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We test the generalized scalar tensor theory in static systems, namely galaxy clusters. The degenerate
higher-order scalar-tensor (DHOST) theory modifies the Newtonian potential through effective Newtonian
constant and Ξ1 parameter in the small scale, which modifies the hydrostatic equilibrium. We utilize the
well-compiled X-COP catalog consisting of 12 clusters with intracluster medium (ICM) pressure profile by
Sunyaev-Zel’dovich effect data and temperature profile by x-ray data for each cluster. We perform a
fully Bayesian analysis modeling Navarro-Frenk-White (NFW) for the mass profile, and the simplified
Vikhlinin model for the electron density. Carefully selecting suitable clusters to present our results,
we find a mild to moderate, i.e., ∼2σ significance for a deviation from the standard scenario in
four of the clusters. However, in terms of Bayesian evidence, we find either equivalent or mild preference
for GR. We estimate a joint constraint of Ξ1 ¼ −0.030� 0.043 using eight clusters, for a modification
from a ΛCDM scenario. This limit is in very good agreement with theoretical ones and an order of
magnitude more stringent than the previous constraint obtained using clusters. We also quote a more
conservative limit of Ξ1 ¼ −0.061� 0.074. Finally, we comment on the tentative redshift dependence of
the Ξ1 parameter.
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I. INTRODUCTION

To date, the majority of cosmological observations [1,2]
related to the space-time of the Universe can be explained
by general relativity (GR), particularly in the smaller
scales. To explain the observed late time acceleration [3,4]
with metric based GR framework, one can: (i) introduce a
cosmological constant [5,6], (ii) introduce dark energy
(DE) such as a dynamical scalar field (e.g., quintessence
[7], k essence [8,9]), or (iii) modify the gravitational
coupling differing from GR at cosmological distance,
known as the modified gravity (MG) theory [10–13].
To test a large number of MG models, a generalized

platform is necessary. The degenerate higher-order
scalar-tensor (DHOST) theory is claimed to be the
most general class of a scalar-tensor theory, where a

propagating scalar degree of freedom (DOF) is added on
the top of two tensor DOF of metric based GR given
under the general-covariance (see Appendix A for more
details) [14–19]. The DHOST theory includes many
popular modified gravity models such as Brans-Dicke
theory [20], fðRÞ gravity [11,21], covariant Galileon
[22–24], Horndeski [25,26], transforming gravity [27],
and GLPV theory [28]. A large class of DHOST theories
produces gravitational waves with velocity (cg) equal to
the velocity of light (c) in agreement with recent obser-
vations. These are referred to as viable DHOST c2g ¼ c2

theories in this article.
In order to explain the small scale observations, the

additional degrees of freedom (DOF) should be screened
through a non-linear mechanism, and GR should be
recovered on the small scale, known as the so-called
screening mechanism. The Vainshtein screening [29]
is useful for the higher-order MG theories [30,31].
In Vainshtein screening, the gravitational potentials for
the DHOSTcg ¼ c are modified inside the matter sources
[32–37]. Horndeski theory, a subset of DHOST theory,
recovers GR in the small scale approximation [38–41].
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However, Vainshtein screening for GLPV theory,
another subset of DHOST theory, breaks down inside
the matter [42–48]. DHOST theory has not been studied
extensively on the galaxy cluster scale, other than a few
bounds on Ξ1 [49,50]. However, as shown in [44], one
must always have Ξ1 > −1=6 to guarantee a stable static
solution for stars, and the upper bound Ξ1 < 7 × 10−3 to
fulfill the consistency of the minimum mass for hydrogen
burning in stars with the lowest mass red dwarf [45,46].
Which will be very useful in order to compare with
the constraints that can be obtained from the galaxy
cluster scales.
Given the task at hand, we utilize the XMM-Newton

Cluster Outskirts Project (X-COP) data products [51–54],
which consists of 12 clusters with well-observed x-ray
emission and high signal to noise ratio in the Planck
Sunyaev-Zel’dovich (SZ) survey [55], essentially providing
both ICM temperature and pressure data over the large
radial range of 0.2 Mpc≲ r≲ 2 Mpc. Such a galaxy
cluster compilation is in fact very helpful to assess the
mass profiles out to a large radial range and, as in the
current work, subsequently test the nonlinear modifications
to the gravitational potential.
A similar approach relying on the same galaxy cluster

phenomenology has been utilized in several previous
analyses [49] (see in particular [56,57] for tests of
chameleon screening). In [49] utilize both x-ray and
weak lensing profiles of 58 stacked clusters, obtaining
constraints on the modifications to gravitational potential
which point toward consistency with GR. On the con-
trary, in this work for the very first time (as far as we are
aware) we exploit individual clusters with well-observed
ICM to finally obtain a joint constraint, while simulta-
neously assessing a possible redshift dependence.
See [58], where a generalized framework for testing
these scenarios, also including the beyond Horndeski
and DHOST scenarios, essentially constraining the
Vainshtein screening has been presented. However, in
contrast to our approach of using the ICM dynamics [58],
utilizes the internal kinematics of the galaxies, which
indeed provides varied correlations model parameters
and the DHOST modifications. The DHOST model
parameters were constrained recently in [59] using 16
high-mass CLASH clusters [60] using both X-ray [61]
and lensing [62] observables in the redshift range of
0.21 < z < 0.69. It has been shown that while DHOST
model is favorable to explain dark energy alone, a
possibility to have both dark matter and dark energy is
disfavored against GR.
The paper is organized as follows. We provide a brief

description of the DHOST theory in Sec. II, while the
modeling of the hydrostatic equilibrium in the case of a
cluster of galaxies is summarized in Sec. III. The datasets
utilized and method is described in Sec. IV. Finally we
present and discuss our results in Sec. VI. In the current

analysis, we assumeH0 ¼ 70 km=sMpc−1 andΩm ¼ 0.3,
when computing the critical density ρcðzÞ ¼ 3H2ðzÞ=
8πGeff

N ,1 where H2ðzÞ=H2
0¼Ωmð1þzÞ3þð1−ΩmÞ.

II. PERTURBED GRAVITATIONAL FORCES OF
DHOST IN SMALL SPATIAL SCALE

Gravity is well tested at small scales. We expect to
recover GR within the Vainstein radius (including inside
the object), and full extended theory outside. However,
for the DHOST theory, GR is not recovered everywhere
inside the Vainstein radius, i.e., Vainstein screening
breaks down inside the object. The gravitational potentials
for the DHOST theory in the galaxy scales modifies
to [32,34,35,63]

dΦðrÞ
dr

¼ Geff
N MðrÞ
r2

þ Ξ1Geff
N M00ðrÞ; ð1Þ

dΨðrÞ
dr

¼Geff
N MðrÞ
r2

þΞ2

Geff
N M0ðrÞ

r
þΞ3Geff

N M00ðrÞ; ð2Þ

with the modified or effective Newton’s constant Geff
N

defined by the expression

1

8πGeff
N

¼ 2F − 2FXX −
3

2
A3X2 ≡ 2Fð1þ Ξ0Þ; ð3Þ

and the dimensionless coefficients

Ξ1 ¼ −
ð4FX − XA3Þ2

16FA3

;

Ξ2 ¼ −
2XFX

F
;

Ξ3 ¼
16FX

2 − A2
3X

2

16A3F
;

Ξ0 ¼ −
FXX
F

−
3

4

A3X2

F
: ð4Þ

From (4), one can derive a consistency relation, Ξ2 ¼
ð2=Ξ1ÞðΞ2

3 − Ξ2
1Þ, which allows to reduce to ðΞ1;Ξ3Þ

the number of parameters regulating the deviations from
ΛCDM in the perturbations regime [33].
One can recover GR by setting F ¼ 1=2κ with

κ ¼ 8πGNc−4, and P;Q; A3 ¼ 0 (see Appendix A), which
would lead to Ξ0;1;2;3 ¼ 0.
In terms of the cosmological effective field theory (EFT)

parameters [64],

1For the case of GR Geff
N → GN, please see Sec. II for details.
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Ξ1 ¼ −
ðαH þ β1Þ2
2ðαH þ 2β1Þ

; Ξ2 ¼ αH;

Ξ3 ¼ −
β1ðαH þ β1Þ
2ðαH þ 2β1Þ

; Ξ0 ¼ −αH − 3β1: ð5Þ

Therefore, Geff
N ≡Geff

N ðαH; β1Þ and Ξμ ≡ ΞμðαH; β1Þ and
can be explicitly written as,

Geff
N ¼ ½16πFð1þ Ξ0Þ�−1

¼ ½8πM2
⋆ð1þ Ξ0Þ�−1

¼ γNGN=ð1 − αH − 3β1Þ; ð6Þ

where the effective Planck mass M⋆ ¼ MPl=γN.
We redefine the above expression as

Geff
N ¼ γ̃NGN; ð7Þ

where we redefine γN to the physical parameter (more
elaboration on this is in Appendix B)

γ̃N ¼ γN=ð1 − αH − 3β1Þ; ð8Þ

In linear perturbation, the first order perturbed EFT
parameters, αHðtÞ and β1ðtÞ depend only on the back-
ground and background EFT parameter, γN is constant.
Thereby, the Geff

N ðtÞ and ΞiðtÞ are solely functions of time.
Ξ1 parameter consists of the first-order perturbed param-

eters, αHðtÞ and β1ðtÞ, which are functions of time [refer to
Eq. (5)]. Therefore, all the functions in the expression of
αHðtÞ and β1ðtÞ, i.e., F, FX, and A3 are measured on the
background, as functions of time. Hence, Eqs. (4) and (6)
are the functions of time and catch the time evolution of the
scalar field by definition.
The effective Planck mass is a background quantity.

Therefore, γN is a multiplicative number to the Planck mass
to measure the deviation from GR. The expression of γ̃N in
Eq. (8) clearly suggests that γ̃N is the function of time.
In this article, we are measuring γ̃N instead of γN in the

galaxy cluster. We need to correlate other observations (e.g.
strong and weak lensing, SZ, and GW) in order to measure
isolated γN. When we measure Ξ1 and γ̃N for a specific
galaxy cluster at a particular redshift, the redshift (hence
time) is fixed or constant for that cluster. Therefore, the
value (measurements) of Ξ1 and γ̃N vary for clusters at
different redshifts.

III. ICM PRESSURE PROFILE OF
GALAXY CLUSTER

As per the standard model, the galaxy clusters consists of
dark matter (DM) (∼85% of the total mass), the hot ionized
hydrogen and helium gas called intracluster medium (ICM)
(∼12%), and visible stars and galaxies (∼3%). The galaxy
clusters are expected to retain all the ICM and stars accreted

since the formation epoch in the deep gravitational well
created by DM. On one hand, the hot ICM is visible in
the X-ray band through thermal bremsstrahlung and line
emission. On the other hand, the ICM can be detected at
millimeter wavelengths through the distortion of the cosmic
microwave background (CMB) induced by inverse
Compton scattering, called the SZ effect. Since ICM traces
the main baryonic component, x-ray and SZ observations
are crucial for testing gravity in the clusters and filaments,
which is however a challenging task.
Among the possible approaches to infer the total

mass, one possible method is to assume that the ionized
gas is in hydrostatic equilibrium with the gravitational
potential, Φ, (mostly created by DM [65]). In the hydro-
static equilibrium,

1

ρgasðrÞ
dPgasðrÞ

dr
¼ −

dΦðrÞ
dr

; ð9Þ

where we have implicitly assumed spherical symmetry.
PgasðrÞ is the gas pressure radial profile while the gas
density is:

ρgasðrÞ ¼ ngasðrÞ μmp; ð10Þ

∼1.8neðrÞ μmp; ð11Þ

where ngasðrÞ is the gas density, the sum of the electron and
proton number densities, i.e., ngasðrÞ ¼ neðrÞ þ npðrÞ, μ is
the mean molecular weight in a.m.u. (μ ¼ 0.61 is the
corresponding mean molecular weight in atomic mass
unit), and mp is the proton mass (∼1 atomic mass unit,
mu) therefore np ≈ 0.8ne which gives ngasðrÞ ≈ 1.826neðrÞ.
Among the possible models for neðrÞ, such as the β

profile, or double β profile, or the more recent Vikhlinin
profile, we choose the latter [66]. We use the simplified
Vikhlinin2 parametric model setting,

neðrÞ
n0

¼ ðr=rcÞ−α=2½1þ ðr=rsÞγ�−ε=ð2γÞ
½1þ ðr=rcÞ2�ð3=2Þβ−α=4

; ð12Þ

where n0 is the cluster central density, rs is the transition
radius at which the logarithmic slope changes, and rc is the
core radius. The β and ϵ parameters give the inner and outer
profile slope, respectively. The γ parameter gives the width
of the transition in the profile. We fix γ ¼ 3 as suggested in
[66,67], so the electron density parameter space is given by
Θe ¼ fn0; α; β; ε; rc; rsg. Moreover, we limit ϵ < 5 to avoid
nonphysical sharp features in the electron density profile,
which we however find to not make a major difference on

2Here we have utilized the Vikhlinin profile with only 6
parameters, neglecting a second part of the parametric model
which adds 3 more parameters. We comment on the implications
for this in Appendix C.
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the mass estimates once rest of the parameters are mar-
ginalized upon.
The right side of Eq. (9) is governed by the gravitational

potential, which depends on the assumed theory of gravi-
tation. In the standard GR scenario we have,

dΦðrÞ
dr

¼ GN

r2
MHSEðrÞ: ð13Þ

For the DHOST theory elaborated in Sec. II, the
gravitational potential can be written as,

dΦðrÞ
dr

¼ Geff
N MHSEðrÞ

r2
þ Ξ1Geff

N
d2MHSEðrÞ

dr2
: ð14Þ

In Eq. (14),Geff
N is the effective gravitational constant which

is related to the Newton one GN in the DHOST model
through Eq. (6). One could ideally write Geff

N ¼ γ̃NGN,
where γ̃N is a redshift dependent function. However, it is
evident that γ̃N cannot be constrained by the data on the
pressure profile alone since it only enters as a multiplicative
term fully degenerate with the total mass. Also, for viable
DHOST theories, it is expected that Geff

N does not deviate
from GN so we perform the analysis fixing γ̃N ¼ 1, and
then γ̃N ≠ 1.
Under the assumption that the cluster mass is dominated

by the dark matter component, we model the mass density
using the NFW profile [68] given as,

ρðrÞ ¼ ρs
ðr=rsÞð1þ r=rsÞ2

; ð15Þ

where ρs is a characteristic density, and rs the radius where
the logarithmic slope s ¼ d ln ρ=d ln r takes the isothermal
value s ¼ −2. Now the mass profile can be straightfor-
wardly obtained and it is conveniently rewritten as

Mð< rÞ ¼ M500

ln ð1þ c500xÞ − c500x=ð1þ c500xÞ
ln ð1þ c500Þ − c500=ð1þ c500Þ

ð16Þ

with x ¼ r=R500, c500 ¼ R500=rs
3 the halo concentration,

and

M500 ¼ 500
4

3
πρcðzÞR500

3: ð17Þ

From Eq. (16), we obtain,

M00ðrÞ ¼ M500

R2
500

c2500ð1 − c500xÞð1þ c500xÞ−3
ln ð1þ c500Þ − c500=ð1þ c500Þ

; ð18Þ

which can be plugged into Eq. (14) together with Eq. (16)
to get the modified gravitational potential. Now, the
parameters for the mass profile are ΘM ¼ fM500; c500g.
One can get the SZ pressure profile for the galaxy cluster by
integrating (9) and using (1),

PthðrÞ¼Pthð0Þ−1.8 μmp

×
Z

r

0

neðr̃Þ
�
Geff

N MHSEðr̃Þ
r̃2

þΞ1Geff
N M00

HSEðr̃Þ
�
dr̃;

ð19Þ

where, Geff
N ¼ γ̃N × GN and MHSE are modeled using the

NFW profile Eq. (16). Note that here Pthð0Þ is not a free
parameter and can be reconstructed form the integration
assuming Pthðr → ∞Þ ∼ 0. Effectively, the DHOST modi-
fication to the standard GR case, is dictated by the
combination of two parameters fΞ1; γ̃Ng, which we here-
after denote as ΘDHOST. The formalism adopted here is in
fact termed as Backwardmethod, where a given parametric
profile is assumed for the mass model and the pressure is
obtained by the integration of the same. In contrast,
assuming a parametric profile for the pressure is termed
as Forward method, in which case assessing the modifi-
cations to gravitational potential is not possible.

IV. DATA AND LIKELIHOOD

We utilize the collection of clusters within the XMM-
Newton Cluster Outskirts Project (X-COP)4 catalog [51]
with joint X-ray and millimeter observations. The compi-
lation consists of 12 massive (1014M⊙ ≲M500 ≲ 1015M⊙)
galaxy clusters in the redshift range 0.04 < z < 0.1,
selected for high signal-to-noise ratios (S=N > 12) in the
Planck SZ survey [69]. The physical observables of interest
are, (i) Electron density, (ii) Temperature of gas, in the
x-ray, and the (iii) Pressure of the gas observed in the SZ.
These observables indeed present a suitable scenario to test
the formalism described in Sec. III and the modifications of
gravity on cluster scales.
In Fig. 1, we present the collection of the 12 clusters data

currently analyzed. First, we rescale the data for the self-
similar normalization (i.e., the data were provided as a
function of R=R500, for each cluster), which they were
provided with and show the radial profiles.
In order to constrain the DHOST modification param-

eters (ΘDHOST), the halo mass profile parameters (ΘM), and
the electron density parameters (Θe), we perform a joint fit
to the measured neðrÞ, PXðrÞ and PSZðrÞ data from the
X-COP sample. The total number of parameters is then,

Θ ¼ Θe ∪ ΘM ∪ ΘDHOST: ð20Þ
3R500 in the DHOST case already takes into account the

variation due to modification to gravity on the background
through ρcðzÞ, hence having R3

500 ∼ γ̃NM500.

4The datasets are publicly available at the following link:
https://dominiqueeckert.wixsite.com/xcop/about-x-cop.
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accounting for a total of 10 parameters in the DHOST
scenarios and 8 within GR case, having ΘDHOST≡f0.0;
1.0g. Similar to [52,70], we define the likelihood function
for the observed data denoted as (obs) and for the model
(mod) as in the following way,

−2 lnL ¼ ðPobs
SZ − Pmod

SZ ÞΣ−1
TOTðPobs

SZ − Pmod
SZ ÞTþ ln jΣTOTj

þ
XNPX

j¼1

�ðPobs
X;i − Pmod

X;i Þ2
σ2PX;i

þ σ2P;int
þ lnðσ2PX;i

þ σ2P;intÞ
�

þ
XNne

i¼1

�ðnobse;i − nmod
e;i Þ2

σ2ne;i

�
; ð21Þ

where the first term accounts for the co-varying SZ pressure
data, with the covariance matrix ΣTOT ¼ ΣP þ ΣP;int,

5 ΣP

being the covariance matrix of the PSZ data itself. The
second and the third term account for the x-ray pressure and
the electron density data, respectively. Note that following
[52,70], we include an additional intrinsic scatter to the
measurement uncertainty of the pressure and the temper-
ature datasets. Our likelihood is practically identical to
the one implemented in [52], except that we have utilized the
publicly available electron density data instead of the

emissivity (ϵ) data utilized therein. The electron density
data taken into account in our analysis is obtained through
the L1 regularization method [54], in contrast to the smooth
reconstructed electron density profiles utilized in [52]. Their
reconstructed profiles were obtained through the multiscale
fitting [71] procedure to the emissivity data. The multiscale
fitting of the emissivity data essentially provides smooth
reconstructed electron density with minimal features and in
this way the reconstructed electron density profiles show
limited features resulting in a better estimate of the hydro-
static mass, having better control over the gradient. The L1
regularization data we utilize here shows more pronounced
features6 and represents the electron density observations
better to study the shape of the profile [54]. However, we
proceed to utilize the data here, expecting amild tomoderate
deviation from the hydrostatic masses reported in [52]. This
is due to the fact that, in [54], it has been shown that the two
methods agree incredibly well and show an utmost scatter of
the order ∼5% at a given radius, at least for the clusters at
hand in the current compilation. However, can yield a
systematic in the estimation of the hydrostatic masses
(see Appendix C for more details). And that using the
simplified Vikhlinin profile Eq. (12) provides smooth
reconstructions for the electron density and varies even
more minimally with respect to the multiscale fitting
reconstruction. However, the L1 based electron density data
also have mild correlations among the data points,7 which
we have not taken into account here and could potentially
have an impact on the final mass estimates. In any case, as
the current analysis is performed to assess the deviations
from GR to the DHOST scenarios, we expect the use of ne
data as here, instead of the ϵ data, to equivalently affect the
GR and the DHOST scenarios. This we indeed verify
a posteriori, finding minimal correlations between the
ΘM and Θe parameters.
We also utilize the likelihood using the TX data to

perform validations, which is the direct observable
while PX is obtained using TX data and the measured
electron density. Which implies that the PX and the ne
datasets are correlated, however including within the
error of PX, the uncertainty in the measurement of ne.
Please see Appendix C for more details. As shown in [70], a
small intrinsic scatter (σint) is modeled up on logðPÞ such
that the intrinsic error on the pressure can be written
as σP;int ¼ P sinhðσintÞ. In our analysis we utilize the
sinhðσintÞ as a free parameter8 and the intrinsic scatter is

FIG. 1. Top: electron density radial profiles obtained using the
L1 regularization method [54]. Middle: temperature of the x-ray
emitting gas. Bottom: the SZ electron pressure profile. This figure
is comparable to the Fig. 1 of Ettori et al. [52], except that we
have removed the self-similar scaling, as reported therein. Also
note that they show the reconstructed electron density profiles.

5ΣP;int is a diagonal matrix of σ2P;int, accounting for an addi-
tional intrinsic scatter for the PX and PSZ data points. Note also
that here we have utilized the PX instead of the TX data, the
reasons for which we elaborate later in this section and in
Appendix C.

6The gas clumping in the electron density data should be
accounted for while obtaining the smoothed reconstructed
profiles. However, the possible bias due to the clumping is
mild [72].

7Dominique Eckert and Stefano Ettori in private
communication.

8It is usually convenient to sample on the sinhðσintÞ as a free
parameter, to avoid loss of probability for the posterior of
parameter σint ⟶ 0 [73].
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propagated to the temperature profile as σT;int ¼T sinhðσintÞ.
Therefore, the intrinsic scatter is included to the parameter
array Θ in Eq. (20), as an additional parameter.
Finally, the posterior defined in Eq. (21), is utilized

to perform a Bayesian analysis through MCMC sampling.
We use the EMCEE

9 package [73,74], which implements
an affine-invariant ensemble sampler. We utilise publicly
available ChainConsumer

10 [75] and GetDist
11 [76] packages,

to perform analysis of the chains and plot the contours.
To asses the evidence for the DHOST modification we
compute the Bayesian evidence [77–79], through the
MCEvidence package [80].12 We impose uniform flat priors
on all the parameters, in particular we impose Ξ1 ∈
f−2.0; 2.0g and γ̃N ∈ f0.001; 2.0g, for the DHOST
parameters. We also separately test the effects of different
initialization of the mass profile parameters for the
walkers in the affine-invariant procedure, finding no
implications for the posteriors. Note that the information
on the prior volume is important in assessing the
Bayesian evidence. Through the Bayes’ rule the posterior
distribution with respect to the parameters (Θ) of the
given model MðΘÞ and the observations D, can be
written as,

pðΘjD;MÞ ¼ pðDjΘ;MÞπðΘjMÞ
pðDjMÞ ; ð22Þ

where πðΘjMÞ is the prior volume and pðDjMÞ is the
Bayesian evidence ðBÞ. A comparison of the evidence
can be utilized to assess the preference of a given model
M1ðΘ1Þ over the base model, which in our case are the
DHOST and GR, respectively. As is the usual practice
we contrast the Bayesian evidence using the Jeffrey’s
scale [81], where Δ logðBÞ < 2.5 and Δ logðBÞ > 5,
imply a weak and strong preference for the extended
model against the base model, respectively.

V. RESULTS AND DISCUSSION

We begin by performing the analysis for the standard
GR case, aiming to reproduce the results of [52]. The
constraints obtained in our analysis are shown in the first
three columns of Table I. We find a good agreement
with the constraints reported in [52], however, note that
here we have reported asymmetric uncertainties accounting
for the maximum likelihood, in contrast to the symmetric
dispersion between the 84th and 16th percentiles presented
therein. In general, we find a good agreement within the
order of≲1.5σ, for the mass parameterM500, also with very
similar uncertainty estimates. We stress that a difference
of the order ∼1.5σ is yet within the usual expectations
of a bias using different methods or datasets of estimating
M500. The difference between the analysis in [52] and here
is within the modeling of the electron density data, where
they utilize the smooth reconstructed profiles from the

TABLE I. Constraints obtained for the parameters of the mass profiles in both the GR and the DHOST scenarios. We show the
maximum likelihood statistics as the 68% C.L. limits. In the last column, we show the Bayesian evidence for the DHOST modification
with respect to GR, where a negative value indicates that GR is preferred. The four non-NFW clusters are denoted with the superscript †

and additionally, the cluster A2319 carries ‡, representing the large nonthermal effects reported in [53].

GR DHOST

Cluster c500

M500

[1014M⊙]
R500

[Mpc] c500

M500

[1014M⊙]
R500

[Mpc] Ξ1

γ̃N ×M500

[1014M⊙] Δ logðBÞ
A85 (z ¼ 0.0555) 2.05þ0.09

−0.06 6.14þ0.14
−0.21 1.270þ0.010

−0.015 1.16þ0.57
−0.32 4.10þ3.43

−0.63 1.292þ0.017
−0.030 0.30þ0.11

−0.27 6.46þ0.26
−0.45 −3.7

A644† (z ¼ 0.0704) 4.22þ0.31
−0.17 4.93þ0.25

−0.18 1.175þ0.020
−0.015 6.76þ0.28

−0.33 3.80þ5.13
−0.71 0.980þ0.028

−0.030 −1.04þ0.18
−0.19 2.85þ0.24

−0.26 46.5

A1644† (z ¼ 0.0473) 0.95þ0.10
−0.10 3.00þ0.17

−0.15 1.003þ0.019
−0.017 2.89þ0.23

−0.20 2.03þ3.77
−0.67 0.844þ0.020

−0.027 −0.837þ0.119
−0.090 1.78þ0.13

−0.16 39.9

A1759 (z ¼ 0.0622) 3.08þ0.15
−0.10 4.59þ0.18

−0.12 1.150þ0.015
−0.010 3.71þ0.47

−0.35 2.88þ2.69
−0.81 1.101þ0.032

−0.035 −0.169þ0.111
−0.090 4.03þ0.34

−0.39 −2.9
A2029 (z ¼ 0.0773) 3.14þ0.12

−0.17 7.84þ0.33
−0.26 1.369þ0.019

−0.015 3.31þ0.49
−0.84 6.0þ4.9

−1.6 1.352þ0.089
−0.016 −0.04þ0.19

−0.12 8.04þ0.96
−0.88 −3.0

A2142 (z ¼ 0.0909) 2.25þ0.10
−0.12 8.30þ0.33

−0.28 1.389þ0.017
−0.017 2.86þ0.33

−0.29 4.55þ6.06
−0.92 1.326þ0.040

−0.024 −0.203þ0.101
−0.079 7.21þ0.65

−0.40 0.4

A2255† (z ¼ 0.0809) 0.68þ0.13
−0.10 5.02þ0.31

−0.26 1.180þ0.023
−0.021 2.44þ0.15

−0.21 5.2þ2.4
−2.1 0.953þ0.046

−0.043 −1.1þ0.26
−0.32 2.66þ0.38

−0.36 28.2

A2319†,‡ (z ¼ 0.0557) 3.40þ0.13
−0.09 7.15þ0.16

−0.09 1.336þ0.010
−0.006 5.14þ0.13

−0.16 8.83þ3.63
−2.26 1.151þ0.020

−0.016 −0.827þ0.108
−0.076 4.57þ0.23

−0.19 109.6

A3158 (z ¼ 0.0597) 1.81� 0.12 4.21þ0.19
−0.14 1.119þ0.016

−0.012 2.62þ0.38
−0.56 2.46þ2.90

−0.62 1.054þ0.057
−0.029 −0.23þ0.15

−0.18 3.51þ0.57
−0.31 −0.4

A3266 (z ¼ 0.0589) 0.93þ0.10
−0.10 9.90þ0.57

−0.59 1.489þ0.027
−0.030 0.71þ0.17

−0.20 6.3þ4.0
−1.8 1.455þ0.045

−0.055 0.100þ0.137
−0.079 9.23þ0.87

−0.99 −1.3
RXC1825 (z¼0.0650) 2.16þ0.15

−0.12 4.11þ0.15
−0.13 1.108þ0.013

−0.012 1.54þ0.44
−0.43 2.68þ2.49

−0.46 1.130þ0.016
−0.018 0.17þ0.17

−0.13 4.37þ0.17
−0.22 −0.3

ZW1215 (z ¼ 0.0766) 1.32þ0.11
−0.14 7.82þ0.51

−0.50 1.368þ0.029
−0.029 1.98þ0.51

−0.84 7.23þ4.31
−2.85 1.331þ0.041

−0.076 −0.21þ0.27
−0.18 7.14þ0.65

−1.18 −4.5

9http://dfm.io/emcee/current/.
10https://github.com/Samreay/ChainConsumer/tree/Final-Paper.
11https://getdist.readthedocs.io/.
12We utilized the MCEvidence package publicly available at

https://github.com/yabebalFantaye/MCEvidence.
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multiscale fitting, whereas we utilize the publicly available
L1 regularization based data points (see [82,83]). The
presence of clumpiness, if assumed to be smooth essen-
tially yields an underestimate of the total mass [84,85], and
should indicate a systematic bias in our mass estimates.
However, as can be seen in Fig. 8, our mass estimates do
not show such a systematic behavior allowing us to validate
the formalism implemented here. Therefore, owing to the
agreement with the analysis in [52] and no systematic
behavior in mass constraints we find our results to be
consistent with those presented in [52] and proceed with
further analysis of comparing the GR and modified gravity
scenarios, where any difference from the earlier results will
be equivalently present in both cases and is not expected to
bias our inferences for the DHOST scenario. We present a
more detailed comparison of masses both in the GR and the
DHOST cases in Appendix C.

A. Constraints on the DHOST modification

The pressure profile for the DHOST gravity is estimated
following Eq. (19), which now accounts for the modified
background evolution and the small scale clustering effects
through the effective parameters γ̃N and Ξ1, respectively.
We show the constraints on the mass and the DHOST
parameters in Table I, under the column titled DHOST. To
begin with, we notice that the clusters A644, A1644,
A2319, and A2255 show large negative values for Ξ1

parameter, significantly different from the GR (Ξ1 ¼ 0)
expectation. However, it has already been shown in [52]
that these same four clusters present a mild preference for
mass profiles other than the NFW one, with a mild-to-
moderate evidence for either the King approximation to
Isothermal sphere (A2225, A2319), the Burkert (A644), or
the Hernquist (A1644) profiles. Moreover, these 4 clusters
are also outliers with respect to the c200 −M200 scaling
relation. Therefore, we do not immediately take our con-
straints for these clusters as evidence for modification of
gravity, but warn the reader that any inferences should be
made with caution. Hereafter we refer to these four clusters
as “non-NFW” clusters for the ease of discussion and
represent themwith a superscript † in the tables. This clearly
indicates a degenerate scenario between an assumption of
the mass profile in the GR case and a modification to the
gravity itself, such as theDHOST theory in the currentwork.
In Fig. 2 we show the posterior probability density for

the parameter Ξ1 obtained for each of the clusters. It is
evident that the four non-NFW clusters have posteriors
notably far from the Ξ1 ¼ 0, with a> 95% C.L. upper limit
of Ξ1 < −0.5. On the contrary, the other 8 clusters are
scattered around Ξ1 ¼ 0 showing no immediate preference
for either a negative or positive values for this parameter.
Note that these results are obtained under the prior
assumption that NFW mass profile provides the best
description of data in the GR scenario, as shown in [52].
Assuming an incorrect or less-preferred mass profile lowers

the quality of fit within the GR case and could be partially
compensated by the additional DHOST degree of freedom
showing a mislead preference for modifications to gravity.
In this context, we find it convenient that the validation for
an assumption of the NFW mass profile has already been
performed in [52]. It is very much possible that modeling
the four non-NFW clusters with a different profile would
push the constraints on Ξ1 back toward the GR value. We
do not perform this analysis here since the large majority of
the clusters we consider is well fitted by the NFW profile.
At a face-value the significance at which the non-NFW
mass profiles are preferred for these 4 clusters is much less
than the evidence for a DHOST modification we obtain
here through the Bayesian evidence (see Fig. 2 of Ref. [52]
). However, we prefer to be conservative, and do not draw
any definitive conclusion from these considerations.
As described earlier, within the DHOST scenario, M500

and γ̃N are degenerate parameters so that they are both not
well constrained when letting them free to independently
vary in the MCMC analysis because of their expected
strong correlation. Therefore, we also present in Table I
the derived constraints on γ̃N ×M500, which encompasses
the total deviation from the GR case and will be equal to the
mass estimates in DHOST when γ̃N ¼ 1 is assumed. As
expected, one can immediately notice that γ̃N ×M500 is
better constrained than the M500 alone. In the bottom panel
of Fig. 3, we show the redshift variation of the same,
normalized13 to M500 in the GR case. As in the case of Ξ1,
the four non-NFW clusters once again show a large
deviation from γ̃N ×MDHOST

500 =MGR
500 ∼ 1, which indicates

either a very low total mass in comparison to GR or

FIG. 2. Probability density for the distribution of the parameter
Ξ1. We perform a simple Gaussian kernel density estimation to
obtain the smooth profiles, which are overplotted on the dis-
tributions. The vertical dashed line marks the GR (Ξ1 ¼ 0) case.

13The normalization is performed by separately drawing
∼10000 random samples from the MCMC chains of DHOST
and the GR analyses. Therefore, this is indicative of the total
variation in γ̃N ×M500 from GR when marginalizing on Ξ1,
which is 0 within GR.
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that γ̃N ≪ 1.14 The remaining 8 clusters, do not immedi-
ately show any discernible trend in redsfhit for the
estimates of both Ξ1 and γ̃N ×MDHOST

500 =MGR
500, however,

see Sec. V B for an elaborate discussion. A particular trend
of these parameters in redshift could provide strong
implications for the redshift evolution of the physical
parameters in the DHOST scenario.
To assess the statistical evidence for/against the DHOST

models, we compute the Bayesian evidence (Δ log B) with
respect to the GR scenario. These are reported in the last
column of Table I clearly showing that GR is mostly the
preferred theory of gravity although DHOST is not strongly
disfavored. As for the constraints on Ξ1, we still find that
the situation is reversed for the four non-NFW clusters.
Note that the Bayesian evidence is affected by the prior
volume assumed on the parameters Ξ1; γ̃N;M500 for the
DHOST model. We, therefore, perform a second MCMC
analysis by fixing γ̃N ¼ 1 and sampling only over Ξ1,M500

as free parameters. First, we notice that the posteriors for Ξ1

remain equivalent to the ones obtained with γ̃N ≠ 1 for all
the 12 clusters (see e.g., Fig. 5), indicating no correlation
between the two effective parameters of the DHOST
model. We show the Bayesian evidence for the DHOST
analyses with γ̃N ≠ 1 and the latter with γ̃N ¼ 1 in Fig. 4,
indicated with filled and open markers, respectively. While
we see a small change/preference for the γ̃N ¼ 1 with
respect to the DHOST analysis with γ̃N ≠ 1, GR yet
remains the preferred model of gravity. Having established

that there is no statistical preference for the DHOST
modification, from the individual X-COP clusters utilized
in this work, we proceed to discuss the nature of constraints
for the DHOST modifications and later a possible redshift
dependence.
In Fig. 5, we show the confidence regions for two

clusters A2142 and RXC1825, for the concentration and
the DHOST parameters. Clearly, we have very distinct
distributions for the two clusters with RXC1825 showing
more degenerate boomerang-like contours in the parameter
space of c500 vs γ̃N ×M500. We specifically choose these
two clusters A2142 and RXC1825, to represent Ξ1 < 0
and Ξ1 > 0, cases (see also Appendix C), respectively. As
can be clearly noticed in Fig. 5, the negative (positive)
values of Ξ1 indicate strengthening (weakening) of gravity,
which thereby implies a lower (higher) value of Mγ̃N¼1

500 ,
with respect to the GR case. In this context, we show the
contours for the analysis with γ̃N ¼ 1, essentially to
validate that the constrains on the Ξ1 parameter remain
unaltered, in comparison to the γ̃N ≠ 1 case. For compari-
son, we also show the constraints for the DHOST modi-
fication obtained using only the PSZ data. Through which
we find that cluster A2142 has more Gaussian-like con-
strains for the M500, Ξ1 parameters and hence is a simpler
case for the discussion of extended gravity theories,15 while
there is a shift in the constraints only for the c500 parameter.
Note also that the constraints on γ̃N ×M500 remain more
consistent for all contrasted combinations, for both the
clusters. This we notice to be the case for all the clusters
except the 4 non-NFW clusters.

FIG. 3. Constraints on Ξ1 and the ratios of γ̃N ×MDHOST
500 and

MGR
500, plotted against the redshift of the cluster. The horizontal

dashed lines in the top and bottom panels mark the GR case with
Ξ1 ¼ 0 and γ̃N ¼ 1, respectively. The shaded gray region
represents a 10% deviation from GR for the mass parameter.

FIG. 4. We show the Bayesian evidence estimates for the
DHOST model with respect to GR. Here, DHOST analyses with
γ̃N ≠ 1 and γ̃N ¼ 1 are indicated with filled and open markers,
respectively. To be contrasted using the Jeffery’s scale.

14In principle, the value of γN is expected to be ∼1, unless
1 − αH − 3β1 ≪ 1, not implying a drastic change in Geff

N , which
will be an outlier behavior.

15Note that in [86], a study of an emergent gravity model
was conducted for A2142 and A2319 clusters, as they are
massive clusters and makes them more suitable to study the
modifications to gravity. Which, however, was later extended to
all the 12 clusters in X-COP in [52].
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Using the PSZ data alone, the RXC1825 cluster shows a
multimodal behavior for the constrains on c500 and con-
sequently mild, yet a similar double peak posterior for the
Ξ1 parameter. The posterior for the mass however remains
very much in agreement with the PSZ þ PX analysis, also
for the GR case. This is also equivalently shown in Fig. 9
of Appendix E, where we show the distributions for Ξ1

obtained for all the clusters using PSZ data alone. While
posterior distribution on the Ξ1 appears as a double peak, it
should be noted that the two peaks come from very distinct
distributions for the concentration parameter. The inclusion
of PX data reduces the posteriors to the aforementioned
boomerang-like distributions, which highlights a change in
the correlation of the mass parameter with the c500 and Ξ1

parameters. Also emphasizing the advantage of performing
a joint analysis of x-ray temperature and SZ pressure in our
analysis. Interestingly, a similar effect was observed for the
degeneracy between the NFW parameters and the DHOST
parameter Ξ1 in a simulated data based analysis in [58],16

however for much larger values of Ξ1. In fact, this is the
reason for extended posteriors for Ξ1 toward the positive
end of the distributions, as shown in Fig. 2.
Also, it is interesting to note that the degeneracy

manifests primarily between the c500 parameter and the
DHOST parameter, rather than with the M500 parameter
which remains consistent among different data combina-
tions within the DHOSTanalysis. In other words,M500 and

hence R500 is constrained in a more consistent way rather
than the shape of the mass profile, as it might be expected
for the change in gravitational potential and as an impli-
cation of a screening mechanism at play.

B. Redshift evolution of Ξ1

While the analysis so far is done to constrain the DHOST
parameters independently for each of the clusters, they
are clearly redshift dependent. Alongside assessing the
improvement of the fit to the pressure profile data when
including the DHOST modifications, it is also important to
assess their redshift behavior. We consider this fit to the
posterior of Ξ1 as the first-order proxy of a possible redshift
dependent behavior, which however should be modeled
simultaneously and is a computationally tedious analysis.
In this context, having a larger dataset and an extended
range of redshift would be of utmost importance to assess
the DHOST gravity. Therefore, we fit the posterior dis-
tributions on the Ξ1 parameters, using the 8 clusters, i.e.,
excluding the 4 non-NFW clusters to assess the redshift
evolution of Ξ1. We consider a simple Taylor expansion as,

Ξ1ðzÞ ¼ Ξ0
1 þ

z
1þ z

Ξa
1; ð23Þ

where Ξ0
1 is value of Ξ1ðzÞ at redshift z ¼ 0 and Ξa

1 ≠ 0

provides the redshift dependence. As can be seen from
Fig. 6, there exists a redshift dependence, with Ξ1ðzÞ deviat-
ing from GR expectation for larger redshifts (z≳ 0.08).
However, the redsfhit dependence is mostly dominated by

FIG. 5. We show the 68% and 95% C.L. contours for the concentration, mass and DHOST parameters for the clusters A2142 (left) and
RXC1825 (right). Here D ¼ I stands for the complete dataset (D) and D ¼ II, shows the constraints obtained using only the PSZ data.
The dashed line marks the GR scenario of Ξ1 ¼ 0.

16The analysis therein is equivalent to the case of γ̃N ¼ 1,
performed here.
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cluster A2142, excluding which the assumed functional
form is consistent with no evolution within the redshift
range. Note also that the current redshift range is extremely
small to properly assess the time dependence and could be a
consequence of systematic scatter alone. What we have
presented here is in anticipation for what should be repli-
cated with future larger datasets in a wider redshift range. In
a similar approach fitting constant values through the 8 data
points, assuming no redsfhit dependence provides a joint
constraint17 on theΞ1 parameter from the combination of the
8 clusters. We find this value to be Ξ1 ¼ −0.030� 0.043.
Please refer to the last few paragraphs of Sec. II where we
elaborate on the redshift dependence of the DHOST
parameters and however, note that the current approxi-
mation is reasonable as all the current clusters are local and
within a redshift range of Δz ∼ 0.08, implying the scatter
around the mean Ξ1 could be systematic in nature. This
constraint is shown as the blue shaded region in the Fig. 6.
Note that the fit presented here is an equivalent approach as
performing an importance sampling on the Ξ1 parameter
alone constrained from the individual clusters. This is a
valid approach owing to the fact that Ξ1 is the only shared
parameter among the clusters.

VI. COMPARISON WITH EXISTING
CONSTRAINTS

It is worth noticing that the parameter Ξ1 numerically
coincides with the ϒ1=4 parameter in GLPV theories [49].
The form of the gravitational force related to the potentialΦ
in Sec. II is unchanged, in the GLPV theory while the term
with Ξ3 is an additional one. Therefore, for the observations
where only the metric potential Φ is involved, one can
compare Ξ1 with the existing constraints in previous studies

devoted to GLPV theory. For example, [43,44] study the
effects of modified density profile for nonrelativistic
stars. On the other hand, astrophysical observables, such
as weak lensing that also depend on the potential Ψ (see
e.g. [43,49]), should be taken into account in order to
constrain Ξ2 and Ξ3 parameters.
Several works have earlier constrained the DHOST

parameter Ξ1, albeit with varied parametric form,18 which
however we can readily compare with our results. As
mentioned earlier in Sec. I, in the current work we assess
the modification to the hydrostatic equilibrium alone
and do not consider the weak lensing counterpart, that
can be utilized to place constraints on the Ξ2 parameter.
In this context, [49], is one of the earliest analyses to
provide constraints on the Ξ1, Ξ2 parameters by contrast-
ing the hydrostatic and weak lensing masses using a
stacked dataset of 58 clusters in the redshift range of
0.1 ≤ z ≤ 1.2. While the analysis in [49], improves the
constraints by utilizing the stacked cluster profiles, losing
the redshift dependence, here we have for the first time
(as far as we are aware), tried to assess from individual
unstacked clusters, which helps us also assess the redshift
dependence of the constraints. Our constraints from
individual clusters are however less stringent, and we
find good consistency with Ξ1 ∼ −0.028þ0.23

−0.17 , reported
there in.19 The joint constraint of Ξ1 ¼ −0.030� 0.043,
derived from our proxy-fit to the posteriors of Ξ1 from
individual clusters is in fact much more stringent, being
∼5 times more precise. This in turn, reasserts the promise
in utilizing the clusters with a combination of the x-ray
data the SZ pressure profiles, which can improve upon
the existing constraints by almost an order in precision.
Note also that the redshift range (z < 0.1) of the X-COP
clusters used in our analysis is complementary to the
redshift range utilized in [49], which is an added advan-
tage when contrasting the constraints. Owing to the
mild differences in the mass estimates obtained in our
analysis to those quoted in the original analysis in [52],
we also estimate a more conservative limit by utilizing
only 4 clusters (A1795, A3158, RXC1825, and ZW1215),
which agree very well. We find this limit to be Ξ1 ¼
−0.061� 0.074, yet being at least twice tighter than the
previous estimate. It is worth noting that these 4 clusters
span a very small redshift range of Δz≲ 0.02 within
0.0597 < z < 0.0766. For instance, the A1795 cluster
provides an individual constrain of Ξ1 ¼ −0.17þ0.11

−0.10 using
PX þ PSZ data, which indicates a mild ∼1.55σ deviation
from GR, however statistically disfavored in comparison
with GR with a Bayesian evidence Δ logðBÞ ¼ −2.9. As
expected, we do not find such an evidence when using
only the PSZ data, as data from both the inner and outer

FIG. 6. Taylor expansion fit to the posterior distributions of the
Ξ1 parameter. We show the 68% credible interval for the Ξa

1 ≠ 0

(red) and Ξa
1 ¼ 0 (blue) cases.

17Performing a joint analysis of all the 8 clusters with a
Gaussian prior on the Ξ1 parameter would yield the same result.

18For example, our parameter Ξ1 here is equivalent to ϒ1=4
used in [49].

19Converted from the ϒ1 ¼ −0.11þ0.98
−0.67 quoted in [49].
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regions of the cluster need to be weighed against the
model to assess any variation in the gravitational potential
along the radial direction, while accounting for the
screening effects.
Apart the cluster-scale constraints there exist lower limits

from the nonrelativistic stars of Ξ1 > −1=6, requiring a
stable static solution [44] (see also [87]). In fact, one could
reanalyze the current dataset by imposing the lower limit,
which we expect to, however, be consistent, except for the 4
non-NFW clusters. And an upper limit of Ξ1 < 7 × 10−3

from the consistency of the minimum mass for hydrogen
burning in stars with the lowest mass red dwarf [45,46].
Note that there are additional constraint limits requiring
Ξ1 > 0 to avoid instabilities within homogeneous fluids
[88]. Our constraints on the individual clusters (8 NFW)
are very well in accordance with these limits obtained from
the much smaller scale objects and varied arguments.
Clusters A3266, RXC1825, and A85 have a positive mean
value for Ξ1 and extend beyond the upper limit, however,
being consistent with the values lower than the limit as
well. Taking the 4 non-NFW clusters at face value, one
could argue for a strong disagreement with the existing
lower limit from the nonrelativistic stars, owing to (i) non-
NFW density profiles are not preferred as strongly as
DHOST modification from the Bayesian evidence (see
Fig. 2 of [52]), and (ii) they are not significantly affected
by the nonthermal effects. This would indicate invalidity
of the aforementioned limits and scale-dependent behav-
ior of the current screening mechanism. However, we
intend to interpret these results more carefully for the
moment, and wait to perform additional analysis. Our
results are also in tentative agreement with the conclu-
sions of [59], that DHOST modification is not favored
over GR to explain both the dark matter and dark energy
together.
A forecast analysis was earlier performed in [58],

showing the potential of galaxy cluster kinematics to
constrain the beyond Horndeski models, also scaling
with the number of clusters. It has been shown that the
posterior (more precisely the χ2 distribution), could show
large degeneracy for large values of Ξ1 and the NFW
parameters used to model the mass profile and that this
should be taken into account when analyzing real obser-
vations. In our analysis, we find the Ξ1 parameter not
exceeding unity for any of the given 12 clusters. However,
some confirming correlations are seen in one or two
clusters especially with the PSZ data alone. Essentially
highlighting the difference in the nature of correlations
between the mass and DHOST parameters when using the
internal kinematics or the ICM dynamics of the galaxy
clusters. In the current work using ICM observables also
provide tighter constraints than those forecasted in [58],
using kinematics. This in turn presents for a very inter-
esting scenario to utilize both the observables in con-
junction to constrain the DHOST parameters.

VII. SUMMARY

We constrain deviation from GR on the cluster scales,
modeled through a Vainshtein screening mechanism, uti-
lizing the X-COP compilation which consists of 12 galaxy
clusters. While we have performed our analysis on all the
12 clusters, we make a careful selection of subsets con-
sisting of either 8 or 4 clusters to comment on the final
inferences: (i) we eliminate 4 clusters as they are not well
represented by the NFW mass profile, and (ii) To be more
conservative, we exclude 4 other clusters which have mild
∼1σ variation from the masses quoted in the original
analysis.
Our main results are summarized as follows:
(i) Performing a Bayesian analysis using the so-called

backward method assuming the NFW mass profile,
we find mild to moderate deviations from the GR
scenario (Ξ1 ≠ 0) of the order ∼2σ (see Table I).

(ii) Comparing the Bayesian evidence, both GR and
DHOST scenarios perform equivalently, with mild
to a moderate preference for GR at times.

(iii) As our main result, we report a constraint of
Ξ1 ¼ −0.030� 0.043 obtained using 8 clusters and
a more conservative constraint of Ξ1 ¼ −0.061�
0.074 using only 4 clusters, for reasons quoted in the
text. Our result shows no indication for a deviation
from GR, while being stringent than the earlier
constraints.

(iv) Assessing the redshift evolution we present the
utility of datasets like the one here. In effect, we
find possible evidence for redshift dependent behav-
ior, however only dominated by constraints from
A2142 cluster.

While individual clusters might not immediately suggest
a significant modification to GR, we find that a tentative
redshift dependent behavior could be observed. This indeed
makes it essential that we test the current setup against
larger well-observed samples such as the NIKA2 SZ large
program consisting of a sample size of 45 clusters, in a
wider redshift range. We also intend to extend the dis-
cussion in terms of the physical parameters as outlined in
Appendix B, which is of utmost importance to assess the
feasibility of the models within the current formalism.
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APPENDIX A: DHOST ACTION

The action for the viable Class Ia DHOST theory after
GW170817 event (c2g ¼ c2) is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L; ðA1Þ

where

LDHOST
c2g¼c2 ¼PþQ□ϕþFRþA3ϕ

μϕνϕμν□ϕ

þ 1

8F
ð48FX

2−8ðF−XFXÞA3−X2A2
3Þϕμϕμνϕλϕ

λν

þ 1

2F
ð4FXþXA3ÞA3ðϕμϕ

μνϕνÞ2: ðA2Þ

P;Q;F; A3 are the arbitrary functions of the scalar
field ϕ and its kinetic energy, X, which reduces to the
GR case when we set F ¼ 1=2κ with κ ¼ 8πGNc−4, and
P;Q; A3 ¼ 0.
In EFT formalism, the action is expressed in terms of

time dependent linear operators. cg ¼ c tightly constrains
the tensor speed alteration parameter, αT. The viable
DHOST theory (cg ¼ c) is expressed in terms of five
time-dependent linear effective field theory (EFT) param-
eters, i.e., αM;B;K;H and β1, which are the measures to the
deviation from the ΛCDM model [64]. The coefficient of
the linear perturbations only depends on the background
value, hence only on the time. Subsequently, αM;B;K;H and
β1 are solely functions of time.

APPENDIX B: A NOTE ON CHANGE OF BASIS

While we have performed the analysis using the effective
parameters fΞ1; γ̃Ng, they are both functions of the physical
parameters fαH; β1; γNg, which in turn are functions of
time, and hence redshift. As mentioned earlier, γ̃N is
unconstrained when sampled over as a free parameter
and the posterior for Ξ1 remains unchanged when fixing
γ̃N ¼ 1. Therefore one could advantage of the analysis
performed assuming γ̃N ¼ 1, and estimate,

γ̃N ≡ γ̃N ×Mγ̃N≠1
500

Mγ̃N¼1
500

: ðB1Þ

Doing so, we find strictly a mean value of γ̃N ∼ 1 as
expected, however with the dispersion that varies from
cluster to cluster. If one were to assume a fixed but γ̃N ≠ 1
value, the mean obtained from the above expression would
be expected to be same as the assumption. Therefore, we

infer this dispersion as the tentative uncertainty on the GR
expectation of γ̃N ¼ 1, in contrast to having either a fixed
value or a completely unconstrained quantity. This vali-
dates the fact that the Ξ1 and γ̃N are uncorrelated parameters
and hence reasserts the method followed using two differ-
ent MCMC samples to estimate this dispersion. In other
words, it is an equivalent approach assuming that the mass
of the cluster is accurately known in the DHOST gravity
and that the uncertainty is present only on the γ̃N parameter.
Needless to say, having probes such as weak lensing or any
background expansion history, could break the degeneracy
and help correctly constrain this quantity. Here we only
anticipate an analysis assigning the uncertainty on the
parameter γ̃N ×M500 completely to γ̃N alone, however to
obtain an expectation for the allowed parameter space of
the physical quantities (αH; β1) within the DHOST theory.
Through a simple change of basis we can represent the

αH and β1 in terms of effective parameters fΞ1; γ̃Ng as,

αH ¼ 1

2

��
−1þ γN

γ̃N
þ 3Ξ1

2

�
� 3

2

ffiffiffi
ξ

p �

β1 ¼
1

2

��
1 −

γN
γ̃N

−
Ξ1

2

�
∓ 1

2

ffiffiffi
ξ

p �

where ;

ξ ¼ Ξ2
1 þ 4Ξ1

�
1 −

γN
γ̃N

�
:

Note that the above solutions for αH and β1 are valid
under the conditions, ½Ξ1 > 0; γ̃N > γN × 4=ð4þ Ξ1Þ� or
½Ξ1 < 0; γ̃N < γN × 4=ð4þ Ξ1Þ�. While we have the dis-
tribution on γ̃N and Ξ1, the parameter γN itself is free
quantity and therefore certain values for the same have
to be assumed before obtaining the distributions of
fαH; β1g. As in, the scatter for values of fαH; β1g, for
viable physical models can obtained using a flat distribu-
tion of 0.8 < γN < 1.2. Note that the phenomenology of
DHOST gravity can be equivalent to that of GR, even if
αH; β1 ≠ 0, when αH ¼ −β1 and γN ¼ 1 − 2β1 ≡ 1þ 2αH.
The distributions of DHOST parameters have been esti-
mated by computing the approximated time evolution of a
scalar field through numerical simulations in [89]. A
comparison can be done with simulations and data from
future observations. We leave the possibility of a detailed
analysis of the physical parameters along these lines for a
future consideration, also with the inclusion of comple-
mentary weak lensing probes, which would allow to
break additional degeneracies. One such analysis was very
recently performed in [59], where posteriors for the αH and
β1 parameters were reported for 16 different clusters.
Extending our analysis in this direction will indeed fare
as a necessary complement, also in order to compare with
the theoretical limits presented in [35,90].
The red and the blue lines shown in Fig. 7, correspond to

the αH ¼ −2β1 and αH ¼ −β1 cases, respectively. Note that
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the former of these should not immediately been inferred as
the case denoted by A3 ¼ 0 (A3eq0 in [89]). In which case,
one would obtain Ξ1 ¼ 0 and cannot be commented upon
in the current scenario.

APPENDIX C: MASS COMPARISON

In this section we provide a comparison the M500

estimates obtained within our analysis and the original
analysis presented in [52], as in Fig. 8. We also compare
constrains in the DHOST scenario, which are shown as
open markers. Firstly we notice an overall agreement for all
the clusters in the GR case. However interestingly, we find
that in our analysis, the uncertainties estimated for the non-
NFW clusters are lower, while the mean values are in better
agreement. Also the DHOST mass estimates for these 4
clusters tend to follow a constant scaling with respect to the

GR masses, of MDHOST
500 ∼ 0.6 ×MGR

500. The effects of mass
variation are also represented equivalently in the lower
panel of Fig. 3 as a ratio. This is indeed an interesting
feature, which requires more attention and we intend to
explore this in a future study.
The upper panels in Fig. 10, show the mass reconstruc-

tions both in the GR (blue) and the DHOST (red) scenarios.
In here one can notice that mass reconstructions in the
DHOST scenario for the non-NFW clusters show larger
variation from the GR case, and this illustrates the large
values of the Bayesian evidence in favor of the DHOST
modeling, reported in Table I (see also Fig. 4). The lower
panels, also illustrate how the constraining ability of the
SZ-pressure and x-ray temperature data contribute to the
joint likelihood [see Eq. (21)], through the variation of
uncertainty in the radial distance.
As mentioned earlier we have utilized the Vikhlinin

profile with only 6 parameters neglecting a second com-
ponent [see Eq. (3) of [66]]. First, we find that the
agreement between our mass estimates here and those
reported in [52] worsens when we utilize the full parametric
form with 9 free parameters. Alongside this, we also obtain
much larger uncertainties on the mass estimates, which
deters us from further using the full parametric form in the
main analysis. As for the assumption of NFW mass profile,
we indeed perform Gaussian process based nonparametric
reconstructions to validate that the NFW mass profile is
able to provide a good fit to the data, in agreement with
both the GR and DHOST models. We show a couple of
example scenarios for clusters A644 and A1795 in [91].
Indeed utilizing such reconstruction based methods to
assess the DHOST models, independent of the NFW
assumption would be a very useful approach.
As aforementioned we have utilized the PX data instead

of the independent TX data. In the latter case, the second
term in the Eq. (21) is replaced with the TX data and the rest
remains unchanged. When doing so we find that the mass

FIG. 7. We show the scatter for the physical parameters of the
DHOST theory, fαH; β1g. See Appendix B for discussion.

FIG. 8. Here we show the comparison of the mass estimates
(M500), obtained in our analysis for both GR and DHOST cases,
against the GR estimates in [52].

FIG. 9. Same as Fig. 2, using only the PSZ data. Note here that
the limits on the x-axis are different from those in Fig. 2. Also, we
have not excluded the three inner most data points as done in the
main analysis.
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FIG. 10. We show the comparison of mass profiles (top) and the relative difference (bottom), between the GR and the DHOST
modification. The dashed and dash-dotted vertical lines show the R500 in the GR and DHOST cases, respectively. The shaded region
corresponds to a 68% C.L. limits on the mass profiles. The corresponding mass (M500) and concentration (c500) parameters are shown in
Table I.
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estimates for all the 12 clusters are systematically lower
than those reported in the original analysis [52]. Which we
infer as an effect of using the L1 regularization based
electron density data, instead of the multiscale fitting of the
emissivity data (which is not publicly unavailable).
However, finding a good agreement for the 8 NFW clusters
(most assuredly for our conservative limit with only 4
clusters) when using the PX data with no systematic
behavior of the mass estimates, we remain with the analysis
presented in Sec. IV. In essence, we find the current
approach of using the pressure data, which has already
been rescaled accounting for the gas density correctly as
more suitable for reproducing the results of [52], than the
temperature data along with the L1 regularized electron
density. Indeed, for this reason to avoid any inaccuracies,
we also present the conservative limit on Ξ1 using only 4
clusters.

APPENDIX D: COMMENT ON MASS PROFILES
OF THE NON-NFW CLUSTERS

As is noted throughout the paper, the 4 non-NFW
clusters prefer mass models such as Burkert/isothermal,
Hernquist. And it is possible that the largely deviant Ξ1

constraints, when using the NFW mass profile could be
arising from other possibilities such as systematics and/or
other cosmological scenarios, such as [92]. As these
clusters are spread across redshifts within the distribution
of the current clusters (see Fig. 3), it is not straightforward
to anticipate a phase transition in redshift [93,94], which
could also help alleviating the H0-tension. However, [92]
also show that pairs of these clusters could be within

vacuum bubbles, due to their spatial proximity on the sky,
however, separated in redsfhit. For example, the clusters
A2319 and A2255 would be closer in terms of angular
positions, however, separated in redshift by Δz ∼ 0.03. In
this context, assessing if the strong constraints on the Ξ1

parameter are indications for a modification to gravity on
scales larger than those of a cluster would require a
generalization of the mass profiles and constraining beyond
GR scenarios, which we intend to do as an independent
full-fledged analysis.

APPENDIX E: CONSTRAINTS USING
PSZ DATA ALONE

Alongside our main analysis, we also assess the con-
straints on the DHOST parameter Ξ1 when utilizing the PSZ
data alone. In Fig. 9, we show the marginalized posterior
distributions, which can be compared with the main results
in Fig. 2. In here, however, we include also the three
internal points of the PSZ data, which were excluded in
the main analysis. Notice that the constraints on the
parameter Ξ1, vary significantly and we find good con-
sistency between our main analysis and the PSZ analysis
only for the clusters, A2142, RXC1825. For the rest of the
clusters, however, the constraints vary, signifying the need
for the formalism followed in the main analysis, i.e.,
exclusion of three innermost points of PSZ data and joint
analysis of PSZ and PX. We no longer notice the significant
clustering of the constraints on Ξ1 ≪ 0 obtained for the
non-NFW clusters and in general the constraints individual
clusters are more dispersed.
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[88] E. Babichev and A. Lehébel, J. Cosmol. Astropart. Phys. 12
(2018) 027.

[89] S. Arai, P. Karmakar, and A. Nishizawa, Phys. Rev. D 102,
024003 (2020).

[90] I. D. Saltas and I. Lopes, Phys. Rev. Lett. 123, 091103
(2019).

[91] B. S. Haridasu, P. Karmakar, M. De Petris, V. F. Cardone,
and R. Maoli, EPJ Web Conf. 257, 00021 (2022).

[92] L. Perivolaropoulos and F. Skara, Phys. Rev. D 106, 043528
(2022).

[93] L. Perivolaropoulos and F. Skara, Phys. Rev. D 104, 123511
(2021).

[94] V. Marra and L. Perivolaropoulos, Phys. Rev. D 104,
L021303 (2021).

TESTING GENERALIZED SCALAR-TENSOR THEORIES OF … PHYS. REV. D 107, 124059 (2023)

124059-17

https://doi.org/10.1086/312138
https://doi.org/10.1086/312138
https://doi.org/10.1007/s11214-013-9976-7
https://doi.org/10.1007/s11214-013-9976-7
https://doi.org/10.1093/mnrasl/slx074
https://doi.org/10.1093/mnrasl/slx074
https://doi.org/10.1088/1475-7516/2018/05/028
https://doi.org/10.1088/1475-7516/2018/05/028
https://doi.org/10.1088/1475-7516/2018/12/027
https://doi.org/10.1088/1475-7516/2018/12/027
https://doi.org/10.1103/PhysRevD.102.024003
https://doi.org/10.1103/PhysRevD.102.024003
https://doi.org/10.1103/PhysRevLett.123.091103
https://doi.org/10.1103/PhysRevLett.123.091103
https://doi.org/10.1051/epjconf/202225700021
https://doi.org/10.1103/PhysRevD.106.043528
https://doi.org/10.1103/PhysRevD.106.043528
https://doi.org/10.1103/PhysRevD.104.123511
https://doi.org/10.1103/PhysRevD.104.123511
https://doi.org/10.1103/PhysRevD.104.L021303
https://doi.org/10.1103/PhysRevD.104.L021303

