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The tangent vector of the light trajectory at future infinity and the angle of total light deflection in the
gravitational field of an isolated axisymmetric body at rest with full set of mass multipoles and spin
multipoles is determined in harmonic coordinates in the 1PN and 1.5PN approximation of the post-
Newtonian (PN) scheme. It is found that the evaluation of the tangent vector and of the angle of total light
deflection caused by mass multipoles and spin multipoles leads directly and in a compelling way to
Chebyshev polynomials of the first and second kind, respectively. This fact allows one to determine the
upper limits of the total light deflection, which are strictly valid in the 1PN and 1.5PN approximation. They
represent a criterion to identify those multipoles which contribute significantly to the total light deflection
for a given astrometric accuracy. These upper limits are used to determine the total light deflection in the
gravitational field of the Sun and giant planets of the Solar System. It is found that the first few mass
multipoles with l ≤ 10 and the first few spin multipoles with l ≤ 3 are sufficient for an accuracy on the
nanoarcsecond level in astrometric angular measurements.
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I. INTRODUCTION

The precision in angular measurements of celestial
objects has reached the microarcsecond (μas) scale of
accuracy. This level of precision requires a relativistic
modeling of light trajectories in the curved space-time of
the Solar System, where not only the mass-monopole
structure of the Solar System bodies needs to be taken
into account, but also the mass-quadrupole structure of
some giant planets. In particular, the space-based astrom-
etry mission Gaia of the European Space Agency (ESA)
measures angular distances between stellar objects with an
accuracy of about 5 μas [1,2], which allows one to detect
the effect of light deflection caused by the mass-quadrupole
structure of the giant planets Jupiter and Saturn. Near future
astrometry missions are aiming at the submicroarcsecond
(sub-μas) level in angular measurements [3,4], where it
becomes possible to detect not only the light deflection
effect caused by higher mass multipoles but perhaps also
spin multipoles of Solar System bodies. In fact, there are
several astrometry missions proposed to ESA, which are
aiming at such unprecedented level of astrometric preci-
sion, like the astrometry missions Gaia NIR [5], Theia [6],
Astrod [7,8], Lator [9,10], Odyssey [11], Sagas [12], or
TIPO [13].
A precise relativistic modeling of light trajectories in the

curved space-time of the Solar System is required, in order
to interpret such astrometric measurements correctly. In the
flat space-time, assumed to be covered by Minkowskian
four-coordinates ðx0; x1; x2; x3Þ, a light signal which is

emitted at some initial time t0 by some light source
located at x0 in spatial direction σ propagates along a
straight line:

xNðtÞ ¼ x0 þ cðt − t0Þσ; ð1Þ

where sublabel N stands for the unperturbed light ray
according to Newtonian theory, while, according to general
theory of relativity, a massive body causes space-time to
curve and light is no longer propagating along a straight
line but along geodesics of the curved space-time. For weak
gravitational fields, like in the Solar System, the light
trajectory is then given by

xðtÞ ¼ x0 þ cðt − t0Þσ þ ΔxðtÞ; ð2Þ

where ΔxðtÞ denote the corrections to the unperturbed light
ray. The light trajectory (2) is curvilinear and the angle of
total light deflection, denoted by δðσ; νÞ, is the angle
between the three-vectors σ and ν, which are the unit
tangent vectors along the light trajectory at past and future
infinity, respectively, defined by

σ ¼ _xðtÞ
c

����
t→−∞

; ð3Þ

ν ¼ _xðtÞ
c

����
t→þ∞

; ð4Þ
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where a dot means differentiation with respect to coordinate
time. The total light deflection is an upper limit for bending
of light by the massive body, in the sense that if the light
source or the observer are located at finite spatial distances
from the body, then the light deflection angle would
become smaller than the total light deflection angle.
For weak gravitational fields and slow motions of matter

one may apply the post-Newtonian (PN) approximation
(weak-field slow-motion approximation). In the 1PN
approximation, the unit tangent vector of light ray at future
infinity, caused by a spherically symmetric body at rest in
uniform rotational motion with period T, is given by [14–18]

ν ¼ σ þ νM0

1PN þ νS11.5PN: ð5Þ

The mass-monopole term reads [e.g. Eq. (16) in Ref. [18]]

νM0

1PN ¼ −
4GM
c2dσ

dσ
dσ

; ð6Þ

where G is the Newtonian gravitational constant, M is the
mass of the body, c is the speed of light, and dσ is the
impact vector of the unperturbed light ray and its absolute
value, dσ , is the impact parameter. In case of the Sun, the
total light deflection (6) amounts to 1.75 arcsecond for
grazing rays, an effect which belongs to the most famous
predictions of the general theory of relativity in 1915
[cf. text below Eq. (75) in Ref. [14]].
The spin-dipole term reads [Eq. (60) in Ref. [18] or

Eq. (72) in Ref. [19]]

νS11.5PN ¼ −
4G

c3ðdσÞ2
�
2
ðσ × dσÞ · S

dσ

dσ
dσ

þ ðσ × SÞ
�
; ð7Þ

where the intrinsic angular momentum in (7) is given by

S ¼ κ2MΩP2e3; ð8Þ

where κ2 is the dimensionless moment of inertia,
Ω ¼ 2π=T is the angular velocity of the body, P is its
equatorial radius, and e3 is the unit vector along the rotational
axis. The effect of total light deflection caused by the
rotationalmotion (7) in case of the Sun amounts to 0.7micro-
arcsecond for grazing rays, an effect which becomes detect-
able at the submicroarcsecond level of astrometric precision.
The expression in (5) with (6) and (7) determines the

total light deflection in the gravitational field of a spheri-
cally symmetric body in uniform rotation. In reality,
however, massive bodies are not spherically symmetric
but can be of arbitrary shape, inner structure, oscillations,
and rotational motions of inner currents. The gravitational
fields of such gravitational systems are determined with the
aid of multipole expansion, which is a series expansion of
the metric tensor in terms of mass multipoles ML (mass
monopole, mass quadrupole, mass octupole, etc.) and spin

multipoles SL (spin dipole, spin hexapole, spin decapole,
etc.) [15–17]. The multipole expansion of the gravitational
fields implies a corresponding multipole expansion of the
exact light trajectory in (2). Accordingly, the expressions (6)
and (7) represent only the first terms of an infinite multipole
series of the unit tangent vector ν in (4) [e.g. Eq. (11) in
Ref. [18]],

ν ¼ σ þ
X∞
l¼0

νML
1PN þ

X∞
l¼1

νSL1.5PN þOðc−4Þ; ð9Þ

as well as of the angle of total light deflection [20],

δðσ;νÞ¼
X∞
l¼0

δðσ;νML
1PNÞþ

X∞
l¼1

δðσ;νSL1.5PNÞþOðc−4Þ; ð10Þ

where the terms of second post-Newtonian order (2PN)
have been neglected in (9) and (10); see also the final
comment in the summary section below Eq. (133). The
1PN and 1.5PN expressions for the unit tangent vector
in (9) and for the angle of total light deflection (10) have
been derived for the first time in Ref. [21] for the most
general case of one body at rest with full mass-multipole
and spin-multipole structure.
In order to determine the unit tangent vector in (9) as

well as the angle of total light deflection in (10) and their
upper limits one may consider the model of an axisym-
metric body in uniform rotational motion around its axis of
symmetry. In this investigation it has been found that the
calculation of both these observables in (9) and (10) leads
directly to Chebyshev polynomials of first and second kind,
Tl and Ul [22,23]. This remarkable feature allows two
important things: (a) it allows one to derive the expressions
for the unit tangent vector at future infinity in a straightfor-
ward manner and (b) it allows for a straightforward
determination of the upper limit of the angle of total light
deflection, because the upper limits of Chebyshev poly-
nomials are given by

jTlj ≤ 1 and jUl−1j ≤ l: ð11Þ

The angle of total light deflection represents the upper limit
for the bending of light by some massive body. Therefore,
the upper limits derived in this investigation allow for a
straightforward determination of the maximal effect of light
deflection for realistic Solar System bodies. Furthermore,
they can be reached by realistic astrometric configurations.
In this sense they are just the upper limits.
The manuscript is organized as follows: In Sec. II the

multipole decomposition of the metric for an isolated body
as well as the geodesic equation for light rays is given.
Furthermore, the approach presented in Ref. [21] about
how to derive the light trajectory in 1PN and 1.5PN
approximation is considered. The formal expressions for
the total light deflection in 1PN and 1.5PN approximation
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are given in Sec. III. The mass multipoles and spin
multipoles for an axisymmetric body in uniform rotational
motion are presented in Sec. IV. In Sec. V the total light
deflection caused by mass multipoles and spin multipoles
of an axisymmetric body are calculated and it is demon-
strated that the total light deflection is given by Chebyshev
polynomials. Furthermore, their upper limits are deter-
mined. Numerical results for the total light deflection at the
Sun and the giant planets of the Solar System are shown in
Sec. VI. A summary is given in Sec. VII. The notations,
conventions and details of the calculations are shifted into a
set of several appendixes.

II. METRIC TENSOR AND GEODESIC EQUATION

A. Metric tensor and geodesic equation

Let the space-time be covered by harmonic four-coor-
dinates, xμ ¼ ðx0; x1; x2; x3Þ, where x0 ¼ ct is the speed of
light times coordinate time, while x1, x2, x3 are the spatial
coordinates, and the origin of spatial axes is assumed to be
located at the center-of-mass of the body. The metric tensor
of the curved space-time in the exterior of the massive body
is assumed to be time independent. In the post-Newtonian
scheme the metric tensor can be series expanded in terms of
inverse powers of the speed of light, which in the time-
independent case is given by [15–17]

gαβðxÞ ¼ ηαβ þ hð2Þαβ ðxÞ þ hð3Þαβ ðxÞ þOðc−4Þ; ð12Þ

where the nonvanishing metric perturbations, in canonical
gauge, are [17,24–27]

hð2Þ00 ðxÞ ¼
2

c2
X∞
l¼0

ð−1Þl
l!

M̂L∂̂L
1

r
; ð13Þ

hð3Þ0i ðxÞ ¼
4

c3
X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵiabŜbL−1∂̂aL−1

1

r
; ð14Þ

hð2Þij ðxÞ ¼
2

c2
δij

X∞
l¼0

ð−1Þl
l!

M̂L∂̂L
1

r
; ð15Þ

where r ¼ jxj and

∂̂L ¼ STFi1…il

∂

∂xi1
…

∂

∂xil
; ð16Þ

where the hat in ∂̂L indicates the symmetric trace-free (STF)
operation with respect to the indices L ¼ i1…il, which
makes a Cartesian tensor symmetric and trace-free with
respect to all spatial indices; for details see Appendix B. The
mass multipoles and spin multipoles for a stationary source
ofmatter are given by [cf. Eqs. (5.38) and (5.41) in Ref. [26]]

M̂L ¼
Z

d3xx̂LΣþOðc−4Þ; ð17Þ

ŜL ¼
Z

d3xϵjkhil x̂L−1ix
jΣk þOðc−4Þ; ð18Þ

where the integration runs over the volume of the body and
the notation Σ ¼ ðT00 þ TkkÞ=c2 and Σk ¼ T0k=c has been
adopted, withTαβ being the stress-energy tensor of the body.
In flat (Minkowskian) space-time, a light signal which is

emitted at some initial time t0 into some three-direction, σ,
propagates along a straight trajectory:

xN ¼ x0 þ cðt − t0Þσ: ð19Þ

In curvilinear space-time the light trajectory is determined
by the geodesic equation, which in 1.5PN approximation
reads [29] and [30]

ẍiðtÞ
c2

¼ ∂hð2Þ00

∂xi
− 2

∂hð2Þ00

∂xj
σiσj

−
∂hð3Þ0i

∂xj
σj þ ∂hð3Þ0j

∂xi
σj −

∂hð3Þ0j

∂xk
σiσjσk ð20Þ

up to terms of the order Oðc−4Þ. The double dot on the left-
hand side in (20) means twice the total differential with

respect to the coordinate time, and hð2Þij ¼ hð2Þ00 δij has been
taken into account. The geodesic equation (20) is a differ-
ential equation of second order. Thus, a unique solution
of (20) requires initial-boundary conditions [18,21,29–33]:
the spatial position of light source x0 and the unit direction σ
of light ray at past infinity,

x0 ¼ xðtÞjt¼t0 ; ð21Þ

σ ¼ _xðtÞ
c

����
t→−∞

; ð22Þ

with σ · σ ¼ 1. The geodesic equation (20) can be solved
by iteration, and the solution of first and second integration
reads formally

_xðtÞ
c

¼ σ þ
X∞
l¼0

Δ_xML
1PNðtÞ
c

þ
X∞
l¼1

Δ_xSL1.5PNðtÞ
c

; ð23Þ

xðtÞ¼ xNðtÞþ
X∞
l¼0

ΔxML
1PNðt; t0Þþ

X∞
l¼1

ΔxSL1.5PNðt; t0Þ; ð24Þ

up to terms of the orderOðc−4Þ. Themetric (12) is valid in the
entire space, while in the geodesic equation (20) the metric
components have to be taken at the concrete spatial position
of theunperturbed light ray (19) at coordinate time t. This fact
implies that one has, first of all, to perform the differentia-
tions in the metric components (13)–(15) as well as in the
geodesic equation (20), and afterward one may replace the
spatial variable x by the unperturbed light ray xNðtÞ. Then, in
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the very final step, one may perform the integration of
geodesic equation.However, that standard procedure leads to
cumbersome expressions already for the very first few
multipoles. Therefore, advanced integration methods have
been developed in Ref. [21], which allows one to inte-
grate (20) exactly and which will be considered in what
follows.

B. Metric tensor and geodesic equation
in terms of new variables ðcτ;ξÞ

In the approach in Ref. [21] advanced integration
methods were introduced, based on the new parameters

cτ ¼ σ · xN; ð25Þ

ξi ¼ Pi
jx

j
N; ð26Þ

where the unperturbed light ray is given by Eq. (19) and
the operator

Pij ¼ δij − σiσj ð27Þ

is a projection operator onto the plane perpendicular to
vector σ. Clearly, by inserting the unperturbed light ray (19)
and the projector (27) into (26), one may identify the
auxiliary variable ξ as impact vector dσ of the unperturbed
light ray, which will later be introduced by Eq. (45). Here,
we prefer to keep the notation of Ref. [21] and shall
distinguish between both three-vectors. Like the spatial and
time variable x and t, also these new variables ξ and cτ are
independent of each other. The unperturbed light ray xN
and its absolute value rN ¼ jxNj can be parametrized in
terms of these new variables and take the form

xN ¼ ξ þ cτσ; ð28Þ

rN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ c2τ2

p
; ð29Þ

where in (29) it has been used that the three-vector ξ is lying
in the two-dimensional space perpendicular to the three-
vector σ. Therefore, that vector has only two independent
components and the partial derivatives in this plane are
given by [cf. Eq. (23) in Ref. [21]; see also Eq. (11.2.12)
in Ref. [34]]

∂ξi

∂ξj
¼ Pi

j ¼ Pij ¼ Pij: ð30Þ

Then, the spatial derivatives in (13)–(15), when trans-
formed in terms of these new variables, are given by
[cf. Eq. (20) in Ref. [21]]

∂

∂xi
¼ ∂

∂ξi
þ σi

∂

∂cτ
; ð31Þ

where ξ means a three-vector in the two-dimensional plane
perpendicular to σ. In practical calculations it is, however,
often convenient to treat the spatial components of this
vector ξ as formally independent and, therefore, a sub-
sequent projection onto this two-dimensional plane by
means of Pij is necessary [cf. text above Eq. (31) in
Ref. [30]]. Accordingly, one gets the familiar result [see
also Eq. (11.2.13) in Ref. [34]]

∂ξi

∂ξj
¼ δij ¼ δij ¼ δij; ð32Þ

with subsequent projection into the two-dimensional plane
perpendicular to three-vector σ:

Pk
j
∂ξi

∂ξk
¼ Pi

j ¼ Pij ¼ Pij: ð33Þ

That means, for the spatial derivatives, when transformed
into derivatives expressed in terms of these new variables,
one obtains

∂

∂xi
¼ Pj

i
∂

∂ξj
þ σi

∂

∂cτ
: ð34Þ

This relation coincides with Eq. (33) in Ref. [30] in case of
time-independent functions. It is notice that (34) in combi-
nation with (32) is identical with (31) in combination
with (30).
Here, we will prefer this procedure in (34), that means

we will consider the spatial components of ξ as three
independent components of the three-vector ξ with a
subsequent projection into the two-dimensional plane
perpendicular to the three-vector σ. Then, using (34) and
the binomial theorem [22,23]

ðaþ bÞl ¼
Xl

p¼0

�
l
p

�
al−pbp; ð35Þ

where �
l
p

�
¼ l!

p!ðl − pÞ! ð36Þ

are the binomial coefficients, one finds for l partial
derivatives (16) expressed in terms of these new variables

b∂L ¼ STFi1…il

Xl

p¼0

l!
p!ðl − pÞ! σi1…σip

× P
jpþ1

ipþ1
…Pjl

il

∂

∂ξjpþ1
…

∂

∂ξjl

�
∂

∂cτ

�
p
; ð37Þ

where the hat inb∂L indicates the STF operation with respect
to the indices L ¼ i1…il [35]. The metric tensor (12)
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with (13)–(15) in terms of these new parameters ðcτ; ξÞ
reads

gαβðcτ;ξÞ¼ ηαβþhð2Þαβ ðcτ;ξÞþhð3Þαβ ðcτ;ξÞþOðc−4Þ; ð38Þ

where nonvanishing metric perturbations in terms of these
new variables are given by [21,36]

hð2Þ00 ðcτ; ξÞ ¼
2

c2
X∞
l¼0

ð−1Þl
l!

M̂L
b∂L 1

rN
; ð39Þ

hð3Þ0i ðcτ; ξÞ ¼
4

c3
X∞
l¼1

ð−1Þll
ðlþ 1Þ! ϵiabŜbL−1

b∂aL−1 1

rN
; ð40Þ

hð2Þij ðcτ; ξÞ ¼
2

c2
δij

X∞
l¼0

ð−1Þl
l!

M̂L
b∂L 1

rN
: ð41Þ

Accordingly, the metric tensor (38) depends both on spatial
variable ξ as well as on time variable cτ, besides that the
metric describes the stationary curved space-time caused
by the massive body at rest with time-independent mass
multipoles and time-independent spin multipoles. The
geodesic equation (20) expressed in terms of these new
variables cτ and ξ reads [30]

ẍiðτÞ
c2

¼ Pij ∂h
ð2Þ
00

∂ξj
−
∂hð2Þ00

∂cτ
σi −

∂hð3Þ0i

∂cτ
þ Pik

∂hð3Þ0j

∂ξk
σj ð42Þ

up to terms of the orderOðc−4Þ. The double dot on the left-
hand side in (42) means twice the total differential with
respect to the new variable τ. We also note that the signature
of the metric has been chosen such that covariant and
contravariant spatial indices are equal, while covariant and
contravariant time indices differ by a sign in front. For
instance, ξi ¼ ξi and h0i ¼ hi0, but h0i ¼ −h0i .
The decisive advantage of (42) compared to (20) is that

the metric components (39)–(41) are given in terms of the
unperturbed light ray and, therefore, the integration of the
geodesic equation (42) can immediately be performed
with respect to the integration variable cτ. After that
integration of the geodesic equation all differentiations
can be computed, which still need to be performed
according to the metric components in (39)–(41) as they
have to be implemented into the geodesic equation (42).
That solution for the first and second integration of (42)
reads formally

_xðτÞ
c

¼ σ þ
X∞
l¼0

Δ_xML
1PNðτÞ
c

þ
X∞
l¼1

Δ_xSL1.5PNðτÞ
c

; ð43Þ

xðτÞ¼ xNðτÞþ
X∞
l¼0

ΔxML
1PNðτ;τ0Þþ

X∞
l¼1

ΔxSL1.5PNðτ;τ0Þ; ð44Þ

up to terms of the order Oðc−4Þ; the unperturbed light ray
xNðτÞ in (44) is given by Eq. (28). The explicit expressions
of (43) and (44) are given by Eqs. (32), (34), and (37) in
Ref. [21] and Eqs. (33), (36), and (38) in Ref. [21],
respectively. The solutions in (43) and (44) are still given
in terms of the auxiliary variables cτ and ξ. After perform-
ing all differentiations with respect to these auxiliary
variables, one obtains the solutions of the first and second
integration of geodesic equation in terms of the four-
coordinates ðct; xÞ, that means the solutions in (23)
and (24), respectively, just by replacing the auxiliary
parameter cτ by σ · xN and ξ by the impact vector dσ of
the unperturbed light ray, which is defined by

dσ ¼ σ × ðx0 × σÞ: ð45Þ

The impact vector is a three-vector which points from the
origin of coordinate system (center of mass of the body)
toward the unperturbed light ray at their closest distance, as
elucidated in Fig. 1. The absolute value of the impact
vector, dσ ¼ jdσj, is denoted as impact parameter.

III. TOTAL LIGHT DEFLECTION IN CASE
OF A BODY WITH ARBITRARY SHAPE

AND IN ARBITRARY ROTATIONAL MOTIONS

A. The tangent vector of light ray at future infinity

The unit tangent vector along the light trajectory at future
infinity is defined by

FIG. 1. A geometrical representation of the propagation of a
light signal through the gravitational field of a massive body at
rest. The origin of the spatial coordinates ðx1; x2; x3Þ is assumed
to be located at the center of mass of the body. The spatial axes of
the coordinate system are aligned with the unit vectors e1, e2, e3
of the principal axes of the massive body. The body is in uniform
rotational motion around its symmetry axis e3 with angular
velocity Ω. The light signal is emitted by the light source at x0 in
the direction of the unit vector μ and propagates along the exact
light trajectory xðtÞ. The unit tangent vectors σ and ν of the light
trajectory at past infinity and future infinity are defined by
Eqs. (22) and (46), respectively. The unperturbed light ray xNðtÞ
is given by Eq. (19) and propagates in the direction of σ along a
straight line through the position of the light source at x0. The
impact vector dσ of the unperturbed light ray is given by Eq. (45).
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ν ¼ _xðtÞ
c

����
t→þ∞

; ð46Þ

with ν · ν ¼ 1. The coordinate velocity of the light signal,
_xðτÞ, has been obtained for the case of a massive body at
rest with full mass and spin multipole structure in Ref. [21]
and for the case of a slowly moving massive body with full
mass and spin multipole structure in Refs. [32] and [33],
which agree with Ref. [21] in case of a body at rest. In the
limit τ → þ∞ one obtains from Eq. (30) with (34) and (37)
in Ref. [21] in 1.5PN approximation [e.g. Eq. (11) in
Ref. [18]]

ν ¼ σ þ
X∞
l¼0

νML
1PN þ

X∞
l¼1

νSL1.5PN þOðc−4Þ; ð47Þ

where the individual terms in the sum (47) are

νML
1PN ¼ −

4G
c2

ð−1Þl
l!

M̂L
b∂L ξ

jξj2 ; ð48Þ

νSL1.5PN ¼ −
8G
c3

σcϵabc
ð−1Þll
ðlþ 1Þ! ŜbL−1

b∂aL−1 ξ

jξj2 : ð49Þ

It can be shown that (47) is a unit vector up to higher order
terms: ν · ν ¼ 1þOðc−4Þ. Let us notice again that after
performing the differentiation in (48) and (49) with respect
to ξ this auxiliary vector is replaced by the impact vector dσ
and that the “hat” implies STF with respect to all indices,
e.g. ŜbL−1 ¼ STFbL−1SbL−1 and b∂aL−1 ¼ STFaL−1∂aL−1.
These expressions for the total light deflection in (48)
and (49) can also be deduced from Eqs. (110) and (113) in
Ref. [33] in the limit of a massive body at rest as well as in
the limit τ → þ∞. It is noticed that the mass-dipole term
[i.e. l ¼ 1 in (48)] vanishes if the origin of spatial axes is
located at the center of mass of the massive body.
The expressions for the three-vector of total light

deflection in (48) and (49) can be rewritten in a consid-
erably simpler form by using the relation

b∂L ξi

jξj2 ¼
b∂LPij ∂

∂ξj
ln jξj ¼ Pij ∂

∂ξj
b∂L ln jξj; ð50Þ

which is valid for any l ≥ 1. It is noticed that the projector
in (50) has to be implemented, because ξ on the lhs of (50)
is a three-vector in the plane perpendicular to three-vector
σ, while in the derivative in the first term on the rhs of (50)
the vector ξ is treated as spatial vector with three indepen-
dent components; hence, afterward it has to be projected
back into the plane perpendicular to three-vector σ, in line
with the statements made between Eqs. (32) and (34). By
inserting (50) into (48) and (49) one obtains for the spatial
components

νiML
1PN ¼ −

4G
c2

Pij ∂

∂ξj
ð−1Þl
l!

M̂L
b∂L ln jξj; ð51Þ

νiSL1.5PN ¼ −
8G
c3

Pij ∂

∂ξj
σcϵilbc

ð−1Þll
ðlþ 1Þ! ŜbL−1

b∂L ln jξj; ð52Þ

where from (49) to (52) the summation index has been
renamed, a → il, in favor of a simpler notation for the
differential operator b∂ilL−1 ¼ b∂L. From (51) and (52) fol-

lows immediately that σ ·νML
1PN¼0 as well as σ · νSL1.5PN ¼ 0;

hence, ν is, in fact, a unit vector, that means ν · ν ¼ 1 up to
terms beyond 1.5PN approximation.
In order to determine the three-vector of total light

deflection (47) with (51) and (52), we need the term

b∂L ln jξj ¼ STFi1…ilP
j1
i1
…Pjl

il

∂

∂ξj1
…

∂

∂ξjl
ln jξj; ð53Þ

where the differential operator b∂L has been defined by
Eq. (37) and it has been taken into account that one only
needs the term p ¼ 0 in (37), because ln jξj is independent
of τ. The expression (53) has been calculated in
Appendix C and reads [cf. Eq. (C32) in Appendix C]

b∂L ln jξj ¼ ð−1Þlþ1

jξjl STFi1…il

X½l=2�
n¼0

Gl
nPi1i2…Pi2n−1i2n

×
ξi2nþ1

…ξil
jξjl−2n ; ð54Þ

which is valid for any natural number l ≥ 1 and the more
explicit form for the tensor ni1…il ¼ ξi1…ξil=jξjl has been
inserted; the notation ½l=2� means the largest integer less
than or equal to l=2 [see also Eqs. (B11) and (B12)]. The
expression in (54) is considerably simpler that the expres-
sion in (53), because the differentiations with respect to the
auxiliary variable ξ have been performed. Accordingly, one
is allowed to replace the auxiliary variable ξ by the impact
vector dσ. Here, such a replacement is postponed for awhile
in favor of simpler notation for the moment being. The
scalar coefficients in (54) are given by [cf. Eq. (C34) in
Appendix C]

Gl
n ¼ ð−1Þn2l−2n−1 l!

n!
ðl − n − 1Þ!
ðl − 2nÞ! : ð55Þ

Inserting (54) into (51) and (52) yields

νiML
1PN ¼ 4G

c2
Pij ∂

∂ξj
1

l!
M̂L

1

jξjl

× STFi1…il

X½l=2�
n¼0

Gl
nPi1i2…Pi2n−1i2n

ξi2nþ1
…ξil

jξjl−2n ; ð56Þ

SVEN ZSCHOCKE PHYS. REV. D 107, 124055 (2023)

124055-6



νiSL1.5PN ¼ 8G
c3

Pij ∂

∂ξj
σcϵilbc

l
ðlþ 1Þ!

1

jξjl ŜbL−1

× STFi1…il

X½l=2�
n¼0

Gl
nPi1i2…Pi2n−1i2n

ξi2nþ1
…ξil

jξjl−2n ; ð57Þ

which is the final form for the components of the unit
tangent vector (47) of the light trajectory at future infinity.
Because these terms in (56) and (57) are perpendicular to
vector σ, one concludes immediately that the tangent
vector (47) is, in fact, a unit vector, up to terms of the
order Oðc−4Þ.

B. The angle of total light deflection

The total light deflection angle is defined as the angle
between the unit tangent vector along the light trajectory at
past and future infinity:

δðσ; νÞ ¼ arcsin jσ × νj; ð58Þ

where σ was defined by (22), while the unit-vector ν is
defined by (46). This angle (58) follows from (47) to be
[e.g. Eq. (12) in Ref. [18]]

δðσ;νÞ¼
����X∞
l¼0

σ×νML
1PNþ

X∞
l¼1

σ×νSL1.5PN

����þOðc−4Þ; ð59Þ

where arcsin x ¼ xþOðx3Þ for x ≪ 1 has been used. The
effect of the monopole field is several orders of magnitude
larger than the higher mass-multipole or spin-multipole
terms. Accordingly, by taking the monopole term out of the
total sum in (59), then performing a series expansion
of (59) and keeping only terms which are linear in the
multipoles, one obtains the total light deflection (59) in the
following form [see also Eqs. (14) and (20) in Ref. [18] as
well as Eqs. (44) and (46)–(48) in Ref. [21]]:

δðσ;νÞ¼
X∞
l¼0

δðσ;νML
1PNÞþ

X∞
l¼1

δðσ;νSL1.5PNÞþOðc−4Þ; ð60Þ

where also jσ × νj ¼ jσ × ðν × σÞj has been used, where
the individual multipole terms are [cf. Eqs. (20) and (61) in
Ref. [18] as well as text above Eq. (44) and above Eq. (50)
in Ref. [21]]

δðσ; νML
1PNÞ ¼ −νML

1PN ·
dσ
dσ

; ð61Þ

δðσ; νSL1.5PNÞ ¼ −νSL1.5PN ·
dσ
dσ

: ð62Þ

The expressions in (61) and (62) contain all terms which are
linear in the multipoles, while terms are neglected which
are products of mass and spin multipoles. Clearly, in actual
astrometric observations the total light deflection (60)

with (61) and (62) is the relevant quantity rather than
jσ × νML

1PNj or jσ × νSL1.5PNj [18,21].
When the spatial components of the unit tangent vector

(51) and (52) are inserted into (61) and (62), one encounters
the following term:

ξiPij ∂

∂ξj
b∂L ln jξj ¼ ð−lÞb∂L ln jξj; ð63Þ

which is valid for l ≥ 1. This relation can be shown by
calculating the left-hand side of (63), where b∂L ln jξj is
given by the expression in (54) and taking into account that
ξi ∂

∂ξi
ξi2nþ1

…ξil=jξjl−2n ¼ 0. Then, using relation (63), one
obtains for the mass-multipole and spin-multipole terms
in (61) and (62) the following expressions:

δðσ; νML
1PNÞ ¼ −

4G
c2

1

jξj
ð−1Þl
ðl − 1Þ! M̂L

b∂L ln jξj; ð64Þ

δðσ; νSL1.5PNÞ ¼ −
8G
c3

1

jξj ϵabcσ
c ð−1Þll2
ðlþ 1Þ! ŜbL−1

b∂aL−1 ln jξj;
ð65Þ

which are valid for l ≥ 1; see also Eqs. (47) and (48) in
Ref. [21] (for the overall sign of the spin multipole terms
see also footnote 3 in Ref. [37]. The expressions in (64)
and (65) are further treated by inserting (54) into (64)
and (65), which yields the total light deflection caused by
the mass-multipole and spin-multipole structure of the
body:

δðσ; νML
1PNÞ ¼ þ 4G

c2
1

jξjlþ1

M̂L

ðl − 1Þ!

× STFi1…il

X½l=2�
n¼0

Gl
nPi1i2…Pi2n−1i2n

ξi2nþ1
…ξil

jξjl−2n ;

ð66Þ

δðσ; νSL1.5PNÞ ¼ þ 8G
c3

1

jξjlþ1
ϵilbcσ

c l
lþ 1

ŜbL−1
ðl − 1Þ!

× STFi1…il

X½l=2�
n¼0

Gl
nPi1i2…Pi2n−1i2n

ξi2nþ1
…ξil

jξjl−2n ;

ð67Þ

which are valid for any natural number l ≥ 1. The mass
multipoles M̂L and the spin multipoles ŜL, for a body of
arbitrary shape, inner structure, rotational motions and
inner currents, are given by Eqs. (17) and (18), respectively.
Accordingly, the expressions in (66) and (67) represent the
total light deflection in the gravitational field of a body of
arbitrary shape, inner structure, as well as rotational
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motions of inner currents. The term in (66) is a scalar,
while (67) is a pseudoscalar, a fact which implies that they
are invariant under arbitrary rotations of the spatial axes of
the coordinate system.
In order to calculate the numerical values of the light

deflection vectors in (56) and (57) and the light deflection
angles in (66) and (67), one needs the explicit expressions
for the multipoles in (17) and (18). This will be the subject
in the subsequent section.

IV. THE MULTIPOLES FOR AN
AXISYMMETRIC BODY

In order to calculate the total light deflection in (66) and
in (67) one has to determine the mass multipoles M̂L and
spin multipoles ŜL as defined by Eqs. (17) and (18),
respectively. For that one has to consider a concrete model
for the massive Solar System bodies. To a good approxi-
mation, especially for the Sun and the planets, a massive
Solar System body can be described by a rigid axisym-
metric structure with radial-dependent mass density, having
the shape

ðx1Þ2
A2

þ ðx2Þ2
B2

þ ðx3Þ2
C2

¼ 1; ð68Þ

where A ≠ B ≠ C are the principal semiaxes of the body;
we note that for an axisymmetric ellipsoid we would have
A ¼ B. Furthermore, the body can be assumed to be in
uniform rotational motion around the symmetry axis e3 of
the body. If the coordinate system is chosen such that the
rotational axis of the massive body is aligned with the x3

axis of the coordinate system, e3 ¼ ð0; 0; 1Þ, then, the mass
multipoles (17) and spin multipoles (18) are given by

M̂0 ¼ −MðPÞ0J0; ð69Þ

M̂L ¼ −MðPÞlJlδ3hi1…δ3ili; ð70Þ

Ŝa ¼ −κ2MΩðPÞ2J0δ3a; ð71Þ

ŜL ¼ −MΩðPÞlþ1Jl−1
lþ 1

lþ 4
δ3hi1…δ3ili; ð72Þ

where (70) is valid for any natural number of l ≥ 2,
while (72) is valid for natural number of l ≥ 3. In order
to show these expressions in (70) and (72) one may apply
the very same steps as presented in Appendix B in
Ref. [38], except that we assume an axisymmetric body
A ≠ B ≠ C, while in Ref. [38] an axisymmetric oblate
ellipsoid A ¼ B has been considered.
One comment should be in order about the multipoles

in (69)–(72), which are valid for a coordinate system,
ðx1; x2; x3Þ, where the symmetry axis of the massive body is
aligned with the x3 axis. Let us assume another coordinate

system, ðx01; x02; x03Þ, and both systems are having the
same origin of their spatial coordinates. Let us further
assume that these systems are related by a rotation of their
spatial axes [15–17,22]:

x0a ¼ Ra
bx

b; ð73Þ

where the orthogonal matrix of rotation Ra
b can be para-

metrized, for instance, by three Euler angles and is given,
for example, by Eq. (3.94) in Ref. [22]. Then, the multi-
poles in (69)–(72) in coordinate system fxag and the
multipoles in coordinate system fx0ag are related to each
other by the standard transformation of tensors in three-
space [15–17,22]:

M̂0
i1…il ¼ M̂j1…jlR

j1
i1
…Rjl

il
; ð74Þ

Ŝ0i1…il ¼ Ŝj1…jlR
j1
i1
…Rjl

il
: ð75Þ

These relations allow one to switch the multipoles from
one coordinate system to the other. An explicit example
of relation (74) is given for the mass quadrupole by
Eqs. (48)–(53) in Ref. [39]. A rotation of the spatial
axes (73) would cause a change of the spatial components
of all multipole tensors and three-vectors. However, as
mentioned above, the total light deflection terms (66)
and (67) are invariant under arbitrary rotations of the
spatial axes of the coordinate system, because they are
scalars and pseudoscalars, respectively. Therefore, without
loss of generality, one may chose the coordinate system
ðx1; x2; x3Þ such that the x3 axis is aligned with the axis of
symmetry, e3, of the massive body.
In (69)–(72) theNewtonianmass of the body isM,P is the

equatorial radius of the body,Ω is the angular velocity of the
rotating body, and Jl are the zonal harmonic coefficients of
index l defined by [cf. Eq. (17) in Ref. [40] or Eq. (1.143)
with (1.112) and (1.139) in Ref. [16]]

Jl ¼ −
1

MðPÞl
Z

d3xrlΣPlðcos θÞ; ð76Þ

where Σ is the mass-energy density of the massive body
[cf. text below Eq. (18)] and Pl are the Legendre poly-
nomials, while the angle θ is the colatitude.
The zonal harmonic coefficients in (76) are defined for

an axisymmetric body, A ≠ B ≠ C; hence, they are nonzero
for any natural number of l, while in case of an axisym-
metric oblate ellipsoid A ¼ B they are nonzero only for
even values of l. In case of a spherically symmetric body
they vanish, except for l ¼ 0. The values of Jl defined
in (76) are model dependent in the sense that they depend
on assumptions made for the mass distribution in the
interior of the Solar System bodies. Therefore, it is
preferable to use actual zonal harmonics which are deduced
from real measurements of the gravitational fields of the
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Sun and giant planets. Their numerical values are given in
Table I for the giant planets of the Solar System.
The parameter κ2 in (71) is defined by [41] [see also

Eqs. (B60)–(B62) in Ref. [38]]

κ2 ¼ I
MP2

; ð77Þ

where I is the moment of inertia of the real Solar System
body under consideration, which is related to the body’s
angular momentum via jSj ¼ IΩ. As stated above, for a
spherically symmetric body with uniform density κ2 ¼ 2=5
[cf. Eq. (1.20) in Ref. [41]], while for real Solar System
bodies κ2 < 2=5 because the mass densities are increasing
toward the center of the massive bodies. The values of κ2

are given in Table I for the Sun and giant planets of the
Solar System bodies.
The STF tensor δ3hi1…δ3ili ¼ STFi1…ilδ

3
i1
…δ3il in (70)

and (72) denotes products of Kronecker symbols which
are symmetric and traceless with respect to indices i1…il.
They are given by the formula [cf. Eq. (A20a) in Ref. [25],
Eq. (B34) in Ref. [38], or Eq. (1.155) in Ref. [16]]

δ3hi1…δ3ili ¼
X½l=2�
p¼0

Hl
pδfi1i2…δi2p−1i2pδ

3
i2pþ1

…δ3ilg ð78Þ

for any natural number l ≥ 1 and the scalar coefficients are
given by

Hl
p ¼ ð−1Þp ð2l − 2p − 1Þ!!

ð2l − 1Þ!! : ð79Þ

These multipoles (70) and (72) are in agreement with
the resolutions of the International Astronomical Union
(IAU) [48]. That agreement is shown in some detail in

Appendix B in Ref. [38] for the mass quadrupole as well as
for the spin hexapole in case of a rigid axisymmetric body
with uniform mass density. For explicit examples of mass
quadrupole, mass octupole, and spin hexapole it is referred
to Eqs. (B36), (B37), and (B59) in Ref. [38], respectively.

V. TOTAL LIGHT DEFLECTION IN CASE
OF AN AXISYMMETRIC BODY

IN UNIFORM ROTATION

In this section the three-vector of total light deflection of
a light signal in the gravitational field of a body with full
mass-multipole and spin-multipole structure is given and
the upper limits are determined. In what follows it will be
shown the three-vector of total light deflection and the
angle of the total light deflection are naturally given in
terms of Chebyshev polynomials.

A. Chebyshev polynomials

In this section we will briefly review the Chebyshev
polynomials and their relations which are relevant for our
considerations.
There areChebyshev polynomials of first and second kind,

TlðxÞ and UlðxÞ, which form a sequence of orthogonal
polynomials [22,23]. The power representation ofChebyshev
polynomials of first kind reads [cf. Eqs. (13.67) and (13.88a)
in Ref. [22]]

T0ðxÞ ¼ 1; ð80Þ

TlðxÞ ¼
l
2

X½l=2�
n¼0

ð−1Þn
n!

ðl − n − 1Þ!
ðl − 2nÞ! ð2xÞl−2n; ð81Þ

where l ≥ 1.

TABLE I. Numerical parameter for mass M, equatorial radius P, actual zonal harmonic coefficients Jl, angular
velocityΩ ¼ 2π=T (with rotational period T), dimensionless moment of inertia κ2 of the Sun and the giant planets of
the Solar System. The values forGM=c2 and P are taken from Ref. [41]. The values for Jl of the Sun are taken from
Ref. [42] and references therein. The values Jl with l ¼ 2, 4, 6 of Jupiter and Saturn are taken from Ref. [43], while
Jl with l ¼ 8, 10 of Jupiter and Saturn are taken from Refs. [44] and [45], respectively. The values Jl with l ¼ 2, 4, 6
of Uranus and Neptune are taken from Ref. [46], while J8 of Uranus and Neptune is taken from Ref. [47]. The
angular velocities Ω are taken from NASA planetary fact sheets. The values for the dimensionless moment of inertia
κ2 are taken from Ref. [41]. A blank entry means the values are not known.

Parameter Sun Jupiter Saturn Uranus Neptune

GM=c2 ðmÞ 1476.8 1.410 0.422 0.064 0.076
P ðmÞ 696 × 106 71.49 × 106 60.27 × 106 25.56 × 106 24.76 × 106

J2 þ1.7 × 10−7 þ14.696 × 10−3 þ16.291 × 10−3 þ3.341 × 10−3 þ3.408 × 10−3

J4 þ9.8 × 10−7 −0.587 × 10−3 −0.936 × 10−3 −0.031 × 10−3 −0.031 × 10−3

J6 þ4 × 10−8 þ0.034 × 10−3 þ0.086 × 10−3 þ0.444 × 10−6 þ0.433 × 10−6

J8 −4 × 10−9 −2.5 × 10−6 −10.0 × 10−6 −0.008 × 10−6 −0.007 × 10−6

J10 −2 × 10−10 þ0.21 × 10−6 þ2.0 × 10−6

Ωðsec−1Þ 2.865 × 10−6 1.758 × 10−4 1.638 × 10−4 1.012 × 10−4 1.083 × 10−4

κ2 0.059 0.254 0.210 0.225 0.240
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The power representation of Chebyshev polynomials of
second kind reads [cf. Eq. (13.88b) in Ref. [22]]

UlðxÞ ¼
X½l=2�
n¼0

ð−1Þn
n!

ðl − nÞ!
ðl − 2nÞ! ð2xÞ

l−2n; ð82Þ

where l ≥ 0.
The argument of the Chebyshev polynomials is a real

number of the interval

−1 ≤ x ≤ þ1: ð83Þ

The Chebyshev polynomials of first and second kind are
related by

TlðxÞ ¼ UlðxÞ − xUl−1ðxÞ; ð84Þ

UlðxÞ ¼
xTlþ1ðxÞ − Tlþ2ðxÞ

1 − x2
: ð85Þ

The first derivative of Chebyshev polynomials of first
kind (81) is related to the Chebyshev polynomials of
second kind as follows (see also p. 794 in Ref. [22])

dTlðxÞ
dx

¼ lUl−1ðxÞ: ð86Þ

The first derivative of Chebyshev polynomials of second
kind (82) is related to the Chebyshev polynomials of first
kind as follows:

dUlðxÞ
dx

¼ xUlðxÞ − ðlþ 1ÞTlþ1

1 − x2
: ð87Þ

The Chebyshev polynomials of first kind (81) can be written
in terms of trigonometric functions [cf. Eq. (13.83a) in
Ref. [22]]:

TlðxÞ ¼ cos ðl arccos xÞ ð88Þ

for l ≥ 0.
The Chebyshev polynomials of second kind (82) can be

written in terms of trigonometric functions [cf. Eqs. (13.83b)
and (13.85a) in Ref. [22]]:

Ul−1ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p sin ðl arccos xÞ: ð89Þ

B. The tangent vector of light ray at future infinity

The tangent vector of the light trajectory at future infinity
is given by Eq. (47):

ν ¼ σ þ
X∞
l¼0

νML
1PN þ

X∞
l¼1

νSL1.5PN þOðc−4Þ; ð90Þ

with the mass-multipole term (56) and spin-multipole
term (57). In what follows it will be shown that the
mass-multipole terms in (90) are given by Chebyshev
polynomials of first kind and the spin-multipole terms
in (90) are given by Chebyshev polynomials of second
kind. We will consider these quantities separately.

1. Mass multipoles

By inserting the mass multipoles (70) into the mass-
multipole term (56) one obtains for the spatial components
of these quantities

νiML
1PN ¼ −

4GM
c2

Jl
l
Pij ∂

∂djσ

�
P
dσ

�
l
Fl
M: ð91Þ

The dimensionless function Fl
M in (91) is given by Eq. (D1)

in Appendix D and can be written in the form (details are
given in Appendix D)

Fl
M ¼ 1

ðl − 1Þ!
X½l=2�
n¼0

Gl
nð1 − ðσ · e3Þ2Þn

�
dσ · e3
dσ

�
l−2n

; ð92Þ

where the auxiliary vectors ξ are replaced by the impact
vectors dσ everywhere in (92) and the scalar coefficients are
given by Eq. (55).
The scalar function in (92) can be expressed in terms of

Chebyshev polynomials of first kind. To demonstrate this
fact, we introduce the variable

x ¼ ð1 − ðσ · e3Þ2Þ−1=2
�
dσ · e3
dσ

�
; ð93Þ

which is a real number. Below it is shown that this variable
is lying in the interval (83). By inserting the coeffi-
cients (55) and using (93) one may rewrite the scalar
function in (92) in the following form:

Fl
M ¼ ½1 − ðσ · e3Þ2�½l=2�

×
l
2

X½l=2�
n¼0

ð−1Þn
n!

ðl − n − 1Þ!
ðl − 2nÞ! ð2xÞl−2n: ð94Þ

With the aid of Eq. (81) one finds that the scalar function
in (94) is, up to a prefactor, just a Chebyshev polynomial of
first kind:

Fl
M ¼ ½1 − ðσ · e3Þ2�½l=2�TlðxÞ: ð95Þ
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Accordingly, by inserting (95) into (91) we obtain the mass
multipole terms in (90) in terms of Chebyshev polynomials
of first kind:

νiML
1PN ¼ −

4GM
c2

Jl
l
½1 − ðσ · e3Þ2�½l=2�

× Pij ∂

∂djσ

�
P
dσ

�
l
TlðxÞ: ð96Þ

By evaluating the derivative and using (84) as well as (86),
one obtains for the mass multipole terms (96) the following
expression:

νML
1PN ¼ þ 4GM

c2dσ
Jl½1 − ðσ · e3Þ2�½l=2�

�
P
dσ

�
l

×

�
UlðxÞ

dσ
dσ

−Ul−1ðxÞ
σ × ðe3 × σÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðσ · e3Þ2

p �
; ð97Þ

which is valid for l ≥ 1. The Chebyshev polynomials of
second kindUl are given by Eqs. (84) and (85) and variable
x has been defined by Eq. (93). Some examples of (97) are
presented by Eqs. (F6) and (F10) in Appendix F.
The representation of the mass multipole terms (97)

recovers the intrinsic relation of the total light deflection
with the Chebyshev polynomials and it allows one to
determine the upper limits of total light deflection, as will
be demonstrated below. It has been checked that our result
for the unit tangent vector (97) agrees exactly with
Eqs. (43) and (44) in Ref. [49]. This fact demonstrates
that the results obtained with the advanced integration
method developed in Ref. [21] coincide with the time-
transfer function approach used in Ref. [49].
The mass multipole terms (97) seem apparently to be

composed of Chebyshev polynomials of second kind.
However, one may also rewrite (97) fully in terms of
Chebyshev polynomials of first kind by using relation (85).
Finally, one still has to show that the possible values of

variable x in (93) are given by relation (83). This can be seen
by the following consideration. The angles α ¼ δðσ; e3Þ and
β ¼ δðdσ; e3Þ are not independent of each other, because the
three-vectors σ and dσ are perpendicular to each other.
Furthermore, the function in (114) with variable in (93)
depends on scalar products of three-vectors, σ · e3 and
ðdσ · e3Þ=dσ . Hence, that scalar function is independent of
the orientation of the spatial coordinate system. For both
these reasons, one may rotate the spatial axes of the
coordinate system in such a way that σ is aligned along
the x1 axis and dσ is aligned along the x2 axis, while the
symmetry axis of the massive body has three spatial
components now: e3 ¼ ðe13; e23; e33Þ. Accordingly, we get σ ·
e3 ¼ e13 and ðdσ · e3Þ=dσ ¼ e23. The numerical values of the
components of the three-vector e3 are restricted, because it is
a unit vector, that means ðe13Þ þ ðe23Þ þ ðe33Þ ¼ 1; for similar
considerations we refer to the endnote [99] in Ref. [50].

Taking all these aspects into account, one obtains for the
variable in (93) x ¼ �ð1þ y2Þ−1=2, where y ¼ e33=e

2
3 is the

ratio of the x3 component over the x2 component of unit
vector e3, which is aligned along the symmetry axis of the
body. From this consideration follows that −1 ≤ x ≤ þ1 as
stated by Eq. (83).

2. Spin multipoles

By inserting the spin dipole term (71) into (57), one
obtains for the spin dipole term in (90) the following
expression:

νS11.5PN ¼ þ 4GM
c3

Ωκ2J0
�
P
dσ

�
2

×

�
2
ðσ × dσÞ · e3

dσ

dσ
dσ

þ ðσ × e3Þ
�
; ð98Þ

which, in view of J0 ¼ −1 and (8), agrees with Eq. (60) in
Ref. [18]. By inserting the spin multipoles (72) into the
spin-multipole term (57), one obtains for the spatial
components of these terms the following expression:

νiSL1.5PN ¼ −
8GM
c3

ΩP
Jl−1
lþ 4

Pij ∂

∂djσ

�
P
dσ

�
l
Fl
S; ð99Þ

which is valid for l > 1. The dimensionless function Fl
S

in (99) is given by Eq. (E1) in Appendix E and can be
written in the form (details are given in Appendix E)

Fl
S ¼

ðσ × dσÞ · e3
dσ

1

ðl − 1Þ!

×
X½l=2�
n¼0

Gl
n
l − 2n

l
ð1 − ðσ · e3Þ2Þn

�
dσ · e3
dσ

�
l−2n−1

;

ð100Þ

where the auxiliary vectors ξ are replaced by the impact
vectors dσ everywhere in (100) and the scalar coefficients
are given by Eq. (55).
The pseudoscalar function in (100) can be expressed in

terms of Chebyshev polynomials of second kind. To show
that we insert the coefficients (55), use the variable in (93),
and obtain the pseudoscalar function in (100) in the
following form:

Fl
S ¼

ðσ × dσÞ · e3
dσ

½1 − ðσ · e3Þ2�½l=2�

×
X½l=2�
n¼0

ðl − 2nÞ ð−1Þ
n

n!
ðl − n − 1Þ!
ðl − 2nÞ! ð2xÞl−2n−1: ð101Þ
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Using

ðl − 2nÞð2xÞl−2n−1 ¼ 1

2

d
dx

ð2xÞl−2n; ð102Þ

one may write (101) in the form

Fl
S ¼

ðσ × dσÞ · e3
dσ

1

l
½1 − ðσ · e3Þ2�½l=2�

×
d
dx

l
2

X½l=2�
n¼0

ð−1Þn
n!

ðl − n − 1Þ!
ðl − 2nÞ! ð2xÞl−2n: ð103Þ

In view of the power representation of Chebyshev poly-
nomials of first kind in (81), one finds that the pseudoscalar
function in (103) is, up to a prefactor, just the derivative of a
Chebyshev polynomial of first kind:

Fl
S ¼

ðσ × dσÞ · e3
dσ

1

l
½1 − ðσ · e3Þ2�½l=2�

dTlðxÞ
dx

; ð104Þ

which is valid for l ≥ 3. By means of relation (86) one
obtains for the pseudoscalar function in (104)

Fl
S ¼

ðσ × dσÞ · e3
dσ

½1 − ðσ · e3Þ2�½l=2�Ul−1ðxÞ: ð105Þ

Accordingly, by inserting (105) into (99) we obtain the spin
multipole terms in (90) in terms of Chebyshev polynomials
of second kind:

νiSL1.5PN ¼ −
8GM
c3

ΩP
Jl−1
lþ 4

½1 − ðσ · e3Þ2�½l=2�

×Pij ∂

∂djσ

ðσ × dσÞ · e3
dσ

�
P
dσ

�
l
Ul−1ðxÞ: ð106Þ

By evaluating the derivative and using (87) one obtains for
the spin multipole terms (106) the following expression:

νSL1.5PN¼þ8GM
c3

Ω
Jl−1
lþ4

½1− ðσ · e3Þ2�½l=2�
�
P
dσ

�
lþ1

×

�
F1ðxÞ

dσ
dσ

þF2ðxÞ
σ× ðe3×σÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðσ · e3Þ2

p þF3ðxÞσ× e3

�
;

ð107Þ

with

F1ðxÞ ¼
ðσ × dσÞ · e3

dσ

Ul−1ðxÞ − lTlþ1ðxÞ
1 − x2

; ð108Þ

F2ðxÞ ¼
ðσ × dσÞ · e3

dσ

ðlþ 1ÞTlðxÞ −UlðxÞ
1 − x2

; ð109Þ

F3ðxÞ ¼ Ul−1ðxÞ; ð110Þ

which is valid for l ≥ 3. The Chebyshev polynomials Tl
and Ul are given by Eqs. (84) and (85) and variable x has
been defined by Eq. (93). Some examples of (107) are
presented by Eqs. (F12) and (F18) in Appendix F.

C. The angle of total light deflection

According to Eq. (60) the total light deflection in 1.5PN
approximation can be separated into mass-multipole and
spin-multipole terms:

δðσ;νÞ¼
X∞
l¼0

δðσ;νML
1PNÞþ

X∞
l¼1

δðσ;νSL1.5PNÞþOðc−4Þ; ð111Þ

where the mass-multipole and spin-multipole terms are
given by Eqs. (66) and (67), respectively. We will consider
these expressions for the mass multipoles and spin multi-
poles in case of an axisymmetric body in uniform rotational
motion. It will be found that these terms of the total light
deflection (111) are just Chebyshev polynomials. In par-
ticular, we will find that the mass-multipole terms in (111)
are given by Chebyshev polynomials of first kind and the
spin-multipole terms in (111) are given by Chebyshev
polynomials of second kind.

1. Mass multipoles

The total light deflection for the mass multipoles of the
body is given by Eq. (66). By inserting the mass monopole
(69) and the higher mass multipoles (70) as well as the
relation for the spatial derivatives (54) into this equation,
one obtains the following expressions for the total light
deflection terms:

δðσ; νM0

1PNÞ ¼ −
4GM
c2

J0
dσ

; ð112Þ

δðσ; νML
1PNÞ ¼ −

4GM
c2

Jl
dσ

�
P
dσ

�
l
Fl
M; ð113Þ

where l ¼ 0 in (112), while (113) is valid for any natural
number of l ≥ 2. The total light deflection for higher mass
multipoles in (113) vanishes in case of a spherically
symmetric body, because in that case the zonal harmonic
coefficients Jl would be zero. The scalar function Fl

M in
(113) is given by Eq. (92).
By inserting (95) into (113) one finds that the total light

deflection terms of higher mass multipoles (113) can be
expressed by Chebyshev polynomials of first kind:

δðσ; νML
1PNÞ ¼ −

4GM
c2dσ

Jl

�
P
dσ

�
l

× ½1 − ðσ · e3Þ2�½l=2�TlðxÞ; ð114Þ
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which is valid for l ≥ 0, since the mass monopole in (112)
has been included. Some examples of (114) are given by
Eqs. (F3), (F7) and (F11) in Appendix F.
The expression in (114) represents the total light

deflection caused by the mass-multipole structure of an
axisymmetric body at rest. The spatial axes of the coor-
dinate system are oriented such that the symmetry axis e3 is
aligned along the x3 axis of the coordinate system. Of
course, one may rotate the spatial axes of the coordinate
system by using (73). Then, the components of the mass
multipoles are changed according to Eq. (74) as well as the
components of the three-vectors e3, σ and dσ, but the total
light deflection in (114) is invariant, because it is a scalar
under rotations of the spatial axes.
From (88) follows that

jTlðxÞj ≤ 1: ð115Þ

Hence, we get from (114) the following upper limit for the
absolute value of the total light deflection at some massive
body with full mass-multipole structure:

jδðσ; νML
1PNÞj ≤

4GM
c2

jJlj
dσ

ð1 − ðσ · e3Þ2Þ½l=2�
�
P
dσ

�
l

ð116Þ

for l ≥ 0. The total light deflection for higher mass multi-
poles in (116) takes its maximal possible value in case of
σ · e3 ¼ 0, that means when the unperturbed light ray
propagates parallel to the equatorial plane. The light
deflection for higher mass multipoles (116) vanishes in
case of σ · e3 ¼ 1, that means when the light ray propagates
parallel to the symmetry axis e3 of the massive body.
Furthermore, from (112) and (116) one obtains the follow-
ing upper limit for the total light deflection at some massive
body with full mass-multipole structure:

jδðσ; νML
1PNÞj ≤

4GM
c2

jJlj
dσ

�
P
dσ

�
l

ð117Þ

for l ≥ 0. This upper limit is strictly valid for any configu-
ration between light source and massive body and observer.
The relations (116) and (117) agree with Eq. (58)

and (59) in Ref. [49], respectively, where the validity of
these relations has been shown for the values l ≤ 4. In the
endnote [31] the conjecture was formulated, that these
relations might be valid for any natural number of l ≤ 0. It
is also mentioned that in Ref. [33] relation (117) has been
adopted as some kind of educated guess [cf. Eq. (187) in
Ref. [33]]. Here, we have demonstrated that these rela-
tions (116) and (117) are, in fact, strictly valid for any
natural number of l ≥ 0.
From (117) one obtains the following upper limit for the

total light deflection of grazing light rays (impact parameter
dσ equals equatorial radius P) at some massive body with
full mass-multipole structure:

jδðσ; νML
1PNÞj ≤

4GM
c2

jJlj
P

; ð118Þ

which is valid for l ≥ 0. The upper limits, presented by
Eqs. (116)–(118), are strictly valid for any configuration
between light source and massive body and observer.

2. Spin multipoles

The total light deflection caused by the spin-multipole
structure of the body is given by Eq. (67). By inserting the
spin dipole (71) and the higher spin multipoles (72) as well
as the relation for the spatial derivatives (54) into this
equation, one obtains the following expression for the total
light deflection terms:

δðσ; νS11.5PNÞ ¼ −
4GM
c3

Ωκ2J0
�
P
dσ

�
2 ðσ × dσÞ · e3

dσ
; ð119Þ

δðσ; νSL1.5PNÞ ¼ −
8GM
c3

ΩJl−1
�
P
dσ

�
lþ1

Fl
S; ð120Þ

where the light deflection caused by the spin dipole (119)
agrees with Eq. (61) in Ref. [18] [see Ref. [51] ], while the
light deflection caused by higher spin multipoles (120) is
valid for any natural number of l ≥ 3. The total light
deflection for higher spin multipoles in (120) vanishes in
case of a spherically symmetric body, because in that case
the zonal harmonic coefficients Jl would be zero. The
pseudo-scalar function Fl

S in (120) is given by Eq. (100).
By inserting (105) into (120) one finds that the total light

deflection terms of higher spin multipoles can be expressed
by Chebyshev polynomials of second kind:

δðσ; νSL1.5PNÞ ¼ −
8GM
c3

ΩJl−1
�
P
dσ

�
lþ1 ðσ × dσÞ · e3

dσ

×
l

lþ 4
½1 − ðσ · e3Þ2�½l=2�Ul−1ðxÞ; ð121Þ

which is valid for of l ≥ 3. The expression in (121)
represents the total light deflection caused by the spin-
multipole structure of an axisymmetric body at rest, which
is in uniform rotational motion. The spatial axes of the
coordinate system are oriented such that the symmetry axis
e3 is aligned along the x3 axis of the coordinate system.
Some examples of the total light deflection caused by spin
multipoles (121) are given in Appendix F. Of course, one
may rotate the spatial axes of the coordinate system by
using (73). Then, the components of the spin multipoles are
changed according to Eq. (75) as well as the components of
the three-vectors e3, σ and dσ, but the total light deflection
in (121) does not change, because it is a pseudoscalar, and
hence is invariant under rotations of the spatial axes.
Taking account of the fact that [cf. Eq. (22.14.6) in

Ref. [23]]
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jUl−1ðxÞj ≤ l; ð122Þ

we get from (121) the following upper limit for the absolute
value of the total light deflection at some massive body
with full spin-multipole structure:

jδðσ; νSL1.5PNÞj ≤
8GM
c3

Ω
l2

lþ 4
jJl−1j

�
P
dσ

�
lþ1

× ð1 − ðσ · e3Þ2Þ½l=2� ð123Þ

for l ≥ 3. The total light deflection for higher spin multi-
poles in (123) takes its maximal possible value in case of
σ · e3 ¼ 0, that means when the unperturbed light ray
propagates parallel to the equatorial plane. The light
deflection for higher spin multipoles (123) vanishes in
case of σ · e3 ¼ 1, that means when the unperturbed light
ray propagates parallel to the symmetry axis e3 of the
massive body. Furthermore, from (116) one obtains the
following upper limit for the total light deflection at some
massive body with full spin-multipole structure:

jδðσ; νSL1.5PNÞj ≤
8GM
c3

Ω
l2

lþ 4
jJl−1j

�
P
dσ

�
lþ1

ð124Þ

for any natural number of l ≥ 3.
From (119) and (124) one obtains the following upper

limit for the total light deflection of grazing light rays
(impact parameter dσ equals equatorial radius P) at some
massive body with full spin-multipole structure:

jδðσ; νS11.5PNÞj ≤
4GM
c3

Ωκ2; ð125Þ

jδðσ; νSL1.5PNÞj ≤
8GM
c3

Ω
l2

lþ 4
jJl−1j; ð126Þ

where l ¼ 1 in (125), while (126) is valid for any natural
number of l ≥ 3. The upper limits, presented by
Eqs. (123)–(126), are strictly valid for any configuration
between light source and massive body and observer.

VI. TOTAL LIGHT DEFLECTION AT SOLAR
SYSTEM BODIES

In this section the magnitude of the upper limits of total
light deflection (60) are calculated for themostmassive Solar
Systembodies, that is, theSunand thegiant planets. The light
deflection takes its maximal value in case of grazing light
rays, where the upper limits for mass multipoles are given by
Eq. (118), and the upper limits for spin multipoles are given
by Eqs. (125) and (126). The results of this section allow one
to clarify which mass multipoles and spin multipoles are
required for an astrometric accuracy on the nanoarcsecond
level in astrometric angular measurements.

A. Numerical values of the parameter
of Solar System bodies

The numerical parameters for determining the total light
deflection in the gravitational fields of the most massive
Solar System bodies are given in Table I.

B. Total light deflection of the mass-multipole
structure of Solar System bodies

Numerical values for the light deflection of grazing
rays (118) at the most massive Solar System bodies caused
by their mass-multipole structure are presented in Table II.
These results show that only the very first few mass
multipoles with l ≤ 10 are required for an astrometric
accuracy on the nanoarcsecond level. That means a light
propagation model needs to implement only the first mass
multipoles up to at most l ¼ 10 in order to determine the
light trajectory on the nanoarcsecond level of accuracy.
From the scaling behavior one may estimate that the mass
multipoles of the Sun and the giant planets with l ≥ 12
contribute less that 0.001μas to the total light deflection.
Thus, the effect of light deflection caused by mass multi-
poles with l ≥ 12 can be neglected in astrometric mea-
surements, even on the nanoarcsecond scale of accuracy.

C. Total light deflection of the spin-multipole
structure of Solar System bodies

Numerical values for the light deflection of grazing
rays (125) and (126) at the most massive Solar System
bodies caused by their spin-multipole structure are pre-
sented in Table III. These results show that only the very
first few spin multipoles with l ≤ 3 are required for an
astrometric accuracy on the nanoarcsecond level. That
means a light propagation model needs to implement only
the first spin multipoles up to at most l ¼ 3 in order to
determine the light trajectory on the nanoarcsecond level of
accuracy. Only in case of light deflection at Jupiter, the spin
multipole with l ¼ 5 contributes about 0.001μas to the total
light deflection. Thus, the effect of light deflection caused
by spin multipoles with l ≥ 5 is at the outer nas limit and

TABLE II. The upper limit of total light deflection at the Sun
and the giant planets of the Solar System caused by their mass-
multipole structure according to Eq. (118). All values are given in
microarcsecond (μas). A blank entry indicates the light deflection
is smaller than a nanoarcsecond (nas).

Light
deflection Sun Jupiter Saturn Uranus Neptune

jδðσ; νM0

1PNÞj 1.75×106 16.3×103 5.8×103 2.1×103 2.5×103

jδðσ; νM2

1PNÞj 0.35 239 94 6.9 8.6

jδðσ; νM4

1PNÞj 1.72 9.6 5.41 0.06 0.08

jδðσ; νM6

1PNÞj 0.07 0.55 0.50 0.001 0.001

jδðσ; νM8

1PNÞj 0.007 0.04 0.06

jδðσ; νM10

1PNÞj 0.003 0.01
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cannot, most probably, be detected in realistic astrometric
measurements, even on the nanoarcsecond scale of
accuracy.

VII. SUMMARY

The total light deflection in weak gravitational fields is
defined as angle δðσ; νÞ between the unit tangent vectors σ
and ν along the light ray at past infinity and future infinity,
respectively, and represents an upper limit for the effect of
bending of light by some massive body. In the general case,
massive bodies can be of arbitrary shape, inner structure
and oscillations, described by their mass multipoles ML,
and can also be in arbitrary rotational motions and
inner currents, described by their spin multipoles SL.
Accordingly, the unit tangent vector of the light trajectory
at future infinity is given by an infinite multipole series,
which in the post-Newtonian scheme reads as follows:

ν ¼ σ þ
X∞
l¼0

νML
1PN þ

X∞
l¼1

νSL1.5PN þOðc−4Þ; ð127Þ

where the mass-multipole terms are given by Eq. (48) and
the spin-multipole terms are given by Eq. (49). It has been
shown that these terms take a considerably simpler form as
given by Eqs. (56) and (57).
The multipole decomposition of the unit tangent vector

in (127) implies a corresponding infinite multipole series of
the angle of total light deflection in the gravitational field of
such an arbitrarily shaped body of the Solar System:

δðσ;νÞ¼
X∞
l¼0

δðσ;νML
1PNÞþ

X∞
l¼1

δðσ;νSL1.5PNÞþOðc−4Þ; ð128Þ

where the mass-multipole terms are given by Eq. (64) and
the spin-multipole terms are given by Eq. (65). In this work
it has been shown that these mass-multipole terms and spin-
multipole terms can be written in a considerably simpler
form as given by Eqs. (66) and (67), respectively.
The expressions in Eqs. (127) and (128) have been

calculated for light signals which propagate in the gravi-
tational field of an isolated axisymmetric body at rest being
in uniform rotational motion around its axis of symmetry e3

and having full mass-multipole and spin-multipole struc-
ture. The mass-multipole and spin-multipole terms are
given by Eqs. (97) and (107), respectively. It has been
found that the evaluation of the unit tangent vector in (127)
and of the angle of total light deflection in (128) leads
directly and in a compelling way to Chebyshev polyno-
mials of first and second kind, respectively.
This remarkable fact allows one to obtain the expressions

for the total light deflection for multipoles in arbitrary
order; some examples are presented in Appendix F.
Furthermore, that fact allows one to determine their upper
limits in a straightforward manner, because the upper limits
of their absolute values are given by Eqs. (115) and (122)
and read

jTlðxÞj ≤ 1; ð129Þ

jUl−1ðxÞj ≤ l: ð130Þ

In this way, expressions for the upper limit of the total light
deflection terms in (128) have been obtained which are
strictly valid in the 1PN and 1.5PN approximation for any
astrometric configuration between light source, massive
body and observer. For mass multipoles they are given by
Eq. (116) and for the spin multipoles they are given
by Eq. (123).
The upper limits take their simplest form for grazing

light rays, where they read [cf. Eq. (118) as well as (125)
and (126)]

jδðσ; νML
1PNÞj ≤

4GM
c2

jJlj
P

for l ≥ 0; ð131Þ

jδðσ; νS11.5PNÞj ≤
4GM
c3

Ωκ2 for l ¼ 1; ð132Þ

jδðσ; νSL1.5PNÞj ≤
8GM
c3

Ω
l2

lþ 4
jJl−1j for l ≥ 3; ð133Þ

whereM, P, Jl, andΩ are the mass, equatorial radius, zonal
harmonic coefficient, and angular velocity of the massive
body, respectively, while the real integer l is the order of the
multipole and κ2 is the dimensionless moment of inertia.
Each of these upper limits is realistic in the sense that there
exist real astrometric configurations where these upper
bounds can be reached. In this sense they are just the upper
limits. These formulas (131)–(133) are strictly valid in the
1PN and 1.5PN approximation and represent a criterion
about the maximal possible deflection of light in the
gravitational field of an axisymmetric body in uniform
rotational motion. They can be used to decide whether these
multipole terms need to be taken into account if ultrahigh-
accuracy astrometric measurements are to be modeled in
the framework of future astrometry missions aiming at the
submicroarcsecond level.

TABLE III. The upper limit of total light deflection at the Sun
and the giant planets of the Solar System caused by their spin-
multipole structure according to Eqs. (125) and (126). All values
are given in microarcsecond (μas). A blank entry indicates the
light deflection is smaller than a nanoarcsecond (nas).

Light deflection Sun Jupiter Saturn Uranus Neptune

jδðσ; νS11.5PNÞj 0.7 0.17 0.04 0.004 0.005

jδðσ; νS31.5PNÞj 0.026 0.008

jδðσ; νS51.5PNÞj 0.001
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Numerical results of the upper limits of total light
deflection (131)–(133) for some Solar System bodies were
presented in Tables II and III. According to these numerical
values, it is found that the first few mass multipoles with
l ≤ 10 and the first few spin multipoles with l ≤ 3 are
sufficient in order to achieve an accuracy on the nanoarc-
second level in astrometric measurements.
Finally, a comment is made about the 2PN terms

which have been neglected in the total light deflec-
tion (128). The 2PN mass-monopole terms have been
determined in several investigations for the case of light
propagation in the gravitational field of a spherically
symmetric body [31,52–61] (e.g. Table 1 in Ref. [52].
Also the 2PN terms of total light deflection (128) caused by
the mass-quadrupole structure of Solar System bodies has
recently been determined in Ref. [50] (cf. Table IV in
Ref. [50]. These investigations show that the 2PN correc-
tions contribute less than 1% to the corresponding post-
Newtonian terms in (131). Therefore, the upper limits
in (131)–(133) constitute by far the most essential compo-
nent to the angle of total light deflection.
In summary, the primary results of this investigation for

the case of light propagation in the gravitational field of an
axisymmetric body in uniform rotation are

(i) mass-multipole terms of the unit tangent vector of a
light ray given by derivative of Chebyshev poly-
nomials of first kind (96),

(ii) mass-multipole terms of the total light deflection are
Chebyshev polynomials of first kind (114),

(iii) spin-multipole terms of the unit tangent vector of a
light ray given by derivative of Chebyshev poly-
nomials of second kind (106),

(iv) spin-multipole terms of the total light deflection are
Chebyshev polynomials of second kind (121),

(v) strict upper limits for mass-multipoles terms of the
total light deflection (116), and

(vi) strict upper limits for spin-multipole terms of the
total light deflection (123).

It has also been shown that in case of mass multipoles of
an axisymmetric body the advanced integration method
developed in Ref. [21] yields the same unit tangent vector
(97) and the same total light deflection angle (92) as the
corresponding results obtained by means of the time-
transfer function approach in Ref. [49] [cf. text below
Eq. (97)].
For the moment being, it remains an open question

whether the unit tangent vector in (47) and the angle of total
light deflection in (60), when applied to the case of bodies
of arbitrary shape and inner structure and in arbitrary
rotational motions, can also be expressed in terms of
Chebyshev polynomials.
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APPENDIX A: NOTATION

The following notation is in use.
(i) Newtonian constant of gravitation: G.
(ii) Vacuum speed of light in flat space-time: c.
(iii) Newtonian mass of the body: M.
(iv) Equatorial radius of the body: P.
(v) Angular velocity of the body: Ω.
(vi) Zonal harmonic coefficients of the body: Jl.
(vii) ηαβ ¼ diagð−1;þ1;þ1;þ1Þ is the metric tensor of

flat space-time.
(viii) gαβ and gαβ are the contravariant and covariant

components, respectively, of the metric tensor with
signature ð−;þ;þ;þÞ.

(ix) 1 masðmilliarcsecondÞ ≃ 4.85 × 10−9 rad.
(x) 1 μas ðmicroarcsecondÞ ≃ 4.85 × 10−12 rad.
(xi) 1 nasðnanoarcsecondÞ ≃ 4.85 × 10−15 rad.
(xii) n! ¼ nðn − 1Þðn − 2Þ…2…1 is the factorial; by

definition, 0! ¼ 1 [22].
(xiii) n!! ¼ nðn − 2Þðn − 4Þ…ð2 or 1Þ is the double fac-

torial; by definition, 0!! ¼ 1 and ð−1Þ!! ¼ 1 [22].
(xiv) Lowercase Greek indices take values 0, 1, 2, and 3.
(xv) The contravariant components of four-vectors: aμ ¼

ða0; a1; a2; a3Þ.
(xvi) Lowercase Latin indices take values 1, 2, and 3.
(xvii) The three-dimensional coordinate quantities (three-

vectors) referred to the spatial axes of the reference
system are in boldface: a.

(xviii) The contravariant components of three-vectors: ai ¼
ða1; a2; a3Þ.

(xix) The absolute value of a three-vector: a ¼ jaj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a1 þ a2a2 þ a3a3

p
.

(xx) The scalar product of two three-vectors: a · b ¼
δijaibj ¼ aibi with Kronecker delta δij.

(xxi) The vector product of two three-vectors reads
ða × bÞi ¼ εijkajbk with Levi-Civita symbol εijk.

(xxii) The angle between two three-vectors a and b is
designated as δða; bÞ which can be computed by
δða; bÞ ¼ arccos a ·b

jajjbj or δða; bÞ ¼ arcsin ja× bj
jajjbj .

APPENDIX B: STF TENSORS

Here we will present only those few standard notations
about symmetric trace-free tensors, which are necessary for

SVEN ZSCHOCKE PHYS. REV. D 107, 124055 (2023)

124055-16



our considerations, while further STF relations can be
found in Refs. [16,24–26,62].

(i) L ¼ i1i2…il is a Cartesian multi-index of a given
tensor T, that means TL ≡ Ti1i2…il .

(ii) Two identical multi-indices imply summation:

ALBL ≡ X
i1…il

Ai1…ilBi1…il : ðB1Þ

(iii) The symmetric part of a Cartesian tensor TL is
[cf. Eq. (2.1) in Ref. [24]]

TðLÞ ¼ Tði1…ilÞ ¼
1

l!

X
σ

Tiσð1Þ…iσðlÞ ; ðB2Þ

where σ is running over all permutations of
ð1; 2;…; lÞ.
For instance, let Ti1i2i3 be a Cartesian tensor which

is already symmetric in all of its Cartesian indices.
Then the symmetric part reads

Tði1i2i3Þ ¼ Ti1i2i3 : ðB3Þ

For instance, let Ti1i2i3 be a Cartesian tensor which is
not symmetric in any of its Cartesian indices. Then
the symmetric part reads

Tði1i2i3Þ ¼
1

3!
ðTi1i2i3 þ Ti1i3i2 þ Ti2i1i3 þ Ti2i3i1

þ Ti3i1i2 þ Ti3i2i1Þ: ðB4Þ

(iv) The unnormalized symmetric part of a Cartesian
tensor TL is [cf. text above Eq. (A19) in Ref. [25]]

TfLg ¼ Tfi1…ilg ¼
X
σ∈S

Tiσð1Þ…iσðlÞ ; ðB5Þ

where S is the smallest set of permutations of
ð1; 2;…; lÞ which makes Ti1…il fully symmetric
in its indices. Let us give some examples:

δfi1i2g ¼ δi1i2 ; ðB6Þ

δfi1i2ni3g ¼ δi1i2ni3 þ δi1i3ni2 þ δi2i3ni1 ; ðB7Þ

δfi1i2δi3i4g ¼ δi1i2δi3i4 þ δi1i3δi2i4 þ δi1i4δi2i3 : ðB8Þ

In case Ti1i2i3 is a Cartesian tensor which is not
symmetric in any of its indices, then the unnormal-
ized symmetric part reads

Tfi1i2i3g ¼ Ti1i2i3 þ Ti1i3i2 þ Ti2i1i3

þ Ti2i3i1 þ Ti3i1i2 þ Ti3i2i1 : ðB9Þ

(v) The symmetric trace-free part of a Cartesian
tensor TL (notation T̂L ≡ STFLTL ¼ Thi1…ili) is
[cf. Eq. (2.2) in Ref. [24]]

T̂L ¼
X½l=2�
k¼0

alkδði1i2…δi2k−1i2kSi2kþ1…ilÞa1a1…akak ; ðB10Þ

where ½l=2� means the largest integer less than or
equal to l=2,

½l=2� ¼ l=2 for even values of l; ðB11Þ

½l=2� ¼ ðl − 1Þ=2 for odd values of l; ðB12Þ

and SL ≡ TðLÞ abbreviates the symmetric part of
tensor TL. The coefficient in (B10) is given by

alk ¼ ð−1Þk l!
ðl − 2kÞ!

ð2l − 2k − 1Þ!!
ð2l − 1Þ!!ð2kÞ!! : ðB13Þ

For instance,

T̂i1i2i3 ¼Tði1i2i3Þ

−
1

5
ðδi1i2Tði3kkÞ þδi2i3Tði1kkÞ þδi3i1Tði2kkÞÞ: ðB14Þ

Three comments are in order about STF. First of all, the
Kronecker delta has no symmetric trace-free part:

STFabδab ¼ 0: ðB15Þ

Second, the symmetric trace-free part of any tensor which
contains Kronecker delta is zero, if the Kronecker delta has
not any summation (dummy) index; for instance,

STFabcδabdcσ ¼ 0; ðB16Þ

STFabcδabσc ¼ 0: ðB17Þ

And third, the following relation is very useful
[cf. Eq. (1.158) in Ref. [16] or Eq. (A1) in Ref. [62]]:

AhLiBhLi ¼ ALBhLi ðB18Þ

which often considerably simplifies analytical evaluations.
In particular, we need the following Cartesian STF
tensor:

n̂L ¼ xhi1
r

…
xili
r

; ðB19Þ

where xi are the spatial coordinates of some arbitrary field
point and r ¼ jxj; we note that xi ¼ xi and n̂L ¼ n̂L. Avery
useful relation for later purposes is the expansion of the
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Cartesian STF tensor n̂L in terms of Cartesian tensor nL
[cf. Eq. (A20a) in Ref. [25]]:

n̂L ¼
X½l=2�
k¼0

ð−1Þk ð2l − 2k − 1Þ!!
ð2l − 1Þ!! δfi1i2…δi2k−1i2kni2kþ1…ilg:

ðB20Þ

APPENDIX C: PROOF OF EQ. (54)

In this appendix wewill show that (54) follows from (53),
given by

b∂L ln jξj ¼ STFi1…ilP
j1
i1
…Pjl

il
∂j1…jl ln jξj: ðC1Þ

First of all, we consider the following term in Eq. (C1):

∂j1…jl ln jξj ¼
∂

∂ξj1
…

∂

∂ξjl
ln jξj: ðC2Þ

By means of relation (A21b) in Ref. [25] one obtains

∂j1…jl ln jξj ¼
X½l=2�
k¼0

ð2l − 4kþ 1Þ!!
ð2l − 2kþ 1Þ!!

× δfj1j2…δj2k−1j2k
b∂j2kþ1…jlgðΔÞk ln jξj; ðC3Þ

where Δ is the Laplace operator in terms of three-vector
ξ ¼ ðξ1; ξ2; ξ3Þ. One obtains

ðΔÞ0 ln jξj ¼ ln jξj; ðC4Þ

ðΔÞk ln jξj ¼ ð2k − 2Þ!
jξj2k for k ¼ 1; 2; 3;…: ðC5Þ

Inserting (C4) and (C5) into (C3) yields

∂j1…jl ln jξj ¼ b∂fj1…jlg ln jξj

þ
X½l=2�
k¼1

ð2l − 4kþ 1Þ!!
ð2l − 2kþ 1Þ!!

× δfj1j2…δj2k−1j2k
b∂j2kþ1…jlg

ð2k − 2Þ!
jξj2k : ðC6Þ

Using relation (A30) in Ref. [25] one obtains for the partial
derivatives

b∂j1…jl ln jξj ¼ ð−1Þlþ1ð2l − 2Þ!! n̂j1…jl

jξjl ; ðC7Þ

b∂j2kþ1…jl

1

jξj2k ¼ ð−1Þl ð2l − 2k − 2Þ!!
ð2k − 2Þ!!

n̂j2kþ1…jl

jξjl ; ðC8Þ

where the STF tensor n̂j1…jl ¼ STFj1…jlξ
j1…ξjl=jξjl; we

notice that the allowed values l ≥ 2 with 1 ≤ k ≤ l=2
for even l and 1 ≤ k ≤ ðl − 1Þ=2 for odd l in (C8). By
inserting (C7) and (C8) into (C6) one obtains

∂j1…jl ln jξj ¼
ð−1Þl
jξjl

X½l=2�
k¼0

Bl
kδfj1j2…δj2k−1j2k n̂j2kþ1…jlg; ðC9Þ

where the coefficients are given by

Bl
k ¼ −ð2l − 2Þ!! for k ¼ 0; ðC10Þ

Bl
k ¼ þð2l − 4kþ 1Þ!!

ð2l − 2kþ 1Þ!!
ð2k − 2Þ!
ð2k − 2Þ!! ð2l − 2k − 2Þ!!

for k ≥ 1: ðC11Þ

From relation (A19) in Ref. [25] we get

δfj1j2…δj2k−1j2k n̂j2kþ1…jlg ¼
l!ð2k−1Þ!!
ð2kÞ!ðl−2kÞ!
×δðj1j2…δj2k−1j2k n̂j2kþ1…jlÞ: ðC12Þ

Accordingly, by means of this relation one obtains for the
expression in (C1)

b∂L ln jξj ¼ STFi1…il

ð−1Þl
jξjl

X½l=2�
k¼0

Cl
kP

j1
i1
…Pjl

il

× δj1j2…δj2k−1j2k n̂j2kþ1…jl ; ðC13Þ

where the symmetrization from the STF operation allows
one to remove the round brackets. The new coefficients
in (C13) are given by

Cl
k ¼ −ð2l − 2Þ!! for k ¼ 0; ðC14Þ

Cl
k ¼ þð2l − 4kþ 1Þ!!

ð2l − 2kþ 1Þ!!
ð2k − 2Þ!
ð2k − 2Þ!! ð2l − 2k − 2Þ!!

×
l!ð2k − 1Þ!!
ð2kÞ!ðl − 2kÞ! for k ≥ 1; ðC15Þ

which are a combination of the coefficients in (C10)
and (C11) and the factorial coefficients on the rhs of
relation (C12). The contraction of the product of two
projectors by a Kronecker symbol yields a projector, e.g.
Pj1
i1
Pj2
i2
δj1j2 ¼ Pi1i2 . Hence, one may write (C13) in the form

b∂L ln jξj ¼ STFi1…il

ð−1Þl
jξjl

X½l=2�
k¼0

Cl
kPi1i2…Pi2k−1i2k

× Pj2kþ1

i2kþ1
…Pjl

il
n̂j2kþ1…jl : ðC16Þ
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Because the three-vector ξ is lying in the plane orthogonal
to three-vector σ, the projectors acting on three-vector ξ
yield the same three-vector: Pj1

i1
ξj1 ¼ ξi1 . Accordingly, if

the projectors are acting on the tensor nL, then the result will
be the same tensor nL. For instance, Pj1

i1
Pj2
i2
nj1j2 ¼ ni1i2 .

However, it is emphasized that if the projectors are acting
on the STF version of this tensor, n̂L, then the result will in
general not be the same STF tensor n̂L. For instance,
Pj1
i1
Pj2
i2
n̂j1j2 ≠ n̂i1i2 . Therefore, in order to evaluate the

action of the projectors on STF tensor n̂L in (C16) one
has to expand the STF tensor n̂L in terms of nL, which
allows one to determine the action of the projectors
in (C16). By means Eq. (B20) [cf. Eq. (A20a) in
Ref. [25]] one obtains for this expansion the following
series:

n̂j2kþ1…jl ¼
X½ðl−2kÞ=2�

p¼0

Dl
k;p

× δfj2kþ1j2kþ2
…δj2kþ2p−1j2kþ2p

nj2kþ2pþ1…jlg; ðC17Þ

where the coefficients

Dl
k;p ¼ ð−1Þp ð2l − 4k − 2p − 1Þ!!

ð2l − 4k − 1Þ!! : ðC18Þ

These coefficients are well defined, because the arguments
of the double faculty are zero or positive, and only in the
most extreme possible case we have ð−1Þ!! ¼ 1
(cf. page 301 in Ref. [22]). However, later we will rewrite
the double factorial in a more compact form of factorials
and binomial coefficients, where ð−1Þ! is not well defined.
Therefore, we have to rewrite (C18) as follows:

Dl
k;p ¼ ð−1Þp ð2l − 4k − 2pþ 1Þ!!

ð2l − 4kþ 1Þ!!
2l − 4kþ 1

2l − 4k − 2pþ 1
:

ðC19Þ

This form allows one to apply the relation between double
factorial and factorial in Eqs. (C31), which will be used
later. As stated, when the projectors are acting on the tensor
nL, then the result will be the same tensor. Accordingly,
using (C17), one obtains for the last term in (C16) the
following expression:

Pj2kþ1

i2kþ1
…Pjl

il
n̂j2kþ1…jl

¼
X½ðl−2kÞ=2�

p¼0

Dl
k;pPfi2kþ1i2kþ2

…Pi2kþ2p−1i2kþ2p
ni2kþ2pþ1…ilg: ðC20Þ

Accordingly, by inserting (C17) into (C16), by means of
the explicit form in (C20), one obtains

b∂L ln jξj ¼ ð−1Þl
jξjl STFi1…il

X½l=2�
k¼0

X½ðl−2kÞ=2�

p¼0

El
k;pPi1i2…Pi2k−1i2k

× Pfi2kþ1i2kþ2
…Pi2kþ2p−1i2kþ2p

ni2kþ2pþ1…ilg; ðC21Þ

where the coefficients El
k;p ¼ Cl

kD
l
k;p (no summation over l

and k) are given by

El
k;p ¼ −ð−1Þp ð2l − 2Þ!!

ð2l − 1Þ!! ð2l − 2p − 1Þ!!

for k ¼ 0; ðC22Þ

El
k;p ¼þð−1Þp 2l− 4kþ 1

2l− 4k− 2pþ 1

ð2k− 2Þ!
ð2k− 2Þ!!

× ð2l− 2k− 2Þ!! l!ð2k− 1Þ!!
ð2kÞ!ðl− 2kÞ!

ð2l− 4k− 2pþ 1Þ!!
ð2l− 2kþ 1Þ!!

for k ≥ 1: ðC23Þ

Using relation (A19) in Ref. [25] we get [cf. Eq. (C12)]

Pfi2kþ1i2kþ2
…Pi2kþ2p−1i2kþ2p

ni2kþ2pþ1…ilg

¼ ðl − 2kÞ!ð2p − 1Þ!!
ð2pÞ!ðl − 2k − 2pÞ!
× Pði2kþ1i2kþ2

…Pi2kþ2p−1i2kþ2p
ni2kþ2pþ1…ilÞ: ðC24Þ

Inserting (C24) into (C21) yields

b∂L ln jξj ¼ STFi1…il

ð−1Þlþ1

jξjl
X½l=2�
k¼0

X½ðl−2kÞ=2�

p¼0

Fl
k;p

× Pi1i2…Pi2kþ2p−1i2kþ2p
ni2kþ2pþ1…il ; ðC25Þ

where the STF operation allows one to remove the round
brackets [cf. Eq. (C13)] and the new coefficients are
given by

Fl
k;p ¼ þð−1Þp ð2l − 2Þ!!

ð2l − 1Þ!! ð2l − 2p − 1Þ!! l!ð2p − 1Þ!!
ð2pÞ!ðl − 2pÞ!

for k ¼ 0; ðC26Þ

Fl
k;p ¼ −ð−1Þp 2l − 4kþ 1

2l − 4k − 2pþ 1

ð2k − 2Þ!
ð2k − 2Þ!!

l!ð2k − 1Þ!!
ð2kÞ!

× ð2l − 2k − 2Þ!! ð2l − 4k − 2pþ 1Þ!!
ð2l − 2kþ 1Þ!!

×
ð2p − 1Þ!!

ð2pÞ!ðl − 2k − 2pÞ! for k ≥ 1: ðC27Þ

The expression in (C25) represents a double sum over a
finite number of terms which are functions of the summa-
tion indices k and p. All terms with kþ p ¼ const have the
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same number of projectors and unit vectors. Therefore, it is
useful to regroup the expression in (C25) into a double sum
over terms with the same structure. That means, it is useful
to introduce the new summation indices q ¼ k and
n ¼ pþ q. All those terms with the same number n have
the same number of projectors and unit vectors. Then, the
double summation over k and p is replaced by a double
summation over these new indices n and q, that means

b∂L ln jξj ¼ ð−1Þlþ1

jξjl STFi1…il

X½l=2�
n¼0

Xn
q¼0

Fl
q;n−q

× Pi1i2…Pi2n−1i2nni2nþ1…il : ðC28Þ

The scalar coefficients in (C26) and (C27), after some
algebraic manipulations and expressed in terms of these
new summation indices q ¼ k and n ¼ pþ q, are given as
follows:

Fl
q;n−q ¼ ð−1Þn2l−1ðl − 1Þ!

�
l − 1

n

��
l
2n

���
2l − 1

2n

��−1
for q ¼ 0; ðC29Þ

Fl
q;n−q¼ð−1Þn−qþ12l−2qðl−2Þ!2l−4qþ1

2nþ1

�
l
2n

��
n
q

�

×

�
l−q
n

��
2q−2

q−1

���
l−2

q−1

��
−1
��

2l−2qþ1

2nþ1

��
−1

forq≥1; ðC30Þ

where the binomial coefficients are defined by Eq. (36). In
order to deduce these scalar coefficients in (C29) and (C30)
from (C26) and (C27), the relations

ð2mÞ!! ¼ 2mm! and ð2mþ 1Þ!! ¼ ð2mþ 1Þ!
2mm!

ðC31Þ

have been used [22], which allows one to rewrite (C26)
and (C27) fully in terms of factorials. If one performs the
summation over variable q in (C28), one obtains

b∂L ln jξj ¼ ð−1Þlþ1

jξjl STFi1…il

X½l=2�
n¼0

Gl
nPi1i2…Pi2n−1i2nni2nþ1…il :

ðC32Þ

These new coefficients in (C32) are defined by

Gl
n ¼

Xn
q¼0

Fl
q;n−q: ðC33Þ

By inserting (C29) and (C30) into (C33) and performing
the summation one obtains [63]

Gl
n ¼ ð−1Þn2l−2n−1 l!

n!
ðl − n − 1Þ!
ðl − 2nÞ! : ðC34Þ

These are the coefficients given by Eq. (55) and the
expression in (C32) coincides with (54).

APPENDIX D: PROOF OF EQ. (92)

The scalar function Fl
M in (91) reads

Fl
M ¼ 1

ðl − 1Þ! δ
3
hi1…δ3ili

X½l=2�
n¼0

Gl
nPi1i2…Pi2n−1i2n

×
ξi2nþ1

…ξil
jξjl−2n ; ðD1Þ

where the coefficients Gl
n are given by Eq. (55). In this

appendix we will show that (92) follows from (D1).
The projectors are defined by Eq. (27). In view of the fact

that the contraction of the STF tensor δ3hi1…δ3ili with a

Kronecker symbol vanishes, one may omit the Kronecker
symbol in all projectors in (D1), e.g. Pi1i2 → −σi1σi2 .
That means

Pi1i2…Pi2n−1i2n → ð−1Þnσi1σi2…σi2n−1σi2n : ðD2Þ

Furthermore, in each term in (D1) the auxiliary three-vector
ξ can be replaced by the impact vector dσ [cf. text below
Eq. (54)]. Then, the scalar function in (D1) takes the
following form:

Fl
M ¼ 1

ðl − 1Þ!
X½l=2�
n¼0

Gl
nδ

3
hi1…δ3ili

× ð−1Þnσi1…σi2n
di2nþ1
σ …dilσ
ðdσÞl−2n

: ðD3Þ

Now the expression of the STF tensor in (78) with the
coefficients in (79) is inserted into (D3) which yields

Fl
M ¼ 1

ðl − 1Þ!
X½l=2�
n¼0

Gl
n

X½l=2�
p¼0

ð−1Þp ð2l − 2p − 1Þ!!
ð2l − 1Þ!!

× δfi1i2…δi2p−1i2pδ
3
i2pþ1

…δ3ilg

× ð−1Þnσi1…σi2n
di2nþ1
σ …dilσ
ðdσÞl−2n

: ðD4Þ

It is appropriate to perform the summation over n rather
than p in (D4). Using relations like

δ3i1σ
i1 ¼ ðσ · e3Þ; ðD5Þ

δ3i1d
i1
σ ¼ ðdσ · e3Þ; ðD6Þ
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as well as

δi1i2σ
i1σi2 ¼ 1; ðD7Þ

δi1i2
di1σ d

i2
σ

ðdσÞ2
¼ 1; ðD8Þ

one obtains for the summation over variable n in (D4) the
following result:

X½l=2�
n¼0

Gl
nδfi1i2…δi2p−1i2pδ

3
i2pþ1

…δ3ilgð−1Þnσi1…σi2n
di2nþ1
σ …dilσ
ðdσÞl−2n

¼
Xl=2
m¼p

Kl
m

�
dσ · e3
dσ

�
l−2m

ðσ · e3Þ2m−2p: ðD9Þ

The scalar coefficients in (D9) are given by

Kl
m ¼ 2l−2m−1 ðl−m−1Þ!

ðl−2mÞ!
�
m
p

� ð2l−1Þ!!
ð2l−2p−1Þ!!

l!
m!

; ðD10Þ

which are a combination of the coefficients in (C34) times a
binomial coefficient times the inverse of the coefficients
in (79). Now the result (D10) is inserted into (D4) and the
summation index m is renamed into n. Furthermore, the
relation

X½l=2�
p¼0

X½l=2�
n¼p

fðn; pÞ ¼
X½l=2�
n¼0

Xn
p¼0

fðn; pÞ ðD11Þ

is used. By these steps one arrives at

Fl
M ¼ 1

ðl − 1Þ!
X½l=2�
n¼0

Gl
nð−1Þn

�
dσ · e3
dσ

�
l−2n

×
Xn
p¼0

ð−1Þp
�
n
p

�
ðσ · e3Þ2n−2p: ðD12Þ

From the binomial theorem (35) we get the relation

Xn
p¼0

ð−1Þp
�
n
p

�
a2n−2p ¼ ð−1Þnð1 − a2Þn: ðD13Þ

Using (D13) one finally obtains [with ð−1Þnð−1Þn ¼ 1]

Fl
M ¼ 1

ðl−1Þ!
X½l=2�
n¼0

Gl
n

�
dσ · e3
dσ

�
l−2n

ð1− ðσ · e3Þ2Þn: ðD14Þ

The expression in Eq. (D14) coincides with the expression
in Eq. (92).

APPENDIX E: PROOF OF EQ. (100)

The pseudoscalar function Fl
S in (99) reads

Fl
S ¼

1

ðl − 1Þ! ϵilbcσ
cδ3hbδ

3
i1
…δ3il−1i

× STFi1…il

�X½l=2�
n¼0

Gl
nPi1i2…Pi2n−1i2n

ξi2nþ1
…ξil

jξjl−2n
�
; ðE1Þ

where the coefficients Gl
n are given by Eq. (55). In this

appendix we will show that (100) follows from (E1). One
may use the same replacement as given by relation (D2),
because δ3hbδ

3
i1
…δ3il−1i is an STF tensor up to the index il−1.

That means

Pi1i2…Pi2n−1i2n → ð−1Þnσ{1σi2…σi2n−1σi2n : ðE2Þ

Furthermore, in each term in (E1) the auxiliary three-vector
ξ can be replaced by the impact vector dσ [cf. text below
Eq. (54)]. Then, the pseudoscalar function in (E1) takes the
following form:

Fl
S ¼

1

ðl−1Þ!ϵilbcσ
cδ3hbδ

3
i1
…δ3il−1i

×STFi1…il

�X½l=2�
n¼0

Gl
nð−1Þnσi1…σi2n

di2nþ1
σ …dilσ
ðdσÞl−2n

�
: ðE3Þ

For the STF tensor in the first line in (E3) we get from (78)

δ3hbδ
3
i1
…δ3il−1i ¼ δ3bδ

3
i1
…δ3il−1

þ
X½l=2�
p¼1

Hl
pδfbi1…δi2p−1i2pδ

3
i2pþ1

…δ3il−1g; ðE4Þ

where Hl
p are the scalar coefficients in (79). The further

evaluation of (E3) is considerably be simplified by taking
account of the fact that the terms in the second line in (E4)
do not contribute in (E3). Therefore, we get

Fl
S ¼

1

ðl − 1Þ! ðe3 × σÞilδ3i1…δ3il−1

× STFi1…il

�X½l=2�
n¼0

Gl
nð−1Þnσi1…σi2n

di2nþ1
σ …dilσ
ðdσÞl−2n

�
; ðE5Þ

where δ3b ¼ eb3 and ϵilbce
b
3σ

c ¼ ðe3 × σÞil have been used.
Now the summation over variable n in (E5) is considered
which, by means of relations (D5)–(D8), can be written in
the following form:
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δ3i1…δ3il−1STFi1…il

X½l=2�
n¼0

Gl
nð−1Þnσi1…σi2n

di2nþ1
σ …dilσ
ðdσÞl−2n

¼ dilσ
dσ

X½l=2�
n¼0

Gl
nð−1Þn

l − 2n
l

�
dσ · e3
dσ

�
l−2n−1

×
Xn
p¼0

ð−1Þp
�
n
p

�
ðσ · e3Þ2n−2p: ðE6Þ

In relation (E6) all those terms which are proportional to
either σil or eil3 have been omitted, because they vanish
when contracted with ðe3 × σÞil . Then, by inserting (E6)
into (E5) and using relation (D13), one arrives at [with
ð−1Þnð−1Þn ¼ 1]

Fl
S ¼þ 1

ðl−1Þ!
ðσ×dσÞ · e3

dσ

×
X½l=2�
n¼0

Gl
n
l−2n
l

ð1− ðσ · e3Þ2Þn
�
dσ · e3
dσ

�
l−2n−1

; ðE7Þ

where ðe3 × σÞ · dσ ¼ ðσ × dσÞ · e3 has been used. The
expression in Eq. (E7) coincides with the expression
in Eq. (100).

APPENDIX F: EXAMPLES OF TOTAL
LIGHT DEFLECTION

In this appendix some examples for the total light
deflection caused by mass multipoles (114) and caused
by spin multipoles (121) are given.

1. The mass monopole

For completeness, we consider the unit tangent vector of
a light ray in the gravitational field of a mass-monopole.
The monopole term of the unit tangent vector follows
from (48) for l ¼ 0 to be

νM0

1PN ¼ −
4GM0

c2dσ

dσ
dσ

; ðF1Þ

where from (69) follows that the mass monopole equals the
Newtonian mass of the body: M0 ¼ M. Equation (F1)
agrees with Eq. (16) in Ref. [18] for the case of one massive
body. For the angle of total light deflection caused by the
mass monopole one needs the Chebyshev polynomial of
first kind for l ¼ 0, which follows from (80):

T0ðxÞ ¼ þ1: ðF2Þ

Inserting (F2) into (114) yields

δðσ; νM0

1PNÞ ¼ −
4GM
c2

J0
dσ

; ðF3Þ

where J0 ¼ −1. Equation (F3) is the term in the total
light deflection (114) which is caused by the mass-
monopole structure of the body, which coincides
with Eq. (112).

2. The mass quadrupole

For the mass quadrupole one needs the Chebyshev
polynomial of second kind for l ¼ 1 and l ¼ 2, which
follow from (82):

U1ðxÞ ¼ þ2x; ðF4Þ

U2ðxÞ ¼ −1þ 4x2; ðF5Þ

where variable x is defined by Eq. (93). By inserting (F4)
and (F5) into (97) we obtain the mass-quadrupole term of
the unit tangent vector:

νM2

1PN ¼ −
4GM
c2dσ

J2

�
P
dσ

�
2
�
2

�
dσ · e3
dσ

�
σ × ðe3 × σÞ

þ
�
1 − ðσ · e3Þ2 − 4

�
dσ · e3
dσ

�
2
�
dσ
dσ

�
; ðF6Þ

which agrees with Eq. (40) in Ref. [18] as well as with
Eq. (48) in Ref. [49]. For evaluating the angle of total light
deflection one may either use the formula (114) or one
may insert (F6) into (61). One obtains for the quadrupole
structure of the massive body

δðσ; νM2

1PNÞ ¼ þ 4GM
c2dσ

J2

�
P
dσ

�
2

×

�
1 − ðσ · e3Þ2 − 2

�
dσ · e3
dσ

�
2
�
: ðF7Þ

Equation (F7) is the term in the total light deflection (114)
which is caused by the mass-quadrupole structure of the
body, which coincides with Eq. (41) in Ref. [18] as well as
with our investigation in Ref. [66]; note that e3 ¼ ð0; 0; 1Þ
and hence ðσ · e3Þ2 ¼ ðσ3Þ2 and ðdσ · e3Þ2 ¼ ðd3σÞ2.

3. The mass octupole

For the mass octupole one needs the Chebyshev poly-
nomial of second kind for l ¼ 1 and l ¼ 2, which follow
from (82):

U3ðxÞ ¼ −4xþ 8x3; ðF8Þ

U4ðxÞ ¼ þ1 − 12x2 þ 16x4; ðF9Þ
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where variable x is defined by Eq. (93). By inserting (F8)
and (F9) into (97) we obtain the mass-octupole term of the
unit tangent vector:

νM4

1PN ¼ þ 4GM
c2dσ

J4

�
P
dσ

�
4 dσ
dσ

�
ð1 − ðσ · e3Þ2Þ2

− 12ð1 − ðσ · e3Þ2Þ
�
dσ · e3
dσ

�
2

þ 16

�
dσ · e3
dσ

�
4
�

þ 16GM
c2dσ

J4

�
P
dσ

�
4
�
dσ · e3
dσ

�
σ × ðe3 × σÞ

×

�
1 − ðσ · e3Þ2 − 2

�
dσ · e3
dσ

�
2
�
; ðF10Þ

which agrees with Eq. (50) in Ref. [49]. For evaluating the
angle of total light deflection one may either use the
formula (114) or one may insert (F10) into (61). One
obtains for the octupole structure of the massive body:

δðσ;νM4

1PNÞ ¼ −
4GM
c2dσ

J4

�
P
dσ

�
4

×

�
ð1− ðσ · e3Þ2Þ2 − 8

�
dσ · e3
dσ

�
2

ð1− ðσ · e3Þ2Þ

þ 8

�
dσ · e3
dσ

�
4
�
: ðF11Þ

Equation (F11) is the term in the total light deflection (114)
which is caused by the mass-octupole structure of the body.

4. The spin dipole

For completeness, we consider the unit tangent vector of
a light ray in the gravitational field of a mass-monopole in
uniform rotation. The spin-dipole term of the unit tangent
vector reads [cf. Eq. (98)]

νS11PN ¼ þ 4GM
c3

Ωκ2J0
�
P
dσ

�
2

×

�
2
ðσ × dσÞ · e3

dσ

dσ
dσ

þ ðσ × e3Þ
�
; ðF12Þ

which is in agreement with Eq. (60) in Ref. [18]. By
inserting (F12) or (98) into (62) one obtains the angle of
total light deflection [cf. Eq. (119)]:

δðσ; νS11.5PNÞ ¼ −
4GM
c3

Ωκ2J0
�
P
dσ

�
2 ðσ × dσÞ · e3

dσ
; ðF13Þ

where J0 ¼ −1 and which is in agreement with Eq. (61)
in Ref. [18].

5. The spin hexapole

For the unit tangent vector of light trajectory caused by
the spin hexapole of the massive body [l ¼ 3 in (107)] one
needs the following Chebyshev polynomials which are
deduced from (81) and (82):

T3ðxÞ ¼ −3xþ 4x3; ðF14Þ

T4ðxÞ ¼ þ1 − 8x2 þ 8x4; ðF15Þ

U2ðxÞ ¼ −1þ 4x2; ðF16Þ

U3ðxÞ ¼ −4xþ 8x3; ðF17Þ

wherevariable x is defined byEq. (93). Inserting (F14)–(F17)
into (107) yields for the spin-hexapole termof the unit tangent
vector,

νS31PN ¼þ8

7

GM
c3

ΩJ2
�
P
dσ

�
4

×

�ðσ × dσÞ · e3
dσ

�
24

�
dσ · e3
dσ

�
2

− 4þ 4ðσ · e3Þ2
�
dσ
dσ

− 8
ðσ × dσÞ · e3

dσ

�
dσ · e3
dσ

�
σ × ðe3 × σÞ

þ
�
4

�
dσ · e3
dσ

�
2

− 1þ ðσ · e3Þ2
�
ðσ × e3Þ

�
: ðF18Þ

By inserting (F18) into (62) one obtains the angle of total light
deflection:

δðσ; νS31.5PNÞ ¼ þ 24

7

GM
c3

ΩJ2
�
P
dσ

�
4 ðσ × dσÞ · e3

dσ

×

�
1 − ðσ · e3Þ2 − 4

�
dσ · e3
dσ

�
2
�
: ðF19Þ

Equation (F19) is the term in the total light deflection (121)
which is caused by the spin-hexapole structure of the body.
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