). The blue solid line represents the
amplitude of waveform 1631.
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Not all eccentric spin strong precession waveforms have
a simple precession effect like RIT:eBBH:1361. Waveform
RIT:eBBH:1701 has an effective spin of zero due to the
spin opposite sign of BBHs, leading to g ¼ 0. If we assume
that the precession effect and the eccentricity effect are
independent of each other, then the parameter f only
depends on the eccentricity. So we can force fit its
eccentricity estimator to try to obtain its precession effect
(see in Fig. 19). As in the previous case, subtracting the fit,
we get the precession effect which is much more compli-
cated than the precession effect in RIT:eBBH:1361.

IV. CONCLUSION AND OUTLOOK

The eccentricity and spin of gravitational waves can
reflect the dynamics of BBHs merger. However, there are
very few public numerical relativity simulations with eccen-
tricity. that converts a circular [70] propose a novel method
to convert quasicircular orbit waveforms into eccentric ones,
but their method is very limited because of the small range of
parameters. We explore the origin of this phenomenological
model and its possible extensions. Based on the eccentric
waveforms of the SXS catalog, we add some eccentric
waveforms of the RIT catalog, including the waveforms of
mass ratio q ∈ ½1; 7�, eccentricity e0 ∈ ½0; 0.4�, spin align-
ment, and spin precession, greatly expanding the parameter
space. We find that after setting the fixed constant parameter
to the variable parameter κ as in Eq. (29), the applicability of
the model becomes wider, and can be applied to the case of
mass ratio q ∈ ½1; 7�, eccentricity up to e0 ¼ 0.4, time
period up to t ∈ ½−12000;−300�, high-order modes and

spin alignment. We use the leave-one-out method to verify
this model. For q 1-3, e0 ∈ ½0; 0.1�, it gives a mismatch
approximately less than 10−4, for e0 ∈ ½0.1; 0.2�, less than
10−3, for e0 ∈ ½0.2; 0.3�, less than 10−2, for e0 ∈ ½0.3; 0.4�,
less than 10−1. And an order of magnitude worse for mass
ratio 4-7. The reason for these phenomenons is that the larger
the eccentricity, the larger the deviation of the eccentricity
estimator from the cosine function due to the large change in
the morphology of the eccentric waveform, and the worse
the fitting effect of the model. We also try to introduce an
approximate spin-aligned effect. After adding a shift param-
eter as in Eq. (32), the model can convert a nonspinning
circular waveform into a spin-aligned eccentric waveform.
That is, the spin-aligned effect can be approximately added
to nonspinning waveform. For some waveforms with
relatively simple and obvious precession effects strong
precession, we can separate the precession effects and
self-consistently restore the original waveform using the
measured initial eccentricity. Finally, the spin precession
waveform with eccentricity can be regarded as the super-
position of various effects including eccentricity, effective
spin and precession, which is very novel and simple. We can
also obtain models of complex precession phenomena by the
model. We believe that this phenomenological and universal
relationship can not only help us to generate fast and
accurate gravitational waveforms with eccentricity and spin
precession, but also put up with a new perspective for
understanding eccentricity, spin and precession effects of the
waveform BBHs dynamics.
As outlined in the main text, the gravitational waveform

can be obtained by following a specific process based on a
set of parameters. First, a selection is made of a particular set
of parameters including the mass ratio q, eccentricity e0,
time period, and effective spin χeff . Second, utilizing
Fig. 12, four fitting parameters A,B, f, and κ, corresponding
to the mass ratio q and initial eccentricity e0, are obtained.
Third, these four parameters are applied to Eq. (30),
resulting in the determination of the amplitude A and
frequency ω, which vary with time. In the case of spin
or precession, Eqs. (34) and (41) should be utilized as a
replacement for Eq. (30). Fourth, A and ω are substituted
into Eq. (19), while the phaseΦ in Eq. (19) is the integration
of Eq. (20). The resulting expression is the gravitational
waveform h. It should be noted that this process is currently
only applicable to a specific integer mass ratio and strong

FIG. 18. A phenomenological comparison between hreal that we fit and original eccentric spin-precessing waveform RIT:eBBH:1361
for 2-2 mode.

FIG. 19. The blue solid line represents amplitude eccentricity
estimator of waveform 1701, and the dark orange dashed line
represents a forced fit for it.
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precession effects, and is not suitable for considering
general precession effects.
Due to the small amount of waveform data used in this

work and the lack of generality in the cases of spin
alignment and spin precession, we only study some special
cases for them and using some approximation. It will be
necessary to include more general spin precession effects in
this phenomenological model. We hope that there will be
more and more numerical relativity simulations with
eccentricity and spin precession in the future, which will
make this phenomenological model richer and more
accurate.
Once a large coverage on the parameters including mass

ratio, eccentricity, and spins can be considered in the
phenomenological relationship, we will be able to construct
a large amount of waveforms easily. This could be used as
the waveform template in searching GWs by LIGO/Virgo
[97] or by the upcoming next generation gravitational wave
detectors, such as the Einstein Telescope [98]. As the
waveforms are scalable to any mass, it can also be applied
to the merging of galactic center binary black holes, which
happens in the early universe, and could be detectable
by the space borne gravitational wave missions, such as

Laser Interferometer Space Antenna (LISA) [99], and
Tianqin [100].
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APPENDIX: RIT AND SXS WAVEFORMS

TABLE I. Eccentric and circular orbit waveforms from the RIT catalog, which contains simulation number, type, mass ratio q ∈ ½1; 7�,
initial separation sepini, dimensionless spin component, effective spin, reference eccentricity eref, and merge time tmerge.

Case Simulation Type sepini q χ1x χ1y χ1z χ2x χ2y χ2z χeff eref tmerge=M

1 RIT:eBBH:1282 Nonspinning 24.64 1 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.1900 11764
2 RIT:eBBH:1283 Nonspinning 24.64 1 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.2775 6524
3 RIT:eBBH:1284 Nonspinning 24.64 1 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.3276 4430
4 RIT:eBBH:1285 Nonspinning 24.64 1 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.3600 3368
5 RIT:eBBH:1287 Nonspinning 24.64 1 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.3916 2508
6 RIT:eBBH:1286 Nonspinning 24.64 1 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.3994 2330
7 RIT:eBBH:1289 Nonspinning 24.64 1 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4071 2141
8 RIT:eBBH:1288 Nonspinning 24.64 1 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4148 1993
9 RIT:eBBH:1291 Nonspinning 24.64 1 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4224 1822
10 RIT:eBBH:1290 Nonspinning 24.64 1 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4300 1681
11 RIT:eBBH:1293 Nonspinning 24.64 1 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4375 1558
12 RIT:eBBH:1292 Nonspinning 24.64 1 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4450 1410
13 RIT:eBBH:1740 Spin-aligned 24.71 1 0.0 0.0 −0.5 0.0 0.0 −0.5 −0.500 0.1900 10094
14 RIT:eBBH:1763 Spin-aligned 24.75 1 0.0 0.0 −0.8 0.0 0.0 −0.8 −0.800 0.1900 9054
15 RIT:eBBH:1899 Spin-aligned 24.69 1 0.0 0.0 0.0 0.0 0.0 −0.8 −0.400 0.1900 10588
16 RIT:eBBH:1741 Spin-aligned 24.71 1 0.0 0.0 −0.5 0.0 0.0 −0.5 −0.500 0.3600 2286
17 RIT:eBBH:1764 Spin-aligned 24.75 1 0.0 0.0 −0.8 0.0 0.0 −0.8 −0.800 0.3600 1620
18 RIT:eBBH:1900 Spin-aligned 24.69 1 0.0 0.0 0.0 0.0 0.0 −0.8 −0.400 0.3600 2483
19 RIT:eBBH:1786 Spin-aligned 24.59 1 0.0 0.0 0.5 0.0 0.0 0.5 0.500 0.4375 2448
20 RIT:eBBH:1807 Spin-aligned 24.56 1 0.0 0.0 0.8 0.0 0.0 0.8 0.800 0.4375 2985
21 RIT:eBBH:1828 Spin-aligned 24.60 1 0.0 0.0 0.0 0.0 0.0 0.8 0.400 0.4375 2275
22 RIT:eBBH:1787 Spin-aligned 24.59 1 0.0 0.0 0.5 0.0 0.0 0.5 0.500 0.4671 1866
23 RIT:eBBH:1808 Spin-aligned 24.56 1 0.0 0.0 0.8 0.0 0.0 0.8 0.800 0.4671 2349

(Table continued)
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TABLE I. (Continued)

Case Simulation Type sepini q χ1x χ1y χ1z χ2x χ2y χ2z χeff eref tmerge=M

24 RIT:eBBH:1829 Spin-aligned 24.60 1 0.0 0.0 0.0 0.0 0.0 0.8 0.400 0.4671 1720
25 RIT:eBBH:1631 Spin-precessing 24.62 1 0.7 0.0 0.0 0.7 0.0 0.0 0.700 0.1900 12012
26 RIT:eBBH:1701 Spin-precessing 24.64 1 −0.7 0.0 0.0 0.7 0.0 0.0 0.000 0.1900 11759
27 RIT:eBBH:1632 Spin-precessing 24.62 1 0.7 0.0 0.0 0.7 0.0 0.0 0.700 0.2775 6726
28 RIT:eBBH:1702 Spin-precessing 24.64 1 −0.7 0.0 0.0 0.7 0.0 0.0 0.000 0.2775 6554
29 RIT:eBBH:1633 Spin-precessing 24.62 1 0.7 0.0 0.0 0.7 0.0 0.0 0.700 0.3600 3488
30 RIT:eBBH:1703 Spin-precessing 24.64 1 −0.7 0.0 0.0 0.7 0.0 0.0 0.000 0.3600 3382
31 RIT:eBBH:1634 Spin-precessing 24.62 1 0.7 0.0 0.0 0.7 0.0 0.0 0.700 0.4375 1633
32 RIT:eBBH:1704 Spin-precessing 24.64 1 −0.7 0.0 0.0 0.7 0.0 0.0 0.000 0.4375 1562
33 RIT:eBBH:1883 Spin-aligned 24.70 2 0.0 0.0 0.0 0.0 0.0 −0.8 −0.533 0.3600 2257
34 RIT:eBBH:1422 Nonspinning 24.63 2 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.1900 13074
35 RIT:eBBH:1423 Nonspinning 24.63 2 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.3600 3714
36 RIT:eBBH:1424 Nonspinning 24.63 2 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4375 1667
37 RIT:eBBH:1862 Spin-aligned 24.70 3 0.0 0.0 0.0 0.0 0.0 −0.8 −0.600 0.3600 2209
38 RIT:eBBH:1468 Nonspinning 24.62 3 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.1900 15114
39 RIT:eBBH:1469 Nonspinning 24.62 3 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.3600 4249
40 RIT:eBBH:1470 Nonspinning 24.62 3 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4375 1854
41 RIT:eBBH:1491 Nonspinning 24.61 4 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.1900 17835
42 RIT:eBBH:1492 Nonspinning 24.61 4 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.3600 4878
43 RIT:eBBH:1493 Nonspinning 24.61 4 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4375 2102
44 RIT:eBBH:1514 Nonspinning 24.60 5 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.1900 15781
45 RIT:eBBH:1515 Nonspinning 24.60 5 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.3600 5539
46 RIT:eBBH:1516 Nonspinning 24.60 5 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4375 2496
47 RIT:eBBH:1517 Nonspinning 24.60 5 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4671 1601
48 RIT:eBBH:1537 Nonspinning 24.59 6 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.1900 6268
49 RIT:eBBH:1538 Nonspinning 24.59 6 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.3600 3200
50 RIT:eBBH:1539 Nonspinning 24.59 6 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4375 2213
51 RIT:eBBH:1540 Nonspinning 24.59 6 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4671 1544
52 RIT:eBBH:1560 Nonspinning 24.59 7 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.1900 22937
53 RIT:eBBH:1561 Nonspinning 24.59 7 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.3600 6491
54 RIT:eBBH:1562 Nonspinning 24.59 7 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4375 2680
55 RIT:eBBH:1563 Nonspinning 24.59 7 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.4671 1733

TABLE II. Eccentric and circular orbit waveforms from the SXS catalog, which contains simulation number, type, mass ratio
q ∈ ½1; 7�, initial separation sepini, dimensionless spin component, effective spin, initial eccentricity e0 after removing junk radiation,
merge time tmerger, and orbit number Norbits.

Case Simulations Type q sepini χ1x χ1y χ1z χ2x χ2y χ2z χeff e0 tmerge=M Norbits

2 SXS:BBH:1355 Nonspinning 1 12.98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0613 2552 13.9
3 SXS:BBH:1356 Nonspinning 1 18.87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1010 6001 22.34
4 SXS:BBH:1357 Nonspinning 1 16.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1123 2889 14.76
5 SXS:BBH:1358 Nonspinning 1 15.90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1097 2656 14.08
6 SXS:BBH:1359 Nonspinning 1 15.74 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1103 2530 13.75
7 SXS:BBH:1360 Nonspinning 1 16.70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1643 2373 13.14
8 SXS:BBH:1361 Nonspinning 1 16.70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1691 2325 12.98
9 SXS:BBH:1362 Nonspinning 1 17.70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2195 2147 12.28
10 SXS:BBH:1363 Nonspinning 1 17.70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2208 2109 12.18
11 SXS:BBH:0154 Spin-aligned 1 15.37 0.0 0.0 −0.8 0.0 0.0 −0.8 −0.8 0.0000 3805 13.24
12 SXS:BBH:0325 Spin-aligned 1 15.87 0.0 0.0 0.0 0.0 0.0 −0.8 −0.4 0.0000 5104 17.34
13 SXS:BBH:1165 Nonspinning 2 19.92 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0000 15792 40.34
14 SXS:BBH:1364 Nonspinning 2 14.54 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0522 3200 16.14
15 SXS:BBH:1365 Nonspinning 2 15.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0677 3181 16.06

(Table continued)
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