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We present analytical solutions describing a family of both inwardly and outwardly spiralling orbits in
the Kerr spacetime. The solutions are exact and remarkable for their simplicity. These orbits all have the
angular momentum and energy of a circular orbit at some radius .., but are not restricted to remaining on
that circular orbit, a property not possible in Newtonian gravity. We demonstrate that there are five distinct
orbital solutions which terminate at the black hole singularity, and three solutions which either escape to
infinity or remain bound. The different orbital solutions are characterized entirely by the black hole spin a
and the location of r.. Photon orbits spiralling into or out of their (unstable) circular orbit radii are also
analyzed. These have properties similar to the hyperbolic class of massive particle orbits discussed herein.
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I. INTRODUCTION

Despite the complexity of the Kerr spacetime, classes of
exactly solvable timelike geodesics (orbital solutions) are
known. Examples include the familiar circular orbits, radial
plunges [1], “zoom-whirl” orbits, and homoclinic orbits,
which separate bound and plunging orbital domains [2]. A
useful compendium of such orbits may be found in [3]. The
study of relativistic test-particle orbits characterized by the
energy and angular momentum of a circular orbit, but
which are not in fact circular, is by no means new. As early
as 1959, Darwin solved for some of these solutions in
Schwarzschild geometry [4]. The homoclinic orbits [2] are
another example of such “pseudocircular” orbits, as are the
inspirals from the innermost stable circular orbit of Kerr
black holes derived recently [5]. Still other studies of
geodesic motion in black hole spacetimes are summarized
in Chandrasekhar [6]. While many such particular solu-
tions are known, and completely general solutions of, e.g.,
the bound orbits of the Kerr spacetime are known in terms
of elliptic integrals [7], a complete characterization of the
entire family of the much simpler pseudocircular orbital
solutions is not present in the literature; rather, incomplete
sets of solutions are found in different papers.

More than mathematical completeness is involved here.
Exact geodesic solutions can be a powerful and extremely
useful theoretical tool, and as such often surface in
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astrophysical studies. These include, for example, the study
of black hole accretion flows [8—11], and the starting point
for analyzing the gravitational radiation from extreme mass
ratio inspirals [12-18]. The latter is likely to be an
important gravitational wave source for the LISA
mission [19]. Additions to the known family of simple
orbital solutions are therefore of general interest, as they
offer insight into the internal dynamics of more complex
situations, which are otherwise accessible only through
numerical means.

The purpose of the current study is to provide a
systematic and detailed analysis of those orbits for which
the effective potential of a Kerr black hole presents a double
root and factors cleanly, a result of the underlying proper-
ties of the circular constants of motion. This condition lends
itself to integrability in terms of elementary functions. As
noted above, not all of the solutions presented in this paper
are new, but the majority of them are. In particular, we
present a formal analysis of those orbits about extremal
Kerr black holes a = £M which do not appear to have
been studied previously in the literature. In particular, we
demonstrate that eight distinct classes of these pseudocir-
cular orbital solutions exist, five of which plunge to the
singularity, and three of which move to larger radii. There,
they may either remain bound or escape to infinity. We
highlight a number of interesting physical properties of
these solutions.

The layout of this paper is as follows. In Sec. II we
introduce the general properties (stability, boundless, etc.)
of circular test-particle orbits in the Kerr metric. In Sec. 111
we demonstrate that associated with each of these circular
orbits is a pseudocircular orbit, which shares the same
constants of motion (angular momentum and energy) as
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these circular orbits, but is not moving on a circular orbit. In
Sec. III we derive the general properties of the radial
velocity of these quasicircular orbits. In Sec. IV we derive
the solutions of the entire family of these orbits evolving in
the Schwarzschild metric, before generalizing to the Kerr
metric in Sec. V, and extremal Kerr black holes in Sec. VI.
In Sec. VII, we discuss how photon orbits fit into this
general set of solutions and show that they are analogous to
a hyperbolic class of massive particle orbits. We conclude
in Sec. VIIL

II. PRELIMINARIES

We shall use geometric units in which the speed of light ¢
and the Newtonian gravitational constant G are both set
equal to unity. In coordinates x*, the invariant line element
drz is given by

de? = —g,, dx*dx", (1)

where g, is the usual covariant metric tensor with
spacetime indices p, v. We shall use the standard Boyer-
Lindquist coordinates (z,7,0,¢), where ¢ is time as
measured at infinity and the other symbols have their usual
quasispherical interpretation. We shall work exclusively in
the Kerr midplane 6 = z/2. For black hole mass M, and
angular momentum a (both having dimensions of length in
our choice of units), the nonvanishing g,, and ¢" we
require for our calculation may be summarized:

1 2Ma?
goo = —1+2M/r, 900:—K<r2+a2+ a>’

r

P = g" = —2Ma/rA,

g¢¢:l<1_2_M>,

Jop = 9po = —2Malr,

— P2 oM
g¢¢ r+a° + Cl/r, A ,

Grr = 17/ A, A=r’-2Mr+ a’. (2)
The four-velocity vectors are denoted by U* = dx*/dx.
For circular orbits, only U° and U? are present, and their
r-dependence may be deduced from the two coupled
algebraic equations:
-1= g}wUﬂUl/’ 0= U”Ubar.g/w’ (3)
where 0, is the standard partial derivative with respect to r.
(The second equation is a consequence of the geodesic

equation for dU,/dr; see, e.g., [20]). Solving these equa-
tions gives

) M2 o 1+ aM'? )2

- PPD D @

where D*> = 1 —=3M/r + 2aM'/?/3/2,

Circular values of angular momentum and energy con-
stants are calculated in their usual manner (U, = g,,U")
and are given by

(14 a?/r* =2aM'/?/13/?)
V1=3M/r+2aM"?]P%

J=Uy=(Mr)'/?

1—2M/r+aM'?/P?
r=-Uo= ( 12 3)2' (6)
V1 =3M/r+2aM"2/r/

III. RADIAL VELOCITY OF PSEUDOCIRCULAR
ORBITS

A. The radial velocity equation

The radial velocity of a massive particle is given by the
solution of the geodesic equation g, U*U" = -1, or
explicitly

J (2M oM
U2+ (ﬂ + (1 ——)J)
r r r

2 2M
+1+5 -0, (7)

r r

where we have expressed all azimuthal U? and temporal U°
four-velocity components in terms of their (conserved)
four-momenta counterparts J and y [5]. Note that Eq. (7) is
of the form (U")? + Vg (r) = 0, which defines an effective
potential V., cubic in 1/r, which may generally be
factored:

Ve (r) = =V, (r—rl— 1) (r—rz— 1) (r—;— 1), (8)

where ry, r,, and r5 are the general (possibly complex) roots
of U". For a circular orbit at radius r,., both Vg (r.) =0 and
0,V (r.) = 0, meaning r, must be a double root of Vg,
i.e., ry = r, = r.. The normalization constant V,, may be
found by going back to Eq. (7), and evaluating 7*(U")? in the
limit » — 0. Taking this limit we find

2M

ryrnrs

V():

(J —ay)*. ©)

On the other hand, we may consider the r — oo limit, which
leads to

Vo=1-79% (10)
Taking y and J to be the energy and angular momentum

of a circular orbit at r,., and writing r; = r, = r,, we can
constrain the other root r; with these two expressions
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2M (J — ay)?
rs :7—1_}/2 s (ll)

which gives the radial velocity equation

Urzi\ﬂt?(';c—l)\/rr?——l, (12)

where the correct choice of sign will be made for each orbit
in the subsequent sections. For any given black hole spin and
mass, 7, J, and r5 are fully determined by the choice of ... As
r. descends through smaller radii, the behavior of pseudo-
circular orbits qualitatively changes as r,. passes through a
series of characteristic radii, which we discuss below.

B. Characteristic radii

The largest characteristic radius is the innermost stable
circular orbit (ISCO), denoted r;. Circular orbits with
r. > ry are stable and approach their Newtonian behavior
at large radii; orbits with r, < r; are dynamically unstable.
The ISCO itself corresponds to a radius of marginal
stability.

The second key radius is the innermost bound circular
orbit (IBCO), ry,. Circular orbits with ry, < r. < r; remain
bound though they are unstable. Physically, this instability
results in a class of pseudocircular orbits that describe a
particle infinitesimally perturbed outwards from r., and
then traveling out to a finite radius (r3) before returning to
r. once again in the limit # — oco.

The final key circular orbit radius is the photon radius r,,
lying interior to ry,. The photon radius corresponds to the
unique radius at which photons are able to undergo
(unstable) circular motion. Massive particle circular orbits
with r, < r. < ry, are possible, but are both unstable and
ultimately unbound. The region between r, and the outer
event horizon r, does not host any circular orbit solutions,
for either massive particles or for photons, as this would
require superluminal velocities.

When normalized to M, each of these special radii
depends only upon the Kerr black hole’s angular momen-
tum parameter a (e.g., [20]) via a, = a/M. The ISCO
radius is given explicitly by [21]

;—;:sz—lz—:\/(s—zl)(ﬂzl+222), (13)
where
Zy =1+ (1=a;)P[(1+a) P+ (1-a)'P]  (14)
and

22: \/3ai+Z%. (15)

The IBCO radius is [6]

%:(H— 1—a,). (16)

The photon radius is given by [20]

1
rM” = 4cos? [gcos‘l <— %)} , (17)

and finally, the inner (r_) and outer (r, ) event horizons of a
Kerr black hole are located at [20]

.
Mi:li\/l—ai. (18)

The values of these five important radii are plotted as a
function of black hole spin in Fig. 1. In the formal a, — 1
limit, each of these radii converges on r = M. However,
this is in actual fact a Boyer-Lindquist coordinate effect.
The key radii remain separated by a finite proper radial
distance. A free-falling observer would, just as for all other
values of the black hole spin parameter, first pass an ISCO,
then the IBCO, then the photon orbit, and finally the event
horizon in this a = M limit.

C. The relationship between r3 and r,

Figure 1 shows that the ordering r; > ry, > r), is always
obeyed. The nature of a circular orbit will then depend upon
the magnitude of 7. relative to these key quantities, and is
best understood by using . and r; (a direct function of r,)
in tandem.

Consider first the large r,. limit of the r; equation. We
then have J — /Mr, and 1-—y> — M/r, following
Egs. (5) and (6). Equation (11) then demonstrates that r3
approaches 2M, the Schwarzschild event horizon. The
same limit holds for Kerr black holes as well, and so lies
outside r_ for all values of a,.

91 ISCO radius
s IBCO radius
Photon radius
71 Outer event horizon
Inner event horizon
61
=9
~
& 4y
34
21
14
01
-1 ~1/2 0 1/2 1
a/M
FIG. 1. The key radii of the Kerr spacetime, plotted as a

function of black hole spin.
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Figures 2 and 3 are plots in the (r. — ry,)/M, r/M plane,
for a Schwarzschild and a = 0.9 Kerr black hole, respec-
tively. (We restrict the plots to the . > ry, domain.) Both r,.
and r; appear as labeled curves, which by definition must
intersect at r. = r;. It can be seen that for r. > r;, the root
r3 is always located between r, and r;. In particular, as r,
approaches r; from above, r; approaches r; from below. At
the intersection, the right side of Eq. (12) for the radial
velocity takes the form of a square root of a perfect
cubic. This is of some astrophysical interest [S]. As r,
approaches ry,, the 3 root increases monotonically, diverg-
ing as r, = rjp.

The shaded zones of these plots denote regions acces-
sible to a particle in pseudocircular orbit for a given r, (or
the associated r3). The red region indicates the domain of

10%
T3 ===+ ISCO radius
T Homoclinic orbits
===+ Event horizon Plunging orbits
10
~
~
10t
|
i
______________________________ b T
1
100 H
1072 107! 10° 10! 102

(rc - TIBCO)/M

FIG. 2. The properties of the third root r5 of the Schwarzschild
(a = 0) velocity potential, plotted against the difference of the
circular radius r,. from the IBCO ry, = 4M. Different regions of
radial space available to different classes of pseudocircular orbits
are indicated by the shaded regions. See text for further details.

10?

T3 ===+ 1SCO radius
—_— . Homoclinic orbits
=== Event horizon Plunging orbits

]Ol)
1072 107! 10° 10! 10?

FIG. 3. Asin Fig. 2, except for Kerr spin parameter a = 0.9M.
Note that r3 > r, for all values of both r. and a.

plunging orbits; the blue, homoclinic orbits. (Homoclinic
orbits will be discussed in more detail below.) In the
white zone, only r = r, is allowed, in conformance with
Newtonian sensibilities. For r. = ry,, the particle may
access all radii while retaining its constant angular momen-
tum and energy, either through an escape to infinity with
infinitesimal final velocity, or a plunge into the singularity.
Finally, we find r; <O when r, is located between the
IBCO and photon radius, r, < r, < ry,. (Not shown.) In
this regime, all radii are similarly accessible, the difference
being that particles escaping to infinity do so with finite
velocity.

IV. SCHWARZSCHILD SOLUTIONS

The Schwarzschild metric is particularly simple as,
unlike the finite a Kerr metric, the ¢ coordinate is well-
behaved at the single event horizon. The general solution
required for characterizing the various Schwarzschild orbits
starts with the simple expression for the ¢y component of the
test-particles four-velocity

J

do
- V=2 (19)

The shape of a particle’s orbit is then given by the solution
of the following ordinary differential equation:

dp U? J 1
Y 2
dr U’ (20)

Mrz(rc/r— 1)\/;’3/r7—1’

or explicitly

Vi-y _[dr 1
7" /r2<rc/r_1)¢;;/r—_“1' @)

For three of the five radial regimes we may solve the
integrals by defining it = r3/r, leaving

Vi—Z o1 1 i
TR S ke L

Finally, with y = /it — 1 we have

V17 2/( 1 23)

e d;
J ¢ re) (1=r3/r. +y?) Y

note r=r3/(1+y*). The exact solution of this final
integral depends on the value of the ratio r3/r.. The integral

I(y) = / (ldy (24)

1_r3/r0+y2>

has solution
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tan~! (y/\/1=r3/re)//1=r3/re, ry <re

I(y) =4 =1/ ry=re,
—tanh_l(y/\/r3/rc—1)/\/r3/rc—1, ry > re.

(25)

For the final radial regime r, < r < ry,, we have y > 1 and
r3 <0, and the integral [Eq. (21)] should be rewritten
before the substitution @& = —r3/r = |r3|/r is made.
Writing all terms as a manifestly positive,

V-t [dr ! 2%
J ¢ /rz(rc/r—l)\/|r3|/r—|—1. (26)

We now follow a similar approach to the previous case with

i=—r3/r=|rs|/r, y=+1+10&, and r = |r3|/(y* = 1).
We then find

\/yz—l B 1
7 ""/<1+|r3|/rc—y2>dy‘ 27)

Note

/ 1 dy:tanh‘l (y/\/|r3|/re+1) (28)
(1+]|rsl/re=y?) VInl/r+1 '

Note that tanh~!(X) and tanh!'(1/X) have exactly the
same derivative, so that the proper argument of this
function must be chosen on the basis of whether X or
its reciprocal is less than unity. This flexibility embodies
the difference between the plunging and out-spiralling
orbits. We now discuss each of the eight different solutions
of these integrals in turn.

A. r, > r; plunging orbits

For r. > r;, we have r; <r.. We may then solve
explicitly for r(¢) from the first line of Eq. (25),

r3

L+ (1= r3/r )tan’(¢/¢s)’

r(¢) = (29)

where

2J
* — s 30
’ Vre(re=r3)(1=7%) 0

with the convention that the orbit starts at ¢p = 0. Unlike
other Schwarzschild solutions, the r. > r; orbits involve
only a finite rotation angle A¢ before reaching the
singularity r = 0 (Fig. 4):

4 ) 0 2 4
rcos(¢)/M

FIG. 4. A Schwarzschild plunging orbit, with r, = 7M.

wJ
Ag = ) (31)
\/rc(rc - 7”3)(1 _y2)
Note the divergence as ry — r. (i.e., r. — rp).
As r. = oo, we have

2M -1/2

Ap — ﬂ(l - ) > 7, (32)
rC

i.e., all orbits complete at least one half-rotation of the
singularity, independent of r,.. Interestingly, in this limit the
plunging particle has a formally divergent specific angular
momentum J — /Mr, — co. Having an arbitrarily large
amount of angular momentum and starting outside the
event horizon is not sufficient for preventing the particle
from eventually being swallowed by the singularity.

B. r. =r; spiral orbits
The ISCO radius r. = r; is the special location at which
ry = r. = 6M, and the effective potential is a perfect cube.
This remarkably simple solution was discussed in detail
in [5] and seems to have been first written explicitly in [6].
It has the following form:

oM

r(ﬁb)zw,

(33)

with the convention that ¢ increases from —oo at r = 6M to
0 at the singularity r = 0.

C. ry, <r, <r; homoclinic and plunging orbits

For ry, < r. < r;, two possible pseudocircular orbits
exist. These correspond to orbits which spiral either out-
wards from r, toward r = r;3 or inwards from r=r,
toward r = 0.
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1. r > r.: Homoclinic orbits

The homoclinic orbits were first discussed in full detail
by [2]. However, the conceptual history of homoclinic
orbits goes back much further in time. Darwin [4] first
wrote down an explicit Schwarzschild homoclinic orbit in
1959. (Interestingly, Darwin writes that he was motivated
by his experience with the relativistic Bohr model for
hydrogen.) While these solutions are therefore not new, we
shall include a brief discussion for completeness.

For ry, < r. < ry, the third root of the radial velocity r3
is greater than r.. Thus, orbits exist where the particle
spirals outwards from r = r.. toward » = r3. The following
solution for r(¢) describes the test-particles motion:

I3

r(¢) = , 34
R R Y P77 N
where
2J
Dy = N (35>
\/rc(rB_rc)(l -V )
A homoclinic orbit begins with ¢ = —o0, at r = r... As the

azimuthal coordinate increases the radial coordinate grows
until ¢ = 0, r = r3, before the orbit repeats itself, with the
radius returning to r = r,. as ¢ — +oo (see Fig. 5).

2. r <r,: Plunging orbits

The complementary test-particle orbit which spirals
inwards from r = r. to the singularity is described by
the following function:

r3

(r3/rc = 1) coth®(/ )"

r(#) =1 m (36)

20

10

rsin(¢p)/M

C

—10+

—201

~10 0 10 20 30 40 50
rcos(¢) /M
FIG.5. A series of many Schwarzschild homoclinic orbits, with

circular orbit radii ranging from r. = 4.15M (purple) to r, =
4.45M (red).

where ¢, is given once again by Eq. (35). This orbit is in
many ways similar to the inspiralling trajectory starting
from the ISCO. The particle undergoes a formally infinite
number of rotations about the unstable circular orbit r,. (the
¢ — —oo limit), before transitioning to a plunge which in
effect “begins” at an azimuthal angle ¢ ~ —¢, and termi-
nates at ¢p = 0.

D. r, =r;, parabolic orbits

The IBCO is defined by the circular orbit radius at which
y(rip) = 1, allowing an escape to infinity with vanishing
velocity, and r; — oo. In this limit, the radial component of
the test-particle four-velocity is quite well-behaved and
simplifies to

J 2M b
Up =2 (o). 37
ib b r (r ) ( )

For a Schwarzschild black hole, from Egs. (5) and (6) we
find J;, = ry, = 4M and U? = 4M/r*. Thus

dp U’ 2v2M 1 (38)
dr U P2 (dM/r-1)"

The two solutions of this differential equation (correspond-
ing to inspiralling and outspiralling orbits) are

r(¢) = 4Mtanh? <%) (r < ry, inspiral) (39)
and
r(¢p) = 4Mcoth? <2;:;§> (r > ry outspiral).  (40)

These are displayed in Fig. 6. Note that by running the
outspiralling orbit in a time reversed fashion, we see a
particle infalling from rest at infinity and ending on a
circular orbit.

E. r, <r, <r;, hyperbolic orbits

For r, <r.<ry we have y > 1,r; <0, and a test
particle can escape to infinity with nonzero radial velocity.
The shape of the particles orbit is the following:

|r3|

(1+[r3|/rc)tanh?(¢/p) — 1

r(¢) = (outspiral), (41)

where

27
Vre(rl+r)?=1)

s = (42)
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5.0

2.91

0.01

—2.57

—5.01

rsin(¢)/M

—7.51

—10.01

—12.51

—15.0 ; ; ‘
—10 -5 0 5 10
rcos(¢)/M

FIG. 6. The Schwarzschild parabolic orbits, spiralling outwards
(blue) or inwards (red) from the IBCO (ry, = 4M).

A test particle undergoing this orbit escapes to infinity at a
finite angle (the orbit begins with ¢p — —o0)

b = — 2 tanh™! <;>
* V()P -1) VI+]nl/r.

(43)

This escape angle is a measure of the finite radial velocity
with which these orbits approach infinity. These trajectories
are plotted in Fig. 7. The decrease in the escape angle as r,.
approaches the photon radius 3M is clearly visible.
Alternatively, the test particle may spiral inwards from
r = r.. to the singularity at » = 0 according to the following
profile:

|r3|

(1 + [r3]/rc)coth? (/) — 1 (inspiral), ~ (44)

r(¢) =

with the convention where ¢ progresses from —oo to 0
while r progresses from r, to O.

V. KERR SOLUTIONS

The shape of spiral in the Kerr metric for a finite mass
particle differs from the equivalent Schwarzschild orbits in
two key ways: the first is that frame dragging forces the
particle to corotate with the black hole within the ergo-
sphere, which in the equatorial plane lies at the location
rg = 2M. The second is that the ¢ diverges, a purely

10

—10+1

—201

rsin(¢)/M

_30_

—401

—50 ; :
—10 ) 0 D 10

rcos(¢)/M

FIG. 7. A series of many Schwarzschild hyperbolic orbits, with
circular orbit radii ranging from r, = ry, — 0.01M (purple) to
re =r, +0.01M (red).
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bad-coordinate effect, at the two event horizons of the black

hole, at the radial locations r, = M + VM?* — a?.
The general form of the Kerr azimuthal four-velocity is
the following:

dg Ub — 2Mya/r+J(1 -2M/r)
dr - 2 =2Mr + a?

, (45)

which implies that the orbital integral takes the form

2 r3/2(2M)/a/r+_](1_2M/r>) )
= [

The solution of this integral is clearly more complicated
than its Schwarzschild analog. We define a “Kerr-type”
integral to be of the form

xn/2
I’C_/(x—A)(x—B)(x—cWD——xdx' (47)

Kerr-type integrals can be transformed into Schwarzschild-
type integrals by repeated use of the identity

(X—a)l(x—ﬂ):aiﬁ[xia_xiﬂ}’ (48)

where a Schwarzschild-type integral has the following
form:

B xn/2
Is— / e (49)

The solutions of these Schwarzschild-type integrals can then
be found by similar steps to those performed in Sec. IV.
The following Kerr-integral solutions will be useful:

I x3/2 i
1_/(x—A)(x—B)(x—C)\/D—x

- 2432 — < D/x—l)
"~ (A=B)(C—-A)VD-A D/A-1

2B3/? ~ D/x—1
“A-B)(C-BVD-B™™ l( D/B—1>

203/2 ~ D/x—1
(C=A)(C-B) D—ctanh1< D/C—1> 50

and

L x1/2 0
2_/(x—A)(x—B)(x—C)\/D—x

o 24172 tanh_1< D/x—l)
~ (A-B)(A-C)VD-A D/A-1
N 2B'/? . h_,( D/x—l)
(A—B)(B-C)VD—B D/B—1
2C1/2 _ D/x—1
_(C—A)(C—B) _D_Ctanh 1( D/C—l)' (51)

It is important here to note that these solutions assume
0<A<B<C<D,and A,B,C < x < D. For the case
C > D the identity —itanh~'(iz) = tan~!(z) allows the
final term to be appropriately rewritten. For D = C some
care must be taken, which is discussed further below. The
arguments of the tanh~! functions should be inverted for
x <A, B, C.

The general form of the Kerr orbital solution is therefore
given by a sum of three functions,

$(r) = f4(r) +F-(r) + fo(r), (52)

where the functions f, are defined as the functions which
encapsulate the divergent ¢ behavior at ., while f, will be
qualitatively similar in character to the Schwarzschild
solutions discussed above. For r. > ry, f.(r) have the
following form:

207 + amr* (ay - ) ]

(ry —r_)(re —ry)y/r3 =71+

1 _ r3/r—1
1_}/ztanh 1<, /—r;/ri - 1). (53)

Note that for @ =0, where r, =2M,r_ =0, we find
f+ =0.For r. < ry, the form of f_(r) changes slightly, as
will be discussed below. Note that for radii within the event
horizons r < r, the arguments of the tanh™' functions in
f+ should be inverted.

Fuln = |

A. r, > r; plunging orbits

For r. > r;, the third root of the radial velocity poly-
nomial 73 is small r, < r; < r; < r,. In this limit the only
solution for f(r) is the following:

B 2Jr?,-/2 + 4Mrcl-/2(ay -J)
folr) = {(rc —ry)(re - r_w?:——rj

S tan‘l( m), (54)
1—72 1—7'3/!'6
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which is entirely analogous to the Schwarzschild plunge
discussed above. Note that frame dragging and the poorly
behaved ¢) coordinate on the Kerr event horizons mean that
there is no well-defined “rotated angle” which this orbit
traverses over its infall. However, there remain, in the
formal limit . — oo, orbital solutions of the Kerr equations
which start outside of the event horizon at r = 2M, before
subsequently reaching r = 0, despite the particle having an
arbitrarily large specific angular momentum.

B. r,=r; spiral orbits

For r. = r;, the third root of the radial velocity poly-
nomial r5 is equal to the ISCO r; = r. = r;. In this limit
the solution f(r) is the following (first derived in [5]):

_f6r (2M(J — ay) — ] r
folr) = M ( r? —2Mr; + a® rp—r (55)

C. ry, <r, < r; homoclinic orbits

For ry, < r. < ry, the third root of the radial velocity
polynomial 75 is greater than the ISCO r3 > r; > r.. In this
limit there are two solutions for fy(r). The first, the
homoclinic solution, is the following (as first derived
in [2]):

[ 207+ aMrP(ay - )
fo(”)—_{(rc_u)(rc—r_) r3—rj

X \/lé__}/ztanh_1 (1 /%) . (56)

The second, a plunging orbit, has the following form:

[ 2R+ amr(ay - J)
folr) = {(rc —r)(re - r_)m}

1 -1
xitanh‘]< L) (57)
1 -2 r3/r—1

D. r.=r;, IBCO parabolic orbits

For r, = ry,, we have simultaneously 1 —y?> =0 and
r3 = oo. The combination /(1 —y?)(r; — r.) converges

to vV2M(J —a)/ry, and the three functions have the
following form:

2Jribri/2 + 4Mr¥2rib(a -J)
=+
f+l7) [mm ) (re—ra)(J —a)

X tanh™! <\/r71> (58)

and
fo(”):—{ 2Jrisb/2—|—4Mr?b/2(a—J)
\/2—M(rib —r)(riy —r_)(J —a)

x tanh™! (\/r—?> (59)

for orbits which spiral outwards r > ry,. For inspiralling
(r < ry,) orbits, we instead have
£l { 20 + 4Mr?(a - J)
olr)=-—
V2M(riy = ry)(rip — r-)(J — a)

x tanh™! < i) . (60)

Tib

For the inspiralling orbits, and for radii within the event
horizons r < r,, the arguments of the tanh~! functions in
f+ should be inverted.

E. r, <r, <r;, hyperbolic orbits

For r, <r. <ry we have y > 1,r3 <0, and a test
particle can escape to infinity with nonzero radial velocity.
The shape of the particle orbit is

fi(r)::t{ 2Jr3i/2—|—4Mrli/2(ay—J) ]
(ry =r_)(re =ro)\/|rms| +re
1 -1 |r3l/r+1
e () o
and
fo<r)——{ 2 + amr!(ay = ) ]
(rc_r+)(rc_r—)\/|r3‘+rc

}/2—1 |r3|/rc+1

for orbits which spiral outwards r > r.. The inspiralling
orbits instead have

2013 4 aMr*(ay - T) ]

folr) =~ & —r)re =l + 1
% 1 nh~! |7‘3|/}’c+1
Nt (\/ |r3|/r+1>' (3)

VI. EXTREMAL KERR BLACK HOLES, a= + M

For a = £M, the two event horizons of the Kerr black
hole coincide r.. = M, and so the partial fractions approach
to solving the Kerr-type integrals must be modified. As far
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as the authors are aware, none of the pseudocircular orbital
solutions have been studied before in this extremal limit
(except the ISCO inspiral [5]).

A. Extremal prograde spin a = +M

For a = +M, circular orbits in the Boyer-Lindquist
coordinate system are stable at all radii down to the event
horizon r, = M. (In these coordinates, this is also the
ISCO radius.) We therefore have r, < r; < r. for all r,,
and there is only one valid pseudocircular orbital solution, a
plunging solution starting at r3. The solution no longer has
two f.(r) solutions, as the two event horizons coincide,
but is of the form

2 2M2y/r +J(1=2M/r))
V1-r= [ e (6

The solution is again most simply written as a sum of
three functions:

o(r) = folr) + fu(r) + F(r), (65)
where
207+ aMr* (My - )
o) = [ e

X #tan_l< M) s (66)
1—)/2 l_rB/rc

the analog of the Schwarzschild plunge, and

M(J —2My) r(rs—r)

oMM i

fu(r)=~-

which encapsulates the divergent ¢ behavior of the event

horizon, and finally

Ml/z(l—yz)_l/2 tanh-! ry/r—1
(rs = M)*?(r. = M)? rs/M -1
X [J(rers = 2r-M — 3rsM + 4M?)

+ 2My(ror3 + Mry — 2M?)], (68)

Fr) =

for r3 > r > M, and with an inverted tanh~! argument for
r <M. In the formal limit r. — oo, r;3 = 2M, and the
above solution describes an orbital plunge from 2M to the
singularity. An example trajectory, with circular orbit
parameter 7. = 10°M, is displayed in Fig. 8.

1.01
0.5
~
= ol
s 0.0
z
_05.
710.
-0 —-05 00 05 10 15 20
rcos(¢)/M
FIG. 8. An extremal prograde (¢ = +M) Kerr plunging orbit,

with r. = 10°M. The colors denote the trajectory inside (orange)
and outside (blue) the event horizons r, = M.

B. Extremal retrograde spin a= - M

The extremal retrograde spin limit a — —M is a limit of
great interest, as it highlights some of the most interesting
frame-dragging effects of the Kerr metric quite simply.

For a = —M, the key orbital radii take the following
values: r; = OM, ry, = (3 +V/8)M/2, r, = 4M, and event
horizons r,. = M. In this limit, note that all key radii are
distinct and a full set of orbital solutions is available.

The orbital shape integral is of the form

3/2 (1=2M/r) —2M2y/r)
Vi=ro= [ e e ®

Once again the general solution comprises three functions:

¢(r) = fo(r) + fu(r) + F(r). (70)

The function

M(J + 2My)
(re = M)(r; = M)

Vr(rs—r)

1—]/2 r—M ’

Ju(r)=— (71)

forall r. # ry, r. > ry,. It will, as will be discussed shortly,
be modified for r. < ry, and r. = r;. The second function
is equal to

5 MI/Z 1 =42 -1/2 -1
f(r) = (3 2 ) 7 tanh™! L4
(r3 = M)**(r. = M) r3/M—1
X [J(rers —2r.M — 3rsM + 4M?)
—2My(ror3 + Mry — 2M?)], (72)
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which again will be modified slightly for intra-IBCO
circular orbits and for r.=r;. Note that for the
special ISCO location, where r, = r; = r; = 9M (with
J =22v/3M/9, y = 5v/3/9) the function f(r) = 0 as the
final term in the square brackets vanishes. We now discuss
the eight distinct orbital solutions of the extremal retrograde
Kerr metric.

1. r, > ry plunging orbits

The plunging orbital solution for extremal a = —M is
given by

£o(r) = {2]}’3/2 —4Mr1/2(My+J)}
0 B (rc_M)z\/rc_rS

1 _ [r3/r—1
X 1_)/2 tan 1( ﬁ) (73)

2. r, =ry spiral orbits

For r, = r;, the third root of the radial velocity poly-
nomial r3 is equal to the ISCO r3 = r. = r;. In this limit
the solution for ¢(r) is [5]:

B 2V2 r3/2
3MP2 (1= r/M)\/1=r/IM’

which is most easily found by returning to the governing
integral (69) and simplifying in this limit.

$(r)

3. ry, <r, <rp homoclinic orbits

The homoclinic orbital solution for extremal a = —M is
found to be

folr) = {2];’3/2 —4Mri/2(My+J)}
’ a (rc_M)z\/r3_rc

1 B r3/r—1
x—l__._ = tanh l<”7r3/rc - 1), (75)

as is the corresponding second orbit, a plunging orbit:

£olr) = 201 — aMr*(My +J)
’ (rc_M)2 r3 —Tre

x \/1;__7/2tanh‘1 <1 /%) (76)

4. r.=r;, IBCO parabolic orbits
For r, = ry,, we have simultaneously 1 —y> =0 and

r3 — co. The combination /(1 —y?)(r; — r.) converges

to V2M(J + M)/ry, and the three functions have the
following form (presented here for the inspiralling case):

‘M 1/2
¢(r) = atanh™! \/7+,Btanh‘1 ’/r_~rb+yrr—M' (77)

The argument a tanh~! should of course be inverted within
the event horizon r < M. The three constants are

__rind (M =3rip) + 2rip(ris + M)(J + M)
V2(riy = M)*(J + M)
MU M)~V
P e -2 )
 3rgd M2+ 2, M3
V2 —M)(J + M)

’

(78)

The argument of Atanh~' should be inverted for out-
spiralling orbits, where r > ry,.

5. r, <r. <r;, hyperbolic orbits

For r, <r. <ry we have y > 1,r; <0, and a test
particle can escape to infinity with nonzero radial velocity.
Each of the three orbital functions must be modified
slightly in this limit. They are

A M(J+2My) r(|rs|+7) 9
fulr) (re=M)(Irs|+M)\//P=1 r=M ~ 7

B _M1/2 2_1 -1/2 1
f(r) _ (73 - ) 2tanh—l( |r3|/r—|— >
(Irs] +M)32(r, — M) |r3l/M +1
X [J(rors —2r.M — 3rsM + 4M?)
—2My(r.r3 + Mry — 2M?)], (80)

and finally

207 —aMrl? (My + J)}

hw:{(m—M%EEVﬂ
1 _ |r3|/r—|—1
X y2 = ltanh 1(1 [W>, (81)

for the outspiralling orbit r > r.. The corresponding
inspiralling orbit is instead described by a function of
the same form, but with its tanh™' argument inverted. This
concludes the set of massive particle pseudocircular orbits.
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VII. RADIAL MOMENTUM AND ORBITS
OF PHOTONS

The case of massless particles, which for simplicity we
refer to generically as “photons,” proceeds along similar
lines. The trajectories of photon orbits are well studied in
the literature, with the Schwarzschild solutions first pre-
sented in [4], and a general discussion of Kerr photon orbits
is presented in [6]. The case of extremal Kerr orbits, which
are not simple limits of the more general |a| # M Kerr
solutions, do not appear to have been derived previously
and are presented here. For completeness we also present
the Schwarzschild solutions of [4].

We work with the four-momenta p# = dx*/do, where ¢
is a suitable affine parameter. The equations for a circular
photon orbit are now

Gup'p* =0,  p'p“d,g,, =0, (82)
with only p® and p? present. The conserved energy and
angular momentum correspond to (minus) p, and p. The
solution of this homogeneous system requires the deter-
minant of the coefficients to vanish, which is the same as
solving the following:

D2 =1-3M/r, +2aM"?/r}/* =0.  (83)

Solving this with the standard cubic formula gives the
radius of a circular photon orbit:

1
r, = 4Mcos? [§ cos~! (— %)} , (84)

which varies from 4M to M for —1 <a/M < 1. With
D = 0, we may now solve for the (conserved) ratio p,/ py
from either one of the equations in (82), the first being more
convenient. The end result is

py = (a—3\/Mr,)p. (85)

(To arrive at this apparently simple result is nontrivial
because it involves very selectively substituting for a in
terms of r, using the original D=0 equation. See
Ref. [20] for an alternative derivation.)

Next, we retain the conserved circular p, (which is
arbitrary) and p, (from above) values, while also allowing
for a p” component to be present. Our governing equation
(p"p, = 0) is then

Po Po r r J Do
2Ma? 2Ma py
- <<r2 + a? +—a> +—ap—"> =0. (86)
r r po

Proceeding as before, this unwieldy equation may be
factored in terms of the roots r, and r3 by defining an
effective potential. Matters simplify dramatically:

r\ 2 2
o) =02 (=2) @
Do r r
(The normalization follows from Eq. (86) by taking the
limit r — c0.) Taking the limit lim,_o 7*(p"/po)* gives,

from the above equation, —rf, r3, and from the governing
Eq. (86)

Po

=2M(3\/Mr, —2a)* =2r;, (88)

2
—riry = 2M<@ + a)

where we used (from D = 0)

2a :3\/Mrp—r§,/2M_1/2 (89)

to arrive at the final equality. Thus, the remarkable solution
from the null geodesic equation that emerges is

(p')? = (L+2r,/r)(1=ry/r)(po)>.  (90)

In common with the case of massive particles inspiralling
from the ISCO [5], this depends on a only through the
photon orbit radius r,. This orbital equation is of the same
form as the massive particle hyperbolic orbit.

To determine the photon orbits spiralling from the
photon radius, we require p?, which is readily evaluated
from p, and py:

aM 6M3/2r))?
P‘p:%(a— a—3(Mrp)1/2+7rp>
r r

=Po <a—3(Mrp)1/2 (1)

3/2
+2M'/2r,,/
A b

r

where in the final line we have used D = 0 to substitute for
4Ma/r and A = (r—r,)(r—r_).

A. Schwarzschild photon spirals

In the Schwarzschild ¢ = 0 limit, p? = —3v/3Mp,/r*.
Then with r, = 3M, x = r/rp,

U

P’ 1
dx_rpE:rpp’_

3
x=1\x(x+2) 92)

Then
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/x—l x(x—|—2
=2t hH/— 1
an Y (x <1),

= 2tanh™! x3+xz7 (x> 1). (93)
Solving for r:
6M .
= 3eotil(g/2) 1 (inspiral),
oM (outspiral). (94)

~ 3tanh?(¢/2) — 1

These solutions formed part of Darwin’s 1959 analysis [4].
Note that as in the case of the massive particle hyperbolic
orbits, photons following this outspiralling orbit reach
infinity at a finite angle

e = —2tanh™! (\@) (95)

B. General Kerr solution —M <a <M

The general Kerr photon integral is of the following
form:

2M'21? V2 4 (a = 3, /Mr,)
) :/ (r=ry)(r=r_)(r—=r,)\/r+2r, dr. (%)

whose solution can be found via a partial fraction expan-
sion. Omitting the lengthy but straightforward details, we

find
1+2r,/r

3r
r) = Cotanh™" | +C, tanh ! ——2°
¢(r) 0 2r, +r + 1—|—2rp/r+
[142r,/r
C_tanh™!y [—— P 97
+ an 1+ 2rp/r_ (97)

for an inspiralling r, < r < r, solution (the arguments of

the final two tanh™!' functions are inverted for r < r.).
While the outspiralling solution r > r), is
1+2r A42r,/r /r

= Cytanh™! \/ C_ tanh™!
¢(r) otan + * 1+2r,/ry
142r,/r
C_tanh™! [ ——— 2 8
+e-tan \/1—1—21”1,/1"_ (%8)

the coefficients Cy, C. of these solutions are the following:

~4M"?r)* = 2r,(a - 3,/Mr,)
Co = B 99
T VAl ) )

and

aMV2PR32 A 4032 (a = 3 /M
_ 4 p T 7 p). (100)

C. —
= (r+—r_)(r],—rjt)w/rjt—|—2rl7

Note that for a =0,r, =3M, r,. =2M, r_ =0, and
therefore Cy =2, C. = 0.

C. Extremal Kerr solutions a= + M
For an extremal spin a = +M, the two event horizons of
the Kerr black hole coincide r, = M, and the partial
fractions approach used in the previous section must be
revisited. These solutions appear to have not been pre-
viously discussed in the literature and display some
remarkable properties.

1. Extremal retrograde spin a= - M

For the extremal retrograde spin of a = —M, the photon
radius is at r, = 4M, and the photon orbit has the following
shape:

TM /2

16M2 1/2 _
= /o»- = AT o

dr,  (101)

_1 4
2
E
P
£ o4
91
4
4 - 0 2 4
rcos(¢)/M

FIG. 9. The inspiralling photon trajectory for the extremal
retrograde a = —M Kerr metric. Pronounced frame dragging is
clearly visible, with the trajectory changing direction just outside
of the ergo-region rp = 2M.
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which has two possible solutions. For r < 4M, we have

o(r) = é {—9};(?‘;;_ r) + 8v/3tanh~!, /ﬁ

4+ \/r/M+ /24 +8r/M
+4\/§ln( - \/r/M—l— \/24 + 8r/M>} (102)

while for r > 4M we have

001 = S [LTIED 5 e [

44 \/r/M+ /24 +8r/M
+4\/§1n( _\/r/M+\/24+8r/Mﬂ- (103)

The inspiralling orbit displays pronounced frame drag-
ging and is displayed in Fig. 9.

6

ct

rsin(¢)/M

3 =3 =4 0 1 2 3
rcos(¢) /M

FIG. 10. The outspiralling photon trajectory for the extremal
prograde a = +M Kerr metric. This orbit starts formally at
Boyer-Lindquist radial coordinate r = M, before escaping to
infinity.

2. Extremal prograde spin a= + M

For a = +M the photon radius r, coincides with the
two event horizon radii r,, all occurring at the Boyer-
Lindquist coordinate » = M. For a photon, there is in fact
an orbital solution starting at the Boyer-Lindquist event
horizon r, = M, which then escapes to infinity. With
r, = ry = a = M, this orbital solution satisfies the follow-
ing integral:

M 1/2 _
—ZM/ i r dr,

104
Vr+2M (104)

which has the following solution:

N [V 32@?; ") 4 2tanh-!
+1n<2 +\/r/M+ /6 —|—3r/M>].

2—\/r/M+ /6 +3r/M

S

$(r) =

(105)

This orbital solution is displayed in Fig. 10.

VIII. CONCLUSIONS

The pseudocircular orbital solutions of the Schwarzschild,
Kerr, and extremal Kerr metrics, which are characterized by
constants of motion that also describe a circular orbit, have
been explicitly derived. There are eight such orbital classes,
five of which plunge and terminate at the origin, while three
either remain bound (homoclinic orbits) or escape to infinity
with zero (parabolic) or finite (hyperbolic) radial velocities.
Each orbital solution may be written entirely in terms of
elementary functions, a result of the remarkable symmetry
imposed on the orbits by the circular constants of motion.
The inspiralling or outspiralling behavior of photon trajec-
tories starting at the unstable photon circular radius have also
been discussed, and have qualitatively similar properties to
the hyperbolic class of massive particle orbits.

The systematic derivation of all eight orbital classes in
this paper completes a line of analysis which dates back to
Darwin’s 1959 study of Schwarzschild orbital motion [4].
Although the origins of this field are more than half a
century old, these explicit solutions have important modern
applications, e.g., as contextual benchmarks for numerical
accretion [22] or photon ray tracing problems [23], for the
computation of gravitational waveforms arising from
extreme mass ratio inspirals using the Teukolsky formal-
ism [24], or in extending existing theories of black hole
accretion [11].
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