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We use ray-tracing techniques to determine the evolution of the event horizon of a large black hole that
“gobbles” a tiny, traversable wormhole. This calculation has physical meaning in the extreme mass ratio
limit. Two setups are considered; a single-mouth wormhole connecting two otherwise independent
universes, and a double-mouth zero-length wormhole within the same universe. In the first setting it turns
out that, at early times, there exist two disconnected horizons, one in each universe, which then merge as the
wormhole falls into the large black hole. In the second setup, we observe the appearance of an “island,” a
region of spacetime that is spatially disconnected from the exterior of the black hole, but in causal contact
with future null infinity. The island shrinks as time evolves and eventually disappears after sufficient time
has elapsed, as compared to the distance between the two mouths. This provides a communication channel
with the interior of the large black hole for a certain time interval. We compute numerically the lifetime of
the island and verify that it depends linearly on the intermouth distance. Extending the analysis to
wormholes with finite length, we show that the achronal averaged null energy condition prevents the
appearance of islands.
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I. INTRODUCTION

Over the past few years, the LIGO/VIRGO Collaboration
has provided awealth of information about the dynamics and
properties of highly compact objects such as black holes
(BH) and neutron stars [1]. These observations have con-
firmed many predictions of Einstein’s theory of general
relativity (GR) and sparked a strong interest in better
understanding the merging of compact objects. Other exper-
imental observations regard the shadow of black holes and
indirectmeasures of them instead [2].However, noneof these

measurements offers any information about what happens in
the interior of a black hole.
Once GR is coupled to matter, additional solutions arise.

Notably, topologically nontrivial spacetimes, such as worm-
holes (WH), can be found [3–7]. These are structures that
connect two distant regions of spacetime, providing a
possible shortcut for travel through the universe, or even
two otherwise disconnected universes. However, the exist-
ence of wormholes typically requires exotic or negative-
energy matter, violating the standard energy conditions
[5,8–12]. This has been a significant obstacle to the viability
of wormholes. Nevertheless, several ways to overcome this
issue have been discussed over the past years, including
classical solutions of general relativity coupled to massless
charged fermions [13,14] or massless scalar fields [15,16],
alternative (higher-derivative) theories of gravity [17–19],
models involving extra dimensions [20–22] or backreaction
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from quantum fields [23] and quantum gravity [24]. These
are only some of the possibilities that are currently being
explored to understand better the nature of wormholes and
their potential theoretical implications.
In this paper, we are interested in studying the shape and

features of the event horizon when a wormhole plunges into
a black hole. To the best of our knowledge, the idea of using
a wormhole as a means to access the interior of a black hole
was first pointed out and investigated by Frolov and
Novikov [25]. Most of the details worked out in that early
study relied on a simplified model to describe the infalling
wormhole, in the sense that it was taken to be pointlike,
while also considering a quasi-Newtonian approximation
to describe the gravitational field in the vicinity of the
wormhole mouths. Here we will obtain the full-fledged
evolution of the event horizon as it responds to the presence
of an extended wormhole. In the process, we clarify certain
results of the Frolov-Novikov model, and point out novel
phenomena occurring in this setting: the possibility of a
black hole region exterior to an event horizon, and the
appearance of an ephemeral island. We shall see that the
former feature is present when the wormhole connects to a
different universe, while the latter feature arises when the
wormhole exhibits two mouths within the same universe.
The analogous problem of the fusion of two black holes

has been studied in a regime in which the ratio of their
masses, m and M, is very small—the extreme mass ratio
(EMR) limit. The full evolution of the event horizon in such a
setting can be obtained exactly and with elementary tech-
niques whenm=M → 0 [26]. The key idea is that, in the rest
frame of the large black hole, and at scales much shorter than
its mass (in fact, taking M → ∞), the small black hole is
freely falling in flat space while the large black hole horizon
can be thought of as just an acceleration horizon.
Returning to the case of a BH-WH merger, the extreme

mass ratio limit was also implicitly considered in [25] but in
that study it was the mass of the large black holeM that was
kept fixed, while the size of the wormhole was taken to
zero. In that context, one has to consider—and speculate
about—what happens when the wormhole finally hits the
black hole singularity. When taking the extreme mass ratio
limit as we shall do, the BH singularity is infinitely far
away and the wormhole never really reaches it. Instead, we
will be able to capture the time evolution of the horizon as it
falls through the wormhole throat. This is only possible if
the size of the wormhole is kept finite.
Therefore, this approximation reveals the spacetime

geometry of the merger and the determination of the event
horizon reduces to finding the congruence of null geodesics
that approaches a null plane at late times [26]. This limit
provides a boundary condition on the null generators of the
event horizon and allows one to integrate the geodesic
equations back in time up to the caustic points (the set of
points where the horizon generators focus). This same
approach was also employed to study mergers with

rotating [27] or charged [28] black holes, as well as the
fusion of a neutron star with a large black hole [29].
Hereafter, we apply these well-established techniques to

the study of the merger of a small wormhole with a large
black hole in the EMR limit. We will adopt the Ellis-
Bronnikov [3,4] spacetime to model the wormhole. As
mentioned, wormholes can either connect two different
universes or two distant regions in the same universe. A
single solution of Einstein’s equations can be used to tackle
both types of wormhole described, the essential difference
being that they differ at the level of the topology of the
global spacetime. In this paper, we compute the null
generators considering both these topologies in order to
determine the evolution of the associated event horizon. In
particular, in Sec. II, we introduce the specific wormhole
metric we will use for our calculations. The method
adopted is explained in detail in Sec. III while in
Secs. IV and V the results for the merger of a large BH
with interuniverse and intrauniverse wormholes, respec-
tively, are presented. Finally, we conclude and discuss
future prospects in Sec. VI. Throughout this work, we
adopt geometrized units, for which c ¼ 1.

II. ELLIS-BRONNIKOV WORMHOLE

The static spherically symmetric Ellis-Bronnikov (EB)
metric is a simple, special case of a traversable wormhole
solution found in 1973 [3,4] and reads

ds2 ¼ −dt2 þ dR2 þ ðR2 þ a2Þðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where the parameter a determines the size of the throat and
the radial coordinate ranges in R ∈ ð−∞;þ∞Þ. Note,
however, that R does not correspond to an areal radius.
The throat occurs at R ¼ 0, and the two limits R → �∞
correspond to the two asymptotically flat regions connected
through the wormhole throat. The metric has no horizons.
A change of coordinates, r2 ¼ R2 þ a2, shows that the
resulting solution

ds2 ¼ −dt2 þ r2

r2 − a2
dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð2Þ

is of the Morris-Thorne form [5]

ds2¼−e2ΦðrÞdt2þ dr2

1−bðrÞ=rþ r2ðdθ2þ sin2 θdϕ2Þ; ð3Þ

with ΦðrÞ ¼ 0 and bðrÞ ¼ a2=r. The metric (2), corre-
sponding to a wormhole with zero gravitational mass, has
been studied in detail in [30] with the purpose of inves-
tigating the bending and scattering of light rays passing
near the wormhole as well as ray capture and wormhole
shadows. It has also been studied in [31,32] to understand
the shadows of the EB wormhole surrounded by non-
rotating and rotating dust.
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A comment is in order. Since thewormhole has zeromass,
the ratio between the masses of the small wormhole and the
large black hole is trivially zero. Therefore, the terminology
“extreme mass ratio” cannot strictly be applied in this
context. Nevertheless, one can still define a small parameter
using dimensionful quantities associated to both the worm-
hole and the black hole. Instead of their masses, we consider
corresponding length scales; for the black hole one takes the
horizon radius, and for thewormholeweuse the throat radius.
However, we shall continue to refer to the regime of a binary
consisting of a small wormhole and a large black hole as the
extrememass ratio limit, which is widespread nomenclature.
In practice, we shall take the formal limit of the BH horizon
radius tending to infinity, while keeping the radius a of the
throat fixed.

III. DESCRIPTION OF THE MERGER

As already mentioned, the merger will be completely
determined by the small object’s metric. The starting point
to identify the causal horizon in such a geometry is
Hamilton’s variational principle for extremal spacetime
paths, that leads to the equations

d2xμ

dλ2
þ Γμ

νρ
dxν

dλ
dxρ

dλ
¼ 0; ð4Þ

which are none other than the geodesic equations, where λ
is an affine parameter. Hamilton’s equations, in terms of
the impact parameter q ¼ L=E, for spherically symmetric
metrics of the type

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ð5Þ

reduce to [29]

_t ¼ fðrÞ−1;
_ϕ ¼ −

q
r2
;

_r ¼ gðrÞpr;

_pr ¼ −
f0ðrÞ
2fðrÞ2 −

g0ðrÞ
2

p2
r þ

q2

r3
; ð6Þ

where pr is the conjugate momentum associated to the
radial variable r, dots refer to derivatives with respect to
the normalized affine parameter Eλ, and primes represent
derivatives with respect to r. The spherical symmetry of the
setup allows one to choose the coordinate system in such a
way that geodesics are always contained in an equatorial
plane.1

At this point, the only missing step towards the
numerical integration and, therefore, the determination

of the event horizon of the EMR merger, is the identi-
fication of the asymptotic behavior of the solutions at
large distances, which also correspond to large values of λ
(i.e., λ → ∞). It is convenient to use the radial coordinate r
to parametrize the geodesics, instead of λ. In that case,
once functions fðrÞ and gðrÞ have been given, the
asymptotic behavior can be extracted by expanding in
powers of 1=r, and integrating Eq. (6), thus yielding the
coordinates t and ϕ as functions of r. The integration
constants are then fixed by demanding the property,
already mentioned, that they should asymptote a null
plane. We can then continue the integration of the geo-
desics numerically back in time.
In certain cases, it will happen that these null geodesics

intersect. Such intersection points are spacetime events
from which light rays emitted to the future in several
directions belong to the event horizon. In other words, these
are points where new generators enter the horizon. These
points are referred to as caustics. Generally they show up as
a continuous set, forming caustic lines when they are one
dimensional. Note that caustic lines are not geodesics.
Given the high degree of symmetry involved in the setup, it
is clear that there must exist a caustic line along ϕ ¼ π.
When a geodesic hits that axis, at a given r ¼ rcaustic, we
terminate the numerical integration.
Another subtlety one has to deal with is the existence of

turning points for some of the geodesics. These arise as
points of closest approach between a geodesic and the
wormhole (see Fig. 1), and we shall denote their radial
coordinate by rmin. At r ¼ rmin, the derivative dϕ=dr
necessarily blows up, so the solution jumps to another
branch. In practice, the continuation of the integration after
the turning point is related, by symmetry arguments, with
the solutions before the turning point [26],

ϕðafterÞðrÞ ¼ 2ϕðrminÞ − ϕðbeforeÞðrÞ; ð7Þ

FIG. 1. Embedding diagram of the interuniverse wormhole,
from two different perspectives. The wormhole connects the two
universes (named A and B) through the throat. Two kinds of
geodesics (green lines) that end up at infinity in universe A are
shown in the figure: geodesics that always remain in the A side;
geodesics that come in from infinity in the B side and emerge
from the throat of the wormhole. The event horizon of the large
black hole is represented by the (continuous) family of geodesics
considered.

1However, note that the equatorial plane for distinct geodesics
is, in general, different.
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tðafterÞðrÞ ¼ 2tðrminÞ − tðbeforeÞðrÞ; ð8Þ

with the understanding that these expressions only apply in
the range r ∈ ½rmin; rcaustic�.
Although we perform our computations using spherical

coordinates, it is useful to convert to Cartesian coordinates,

x ¼ r sinϕ; z ¼ r cosϕ; ð9Þ

to visualize the results. The third Cartesian coordinate, y, is
forced to vanish since each geodesic is constrained to lie on
an equatorial plane. To consider the time evolution of the
event horizon, we draw the congruence of generators as a
two-dimensional surface in the three-dimensional ðt; x; zÞ
spacetime.

IV. MERGER OF A BLACK HOLE WITH A
SINGLE-MOUTH WORMHOLE

In this section we will compute the generators that
determine the event horizon in the collision of a large
black hole and a single-mouth wormhole, in the extreme
mass ratio limit.
The setup considered is shown in Fig. 1. It illustrates two

universes (sides A and B) which are put in causal contact
due to the existence of a wormhole between them. We
assume that we live on side A and hence the boundary
conditions mentioned in the previous section will be
imposed on that side of the wormhole only. Integrating
backwards in time, two qualitatively different geodesics

can arise: those that always remain in universe A and those
that traverse the wormhole into side B.
It is clear, from a simple continuity argument, that all

geodesics crossing the throat have an impact parameter
smaller than a certain threshold value, qc. The S2 throat is
completely fibered by such geodesics which cross it at
varying angles. The outcome is that on side B the
generators come out at all possible angles, revealing a
roughly radial structure that is quite different from the
congruence observed on side A (see Fig. 2).
We now turn to the actual computation of these

geodesics.

A. Horizon generators

Using the metric (2), we see that the first two equa-
tions (6) for the light rays reduce to

_t ¼ 1; _ϕ ¼ −
q
r2
: ð10Þ

Instead of using the remaining two equations to determine
the expression for _r, it is simpler to obtain it from the
quantity ϵ ¼ −gμν _xμ _xν, which is conserved and equal to 0
along a null geodesic. Explicitly, this equation reads

−_t2 þ
�

r2

r2 − a2

�
_r2 þ r2 _ϕ2 ¼ 0: ð11Þ

Multiplying by ðr2 − a2Þ=r2 and using Eq. (10) results in

FIG. 2. Projection of the generators of the event horizon in the ðx; zÞ plane, as defined in Eq. (9). The left (right) panel represents the
null geodesics in universe A (universe B). The small arrows indicate the flow of time along each geodesic. All rays on side A propagate,
to the future, towards z → þ∞. Green curves are generators emerging from the wormhole and their specific behavior on side B is
determined by imposing continuity and differentiability at the throat. The dotted black curves correspond to the threshold value of the
impact parameter, q ¼ qc, which distinguishes the geodesics that cross the wormhole (in green) from those that remain always outside
(in black). Black curves correspond to (caustic) generators with q > qc. The red dots in the left panel indicate turning points, i.e., points
along the generators at which the distance from the wormhole is minimized. In both panels, the red lines correspond to the caustic line.
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_r ¼ 1

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − q2Þðr2 − a2Þ

q
: ð12Þ

Directly integrating this equation would give λðrÞ;
however, this results in a combination of elliptic integrals
which cannot be inverted analytically to find rðλÞ and thus
ϕðλÞ. This problem is circumvented by using r instead of λ
as an independent variable, by rewriting the integrals as

tqðrÞ ¼
Z

dr
_t
_r
; ϕqðrÞ ¼

Z
dr

_ϕ

_r
; ð13Þ

where the label q indicates the (only) parameter of this
family of geodesics. The requirement that this congruence
has to approach a planar horizon at infinity is the boundary
condition that fixes the integration constants in (13).
Now we expand Eqs. (10) and (12) at large distances,

r ≫ a (corresponding to large values of λ). For ϕq, we have

ϕqðr → ∞Þ ¼
Z

dr
_ϕ

_r

����
r→∞

¼ αq þ
q
r
þOðr−3Þ: ð14Þ

We fix the integration constant αq ¼ 0 in such a way that
asymptotically the geodesics are aligned with the z-axis.
For tq, we get

tqðr → ∞Þ ¼ rþ βq þOðr−1Þ: ð15Þ

Requiring that all generators approach a null plane
demands that βq is a constant independent of q. Since
the line element (2) is static, we can fix βq ¼ 0 without loss
of generality.
The general results for Eq. (13) are given in terms of

elliptic integrals,2

tqðrÞ ¼
Z

r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − q2Þðr2 − a2Þ

p ; ð16Þ

ϕqðrÞ ¼ −
Z

qdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − q2Þðr2 − a2Þ

p ; ð17Þ

but, in practice, we integrate the expressions for dtq=dr and
dϕq=dr numerically, starting from a very large radius. It is
possible to obtain analytic expressions but they are cum-
bersome, and therefore we relegate them to the Appendix.
We employ them to compute explicitly the caustic line.
Nevertheless, note that the central generator, having q ¼ 0,
has a very simple form:

tq¼0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − a2

p
; ð18Þ

ϕq¼0ðrÞ ¼ 0: ð19Þ

Because the generators with q < qc fall through the
wormhole, it is important—in order to have the complete
picture of the problem—to follow them back in time on the
other side of the wormhole. This is done by spatially
reflecting the solutions already found in the A universe.3

Alternatively, for each geodesic one can perform a new set
of integrations on the B universe, using as initial conditions
the endpoints of the previous integrations in the A side.
Continuity of the geodesic across the throat is easily
achieved by starting the integration from the same point
on the throat. Continuity of the velocity also demands that
the crossing angle be the same on both sides of the throat.
More precisely, a ray entering the wormhole at a certain
angle relative to the tangent of the wormhole, will exit on
the other side at the supplementary angle compared to the
tangent at that same point:

ϕðBÞ
q ðrÞ ¼ 2ϕqðaÞ − ϕqðrÞ; ð20Þ

tðBÞq ðrÞ ¼ 2tqðaÞ − tqðrÞ; ð21Þ

where the superscript B refers to the coordinates in the B
universe.

B. Physical interpretation

In the alternative universe, the null generators continue
into the past as an expanding cone, and the line of caustics
also extends along that cone. This can be seen in Fig. 3.
This emerging cone can be regarded as a causal horizon,
although in this context its interpretation is quite unconven-
tional. Events inside the cone are those which can influence
universe A in the region outside the large black hole, i.e.,
light rays emitted from points inside this cone can escape
to future null infinity (Iþ) on side A. On the other hand,
events outside the cone can only influence the A universe in
the region inside the large black hole. It should be stressed
that light rays originated in the B side, whether inside or
outside the cone, can always escape to Iþ on side B.
Similarly, events on side A, whether inside or outside the
black hole, are also in causal contact with Iþ on side B.
The resulting picture is that in a BH-WH collision, as in a

binary black hole merger, there are two initially discon-
nected event horizons that fuse (at the “pinch-on” time)
to become a single connected surface at late times. The
crucial difference is that the “small” horizon lives almost
entirely in the B universe, and as we go back in time
this topologically spherical horizon expands at the speed2It is important, when evaluating these expressions, to be careful

with the prescription for the square root of complex numbers and
with the branch cuts in the elliptic functions. The prescriptions used
here are those implemented in Mathematica 12.

3This procedure is extremely similar to the continuation [(7)
and (8)] of the geodesics past the turning points.
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of light. In fact, from the perspective of an observer living
in universe A, the (large) black hole corresponds to the gray
region in the bottom part of Fig. 4 together with the gray
region in the exterior of the event horizon traced in universe
B (see Fig. 5). This is a peculiarity that stems from the fact
that the spacetime considered possesses two asymptotic flat
ends (one in side A, and another in side B, as apparent
in Fig. 1).

C. Quantitative characterization

It is possible to distinguish between rays that enter the
horizon at a caustic with q > qc (black geodesics in Fig. 2)
and rays that emerge from the wormhole with q < qc
(green geodesics). The critical value q ¼ qc corresponds to
rays that go through the point ðr;ϕÞ ¼ ða; πÞ, which
implies the equation

ϕqcðaÞ ¼ π: ð22Þ

This can be solved numerically to find

qc ¼ 0.985821a: ð23Þ

In previous calculations [26], a parameter q� has been
introduced to distinguish between generators which enter
the horizon on the side of the large black hole, q > q�, and
generators with qc < q < q� which enter on the side of the
small object. The value of q� (and its associated value r�)
is determined by the condition _rjϕ¼π ¼ 0, together with
Eq. (12), which yields

ðr2� − q2�Þðr2� − a2Þ ¼ 0; ϕq�ðr�Þ ¼ π: ð24Þ

These equations have two acceptable solutions. One of
them is trivially q� ¼ qc; r� ¼ a, corresponding to the
critical impact parameter that reaches the caustic line
ϕ ¼ π exactly at the wormhole throat. Using the
expression (A8) from the Appendix, one can compute
numerically the other solution to be

q� ¼ r� ¼ 1.01581a: ð25Þ

This second solution is, in fact, the relevant one that
separates the generators that enter the horizon on the side
of the large black hole from those that enter on the side of
the small wormhole. This is more easily understood by
inspecting the figures in the Appendix, which are zoomed-
in versions of Figs. 2 and 3. The corresponding value of
time, t� [see panel (b) in Fig. 4, or panel (d) in Fig. 5], can
be obtained by inserting these values into Eq. (A1),

t� ¼ −2.13390a: ð26Þ

Now, following [26] it is possible to calculate the “dura-
tion” of the merger, Δ�, defined as the difference between
the horizon’s time th as it crosses r ¼ r� (in the direction
ϕ ¼ 0) and the pinch-on instant. An equivalent definition
can be given in terms of retarded times, defined as
v ¼ tþ ρ, where

FIG. 3. Left panel: event horizon in the equatorial plane [i.e., the third spatial coordinate (not shown) is set to y ¼ 0] as a function
of time. Green curves indicate generators that cross the wormhole. The dashed black curves correspond to the critical generators with
impact parameter q ¼ qc. Black curves correspond to caustic generators with q > qc. Right panel: causal horizon on side B of the
universe (and in the equatorial plane) as a function of time. Events below the green cone can influence side A of the universe, where the
merger is happening, outside of the large black hole’s event horizon. Signals emitted from events to the future of the cone will either
remain on side B or else, if they cross the wormhole, they will inevitably end up in the large black hole interior on side A. The red curve
indicates the caustic line. It is apparent that the line of caustics actually continues through the wormhole into the other universe.
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ρ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − a2
p

r
dr ð27Þ

is the tortoise coordinate for the metric (2).
In terms of the retarded times, the duration of the merger

is given by

Δ� ≔ vh − v� ¼ ðth þ ρðr�ÞÞ − ðt� þ ρðr�ÞÞ: ð28Þ

The time th is the moment at which the central generator is
at r ¼ r�. This is determined by Eq. (18). Therefore,

Δ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� − a2

q
− t�; ð29Þ

and using the solutions obtained for r� and t� from (24), it
follows that Δ� ¼ 2.31244a.
The collision of the Ellis-Bronnikov wormhole with a

large BH thus seems to be more than two times faster
than the merger of two Schwarzschild BHs in the extreme
mass ratio limit. In the latter case it was found that
Δ� ¼ 5.94165r0 [26], where r0 denotes the horizon radius
of the small black hole.4

FIG. 4. Sequence of constant-time slices of the event horizon in
the A universe (from the left panel of Fig. 3) with spatial
coordinates centered on the small Ellis-Bronnikov wormhole.
The shaded gray area represents the interior of the black hole.
Pinch-on occurs at t ¼ t� (b). The time interval Δ� ≃ 2.31244a in
panel (d) is a natural measure of the duration of the fusion. The
full two-dimensional constant-time slices of the event horizon are
obtained by rotating around x ¼ 0. Axes are in units of a ¼ 1.

FIG. 5. Sequence of constant time slices of the event horizon in
the B universe (from the right panel of Fig. 3), with spatial
coordinates centered on the small Ellis-Bronnikov wormhole.
The shaded gray area represents the interior of the black hole.
Pinch-on occurs at t ¼ t� (d), at which time the kink along the
caustic has already fell through the wormhole (pinch-on occurs
very close to the wormhole throat but slightly shifted to side A of
the universe). After a time interval Δ� ¼ 2.31244a the entire
universe B is inside the black hole [panel (f)]. Axes are in units
of a ¼ 1.

4In making this comparison, we are assuming that the sizes of
the small objects are the same, i.e., r0 ¼ a.
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V. MERGER OF A LARGE BH WITH AN
INTRAUNIVERSE WORMHOLE

Considering an intrauniverse wormhole (i.e., a wormhole
with two mouths in the same universe) leads to novel
physical effects regarding the study of the event horizon.
Indeed, we will show that events which in the setup of
Sec. IV were inside the event horizon might now be part of
the domain of outer communications of the BH.
Our setup is as follows (seeFig. 6).We assume that the axis

connecting the twomouths of thewormhole is perpendicular
to the planar horizon. Other configurations might be con-
sidered, and the precise results should depend on the details
of the setup. But qualitatively, the outcome of this inves-
tigation is robust, except for the special case inwhich the two
mouths fall through the horizon synchronized.
With this assumption, the closest wormhole mouth falls

into the large black hole before the other one. In the absence
of the wormhole no light rays emitted from the black hole
region can ever reach asymptotic null infinity. Once we
include the infalling wormhole, some of these light rays can
enter the leading mouth of the wormhole and exit from the
trailingmouthwhile it is still outside theBH.Note that this is
possible since we are also assuming that the wormhole has
zero length; a signal that enters one mouth immediately
comes out the other mouth. If thewormhole length is strictly
positive, this will cause some delay. And if the length of the
wormhole is greater than the direct path connecting the two
mouths, as is imposed by the achronal averaged null energy
condition (AANEC) [33–37], then the infalling wormhole
does not open anywindow to observe the interior of the large
black hole, as we demonstrate below.
The assumption we made, i.e., that the axis connecting

the two mouths of the wormhole is perpendicular to the
planar horizon, also has the advantage of preserving the
axial symmetry of the congruence of null generators that
form the event horizon. This allows us to obtain all the null
geodesics as a function of a single parameter, namely the
already mentioned impact parameter q. If this were not the
case we would need two parameters to describe the whole
family of generators.
In order to build a global spacetime with two wormhole

mouths in the sameuniverse,wewill glue two equal copies of
the Ellis-Bronnikov metric along a plane (at the same
distance from both mouths), as illustrated in Fig. 6 with
the red straight line. This is effectively assuming that there is
a domain wall between the two mouths, and it must have
some form of negative energy—which can be computed—to
prevent the two mouths from falling into each other.
Nevertheless, if the mouths are sufficiently far away, the
effect of the negative energy domain wall can be considered
negligible.

A. Horizon generators

We shall use the results of Sec. IV to obtain the
generators around each of the mouths. The only additional

part of the construction that needs to be described concerns
the domain wall. Namely, we should specify how we
continue the geodesics across the matching plane.
Assuming the effect of the domain wall to be negligible,
the geodesics should simply be continuous and differ-
entiable at that surface. This is what we implemented in
order to obtain Fig. 7, where we chose the distance between
the two wormhole mouths to be d ¼ 10a, for concreteness.
Differently from Sec. IV, the generators that emerge from

the trailing wormhole mouth are the continuation of null
geodesics that entered the leading mouth in the same
universe. Therefore, the green cone coexists with the black
plane. However, contrary to the presentation of Fig. 3, we
now rotate the green cone around the vertical axis by 180°.
This is done in order to reproduce the intuition provided by
Fig. 6. Specifically, we want the geodesics exiting the
trailing mouth (on its right side) to be connected with
geodesics entering the leading mouth from its left side.
In this intrauniverse wormhole setup there are new

caustic lines not aligned with the axis x ¼ 0. These caustics
arise from the intersection of the black plane with the green
cone. This is apparent from Fig. 7. Obtaining them is more
challenging than the caustics we computed in the previous
section, and is not the main purpose of our analysis. It is
important to realize that the interior of the black hole
corresponds in Fig. 7 to the region above all the generator
congruences (i.e., both the black and the green surfaces).

B. Physical interpretation

Let us now describe the whole evolution of the merger
process. Upon taking time slices of Fig. 7, at early times
(bottomof the figure)we see an almost flat horizon, when the
twowormhole mouths are far from the large BH, but with an
arc of a circle cut out from theBH interior (see alsoFig. 8).As
time progresses, the horizon gets more and more deformed,
as shown in Fig. 8. Note that, in this intrauniverse setup, we
define t� as the last moment still featuring a caustic point
along the event horizon. That is, it is the maximum t
coordinate of the caustic line. This definition applies equally

FIG. 6. Illustration of the intrauniverse wormhole. The worm-
hole connects two distant parts of the same universe through the
throat. The red lines represent two surfaces along which we join
two halfs of the Ellis-Bronnikov spacetime.
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well to Sec. IV, but now we are considering two distinct
wormhole mouths in the same universe, so we may specify
that it corresponds to the saddle point on the congruence of
generators closest to the trailing wormhole mouth.5 An
important difference with respect to Sec. IV is that, contrary
to what happens for the interuniverse WH, in this case the
black hole horizon bends away from the leading WHmouth
while it bends toward the trailing WH mouth.
At a given time, tp, a precursor forms between the two

mouths. This precursor is a spatial region that belongs to
the BH but is disconnected from the rest of its interior. [See
panels (b) and (c) in Fig. 8.] The same phenomenon appears
in the merger of a neutron star with a large black hole [29].
The precursor expands until it connects, at a later time,
ti > tp, with the large horizon, thus closing off an “island”
region. This island is spatially located behind the large
horizon but is actually not part of the black hole interior
because one can escape the BH through the WH. As time
further elapses, the island shrinks until it disappears into the
wormhole mouth. Finally, when the two mouths are both
inside the BH, theWH ceases to offer an escaping route and
the horizon flattens out again.

The possibility of creating an island is a consequence of
our assumptions. In particular, we chose to connect the two
mouths with a zero length bridge which effectively pro-
vides a shortcut in spacetime. Imposing the physically-
relevant achronal averaged null energy condition amounts
to making the length through the wormhole longer than the
direct path without crossing the wormhole [13,35,38]. In
practice, this will move down the green cone in Fig. 7 in
such a way that the novel effects we describe in this section
(the precursor and the island) will be limited to a region
closer to the leading mouth. If the length of the WH is taken
to be too long, these effects will be completely absent. This
statement might need to be revised if a twist along the
wormhole is included, as discussed in Sec. VI.
We emphasize that the islands we discuss here have no

direct relation with the quantum extremal islands [39–42]
that have been recently proposed, in the context of the black
hole information paradox, to reproduce the Page curve for
evaporating black holes [43–47]. Despite some clear
differences at the level of the details, the spirit is, never-
theless, the same; there is a region within the black hole that
is, in a sense, not part of it.

C. Quantitative characterization

As already described, in this setup the merger between
the two objects starts with the formation of a precursor.

FIG. 7. Equatorial section of the event horizon as a function of time for an intrauniverse wormhole. The distance between the two
mouths was set to d ¼ 10a to produce this plot. The color coding is the same as for Fig. 3, except now two infinite cylinders are
included, to indicate points that do not belong to the spacetime, as they would be “inside” the wormhole throat. The surfaces of the two
cylinders should be thought of as being identified. The green cone and the black plane intersect along a certain curve—not computed,
nor shown, explicitly—which is a second caustic line that arises in this model. Even though the continuation of the green and black
generators to the past of this second caustic is shown, it must be noted that those sections of the generators are not actually part of the
event horizon, and the black hole interior is the region that lies simultaneously above the green cone and the black plane. The lifetime of
the island is the difference between the last instant at which the green cone and the black plane intersect, and the last instant at which the
green cone still exists.

5There would also exist a saddle point on the congruence of
generators closest to the leading wormhole mouth, but that is not
part of the event horizon. See Fig. 7.
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The time evolution of the whole process can be obtained by
taking constant time slices of Fig. 7, and this is illustrated
in Fig. 8.
In this section, we characterize this process by computing

the island lifetime,Δ∘, which measures the time between the

precursor formation and the collapse of the island. To be
precise, this is a slight overestimate because the island only
forms when the precursor fuses with the large horizon.
However, that instant is difficult to compute exactly, since the
pinch-on does not occur along the x ¼ 0 axis [see Fig. 8,
panel (c)]. Given that the precursor remains disconnected
from the rest of the black hole region only for a very short
timewhen compared to the lifetime of the island—especially
for large d ≫ a—this is a reasonable approximation.
While the last instant for which the island still exists is

tf ¼ 0—obtained from Eq. (18) with r ¼ a—the moment
of birth of the island, ti, is much harder to determine. We
will use, as a proxy, the instant at which the two caustic
lines along x ¼ 0 cross, i.e., we shall take ti ¼ tp. The
characteristic lifetime of the island can then be defined,
naturally, as Δ∘ ¼ tf − ti.
Once d is fixed relative to a, the lifetime can be

computed numerically. We have calculated it for a range
of ratios d=a and, as expected, a linear law of the form

Δ∘ ¼ aþ 1

2
d ð30Þ

yields a good fit, with a precision better than 2.5% for all
intermouth distances d greater than 4a. This linear fit
remains appropriate even for small intermouth distances,
d=2 − a ≪ a, although that would mean the two mouths
are very close to each other. As a result, the domain wall
keeping them apart would have a strong impact on the
generators, and so such cases are outside the regime of
validity of our analysis.
Asmentioned before,we adopted a zero-lengthwormhole

to conduct our calculations. If one considers a wormhole
with a finite lengthL, a time corresponding to half this length
must be deducted from the island’s lifetime, when the
intermouth distance is much larger than the size of the
throat, so theprevious relationmust bemodified according to

Δ∘ ≃
d − L
2

; for d ≫ a: ð31Þ

The lifetime of the island—as we defined it above—does
not employ the retarded time, in contrast with what
was done in Sec. IV for the duration of the merger.
Unfortunately, in this setting a similar definition using
retarded time appears to be out of reach.6

It should be noted that imposing the AANEC amounts to
requiring that L > d, so that the wormhole is “long”
[13,35,38]. Equation (31) then implies that the lifetime

FIG. 8. Time slices of the event horizon for an infalling
intrauniverse wormhole. As in Fig. 7, the intermouth distance
is set to d ¼ 10a and the value of t� (defined in Sec. V B) is the
same as in Sec. IV, namely t� ¼ −2.13390a. Among the six
panels shown we highlight two. Panel (b) is a still shot of the
event horizon at the moment of the formation of the precursor,
which is visible as a tiny dot near ðx; zÞ ¼ ð0;−5Þ. Panel (c)
illustrates the configuration occurring when the precursor merges
with the rest of the black hole region, and it corresponds to the
birth of the island.

6The main obstacle to defining a retarded time associated to the
birth of the island is a simple topological fact: in such a
spacetime, light rays emitted along the axis x ¼ 0 from that
event, corresponding to the intersection of the caustic lines, can
never reach infinity. Instead, they would keep eternally cycling
through the wormhole. In addition, the spacetime is not spheri-
cally symmetric, which also poses a difficulty of technical nature.
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would be negative, meaning that the island is necessarily
absent under these conditions.

VI. CONCLUSIONS AND DISCUSSION

In this work, we have studied the merging process
between a large black hole and two different wormholes
in the extreme mass ratio limit; namely, in Sec. IVa single-
mouth wormhole, and in Sec. V a two-mouth wormhole.
The whole analysis was performed using the Ellis-
Bronnikov metric and employing ray-tracing techniques.
Both setups present novel features together with some
already well-described phenomena occurring in the black
hole-black hole [26] and the black hole-neutron star fusions
[29]. We have shown that basically all of the features
observed in previous studies of (nonrotating) mergers in the
EMR limit are, in some cases surprisingly, present also
here, most notably, the fusion of initially disconnected
horizons in Sec. IV, and the appearance of precursors
in Sec. V.
The interuniverse wormhole case resembles the merging

of two black hole horizons, but, in this case, the finite
horizon with S2 topology lives almost entirely on the side of
the universe beyond the wormhole throat, and it is the
exterior of that surface that forms part of the black hole
region. In this collision, as in a binary black hole merger,
two initially disconnected event horizons fuse to become a
single connected surface at late times. The point at which
the two horizons first touch occurs very near the throat of
the wormhole, at least for the Ellis-Bronnikov geometry we
adopted. Let us stress again that this background geometry
has no horizon; therefore, one might amusingly call such a
situation “the fusion of two horizons in a spacetime without
horizons.”
Building on the results of Sec. IV, we have performed the

calculations also for the collision with an intrauniverse
wormhole, in Sec. V. This setup shows the possibility of
creating an “island”—a region behind the infinitely large
horizon which, nevertheless, does not belong to the black
hole interior. This occurs because signals emitted from
within can escape the black hole by falling into the leading
mouth of the wormhole and exiting from the trailing mouth,
which is still traveling through the domain of outer
communications. The lifetime of such islands depends
essentially linearly on the distance between the two mouths
of the wormhole and on the wormhole length.
Many of the features borne out of the calculations

performed in Sec. V can be inferred from a simpler model
of a wormhole, which is obtained by identifying two slits in
a flat spacetime.7 That simpler model immediately makes it
apparent that the island lifetime scales like half the distance
between the two mouths. The more involved model we
have used allowed us to compute corrections to that linear

law stemming from the curvature of the spacetime. As
expected, in the limit of large separations the two expres-
sions agree. What is somewhat surprising is that even at
relatively small interdistances compared to the throat size,
the departure from linearity continues to be negligible.
A notable difference between the results of Secs. IVandV,

apart from the appearance or not of an island, concerns the
bending of the large horizon. While the geometry of the
wormhole dictates that the large horizon bends towards
thewormhole in Sec. IV, once a shortcut through spacetime is
created by connecting two mouths within the same universe,
as in Sec. V, it follows that the large horizon recedes away
from the leading mouth of the wormhole, as expected.
It is interesting and instructive to compare our findings

with the original study by Frolov and Novikov [25], which
proposed a wormhole falling into a black hole as a
gedanken experiment to access the interior of the BH.
As in our case, those authors considered a traversable
wormhole in the limit of vanishingly small mass for the
mouths and zero length for the handle between the two
mouths. However, in contrast with our analysis, they
investigated the propagation of null geodesics in the
Schwarzschild spacetime (instead of the EB background),
and explicit results were obtained by assuming the worm-
hole mouths to be pointlike. Therefore, Ref. [25] also
explored the extreme mass ratio regime, although in a
different guise; in [25] it is the large BH whose size is kept
finite while the WH size is taken to zero and in the present
paper we chose to keep the size of the WH finite and let the
BH horizon become infinitely large.
Given that both studies analyze the same gravitational

system in similar regimes, one should expect agreement
between the main results. This is indeed the case.
Reference [25] showed how the absorption of a wormhole
generates a temporary shrinking of the black hole’s horizon
while leaving the outside gravitational field largely
unchanged. This is the same feature we observed in
Sec. V. However, the presence of a precursor and the
related island went unnoticed in that case. Nevertheless, a
careful reading of [25] demonstrates that their analysis
also supports our result about the existence of an island.
The crucial point is that Ref. [25] adopted Eddington-
Finkelstein coordinates, where the timelike coordinate is
replaced by a lightlike coordinate. The upshot is that the
exterior of the black hole in those coordinates is connected.
But if one were to revert back to a timelike coordinate,
slices of constant time would be tilted and then it becomes
clear that, for a certain time interval, there is a region
contained within the outermost horizon which is, nonethe-
less, part of the exterior of the black hole. This is the island.
The intriguing conclusion of [25] was that it is possible

to extract information from the interior of a black hole
if only one allows a tiny violation of the weak energy
condition, since drastic modifications to the event horizon
can be produced by a WH as small as desired. The analysis

7We thank Roberto Emparan for having pointed out to us the
similarities with this model.
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we have presented allows a full description of the changes
suffered by the event horizon on the scales of the wormhole
that causes its deformation. Our results support the expect-
ation that, once physically reasonable energy conditions are
imposed (i.e., the achronal averaged null energy condition,
which forbids the existence of short wormholes), then our
ability to recover information classically from within a
black hole by using WHs is lost. In any case, we hope this
study can serve as a useful testbed for ideas concerning the
information paradox.
Let us finally discuss possible future directions. We have

made a number of choices in the modeling of the intra-
universe wormhole, so a natural extension would be to
consider other configurations. Quantitatively, the results will
depend on the details of the setup. We have already
considered changes to the distance between the two mouths
(relative to the size of thewormholemouth), and the length of
thewormhole. Other parameters of themodel that might play
a role are the twist along thewormhole, and the orientation of
the axis connecting the two mouths compared to the planar
horizon. For example, there could be a chance to create a
short-lived island without any violation of the AANEC if the
wormhole twists. Although this seems unlikely, it is still an
open possibility that requires a dedicated analysis.
One may also consider more drastic modifications to the

setup, for instance by delaying the plunge of the trailing
wormhole mouth or even forcing it to remain fixed outside
of the large BH, while the leading mouth falls in. At first
sight, the latter variant seems to entirely destroy the
horizon, since one could always escape the black hole
by choosing a route through the wormhole to the exterior.
However, this conclusion is also an artifact of the assumed
extreme mass ratio regime, namely that the black hole was
taken to be infinitely large, which implies that its own
strong gravitational field is localized infinitely far away
from the horizon.
The Ellis-Bronnikov solution we adopted as a back-

ground in this paper features a single parameter, a, that
simultaneously controls the size of the wormhole and the
curvature of the spacetime. However, a generic wormhole
solution should allow these two parameters to vary inde-
pendently. For example, Ref. [48] derives wormholes
which are massive and for which one can freely adjust
the size of the throat (see also [49] for other such space-
times). Another possibility is to consider “portal” worm-
holes [50], which can be designed in such a way that the
curvature vanishes everywhere outside a negative mass
cosmic string that supports the wormhole. The flatness,
combined with the nontrivial topology of such spacetimes,
suggests that such a setup might provide a particularly
simple means to reveal many of the essential features
we have studied, in the same spirit as the two-slit model
previously mentioned.
A related topic is the study of themarginally outer trapped

surfaces (both open and closed, possibly self-intersecting),

which can also be considered in the extreme mass ratio
case. Following [51], the whole analysis that we have
conducted here can be supplemented with the study of the
properties of such trapped surfaces. Given that the event
horizon must enclose all marginally outer trapped surfa-
ces, it might be interesting to explore the connection
between the latter and the constant time slices we have
constructed featuring islands.
Finally, it would be worthwhile to improve the con-

struction of the global solution with two wormhole mouths
in the same universe. We achieved that in Sec. V by gluing
two copies of the same EB geometry along a domain wall,
arguing that if the mouths are sufficiently far apart, the
negative energy localized on that surface is negligibly
small. Still it would be desirable to employ an exact
solution without requiring any additional matter sources.
Presently such intrauniverse wormhole solutions are not
known exactly and it would be very interesting to derive
such geometries, possibly using a high degree of symmetry
to make the problem more tractable.
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APPENDIX: DERIVATION OF CAUSTIC LINES

In this appendix we provide explicit expressions for the
integrals in Eqs. (16) and (17), and use them to compute the
caustic line occurring along ϕ ¼ π.
Before presenting the formulas, it is useful to stress that

the background geometry only has a single length scale,
namely the wormhole throat radius, a. Therefore, all
dimensionful quantities can be written entirely in terms
of the ratios ξ ¼ jqj=a and ν ¼ r=a. We also introduce the
dimensionless time coordinate, η ¼ t=a.
Upon fixing the integration constants αq ¼ βq ¼ 0, as

discussed in Sec. IVA, and using results from Ref. [28],
it follows that

ηqðνÞ ¼
tq
a
ðνÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν2 − ξ2Þðνþ 1Þ

ν − 1

r

þ
ffiffiffi
ξ

p
FðγðνÞjβÞ − 2

ffiffiffi
ξ

p
EðγðνÞjβÞ − cq; ðA1Þ

ϕqðνÞ ¼ sgnðqÞ
ffiffiffi
ξ

p
½FðαjβÞ − FðγðνÞjβÞ�; ðA2Þ
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where the additive constant cq is equal to

cq ¼ 1þ
ffiffiffi
ξ

p
FðαjβÞ − 2

ffiffiffi
ξ

p
EðαjβÞ; ðA3Þ

and

α ¼ arcsin

 ffiffiffiffiffiffiffiffiffiffiffi
2

ξþ 1

s !
; β ¼ ð1þ ξÞ2

4ξ
;

γðνÞ ¼ arcsin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðν − ξÞ

ðξþ 1Þðν − 1Þ

s !
: ðA4Þ

The functions

FðxjyÞ ¼
Z

x

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y sin2 θ

p ; ðA5Þ

EðxjyÞ ¼
Z

x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y sin2 θ

q
dθ; ðA6Þ

are elliptic integrals of the first and second kind,
respectively.
The explicit results given above for the t and ϕ

coordinates of the generators clearly break down when
r → a, but are valid otherwise.

Setting ϕqðrÞ ¼ π one can determine the r-coordinate of
the caustic line as a function of the impact parameter q. The
result, again following [28], is written in terms of the sine of
the Jacobi amplitude, snðxjyÞ ¼ sin ðamðxjyÞÞ, where

amðFðxjyÞjyÞ ¼ x: ðA7Þ

The final expression can be written as

νcðξÞ ¼
rc
a
ðξÞ ¼

2ξ − ð1þ ξÞsn2
�
FðαjβÞ − sgnðqÞπffiffi

ξ
p jβ

�
2 − ð1þ ξÞsn2

�
FðαjβÞ − sgnðqÞπffiffi

ξ
p jβ

� :

ðA8Þ

Accordingly, the t-coordinate of the caustic line, as a
function of q, is obtained by plugging the above result
in Eq. (A1), i.e., ηcðξÞ ¼ ηqðνcðξÞÞ, or, restoring dimen-
sions, tcðqÞ ¼ tqðrcðqÞÞ.
The value reported in Eq. (25) is obtained by equating

expression (A8) to ξ.
Figures 9 and 10 are zoomed-inversions of Figs. 2 and 3 in

the main text, obtained by employing the results of this
Appendix. They display the behavior of the caustic line close
to the wormhole throat and emphasize that the q ¼ q∗
generators are distinct from the q ¼ qc generators.

FIG. 9. Close up of Fig. 2, zooming in on the point at which the
generators with the critical impact parameter qc (shown in dashed
green—not to be confused with the throat of the wormhole) reach
the throat radius. All other generators shown meet the x-axis in an
oblique fashion, but the q ¼ qc generators reach it perpendicu-
larly. The only other generators for which this happens are
obtained for q ¼ q� but they fall outside this zoomed-in region.
The horizontal red line is the caustic.

FIG. 10. Close up of the left panel of Fig. 3, zooming in on the
point ðt; r;ϕÞ ¼ ðt�; r�; πÞ, corresponding to a saddle on the event
horizon, which occurs very close to the location of the throat
(r ¼ a). The event horizon is a nondifferentiable surface along
the caustic line, shown in red. The magenta-dashed lines identify
the q ¼ q� generators, while the green-dashed lines correspond
to the q ¼ qc generators.
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