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We study charged and rotating boson stars in five-dimensional Einstein-Maxwell-Chern-Simons theory
assuming the two angular momenta associated with the two orthogonal planes of rotation to be equal. Next
to the angular momenta, the boson stars carry an electric charge and a magnetic moment. Interestingly, we
find new branches of Einstein-Maxwell-Chern-Simons solutions for which the spatial part of the gauge
potential possesses nodes. Consequently, the magnetic moment and the gyromagnetic ratio have opposite
signs as compared to the solutions on the main branch. For sufficiently large energy density we find that the
solutions possess ergoregions.
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I. INTRODUCTION

With general relativity now the accepted and experi-
mentally well-confirmed paradigm to describe the gravi-
tational interaction for a wide range of masses and sizes of
objects, it remains to be understood how strong gravity acts
on scales where quantum effects play an important role.
While a consistent theory of quantum gravity that would
also be able to explain a number of puzzles, such as that of
dark energy, has not been formulated so far, there are
possibilities to test strong gravity in settings that could be
connected to quantum theory. One such possibility is the
boson star [1–6], which is made of a scalar field that is
essentially quantum in nature as its collapse is prevented by
Heisenberg’s uncertainty relation. One could think of such
a star as a “macroscopic Bose-Einstein condensate” that is
self-gravitating. These solutions exist due to a global Uð1Þ
symmetry of the model, which leads to a conserved
Noether charge that can be interpreted as the number of
scalar bosonic particles making up the star. These solitonic
objects are stationary as they possess a harmonic time
dependence, in their simplest version; however, they have a
static energy density that leads to a static space-time. Boson
stars can also rotate (with resulting stationary space-time)
[2–6], and interestingly, the resulting angular momentum is
given as an integer multiple of the Noether charge. Hence,
the angular momentum is quantized—a feature that is very

common in quantum physics—and is proportional to the
total number of scalar bosonic particles that make up the
star. It has been argued in [7] that boson stars with large
angular momentum possess an ergoregion which would
eventually make them unstable.
Gauging theUð1Þ symmetry leads to charged boson stars

[8–10]. The nonrotating boson stars possess electric charge
proportional to the Noether charge, with the proportionality
constant equal to the gauge coupling. These solutions exist
as long as the electromagnetic repulsion does not overcome
the gravitational attraction [8]; i.e., a critical value of the
gauge coupling exists at fixed gravitational coupling.
Adding rotation leads to solutions with electric charge
and magnetic moments [11,12]. It was shown in [12] that
the relation between angular momentum and Noether
charge present in the uncharged case also holds in the
presence of a Uð1Þ gauge field.
Boson stars can also be constructed in higher space-

time dimensions, which requires a complex scalar field
doublet [13]. In five space-time dimensions, rotating stars
can possess two angular momenta. Choosing these two
angular momenta to be equal, the symmetry of the system
can be enhanced and the space-time possesses hyper-
spherical symmetry. As for boson stars in four space-time
dimensions, the sum of the angular momenta is propor-
tional to the Noether charge. One aim of this paper is to add
a Uð1Þ gauge field to the model discussed in [13]. As we
show below, these solutions possess electric charge and
magnetic moments. Next to the standard Maxwell term,
another possibility exists in odd space-time dimensions: a
Chern-Simons gauge field interaction. While the former is a
relativistic gauge field model, the Chern-Simons term is
topological and does not depend on the metric. The latter is
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important when building models describing phenomena
in nonrelatistic physics such as, e.g., condensed matter.
Charged black holes without scalar fields in Einstein-
Maxwell-Chern-Simons theory have been studied in
[14–17], while five-dimensional, charged, rotating black
holes with scalar hair have been studied in [18]. Here, we
construct the globally regular counterparts to these black
holes and extend the results to include a Chern-Simons term.
Our paper is organized as follows: In Sec. II with discuss

the model, while Sec. III contains our numerical results.
We conclude in Sec. IV.

II. THE MODEL

The action of the model that we consider reads

S ¼
Z �

R
16πG

− ðDμΦÞ†ðDμΦÞ −UðjΦjÞ − 1

4
FμνFμν

þ α
1ffiffiffiffiffiffi−gp ϵμνρσθAμFνρFσθ

� ffiffiffiffiffiffi
−g

p
d5x: ð1Þ

This is a Uð1Þ gauge field model coupled minimally
to a complex scalar doublet Φ ¼ ðϕ1;ϕ2ÞT with potential
VðjΦjÞ as well as Einstein gravity with R the Ricci scalar
and G Newton’s constant. Note that the scalar sector
possesses a global Uð2Þ symmetry whose Uð1Þ subgroup
can be gauged. Here, the diagonal part of the Uð1Þ ×Uð1Þ
maximal Abelian subgroup is gauged. The covariant
derivative and Uð1Þ field strength tensor then take the form

Dμ ¼ ð∂μ − iqAμÞ; Fμν ¼ ∂μAν − ∂νAμ; ð2Þ
and q denotes the gauge coupling constant. We assume
q > 0 without loss of generality since the sign of q can
be absorbed in the gauge fields and the Chern-Simons
coupling α. The variation of the action (1) with respect to
the metric leads to the Einstein equation:

Gμν ¼ Rμν −
1

2
gμνR ¼ 8πGðTs

μν þ Tv
μνÞ ð3Þ

with the stress-energy tensor of the scalar field

Ts
μν ¼ ðDμΦÞ†ðDνΦÞ þ ðDνΦÞ†ðDμΦÞ

−
1

2
gμν½ðDαΦÞ†ðDβΦÞ þ ðDβΦÞ†ðDαΦÞ�gαβ

− gμνUðjΦjÞ; ð4Þ

and the stress-energy tensor of the gauge field

Tv
μν ¼ −FμαFα

ν þ
1

4
gμνFαβFαβ; ð5Þ

respectively. The variation with respect to the matter fields
leads to the equations for the scalar field and gauge field,
respectively,

1ffiffiffiffiffiffi−gp Dμð
ffiffiffiffiffiffi
−g

p
DμΦÞ ¼ ∂U

∂jΦj2Φ;

1ffiffiffiffiffiffi−gp ∂μ
ffiffiffiffiffiffi
−g

p
Fμν ¼ Jν þ 3αϵνρσθαFρσFθα; ð6Þ

with the five-current given by

Jν ¼ iqððDνΦÞ†Φ −Φ†ðDνΦÞÞ: ð7Þ

Note that the action (1) is invariant under a local Uð1Þ
transformation up to a divergence; i.e., the equations of
motion (6) are gauge invariant.

A. The Ansatz

For the vanishing gauge field 1-form Aμdxμ ¼ 0, the
model with action (1) was first studied in [13]. We will
extend these results here to include electric charge and
magnetic moments as well as to study the influence of the
Chern-Simons term.
As mentioned above, we assume the solutions possess

bi-azimuthal symmetry, implying the existence of three
commuting Killing vectors, ξ ¼ ∂t, η1 ¼ ∂φ1

, and η2 ¼ ∂φ2
.

A suitable metric Ansatz then reads

ds2 ¼ −bðrÞdt2 þ dr2

fðrÞ þ RðrÞdθ2

þ hðrÞsin2θðdφ1 −WðrÞdtÞ2
þ hðrÞcos2θðdφ2 −WðrÞdtÞ2
þ ðRðrÞ − hðrÞÞsin2θcos2θðdφ1 − dφ2Þ2 ð8Þ

where θ ∈ ½0; π=2�, ðφ1;φ2Þ ∈ ½0; 2π�, and r and t denote
the radial and time coordinates, respectively.
For such solutions the isometry group is enhanced from

R ×Uð1Þ2 to R ×Uð2Þ. In other words, the two angular
momenta J1, J2 associated with rotations by φi, i ¼ 1, 2 are
equal to each other, J1 ¼ J2 ≡ J=2, where J is the total
angular momentum. The symmetry enhancement men-
tioned above, in particular, allows us to factorize the
angular dependence and thus leads to ordinary differential
equations. The Ansatz for the scalar field then reads [13]

Φ ¼ ϕðrÞeiωt
�
sin θeiφ1

cos θeiφ2

�
; ð9Þ

where the frequency ω parametrizes the harmonic time
dependence. For the scalar field potential we restrict our
study to the simplest case of a massive, non-self-interacting
scalar field; i.e., we set

UðjΦjÞ ¼ μ2Φ†Φ ¼ μ2ϕðrÞ2 ð10Þ

where μ corresponds to the scalar field mass.
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Finally, the Ansatz for the electromagnetic potential is
chosen as

Aμdxμ ¼ VðrÞdtþ AðrÞðsin2ðθÞdφ1 þ cos2ðθÞdφ2Þ ð11Þ

which turns out to be consistent with the symmetries of the
metric and scalar fields. The nonvanishing components of
the field strength tensor are then

Frt ¼
dVðrÞ
dr

; Frφ1
¼ dAðrÞ

dr
sin2θ;

Frφ2
¼ dAðrÞ

dr
cos2θ; Fθφ1

¼−Fθφ2
¼AðrÞsinð2θÞ; ð12Þ

i.e., our solutions possess electric and magnetic fields.
Without fixing a metric gauge, a straightforward com-

putation leads to the following reduced action for the
system:

Seff ¼
Z

drdt Leff ; with

Leff ¼ Lg þ 16πGðLs þ Lv þ αLcsÞ; ð13Þ

Lg ¼
ffiffiffiffiffiffi
fh
b

r �
b0R0 þ R

2h
b0h0 þ b

2R
R02 þ b

h
R0h0

þ 1

2
RhW02 þ 2b

f

�
4 −

h
R

��
; ð14Þ

Ls ¼ R

ffiffiffiffiffiffi
bh
f

s �
fϕ02 þ

�
2

R
þ ð1 − qAÞ2

h

−
ðω −W þ qðV þWAÞÞ2

b
þ μ2

�
ϕ2

�
; ð15Þ

Lv ¼ R

ffiffiffiffiffiffi
bh
f

s �
2A2

R2
þ f
2h

ðA0Þ2 − f
2b

ðV 0 þWA0Þ2
�
; ð16Þ

LCS ¼ 16AðA0V − AV 0Þ; ð17Þ

with the effective gravity (g), scalar field (s), gauge
field (v), and Chern-Simons (CS) Lagrangian density,
respectively. Here and in the following, the prime denotes
the derivative with respect to r. The equations of motion
can then be consistently obtained from this reduced action
by varying with respect to h, b, f, R,W, F, V, and A. Note
that the effective CS Lagrangian density does not depend
on the metric functions and hence will not source the space-
time curvature.
The metric gauge freedom can be fixed afterwards,

leading to a system of seven independent equations plus
a constraint which is a consequence of the other equations.
For the construction of the solutions, we have fixed the
metric gauge by taking

RðrÞ ¼ r2 ð18Þ

consistently with the standard analytic form of the Myers-
Perry solution [19]. Appropriate combinations of the
equations can be used such that the equation for fðrÞ is
first order while the equations of the six other functions
are second order. We hence need a total of 13 conditions
at r ¼ 0 and/or at r ¼ ∞ to specify a boundary value
problem.

B. Asymptotic behavior and boundary conditions

Boson stars are globally regular solutions. At r ¼ 0 we
impose the following boundary conditions:

fð0Þ ¼ 1; b0ð0Þ ¼ 0; hð0Þ ¼ 0;

W0ð0Þ ¼ 0; Vð0Þ ¼ 0; Að0Þ ¼ 0;

A0ð0Þ ¼ 0; ϕð0Þ ¼ 0: ð19Þ

Note that the condition Vð0Þ ¼ 0 does not result from the
requirement of regularity, but it is a choice. This choice can
be made without losing generality since the equations
depend only on the combination qV þ ω.
Moreover, we want the solutions to be asymptotically

flat; i.e., we require

bðrÞ ¼ 1þM
r2

þ…; fðrÞ ¼ 1þM
r2

þ…; hðrÞ

¼ r2 þ V
r2

þ…;WðrÞ ¼ J
r4

þ…

VðrÞ ¼ V∞ þ qe
r2

þ…; AðrÞ ¼ qm
r2

þ…ϕðrÞ

¼ c0
e−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2−ðω−qV∞Þ2

p

r3=2
þ…; ð20Þ

whereM, V, J , qe, qm, V∞, and c0 are free parameters that
can only be computed from the numerical solution.
Note that the asymptotic behavior of the scalar field tells

us that it acquires an effective mass meff with

m2
eff ≡μ2− ðω−qV∞Þ2 ¼ðμ−ωþqV∞Þðμþω−qV∞Þ:

ð21Þ

The parameter V∞, i.e., the value of the electric potential
VðrÞ at r → ∞, turns out to be negative in our numerical
calculations. Since Vð0Þ ¼ 0, the value of V∞ corresponds
to the potential difference between the origin and infinity.
With the choice q ≥ 0, this tells us that the first factor on the
right-hand side of (21), which we define as

Ω ≔ μ − ωþ qV∞; ð22Þ

determines whether the boson star is exponentially local-
ized. Obviously, we need Ω ≥ 0. For ðω − qV∞Þ2 ≥ μ2

CHARGED AND ROTATING BOSON STARS IN FIVE… PHYS. REV. D 107, 124060 (2023)

124060-3



we are above the threshold of producing scalar particles of
mass μ.

C. Physical quantities

Before we discuss the relevant physical quantities of the
solutions and how they can be extracted from the numerical
results that we obtain, let us remark that although there are
a priori three (four) parameters to be varied in the Maxwell
(respectively, Chern-Simons) case, Newton’s constant G
and the mass μ of the scalar field can be set to unity without
loss of generality. This is achieved by a suitable rescaling of
the matter fields and the coordinate r. Thus, we are left with
the gauge coupling q in the Maxwell case and, additionally,
with α in the Maxwell-Chern-Simons case.
The mass M and total angular momentum J ¼ J1 þ J2

of the solutions have been discussed in [13]. Hence, we just
state the expressions here without explicitly deriving them.
They read

M ¼ −
3π

8G
M; J ¼ π

4G
J ; ð23Þ

where M and J are given in (20).
Since the model we are discussing here possesses a

global Uð1Þ symmetry, there exists an associated locally
conserved Noether current. This is the current given in (7).
The globally conserved Noether charge is then

Q ¼
Z ffiffiffiffiffiffi

−g
p

J0d4x ¼ qN with

N ¼ 2π2
Z

∞

0

r3

ffiffiffiffiffiffi
h
fb

s
ðωþW − qðV þ AWÞÞϕ2dr: ð24Þ

Note that N can then be interpreted as the total number
of bosonic particles making up the boson star, and Q is
the total charge of N individual particles that each carry
charge q. Also note that there is a relation between the
angular momentum J and N given by [13]

jJj ¼ N: ð25Þ

We can also define the electric charge Qe and the
magnetic moment Qm, respectively, as follows:

Qe ¼
π

G
qe; Qm ¼ π

G
qm; ð26Þ

where qe and qm are given in (20). Using Eq. (6) it can
be shown that Q ¼ Qe, as expected. In the numerical
calculation the validity of this equality is a good cross-
check. Finally, the gyromagnetic ratio γ of our solutions
reads

γ ¼ 2MQm

QeJ
¼ 2Mqm

qeJ
: ð27Þ

We also need the Ricci scalar R in the following.
This reads

RðrÞ ¼ −f
�
b00

b
þ h00

h
þ 2R00

R

�
þ f

2

�ðb0Þ2
b2

þ ðh0Þ2
h2

þ ðR0Þ2
R2

þ h
b
ðW0Þ2

�

þ −
R0

Rbh
ðfbhÞ0 − 1

2bh
ðf0bh0 þ f0b0hþ fb0h0Þ þ 2

R2
ð4R − hÞ: ð28Þ

We will see in the discussion of the numerical results
that some configurations reach limiting solutions with
bð0Þ → 0 [while b00ð0Þ is finite], suggesting that the scalar
curvature at the origin diverges for these solutions.

III. NUMERICAL RESULTS

Due to the nonlinearity of the field equations, we have
solved the equations numerically using the collocation
solver COLSYS [20]. The obtained solutions typically
have an accuracy of 10−6. With appropriate rescalings of
the fields and coordinates, we can set 8πG≡ 1, μ≡ 1; i.e.,
the only two parameters to vary in the following are q
and α.

A. Einstein-Maxwell (EM) boson stars

Let us first discuss the solutions in the absence of the
Chern-Simons interaction, i.e., for α ¼ 0.
As a cross-check of our numerics and to emphasize the

changes that the presence of the gauge field brings to the
model, let us briefly discuss the case q ¼ 0 that has been
studied in detail in [13]. We have constructed uncharged,
rotating boson star solutions and studied their properties by
varying the parameter ϕ0ð0Þ. For ϕ0ð0Þ ¼ 0 the scalar field
is trivial, ϕðrÞ≡ 0, ω ¼ 1, and the space-time is simply
five-dimensional Minkowski space-time. Note, however,
that the limit ϕ0ð0Þ → 0 is subtle: While the scalar function
ϕðrÞ becomes trivial, the massM and Noether charge N do
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not approach zero in this limit. In fact, a mass gap forms.
This has been discussed in [13].
In Fig. 1 we show the profiles of the matter field

functions VðrÞ, AðrÞ=r, ϕðrÞ (left) as well as of the metric
functions fðrÞ and −gtt (right) for two typical solutions,
here for q ¼ 0.5 and ϕ0ð0Þ ¼ 0.8 (black) and ϕ0ð0Þ ¼ 1.6
(violet), respectively. This demonstrates that when increas-
ing ϕ0ð0Þ, the maximal value of the scalar field function
ϕðrÞ increases and shifts to smaller values of r. This is very
similar to AðrÞ=r. Moreover, the value of r where VðrÞ ¼ 0
shifts to smaller values of r. This suggested that the
solution becomes more compact when increasing ϕ0ð0Þ.
This is also confirmed by the decrease of the minimal value
of fðrÞ. We also find that −gtt is positive for all r when
choosing ϕ0ð0Þ ¼ 0.8; however, there exists an interval in r
for which −gtt < 0 when ϕ0ð0Þ ¼ 1.6, suggesting the
existence of an ergoregion. We will discuss this in more
detail below.
In Fig. 2 (left) we show the dependence of the massM on

Ω for q ¼ 0, q ¼ 0.25, and q ¼ 0.5, respectively. For all
values of q we observe the typical spiraling behavior, i.e.,
the existence of a main branch of solutions which exists

between Ω ¼ 0 and a maximal value of Ω ¼ Ωmax;1. From
Ωmax;1 a second branch of solutions extends backwards in
Ω down to Ωmin;2 > 0. From Ωmin;2 a third branch exists up
to Ωmax;3 < Ωmax;1 and bends backwards into a fourth
branch. We find thatΩ ¼ Ωmax;1,Ωmin;2,Ωmax;3 all decrease
with increasing q; i.e., the interval in Ω for which charged,
rotating boson stars exist in five dimensions decreases with
increasing q. Moreover, we find that the mass gap
described above for uncharged solutions also exists for
charged solutions and increases with increasing q. In fact,
we observe that the mass range for which charged boson
stars exist changes only slightly when increasing q from
zero to q ¼ 0.25, while the increase to q ¼ 0.5 increases
the value of the mass gap considerably. This is related to the
increased electromagnetic repulsion. The charge Q and the
angular momentum J have a very similar qualitative
dependence, which is why we do not show them here.
Along the branches, the parameter ϕ0ð0Þ increases. We

show the dependence of Ω on ϕ0ð0Þ for q ¼ 0, q ¼ 0.25,
and q ¼ 0.5 in Fig. 2 (right). For ϕ0ð0Þ ¼ 0 we have Ω ¼ 0
independent of the choice of q. Increasing ϕ0ð0Þ the value
of Ω reaches a maximal value; then, it decreases to a

FIG. 1. Profiles of the matter field functions VðrÞ, AðrÞ=r, ϕðrÞ (left) as well as of the metric functions fðrÞ and −gtt (right) for two
typical Einstein-Maxwell solutions, here for q ¼ 0.5 and ϕ0ð0Þ ¼ 0.8 (black) and ϕ0ð0Þ ¼ 1.6 (violet), respectively.

FIG. 2. MassM in dependence ofΩ (left) andΩ in dependence of ϕ0ð0Þ (right) for EM boson stars with q ¼ 0.25 (purple) and q ¼ 0.5
(green), respectively. For comparison, we also show the uncharged case, q ¼ 0.
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minimal value and, for sufficiently large ϕ0ð0Þ, tends to a
constant value of Ω. The solutions cease to exist when
ϕ0ð0Þ is too large, where the maximal possible value of
ϕ0ð0Þ decreases with increasing q. This is related to
the formation of a singularity in the Ricci scalar at the
origin. The Ricci scalar at r ¼ 0 is given by Rð0Þ ¼
−4b00ð0Þ=bð0Þ − 6f00ð0Þ [compare (28)]. In Fig. 3 (left) we
show the value of bð0Þ in dependence of Ω for q ¼ 0,
q ¼ 0.25, and q ¼ 0.5. For Ω ¼ 0 we find bð0Þ ¼ 1
independent of q as this is the limit of the vanishing scalar
field ϕðrÞ≡ 0. Along the branches, i.e., increasing ϕ0ð0Þ,
the value of bð0Þ decreases until it reaches zero; i.e., a
solution with a diverging Ricci scalar at r ¼ 0 is reached.
We also observe that Wð0Þ decreases from zero when
moving along the branches; see Fig. 3 (right). In particular,
we find that gtt ¼ −bþ hW2 can become zero and even
positive, indicating that an ergoregion exists for solutions
with sufficiently large ϕ0ð0Þ. As has been discussed in the
context of boson stars before [7], this would make the
solutions unstable. We find that the larger q, the smaller
the value of ϕ0ð0Þ at which an ergoregion appears; e.g., for
q ¼ 0.25, we find solutions with ergoregions for
ϕ0ð0Þ > 1.2, while these ergoregions exist for ϕ0ð0Þ >
0.9 when choosing q ¼ 0.5. Some data are shown in

Table I, where we give the two values of r at which gtt
becomes zero. The ergoregion is a hyperspherical shell of
inner radius r1 and outer radius r2. Within this shell, gtt is
positive and attains its maximal value at rðmaxÞ. The
maximal value of gtt and the value of rðmaxÞ are also given
in Table I.
In Fig. 4 we show the gauge field energy density ϵv and

scalar field energy density ϵs given by

ϵv ≡ ðT0
0Þv ¼

f
2bh

ðA0Þ2ðb − hW2Þ þ 2

r4
A2 þ f

2b
ðV 0Þ2

ð29Þ

and

ϵs ≡ ðT0
0Þs ¼ fðϕ0Þ2 þ μ2ϕ2 þ ϕ2

�
2

r2
þ ð1 − qAÞ2

h

�

þ ϕ2

b
ððqV − ωÞ2 −W2ðqA − 1Þ2Þ; ð30Þ

respectively. The sum ϵv þ ϵs is equivalent to the total
energy density of the solution. These profiles are for
q ¼ 0.5 and ϕ0ð0Þ ¼ 0.8 (left) and ϕ0ð0Þ ¼ 1.6 (right),
respectively. We also show the metric tensor component
−gtt. We observe that the scalar field energy density ϵs
dominates the energy density as it is a factor of 50 larger
than the contribution ϵv from the gauge field. The gauge
field energy density ϵv is maximal at the center of the boson
star, while ϵs has its maximal value at r ¼ rs;max > 0.
Interestingly, the gauge field energy density, as well as−gtt,
has a local minimum around rs;max. For sufficiently large
scalar field energy density, we find that −gtt becomes
negative; i.e., an ergoregion appears. Increasing ϕ0ð0Þ
from 0.8 to 1.6 leads to an increase of Ω; i.e., the
scalar field falls off more quickly. Correspondingly,
rs;max decreases, and the maximum of the energy density
increases with increasing ϕ0ð0Þ.

FIG. 3. Value of the metric function bðrÞ at the origin, bð0Þ in dependence of Ω (left), and the value of the metric functionWðrÞ at the
origin,Wð0Þ in dependence ofΩ (left) for EM boson stars with q ¼ 0.25 (purple) and q ¼ 0.5 (green), respectively. For comparison, we
also show the uncharged case, q ¼ 0.

TABLE I. Two values of r for which gtt becomes zero. The
inner radius r1 and outer radius r2, respectively, of the ergoregion,
as well as the value of r ¼ rðmaxÞ at which gtt attains its maximal

value gðmaxÞ
tt , are given for EM boson stars and some values of

ϕ0ð0Þ and q.

ϕ0ð0Þ q r1 r2 rðmaxÞ gðmaxÞ
tt

1.6 0.25 0.29 0.97 0.75 0.038
1.2 0.25 0.64 0.91 0.84 0.007
1.6 0.5 0.22 1.14 0.79 0.033
1.0 0.5 0.66 1.18 0.90 0.008
0.95 0.5 0.76 1.14 0.96 0.004
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We also studied the gyromagnetic ratio for the solutions.
Our results for q ¼ 0.25 and q ¼ 0.5 are shown in Fig. 5
(left). On the main branch for Ω → 0, the gyromagnetic
ratio tends to the “classical” value γ ¼ 1. IncreasingΩ from
zero leads to an increase in γ up to a maximal value on the
second branch of solutions. The larger q, the larger this
maximal value.
In order to better understand the dependence of the

solutions on ϕ0ð0Þ and q, we also studied the case of fixed
ϕ0ð0Þ and varying q. Our numerical experiments indicate
that localized solutions do not exist for q > qmax with
qmax ≈ 0.5775 more or less independent of the choice
of ϕ0ð0Þ > 0. This is shown in Fig. 6 (left) where we
give Ω as a function of q for three different values of
ϕ0ð0Þ. Obviously, when q → qmax the value of Ω → 0; i.e.,
the boson star solution is no longer (exponentially) local-
ized. Accordingly, all physical quantities subject to a Gauss
law (mass M, electric charge Qe, magnetic moment Qm,
angular momentum J) will diverge in this limit. However, it

is interesting to note that the gyromagnetic ratio γ behaves
differently in the limit qmax ≈ 0.5775 when choosing ϕ0ð0Þ
to be small instead of large. This is shown in Fig. 6 (right)
where we give γ as a function of q for different values of
ϕ0ð0Þ. We observe that for small values of ϕ0ð0Þ [here,
ϕ0ð0Þ ¼ 0.035], the gyromagnetic ratio increases strongly
for q → qmax, while for large values of ϕ0ð0Þ [here, ϕ0ð0Þ ¼
1.6 and ϕ0ð0Þ ¼ 3.7, respectively], γ decreases strongly in
this limit. Note that this limit for qwas also observed for the
corresponding black hole solutions [18].

B. Einstein-Maxwell-Chern-Simons boson stars

In the following, we discuss the influence of the CS
term on the properties of the charged boson stars. As
expected, the EM boson stars are progressively deformed
when choosing α ≠ 0. As an example we show the
dependence of the mass M and the angular momentum J
(left)—as well as the electric charge Qe ¼ Q, the magnetic
momentQm, and the value of the electric potential at infinity

FIG. 4. Profiles of the gauge field energy density ϵv, the scalar field energy density ϵs, and the metric function −gtt for EM boson stars
with q ¼ 0.5, γ ¼ 0 and ϕ0ð0Þ ¼ 0.8 (left) and ϕ0ð0Þ ¼ 1.6 (right).

FIG. 5. Left panel: gyromagnetic ratio γ in dependence of Ω for EM boson stars with q ¼ 0.25 (purple) and q ¼ 0.5 (green),
respectively. Right panel: gyromagnetic ratio γ in dependence ofΩ for EMCS boson stars with α ¼ 1 and q ¼ 0.25 (purple) and q ¼ 0.5
(black), respectively. In the latter case, we show branch A (solid) and branch B (dashed), respectively.
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V∞ (right)—on α forϕ0ð0Þ ¼ 0.35 and q ¼ 0.5 in Fig. 7. As
these figures suggest, two branches of solutions exist, which
we refer to as “branch A” and “branch B” in the following.
Branch A is connected to the EM limit α → 0 and exists for
both positive and negative values of α, while branch B
appears only for sufficiently large and positive values of α,
i.e., for α > αcr;B, where αcr;B depends on q and ϕ0ð0Þ. For
q ¼ 0.5 and ϕ0ð0Þ ¼ 0.35 we find that αcr;B ≈ 0.405.
Solutions on both branches have the feature that M > J,

and both M and J decrease with increasing α (except close
to αcr;B on branch B where our numerical results indicate an
increase on a small interval of α).
The results suggest that mass and angular momentum of

the solutions on branch A change little when increasing α
from negative values to zero. Even for small positive values
of α, this seems to be the case. For slightly smaller α, but
close to αcr;B, we find that M and J drop sharply and then,
on a large interval of (positive) α, remain nearly constant.
This suggests that the appearance of branch B seems to be

connected to a drop in energy and angular momentum of
the boson stars on branch A. All our numerical results
indicate that these two branches remain separated and do
not merge at sufficiently large α. We also observe that the
electric charge Qe ¼ Q decreases with increasing α for
both branches [see Fig. 7 (right)] with Qe ¼ Q smaller on
branch A as compared to on branch B. Note that jV∞j
decreases with increasing α and is again larger on branch B.
Finally, the magnetic moment Qm is close to zero for
negative α (branch A) and increases to positive values when
increasing α from zero. On branch B, the magnetic moment
is negative and decreases in absolute value when increasing
α and approaches zero for large positive values of α. The
solutions on branch B hence have larger electric charge and
larger absolute value of the magnetic moment, with the
latter being negative on branch B. In order to understand
the difference between the two branches, we have plotted
the profiles of typical boson star solutions. This is shown in
Fig. 8 (left) for q ¼ 0.5, α ¼ 0.5, and ϕ0ð0Þ ¼ 0.35.

FIG. 7. Mass M and angular momentum J (left) and the electric charge Qe ¼ Q, the magnetic moment Qm, and the value of the
electric potential at infinity V∞ (right) of EMCS boson stars in dependence of α for ϕ0ð0Þ ¼ 0.35 and q ¼ 0.5. We show branch Awith
no node (black) and branch B with one node (violet) of the gauge field function AðrÞ; see also Fig. 8.

FIG. 6. Left panel: value of Ω in dependence of q for EM boson stars with ϕ0ð0Þ ¼ 0.035 (purple), ϕ0ð0Þ ¼ 1.6 (green), and
ϕ0ð0Þ ¼ 3.7 (blue), respectively. Right panel: gyromagnetic ratio γ in dependence of q for the same solutions.
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Clearly, the magnetic potential AðrÞ possesses a node for
the solutions on branch B. Solutions with nodes in the
spatial part of the gauge field have been found before for
black holes in EMCS theory (without scalar fields) [15].
These have been interpreted as radial excitations, and the
fact that solutions on branch B have larger mass than those
on branch A suggests that this interpretation is also suitable
here. Interestingly, we observe that neither the electric part
of the gauge potential [given in terms of the function VðrÞ]
nor the scalar field function ϕðrÞ is strongly changed when
radially exciting the magnetic part of the gauge potential.
Fixing q and α and increasing ϕ0ð0Þ we find that the value
of r ¼ r0 at which AðrÞ becomes zero increases. This is
shown in Fig. 8 (right) for ϕ0ð0Þ ¼ 1.3. In this case we find
that for 0 ≤ r≲ r0 the solutions on the two branches barely
differ from each other. This includes the extent and
existence of the ergoregion, which is slightly more
extended for solutions on branch B; see also Table II for
more data. These data also suggests that at fixed ϕ0ð0Þ and
fixed q, the ergoregion has smaller radial thickness when
the CS term is present.
The solutions on branch B possess negative magnetic

moments and hence negative gyromagnetic ratios. Our
results for α¼1 and q ¼ 0.25 as well as α ¼ 1 and q ¼ 0.5
on branch A and branch B are shown in Fig. 5 (right).

In comparison to the EM case, the gyromagnetic ratio can
become negative (branch B for q ¼ 0.5) and significantly
larger in absolute value. The maximal possible value of γ
increases with q and is an order of magnitude larger
compared to the EM boson stars.
When plotting the mass M as a function of Ω [see Fig. 9

(left)], we find that the maximal possible value of Ω
increases with increasing α and that, on the second branch,
the solutions exist down to Ω ≈ 0 where a third branch of
solutions emerges, showing a sharp increase in massM on a
very small interval of Ω. Reaching a maximal mass, a
fourth branch emerges on which the mass decreases
again. We find that the larger α, the sharper the increase
of the mass on the third branch. Comparing the solutions
on branch A and branch B for α ¼ 1, we find that the
qualitative dependence of the mass onΩ is quite different.
In particular, we notice that the qualitative dependence of
the solutions on branch B for α ¼ 1 seems similar to that
of the solutions for α ¼ 0.5. Finally, we checked the
dependence of the magnetic moment jQmj on the angular
momentum J of the solutions. This is shown in Fig. 9
(right). Interestingly, we find a nearly linear relation
between log jQmj and log J on the first two branches of
solutions, where the first branch has a larger slope than
the second. The third and fourth branches show more
complicated behavior. This relation was found before
from observations of planets and stars [21]. While boson
stars are assumed to be very compact objects and hence
rather comparable in density to neutron stars and white
dwarfs, our results suggest that (at least in five dimen-
sions) EMCS boson stars have the property that Qm is
proportional to a positive power of J, i.e., that Qm would
increase when J increases. This seems to be different for
neutron stars and white dwarfs which have Qm propor-
tional to a negative power of J [21], and hence the
magnetic moment would decrease with increased angular
momentum.

FIG. 8. Left panel: profiles of the gauge potential functions AðrÞ=r (solid) and VðrÞ (dashed) as well as of the scalar field function ϕðrÞ
(dotted) for EMCS boson stars on branch A (black) and branch B (violet) for q ¼ 0.5, α ¼ 0.5, and ϕ0ð0Þ ¼ 0.35. Right panel: metric
tensor component−gtt (solid), gauge potential function AðrÞ=r (dashed), and scalar field function ϕðrÞ (dotted-dashed) for EMCS boson
stars on branch A (black) and branch B (violet) for q ¼ 0.5, α ¼ 0.5, and ϕ0ð0Þ ¼ 1.3.

TABLE II. Two values of r for which gtt becomes zero, i.e., the
inner radius r1 and outer radius r2, respectively, of the ergoregion
for EMCS boson stars with q ¼ 0.5 and some exemplary values
of ϕ0ð0Þ and α.

ϕ0ð0Þ α r1 r2 Branch

1.6 0.5 0.33 0.87 A
1.6 0.5 0.31 0.93 B
1.3 1.0 0.59 0.80 A
1.2 1.0 0.60 0.87 B
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IV. CONCLUSIONS

In this paper, we have discussed the construction of
charged and rotating boson stars in five space-time dimen-
sions. The gauge field dynamics is either of Maxwell type
or of Maxwell-Chern-Simons type. These solutions possess
electric charge Q equal to q times the Noether charge N,
where q is the gauge coupling, and the sum of the two
angular momenta J equal to the Noether charge, i.e.,
Q=q ¼ N ¼ J. The gyromagnetic ratio of the solutions
is on the order of unity for boson stars in standard Maxwell
gauge field theory, while it can become an order of
magnitude larger when the Chern-Simons interaction is
added. Moreover, we observe that the presence of the
Chern-Simons term leads to the existence of solutions with
a radially excited magnetic gauge field component. This
leads to the reversal of the sign of the magnetic moment and
the gyromagnetic ratio; i.e., we find solutions with positive
and negative gyromagnetic ratios in the presence of the
Chern-Simons term.
For sufficiently compact boson stars we find that the

space-time possesses an ergoregion which suggests that

these solutions eventually become unstable. The presence
of the CS term decreases the radial extension of the
ergoregion at fixed q and ϕ0ð0Þ.
When considering the relation between the

magnetic moment and the angular momentum, we
find a positive correlation for the solutions on the first
and second branches; i.e., the absolute value of the
magnetic moment increases with angular momentum.
This is different for neutron stars and white dwarfs
for which a negative correlation seems to exist; see,
e.g., Ref. [21]. Positive correlations are typical for
planets and ordinary stars. It would be interesting to
investigate this question further in other space-time
dimensions.
In this paper, we have discussed solutions with nodes

in the gauge field function which exist only when the
Chern-Simons term is present in the model. There also
exist charged boson stars with nodes in the scalar field
function; see, e.g., Ref. [22]. We have not attempted to
construct them, but we believe that they also exist in
our model.
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