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We investigate how the speed of gravitational waves, cGW, can be tested by upcoming black hole
ringdown observations. We do so in the context of hairy black hole solutions, where the hair is associated
with a new scalar degree of freedom, forecasting that LISA and TianQin will be able to constrain deviations
of cGW from the speed of light at the Oð10−4Þ level from a single supermassive black hole merger. We
discuss how these constraints depend on the nature of the scalar hair, what different aspects of the
underlying physics they are sensitive to in comparison with constraints derived from gravitational wave
propagation effects, which observable systems will place the most stringent bounds, and that constraints are
expected to improve by up to two orders of magnitude with multiple observations. This is especially
interesting for dark energy-related theories, where existing bounds from GW170817 need not apply at
lower frequencies and where upcoming bounds from lower-frequency missions will therefore be especially
powerful. As such, we also forecast analogous bounds for the intermediate-frequency AEDGE and
DECIGO missions. Finally, we discuss and forecast analogous black hole ringdown constraints at higher
frequencies (so from LVK, the Einstein Telescope and Cosmic Explorer) and in what circumstances they
can yield new information on top of existing constraints on cGW. All calculations performed in this paper
are reproducible via a companion Mathematica notebook [1].
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I. INTRODUCTION

Measuring the speed of gravitational waves, cGW, places
strong constraints on the “medium” gravitational waves are
propagating through and hence on the particle content of the
Universe. In the strong gravity regime, binary compact object
mergers—e.g., binary black hole (BBH) or binary neutron
star (BNS) mergers—are one of the cleanest probes of this
particle content. Here interactions associated with novel par-
ticles can leave an imprint in the inspiral, merger, and ring-
down phases. These systems can therefore act as a particle
detector, identifying or constraining the new physics that
would be a consequenceof suchparticles andassociated “fifth
forces”. One of the smoking-gun signals for the presence of
such new physics is a cGW different from the speed of light,
and indeed it has been shown that binary compact object
mergers can place powerful constraints on cGW [2–6] and
hence on the presence and potential dynamics of new degrees
of freedom (see e.g., [7–24] and references therein). These
previous constraints on cGW from binary compact object

mergers have mostly focused on propagation effects (see e.g.,
[7–10] and references therein) or emission effects during the
inspiral phase of such systems (see e.g., [21]). In this paper we
instead investigate what bounds can be derived on cGW from
the ringdown phase alone. This phase is particularly amenable
to being understood perturbatively and hence promises an
especially clean analytic understanding. While strong con-
straints on cGW exist,most notably from the binary neutron star
merger GW170817 [2–6], it is important to keep in mind that
these are for frequencies in the LIGO-Virgo-KAGRA (LVK)
band, i.e., ∼20–2000 Hz. Expressed as an energy scale this
corresponds to ∼10−14–10−12 eV. This range of values is
important, because dark energy-related physics is one of the
primary targets that can be constrained with measurements of
cGW and dark energy theories that do affect cGW generically
come with a cutoff around Oð102Þ Hz [25]. This means that,
for such theories, an (unknown) high-energy completion of the
fiducial new dark energy physics ought to take over as one
approaches this cutoff, i.e., close to or somewhat below the
LVK band.1 This high-energy completion will naturally
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1Note that the cutoff is the largest possible energy/frequency
scale, where the high energy completion can take over, but this can
already take place at significantly lower energies/frequencies.
Theoretically predicting the precise scale would require detailed
knowledge about such a fiducial (currently unknown) high-energy
completion.
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enforcecGW ¼ c at high energies if it permitsLorentz invariant
solutions, so LVK measurements such as GW170817 may
simply confirm that feature of the high-energy completion
instead of probing the original (low-energy) dark energy
physics itself.2 In other words, in theories that do affect cGW
at cosmological scales, one therefore naturally expects a
frequency-dependent transition back to cGW ¼ c upon
approaching the LVK band. With frequencies in the LISA
band ∼10−4–10−1 Hz (and the corresponding energies
∼10−19–10−16 eV) being significantly lower, upcoming
LISA [27] and TianQin [28] measurements therefore provide
a much cleaner probe of cGW in such dark energy related
theories.

A. Existing and upcoming constraints on cGW

Existing constraints on cGW from lower frequencies,
i.e., frequencies below the LVK band, are comparatively
weak, so it is particularly interesting to forecast constraints
from and for LISA. Here it is worth emphasizing that a
frequency-dependent cGW, so e.g., different speeds in theLVK
and LISA bands, is a generic consequence of the aforemen-
tioned dark energy theories (see [25,29,30] for more detailed
discussions on this point). The existing relevant constraints
closest to (in fact, just below) the LISA band are from binary
pulsars, in particular from theHulse-Taylor binary, and place a
bound of jαT j ≲Oð10−2Þ for frequencies f ∼ 10−5 Hz [21].
Herewe have conveniently expressed bounds on cGW in terms
of the dimensionless αT parameter

αT ≡ ðc2GW − c2Þ=c2; ð1Þ

which we will use throughout this paper. Bounds from even
lower frequencies f ∼ 10−18–10−14 Hz come from the cosmic
microwavebackgroundand large scale structuremeasurements
(see [31–56] and references therein) and require jαT j≲Oð1Þ.
Finally there are already a number of cGW-related forecasts for
upcoming measurements in the LISA band:
(1) [57] forecasted that a multimessenger observation in

the LISA band using observations of an eclipsing
white-dwarf binary will be able to constrain jαT j ≲
10−12 (in the event of a nondetection of any αT-
related effect).

(2) For the case when there is a significant frequency
dependence for cGW already within the LISA band,
[29] used redshift-induced frequency dependence
imprinted on waveforms to be observed in the LISA
band (i.e., without the need for an optical counter-
part) to forecast a constraint of jαT j ≲ 10−4.

(3) Also for frequency-dependent cGW within the LISA
band, [30] forecasted that a bound jαT j≲ 10−17 can

be placed by using the fact that waveforms to be
observed by LISA will be squeezed/stretched/
scrambled due to the different speeds with which
different frequencies will propagate (for frequency-
dependent cGW and again without the need for an
optical counterpart).

(4) Finally, if there is nodetectable frequency dependence
in both the LISA or LVK bands individually, but a
transition in between, [30,58] showed that multiband
observations using systems such asGW150914—that
are first observable in the LISA band and later enter
the LVK band [59]—will constrain jαT j ≲ 10−15

(again in the event of a nondetection).3

Looking forward toupcomingLISAobservations this leavesus
with the following situation when looking for the strongest
possible upcomingbounds. If there is any significant frequency
dependence in the LISA band, a strong jαT j ≲ 10−17 bound
will very quickly be established once a single sufficiently loud
super massive black hole (SMBH) merger has been observed.
No optical counterpart ormultiband observation is required for
this. If no such frequency dependence is present, multimes-
senger events andmultiband observationswill eventually place
bounds at the 10−12 level and 10−15 level, respectively.4 Here
we will show that additional bounds at the 10−4 level can be
derived from the ringdown phase of an observed SMBH
merger. These bounds are more model dependent (we will
detail how below), but will effectively be obtainable as soon as
LISA goes online [given an expectedOð10 − 100Þ observable
SMBH mergers per year [61–67] ]. In the LISA context these
bounds are therefore most relevant in the event that no
significant frequency dependence is detectable within the
LISA band itself, e.g., when cGW quickly asymptotes to a
constant value for high and low frequencies and its frequency
dependence and transition between those asymptotes is effec-
tively localized to a narrow band between the frequencies
accessible byLISAandLVK.Wewill further discuss this setup
—as pointed out above, this is the same basic setup as explored
in [30,58] in the context of multiband observations—below, as
well ashowouranalysis is affectedwhen frequencydependence
leaks into the frequency band under investigation. As we will
show, the ringdown bounds on cGW discussed here are also
eventually expected to tighten by up to two orders ofmagnitude

2The same is true for bounds from (the absence of) gravita-
tional Cherenkov radiation [26], which place a lower bound on
cGW at energy scales of order ∼1010 GeV, i.e., far above the
energy scales probed by gravitational wave detectors.

3Several of the forecasted constraints listed here were com-
puted considering single waveforms. For upcoming future de-
tectors signal overlap will likely be a regular occurrence, so
understanding to what extent this impacts the above bounds will
be an interesting issue to explore going forward.

4Note that the galactic eclipsing white dwarf binary considered
in [57] is a known system which is expected to be clearly
observable in LISA, whereas detection rates for multimessenger
events more akin to GW170817 (i.e., compact object mergers
with a clearly identifiable optical counterpart that pinpoints the
merger itself) are highly uncertain [60]. Multiband observations
as discussed in [30,58,59] will take several years to constrain
cGW, given the signal has to “migrate” from the LISA to the LVK
frequency band for the constraint to arise.
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when stacking observations of multiple events. We will also
highlight that such bounds are not just a complementary and
independent constraint on cGW, but the fact that they are derived
for a different background spacetime comparedwith constraints
from gravitational wave propagation (black hole vs cosmologi-
cal spacetimes) also allows us to extract novel insights about the
underlying physics.

B. Scalar-tensor theories

Wewill focus on theories where the fiducial new physics
is minimal in the sense that it is described by a single scalar
degree of freedom ϕ, so that we are dealing with a scalar-
tensor theory. The most general such theory which results
in second-order equations of motion is commonly know as
Horndeski scalar-tensor theory [68,69],5 which is governed
by the following action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
G2 þ G3□ϕþG4R

þ G4X½ð□ϕÞ2 − ϕμνϕμν� þG5Gμνϕ
μν

−
1

6
G5X½ð□ϕÞ3 − 3ϕμνϕμν□ϕþ 2ϕμνϕ

μσϕν
σ�
�
: ð2Þ

Here we have introduced the shorthands ϕμ ≡∇μϕ and
ϕμν ≡∇ν∇μϕ, and the Gi are free functions of ϕ and X,
where X ≡ − 1

2
ϕμϕ

μ. GiX denotes the partial derivative of
Gi with respect to X. Most relevant for our purposes will be
the (X-dependent parts of the) G4 interactions and the G5

interactions, since (as we will discuss below) these are the
only interactions affecting αT . Also note that, for simplicity,
we will often focus on the case where G4 is ϕ-independent,
so thatG4ϕ ¼ 0 (whereGiϕ denotes the partial derivative of
Gi with respect to ϕ)—we discuss what this assumption
entails in more detail in Appendix A.
It is important to highlight that, just like General

Relativity (GR), the Horndeski scalar-tensor theory (2) is
an effective field theory (EFT), so has a limited range of
validity. When (2) is taken to be a fiducial dark energy
theory that does affect cGW on cosmological scales, then
this theory only applies up to its cutoff, expected at or
below the aforementioned Oð102Þ Hz. This is precisely
analogous to the way in which GR is at most a valid
description of gravitational phenomena up to the Planck
scale. These observations have an important practical
implication when computing BBH merger observables as
we do here; cGW and hence αT derived from (2) are in fact
frequency independent as a consequence of the structure
of (2) imposed by the requirement of second-order equations
of motion. The frequency dependence of cGW alluded to
above only enters as a consequence of the unknown UV
(high-energy) completion of (2), in other words once we are

about to leave the regime of validity of (2). Throughout most
of this paper we will compute and analyze ringdown
predictions derived from (2), so we are implicitly assuming
that we are operatingwithin a frequencywindowwhere I) (2)
is firmly within its regime of validity, and hence II) cGW is
effectively frequency independent within this window.
Rigorously computing analogous predictions in frequency
windowswhere there is significant frequency dependence for
cGW would require incorporating at least some of the effects
of the UV completion and hence supplementing/replacing
(2) with the relevant interactions. We will point out the
implications of this assumption in more detail below as well
as when one can extrapolate to more general scenarios.

C. Outline

With the above setup in place, this paper is organized as
follows. We collect and discuss the relevant results from
black hole perturbation theory in Sec. II, both for “bald” and
“hairy” black hole solutions. We extract the observable
quasinormal spectrum from the relevant solutions in
Sec. III, discussing issues related to the parametrization of
αT in the process. Parametrized constraints are then presented
in Sec. IV, where we analytically compute the precision with
which upcoming ringdownobservationswill be able to probe
αT for a generic observation. We discuss correlations
between different constrainable parameters and how con-
straints depend on the underlying interactions. Forecasted
constraints for a range of specific missions and experiments
are then discussed in Sec. V. We conclude in Sec. VI and
collect further relevant details in the appendixes.

II. BLACK HOLE PERTURBATION THEORY

Since the ringdown phase of BBH mergers can be well-
described perturbatively, we first ought to discuss the
relevant setup in black hole perturbation theory. We will
consider static and spherically symmetric background
solutions that are Ricci flat (Rμν ¼ 0 ¼ R) here, in par-
ticular Schwarzschild spacetimes. We therefore write the
background metric ḡμν as

ds2 ¼ ḡμνdxμdxν ¼ −AðrÞdt2 þ 1

BðrÞ dr
2 þ CðrÞdΩ2;

ð3Þ
where A, B, C are general functions of the radial coordinate
r and dΩ2 is the line element of the standard 2-sphere.
We now consider metric perturbations h around this
background, where

gμν ¼ ḡμν þ hμν: ð4Þ

Around the static and spherically symmetric backgrounds
considered here such perturbations can be decomposed
into odd and even-parity perturbations (under rotations),

5For the equivalence between the formulations of [68,69],
see [70].
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which decouple from one another at linear order (i.e., they
evolve independently from one another and can therefore be
treated separately). We will work to leading (linear) order in
this paper, but note that this decoupling does not hold at
higher orders (see [71–76] for details on the behavior of
higher-order modes). In this paper we will exclusively focus
on odd perturbations, which can be written as

hoddμν ¼

0
BBB@

0 0 0 h0
0 0 0 h1
0 0 0 0

h0 h1 0 0

1
CCCA sin θ∂θYlm; ð5Þ

where we have used the Regge-Wheeler gauge [77] and,
since we assume a static background metric, we have set
m ¼ 0 without loss of generality. h0 and h1 are functions of
ðr; tÞ, where the t-dependencewill be taken to be of the form
e−iωt. Since perturbations of the scalar ϕ are even under
parity transformations andwe focus onparity-oddmodes,we
will therefore only be concerned with metric perturbations.
These perturbations are however affected by the background
solution they are propagating on, so oddmetric perturbations
will nevertheless be sensitive to the new physics encoded by
the (background solution of the) fiducial scalar degree of
freedom we are probing here.

A. Schwarzschild black holes without hair

No-hair theorems guaranteeing a trivial scalar field profile
exist for a wide range of scalar-tensor theories [78–81].6 A
natural starting point are therefore Schwarzschild spacetimes
with a constant scalar field background profile ϕ̄ as e.g.,
investigated by [82–84]

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ 1

ð1 − 2M
r Þ

dr2 þ dΩ2;

ϕ̄ ¼ constant: ð6Þ
Note that, when we mention the “background” or “back-
ground solution” going forward, we refer to both the metric
and scalar background solutions, as e.g., provided in (6).
Around thebackground (6) odd-metric perturbations trivially
behave just as in GR, since they are unaffected by the even
sector (where scalar perturbations do induce nontrivial
effects) and also do not feel any effects from the scalar
background solution (since this is trivial in the present no-
hair setup). So in order to explore potentially observable
effects induced by the scalar, one ought to either investigate

different background solutions or consider even perturba-
tions. For detailed discussions of the second option we refer
to [82,83,85–93] for work in the context of Horndeski
gravity, and to [86,94–98] for work in the context of other
theories (scalar-tensor or otherwise). However, here we will
proceed along the first route, considering the dynamics of
odd perturbations around different background solutions.We
leave an investigation of how the speed of gravity impacts
quasinormal modes in the even sector in the presence of a
nontrivial background solution (i.e., combining the two
options discussed above) for future work.

B. Hairy black holes: Background

If ϕ acquires a nontrivial background profile, this will
provide a medium for gravitational waves (i.e., here in
particular hoddμν ) to travel through and hence can affect cGW.
Probing cGW therefore constitutes a powerful test for
departures from GR in such cases, as neatly illustrated
in the aforementioned cosmological context. For the black
hole solutions we focus on here, a well-known scalar-tensor
theory example that can have scalar hair are scalar-Gauss-
Bonnet (sGB) theories [81,99]. In the context of Horndeski
theories these are described by an action that (in addition to
a standard kinetic terms) contains a G5 interaction where
G5 ∼ ln jXj [70]. However, instead of focusing on a specific
hairy solution, we will here follow the approach of [100]
and parametrize the scalar-induced hair in a perturbative
fashion, but otherwise remain agnostic about the precise
nature of the hair. More specifically, we will consider a no-
hair Schwarzschild black hole solution at lowest order and
introduce small hairy deviations away from this. These can
in principle manifest themselves both in the background
solution for the metric as well as in the scalar profile,
so [100] proposed the following parametrized ansatz

AðrÞ ¼ BðrÞ ¼ 1 −
2M
r

þ εδA1 þ ε2δA2 þOðε3Þ;
CðrÞ ¼ ð1þ εδC1 þ ε2δC2Þr2 þOðε3Þ

ϕ̄ ¼ ϕ̂þ εδϕ1 þ ε2δϕ2 þOðε3Þ: ð7Þ
Here δAi; δCi; δϕi are functions of r and ε is simply a useful
order parameter, since we will work perturbatively up to
quadratic order in the (small) hair δϕ − ε has no physical
meaning beyond this.7 Note that we will denote quantities
which are evaluated on the background (so hμν is set to

6This was first shown for stationary black holes in minimally
coupled Brans-Dicke theories [78], and subsequently extended
to a more general class of scalar-tensor theories including
self-interactions of the scalar [79], to spherically symmetric
static black holes in Galilean-invariant theories [80], and for
slowly rotating black holes in more general shift-symmetric
theories [81].

7It is worth emphasizing an important subtlety here. As
mentioned above, since we are focusing on the odd-parity sector
of perturbations, there are no scalar perturbations contributing in
our setup. The δϕi in (7) therefore describe small deviations in the
background solution for the scalar away from a lowest-order
constant scalar profile. There are therefore implicitly two per-
turbative hierarchies at play here. Metric perturbations hoddμν and
perturbations in the background hair. We will work up to linear
order in hμν (at the level of the equations of motion) and up to
quadratic order in the hair.
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zero, recall odd-scalar perturbations vanish identically)
with a bar, so ϕ̄ denotes the scalar field as evaluated on
the background. Quantities where in addition the small
(background) scalar hair δϕi is set to zero are denoted by a
hat, so e.g., ϕ̂ denotes the scalar field as evaluated on the
background in the absence of any nontrivial scalar hair. As
a consequence we have X̂ ¼ 0, while X̄ here acquires
nonzero contributions via the δϕi. While (7) is a very
general parametrization, for our purposes we will be able to
work with a highly simplified subset. We are interested in
probing the effect of cGW (or equivalently αT) on the
ringdown phase. Since deviations from cGW ¼ c (or
equivalently αT ¼ 0) arise due to a nontrivial scalar field
profile acting as a medium for gravitational waves passing
through, it is unsurprising that at lowest order in ε any
αT-dependent contribution only depends on δϕ1 in (7) and
not on δAi; δCi, or δϕ2. We collect results showing this
explicitly in Appendix A, but here we will therefore
proceed by working with the much simpler parametrized
ansatz

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ 1

ð1 − 2M
r Þ

dr2 þ dΩ2;

ϕ̄ ¼ ϕ̂þ εδϕ: ð8Þ

Recall that δϕ is a small deviation in the background solution
ϕ̄. This will allow us to identify the leading-order contribu-
tions imprinted by a nonzero αT , so is ideally suited for our
purposes. Wewill later discuss to what extent the constraints
we will derive on αT may be contaminated/weakened in the
presence of nonzero δAi; δCi, but for nowproceedwith (8) as
a proof of principle. However, do note that our simplified
ansatz is (partially) motivated by sGB-like hair. There, when
working perturbatively in a small sGB coupling, at leading
order only the scalar background acquires a nontrivial
contribution, while the metric remains Schwarzschild
[81,99],8 i.e., we are working with a so-called “stealth”
solution for the metric.

C. Hairy black holes: Quadratic action

In order to extract the ringdown signal we need to
compute the behavior of (odd parity) perturbations on top
of the background (8). Working out the quadratically
perturbed action, substituting the components of (5) as
well as our background solution (8), integrating over the
angular coordinates and performing several integrations by

parts, we recover the action [101,102]

Sð2Þ ¼
Z

dtdr

�
ā1h20 þ ā2h21

þ ā3

�
_h21 þ h020 − 2_h1h00 þ

4

r
_h1h0

��
; ð9Þ

where a dot and a prime denote derivatives with respect to t
and r, respectively, and we have dropped an overall
multiplicative factor of 2π=ð2lþ 1Þ coming from angular
integration. The expressions for the āi agree with those
found by [101,102] and satisfy

ā1 ¼
lðlþ 1Þ

2r2

�
ðrHÞ0 þ ðl − 1Þðlþ 2ÞF

2B
þ r2

B
εA

�
;

ā2 ¼ −
lðlþ 1Þ

2
B

�ðl − 1Þðlþ 2ÞG
2r2

þ εB

�
;

ā3 ¼
lðlþ 1Þ

4
H; ð10Þ

where the āi are to be evaluated on the background (8) (to
avoid clutter bars are implied, but not written explicitly, for
all expressions on the right-hand side). εA;B are contribu-
tions that vanish on-shell, and

F ¼ 2

�
G4 þ

1

2
Bϕ0X0G5X − XG5ϕ

�
;

G ¼ 2

�
G4 − 2XG4X þ X

�
B0

2
ϕ0G5X þ G5ϕ

��
;

H ¼ 2

�
G4 − 2XG4X þ X

�
B
r
ϕ0G5X þ G5ϕ

��
: ð11Þ

The quadratic action (9) contains two fields ðh0; h1Þ, but
describes only one dynamical degree of freedom. [101,102]
show how the action can be rewritten to make this manifest.
To do so an auxiliary field q is defined and then redefined
into a field Q, satisfying9

h0 ¼ −
ðr2ā3qÞ0

r2ā1 − 2ðrā3Þ0
; h1 ¼

ā3
ā2

_q; q ¼
ffiffiffiffi
F

p

rH
Q:

ð12Þ

Rewriting the quadratic action in terms of Q in tortoise
coordinates r� (defined as dr ¼ Bdr�), one then finds

8This motivation is only “partial”, since 1) it would correspond
to setting δA1 ¼ 0 ¼ δC1 in (7), but not δA2; δC2 and 2) because
the guiding principle here is not to explore the consequences of
any specific theory, but rather to explore the consequences of a
nontrivial cGW on top of a parametrized background ansatz. See
Appendix A for a more in-depth discussion of what happens
when δA1 ¼ 0 ¼ δC1, but δA2; δC2 are nonzero and fully taken
into account.

9In short, the one-field quadratic action is obtained by
introducing an auxiliary field q into (9) while leaving the
dynamics invariant, varying with respect to h0;1 to obtain h0;1
in terms of q, substituting them back into the action and finally
performing a field redefinition qðQÞ. This is explicitly shown in
the accompanying notebook [1].
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Sð2Þ ¼ lðlþ 1Þ
4ðl − 1Þðlþ 2Þ

×
Z

dtdr�

�
F
G

_Q2 −
�
dQ
dr�

�
2

− VðrÞQ2

�
; ð13Þ

where the potential is given by

V ¼ ðlþ 2Þðl − 1Þ B
r2

F
H

−
r3

2

�
B2

r4

�0
−
r4F 2

4F 0

�
B2F 02

r4F 3

�0
:

ð14Þ

Note that, we have liberally used our background ansatz (8)
to simplify the āi, etc., in comparison to the more general
expressions in [101,102]—we collect those general expres-
sions in Appendix B for comparison.

D. Modified Regge-Wheeler equation

In order to obtain the analog of the Regge-Wheeler
equation, we now vary the action with respect to the fieldQ
and find

∂
2Q
∂r2�

−
F
G
∂
2Q
∂t2

− VQ ¼ 0: ð15Þ

We assume that the time dependence of Q is given by e−iωt,
substitute F , G, H, and V for our background (8), and
finally obtain the modified Regge-Wheeler equation

d2Q
dr2�

þ ½ω2ð1þ ε2αTÞ − BðVRW þ ε2δVÞ�Q ¼ 0; ð16Þ

where αT satisfies

αT ¼ −B
G4X −G5ϕ

G4

δϕ02: ð17Þ

Note that, given the background we are considering, αT
naturally is a function of r as well as of the Schwarzschild
mass M. In general there are further contributions to αT
depending on G5X, but these only enter at cubic order in ε
as can be deduced from (11), so do not contribute here.10

VRW is the well-known Regge-Wheeler potential in GR

VRW ¼ lðlþ 1Þ
r2

−
6M
r3

; ð18Þ

and δV is given by

δV ¼ αT

�
Mð2r − 5MÞ
r3ðr − 2MÞ þ ðlþ 2Þðl − 1Þ

r2

−
r − 2M

2r

��
δϕ00

δϕ0

�
2

−
δϕ000

δϕ0

�
þ r − 5M

r2
δϕ00

δϕ0

�
: ð19Þ

While it has been rearranged into a more concise form here,
this as well as the above expressions in this subsection
agree with the corresponding results given in [100], when
specialized to our ansatz (8). Note that we have implicitly
assumed that G4ϕ ¼ 0 ¼ G4ϕϕ here, as would e.g., be the
case in shift-symmetric theories. We do this to isolate the
effect of αT on the ringdown spectrum, but will further
discuss how G4ϕ ≠ 0 ≠ G4ϕϕ would affect our results in
Appendix A.

III. QUASINORMAL MODES

Having derived and collected the relevant results from
black hole perturbation theory in the previous section, we are
now in a position to extract the key observable in the black
hole ringdown context: the quasinormal modes (QNMs).
As before, we will be focusing on the perturbations of
odd modes and the modified Regge-Wheeler equation (16)
governing them. This equation can now be solved to obtain
the frequencies of the associated quasinormal modes ω.
Unlike normal modes, these frequencies are complex num-
bers, where the real part represents the physical oscillation
frequency and the imaginary part represents the exponential
damping due to dissipation in the system. The QNM
spectrum only depends on the properties of the final black
hole (mass, angular momentum, charge) as well as on the
structure of the underlying theory. Detecting and measuring
this spectrum is hence a powerful way to constrain the
presence of novel degrees of freedom and interactions, as
well as to generally test theKerr hypothesis [103],11 a scheme
that has received the name of black hole spectroscopy. Note
that, while the QNM spectrum does not depend on initial
conditions, the amplitude of individual modes does and this
will be relevant for us in Sec. IV.

A. Parametrized ringdown

There are a number of techniques one can use to
obtain the QNM themselves (see e.g., [104–110]) but we
refer to [65] for an extensive review of those.12 In this
paper, we will make use of the parametrized-ringdown

10This also implies that (17) can be simplified further by
integrating the contributing G5 terms by parts in the original
theory, but as we will work with a general αT here, this does not
affect our subsequent expressions.

11The hypothesis states that the spacetime around a black hole
after gravitational collapse is well described by the Kerr metric
and therefore contains no hair.

12The rationale for obtaining numerical solutions for QNM is
schematically the following. One imposes boundary conditions
on the horizon and spatial infinity (corresponding to r� → �∞)
such that on the horizon wave packets are moving inwards and at
infinity wave packets are moving outwards. The imposition of
boundary conditions will then select “quantized” values of ω
(poles in the Green’s function) which correspond to the QNM.
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formalism [111], the relevant key aspects of which we will
now summarize. In order to apply this formalism, our
modified Regge-Wheeler equation has to be recast into the
following form:

B
d
dr

�
B
dQ
dr

�
þ ½ω2 − BðVRW þ ˜δVÞ�Q ¼ 0: ð20Þ

This can easily be achieved by absorbing the ε2ω2αT term
into δV in (16). Because this term is a small correction to
˜δV, we can take ω to be the unperturbed frequencies ω0 of
the unmodified Regge-Wheeler equation characteristic of
GR, around which we will compute the leading order δω
corrections below.13 Doing so, we obtain a modified Regge-
Wheeler equation in the form of (20) with

˜δV ¼ ε2
�
δV −

1

B
ω2
0αT

�
; ð21Þ

with δV being given by (19). It is then instructive to express
the modification to the potential ˜δV as an expansion in
powers of ð2M=rÞ

˜δV ¼ 1

ð2MÞ2
X∞
j¼0

aj

�
2M
r

�
j
: ð22Þ

Once expressed in this form, [111] show that the quasi-
normal frequencies are determined by the same aj coef-
ficients as follows:

ω ¼ ω0 þ δω≡ ω0 þ
X∞
j¼0

ajej; ð23Þ

given that a smallness criterion on the coefficients jajj ≪
ð1þ 1=jÞjðjþ 1Þ is satisfied. The ej are a complex “basis”
and we summarise the low-order ej most relevant here in
Table I—for more details and an explicit computation of
this basis see [111].
At this point we can already appreciate an important

subtlety from the structure of Eqs. (22) and (23). Each
coefficient aj contributing to ˜δV enters with different
(increasing) powers of ∼1=r (22). While this does mean
that those contributions to the potential are suppressed in
the far distance limit, i.e., far away from the horizon, it does
not entail that these contributions are providing a sub-
dominant contribution to the frequency spectrum for the
QNMs. Indeed, from (23) we explicitly see that this ∼1=rj
suppression does not play a role in determining the QNM
frequencies. The jth correction enters as ajej and, while the
ej’s tend to slowly decrease in size as j increases, there is
no parametric suppression of higher j contributions. Also
note that situations where (some) higher j contributions

dominate over lower j contributions do arise rather generi-
cally—we will see explicit examples below. Finally, note
that the smallness criterion mentioned above guarantees
that the jth contribution to the QNM frequencies is a small
correction to ω0, but this does not entail that the sum of all
corrections has to be parametrically suppressed.

B. Parametrizing scalar hair and αT

Before proceeding with the QNM computation and
applying the above formalism to our (21), we require more
information about the functional form of δϕ and αT . In
close analogy to the above discussion, it is natural to to
view these functions as an expansion in powers of ð2M=rÞ
as well. Starting with the scalar hair function δϕ, in the
main text we will follow [100] and focus on a scalar hair
profile parametrized as

δϕ ¼ φc

�
2M
r

�
; ð24Þ

where φc is a constant.14 In Appendix C we discuss the
more general parametrization δϕ ¼ φcð2Mr Þn (where one
remains agnostic of the leading order in 1=r at which the hair
enters) as well as superpositions of different r dependencies
in the scalar hair profile. We leave an investigation of
even more general (nonpower-law) parametrizations for
future investigation. Note that, while in this section we will
focus on the n ¼ 1 scalar hair profile (24), we will discuss
how different profiles affect eventual constraints on αT in
Sec. IVD. Having parametrized δϕ, we turn our attention to
the one remaining function of r affecting ˜δV, namely αT. To
this end it will be useful to separate out the dependence on the
scalar hair background profile and other geometric factors
from αT in (17) as follows:

αT ¼ −Bð2MÞ2GTδϕ
02; GT ≡ 1

ð2MÞ2
G4X −G5ϕ

G4

: ð25Þ

TABLE I. Real and imaginary components of the ej “basis”
functions for l ¼ 2, taken from [111]. Note that we start with
j ¼ 4 as this is our lowest-order nonzero aj. For the full
collection up to j ¼ 50 for each l up to l ¼ 10, together with
the “basis” for even-gravitational and even-scalar perturbations,
see [111].

Reð2MejÞ Imð2MejÞ
j ¼ 4 0.03668 −0.00044
j ¼ 5 0.02404 0.00273
j ¼ 6 0.01634 0.00484
j ¼ 7 0.01136 0.00601
j ¼ 8 0.00795 0.00654

13As we will clarify more explicitly in the next section, there
are multiple modes encoded within ω0.

14Note that such a profile is indeed recovered in scalar Gauss-
Bonnet theories [81,99] (in the long distance limit and when
working perturbatively in the Gauss-Bonnet coupling).
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Here the dimensionless GT parameter has been defined to
isolate the dependence of αT on the LagrangianGi functions,
as opposed to the r-dependence following directly from the
scalar profile or via the dependence on the Schwarzschild
function BðrÞ. We will find this separation especially useful
later on when investigating what constraints on αT can tell
us about scalar hair and vice versa.15 Because we have a
nontrivial scalar profile, all the Gi (and hence also GT) are
functions of r and so to fully specify the r-dependence of αT
we finally also expandGT in powers of r along the same lines
as discussed for δϕ above. Doing so we can write

GT ¼
X
i

GTi

�
2M
r

�
i
; ð26Þ

where each of the GTi are constant coefficients. Putting
everything together, i.e., substituting δϕ (24) and GT (26)
into the expression for αT (25), we can finally write

αT ¼ −
X∞
i¼0

GTiφ
2
c

�
1 −

2M
r

��
2M
r

�
iþ4

;

¼ −
X∞
i¼0

ATi

�
1 −

2M
r

��
2M
r

�
iþ4

: ð27Þ

In the final line we have implicitly defined a final shorthand
as part of our notational setup. The dimensionless amplitude
parameters ATi neatly encapsulate the coefficients control-
ling αT and satisfy

ATi ≡ GTiφ
2
c: ð28Þ

As one may expect, these are also the effective constant
parameters that, as we will find below, QNM observations
will constrain observationally. To provide some intuition
on the relationship between ATi and αT , we illustrate the
dependence of αT on 2M=r for various choices of the
amplitude coefficients ATi in Fig. 1.

C. Parametrized QNMs

Having parametrized all the functional freedom encoded
within ˜δV above, it is now straightforward to combine the
above expressions. Doing so we can express ˜δV as

˜δV ¼ 1

ð2MÞ2
X∞
i¼0

ATi

��
2M
r

�
4þi

ð2Mω0Þ2

þ
�
2M
r

�
6þi

ð−lðlþ 1Þþ 9Þ

þ
�
2M
r

�
7þi

ðlðlþ 1Þ− 20Þþ
�
2M
r

�
8þi 45

4

�
; ð29Þ

Note that we have dropped the order parameter ε2 at this
point. From this we can read off the a-coefficients defined
in (22)16 and from (23) we also obtain the following
expression for the quasinormal frequencies

δω ¼
X∞
i¼0

ATi · E1
i ;

¼
X∞
i¼0

ATi

�
ð2Mω0Þ2e4þi − ðlðlþ 1Þ − 9Þe6þi

þ ðlðlþ 1Þ − 20Þe7þi þ
45

4
e8þi

�
; ð31Þ

FIG. 1. Here we plot αT , the deviation of the speed of
gravitational waves from that of light defined via αT ≡
ðc2GW − c2Þ=c2, as a function of 2M=r. We show αT for different
example choices of i in (27), where only the amplitude ATi
corresponding to this specific i is nonzero (and fixed to a fiducial
value of 1) for each plotted curve. Note that 2M=r ¼ 0 therefore
corresponds to spatial infinity whereas 2M=r ¼ 1 corresponds to
the Schwarzschild radius, so we are interested in this range of
values/distances. One can clearly see that αTðrÞ ¼ 0 at spatial
infinity and at the horizon, but displays nontrivial behavior
in-between with the overall amplitude and sign determined by
ATi while the radial dependence depends on the choice of i
considered.

15Note that we have used the Schwarzschild massM as a mass
scale to define a dimensionlessGT here, but in principle this mass
scale is arbitrary.

16For a given i the contributions to these coefficients are

a4þi ∋ ATið2Mω0Þ2;
a6þi ∋ ATið−lðlþ 1Þ þ 9Þ;
a7þi ∋ ATiðlðlþ 1Þ − 20Þ;

a8þi ∋ ATi
45

4
: ð30Þ

By using the “element sign” ∈ we stress that a given aj can be
built from contributions from different i’s. For instance, a6
obtains contributions from i ¼ 0 and i ¼ 2.
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where E1
i has been defined for convenience, and its sub-

script 1 refers to n ¼ 1. A set of En
i “basis” functions for

general n are provided in Appendix C.
Anticipating some of our later discussion, we can already

see that, for small l and 2Mω0 ∼Oð1Þ, the higher ej terms
are enhanced relative to smaller j terms (for a given ATi).
For additional details on how different contributions enter
into δω, see ppendix C and especially Fig. 4. There we also
explicitly discuss how this picture changes for different
scalar field profiles. Also note that the consistency criterion
we alluded to above, jajj ≪ ð1þ 1=jÞjðjþ 1Þ, places an
implicit bound on the amplitudes ATi for the perturbative
treatment we have outlined to be valid. As an example, for
the case where only i ¼ 0 terms contribute this bound
requires that AT0 ≪ 1.5.17 Including higher-order i’s will
generate similar joint constraints on different ATi. As we
will see, observational bounds will constrain the ATi at the
10−1 level or stronger. Given we are measuring deviations
away from the standard GR expectation ATi ¼ 0, we
therefore expect these consistency bounds to be satisfied
in all relevant scenarios here.

IV. PARAMETRIZED CONSTRAINTS

In the previous section we derived an analytic expression
for the QNM frequencies, assuming these to be close to the
corresponding GR frequencies for a Schwarzschild black
hole with the small perturbations encoding information
about interactions in the underlying scalar-tensor theory,
in particular about αT . We would now like to use this to
forecast how well future GW experiments will be able to
constrain αT using ringdown. More specifically, we per-
form a Fisher forecast to estimate the error in the ATi
parameters (28). In this section we therefore derive general
expressions for the resulting constraints and discuss their
overall features, following this up in the next section by
forecasting and discussing constraints for specific upcom-
ing experiments. Note that, throughout this section, we
ubiquitously use the techniques developed in [112] for our
analysis.

A. Fisher forecast setup

We begin by modelling the waveform as

h ¼ hþFþ þ h×F×; ð32Þ

where hþ;× represent the strain in the two polarizations of
the gravitational wave. These are in principle functions of
all coordinates, i.e., hþ;×ðt; r; θ;ϕÞ. However, to distin-
guish between time and frequency domains, we will only
make t (or ν) explicit and take the dependence on r; θ;ϕ as
understood. Fþ;× are functions encoding the geometry of

the problem (i.e., they depend on the angles specifying the
orientation of the source with respect to the detector). The
strain functions for the ringdown are given by

hþðtÞ ¼
X
lm

Aþ
lme

−πtflm
Qlm Slm cos ðϕþ

lm þ 2πtflmÞ;

h×ðtÞ ¼
X
lm

Aþ
lmN×e

−πtflm
Qlm Slm sin ðϕ×

lm þ 2πtflmÞ; ð33Þ

where these are the strain functions as emitted by the source
and we will implicitly assume that these trivially propagate
to the detector here and will briefly discuss what this
assumption entails and when propagation effects can be
relevant in the next section. In (33) we have absorbed any
overall constant normalization factors into the amplitude
parameters Aþ

lm,
18 and where flm and τlm characterize the

real and imaginary parts of ωlm in the following way:

ωlm ¼ 2πflm þ i
τlm

; Qlm ¼ πflmτlm; ð34Þ

whereQlm is the quality factor. fAþ
lm; A

×
lm ¼ Aþ

lmN×;ϕ
þ
lm;

ϕ×
lmg are the amplitudes and phases for the two polar-

izations. Finally, Slm are spheroidal functions carrying
angular dependencies. Because modes with different ðl; mÞ
do not mix due to the nature of our background, the
lm indices in fωlm; flm; τlm;Qlm; Slm; A

þ
lm;ϕ

þ
lm;ϕ

×
lmg

will play no role for the time being, so we will obviate
them to simplify our notation (and explicitly discuss which
lm modes are of interest when this becomes rel-
evant below).
Using the above strain functions, we compute the signal-

to-noise-ratio (SNR) with the usual

ρ2 ¼ ðhjhÞ ¼ 4

Z
∞

0

dν
h̃ðνÞ�h̃ðνÞ
ShðνÞ

; ð35Þ

where ShðνÞ is the noise spectral density characteristic
of the detector and h̃ðνÞ is the Fourier transform of hðtÞ.19
We now make use of the following set of sim-
plifying assumptions: hFþi ¼ hF×i ¼ 1=5, hFþF×i ¼ 0,

17Note that in practice this bound is set by the a7 coefficient,
which places a stronger bound than the other aj.

18The strain functions hþ=× appear with different normaliza-
tion factors in the literature depending on the setup in question,
e.g., with a factor of 1=2

ffiffiffiffiffiffiffiffi
10π

p
, an extra geometrical

ffiffiffiffiffiffiffiffi
3=4

p
for

LISA or a 1
r factor [103,112–114]. We choose to remain general

and absorb all such factors into the amplitudes Aþ. This does not
affect the calculations presented in this section, as these factors
only enter trough the signal-to-noise-ratio ρ, for which the
appropriate detector-specific values will be discussed and used
in the next section.

19Note that in (35) we use ν rather than f for the frequency
domain representation (or Fourier transform) of the time coor-
dinate. This is to distinguish it from the real component of the
quasinormal modes flm as defined in (34), especially since we
will be omitting the lm indices.
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hjSj2i ¼ 1=4π, Aþ ¼ A. We also make use of the fact that
we can approximate ShðνÞ to be constant. For details on
(and explicit checks of) these assumptions see [112]. Using
these assumptions, (35) can be reexpressed as20

ρ2 ¼ QA2

πfSh
: ð37Þ

To derive error estimates we make use of the Fisher
information matrix, given by

Γab ¼
�
δh
δθa

���� δhδθb
�
; ð38Þ

where θa is the set of parameters for our theory and the
noise-weighted product ð·j·Þ is defined as

ðh1jh2Þ ¼ 2

Z
∞

0

dν
h̃1

�h̃2 þ h̃2
�h̃1

ShðνÞ
: ð39Þ

Then, we can calculate the parameter errors by inverting the
Fisher matrix (which gives the covariance matrix Σ). The
error for a parameter a is given by

σa ¼
ffiffiffiffiffiffiffi
Σaa

p
¼

ffiffiffiffiffiffiffi
Γ−1
aa

q
: ð40Þ

As an initial estimate we will here study the simplified
case where all the usual parameters of the waveform are
known ðA;ϕþ;…Þ and our only free parameters are the
ATi’s (28). We leave forecasting full-joint constraints to
future work. This simplified setup means the estimates
which we will compute below effectively are upper bounds
on the precision one can expect. For a setup as considered
here, where the only waveform parameters we want to
constrain are those appearing inside the quasinormal
frequencies ω (i.e., inside f and Q),21 general expressions

for the errors can be analytically derived. These only
depend on the number of parameters one wants to con-
strain. In this paper we will constrain up to two ATi together
so we provide here the expression for single-parameter
constraints22

σ2ATi
ρ2 ¼ 1

2

�
f

Qf0

�
2

; ð42Þ

where the prime denotes a derivative with respect to ATi,
and for double-parameter constraints

σ2ATi
ρ2 ¼

_f2

2

ð2QÞ2 þ ð1 − f _Q
_fQ
Þ2

ð _Qf0 − _fQ0Þ2 ;

σ2ATj
ρ2 ¼ f02

2

ð2QÞ2 þ ð1 − fQ0
f0QÞ2

ð _Qf0 − _fQ0Þ2 ; ð43Þ

where again a prime denotes a derivative with respect to
ATi, and a dot represents a derivative with respect to ATj.
This matches analogous expressions in [100] (albeit for
non-αT-related parameters there).
Before deriving error estimates on different parameter

combinations, let us briefly return to the question of which
ðl; mÞ modes are of most interest.23 As discussed above,
while the QNM spectrum does not depend on initial
conditions, the amplitude of individual modes does. The
dominant observable contributions, i.e., the modes with the
largest amplitudes for astrophysical binary compact-object
mergers, generically are the l ¼ m modes, more specifi-
cally the (2, 2) mode [112–117].24 Note that, for a non-
rotating black hole solution as we are focusing on here, the
equations of motion are independent of m [86]. So while
m ¼ 0 is typically fixed in such setups for simplicity, as we
have done here, the results derived apply for any m. The
relative amplitude of subdominant modes (in particular
l ¼ 3) grows as the mass ratio q and angular momentum j
of the remnant black hole increases [113,114,118,119]—
also see those references for discussions related to the
detectability of such modes. Nonetheless, the l ¼ 2 mode

20Note that to obtain this simple expression for ρ2 we have
further assumed that ϕþ ¼ ϕ× and N× ¼ 1 (i.e., A× ¼ Aþ ¼ A)
[112]. However, we stress that this is not a necessary assumption
to recover the expression for the single-parameter error (42) laid
out in the following subsections. We do find it necessary to
recover the double-parameter error expressions (43). Without this
assumption, we have

ρ2 ¼ QA2ðð1þ N2
×Þð1þ 4Q2Þ þ cos 2ϕþ − N2

× cos 2ϕ×Þ
ð1þ N2

×Þð1þ 4Q2ÞπfSh
: ð36Þ

21Note that we need two variables to represent the real and
imaginary parts of ω and, similarly to previous literature [100] we
choose to work with the pair ff;Qg rather than ff; τg. We note
that, if working with the latter, the SNR equation (37) would be
further simplified to

ρ2 ¼ τA2

Sh
: ð41Þ

22This simple expression also implicitly makes use of the
large-Q limit (or equivalently large damping times τ). More terms
appear at the Q−4 order. For details on the validity of this
approximation we again refer to [112] and the full “unapproxi-
mated” expressions are available in the companion notebook [1].

23There is a third index characterizing the QNM spectrum, the
overtone numbern. Herewe only focus on the “fundamentalmode”
n ¼ 0. Modes with higher n’s (i.e., overtones) aremore suppressed
by virtue of having increasing values of jImðωÞj.

24Note that the discussion in Sec. II only applies for l ≥ 1
modes and the dipole perturbation l ¼ 1 requires special treat-
ment, as the Regge-Wheeler gauge used in Sec. II does not fully
fix all gauge degrees of freedom for this mode, see [101] for
details. However, the contribution from the l ¼ 1 mode can be
shown to be negligible for the background solutions we are
probing [101], so this is of no concern here.
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still generically dominates in all scenarios and higher l
modes decay more quickly, see Table II. Note that the
damping time τ goes as the inverse of the imaginary
component of ω, which increases for higher l modes. So
in addition to generically possessing a smaller amplitude,
these modes also decay faster. Finally, also notice that, for
binary systems that have orbited each other for a sufficiently
long time for orbits to have approximately circularized, the
l ¼ 2 mode will be additionally enhanced relative to other
modes [120–122]. While it is straightforward to repeat the
analysis for other higher-l modes, the above rationale truly
singles out the l ¼ 2 mode as the observationally most
relevant. We will therefore focus on this mode in what
follows. Having said this, a multiple mode analysis will of
course be a powerful tool to probe higher-dimensional
parameter spaces using ringdown alone tests in the future.
While, as we have seen, quasinormal modes are independent
ofm for static black holes, all astrophysical black holes do in
fact rotate. For those, (2, 2) is truly the dominant mode, and
hencewewill focus on this one to perform the Fisher forecast
and leave amore detailed study of constraints in the presence
of several detected modes for the future. Extending the
quasinormal mode calculations in Secs. II and III to rotating
black holes is an interesting way forward for which some
machinery already exists, at least for slowly rotating black
holes (see e.g., [123–127]). However, such metrics and the
Schwarzschild metric are smoothly connected (i.e., taking
the limit of zero rotation j → 0 recovers the Schwarzschild
line element) so one expects that the nonrotating scenario still
captures the leading order information in the quasinormal
frequencies for sufficiently slow rotation.

B. Constraining AT0

We begin by considering a minimal setup, where there is
only a single relevant ATi parameter, namely AT0. From
(31) we then find the QNM shift to be given by

δω ¼ AT0 · E1
0; ð44Þ

where E1
0 is shown in (31) and we quote it here for reference

E1
0 ¼

�
ð2Mω0Þ2e4 − ðlðlþ 1Þ − 9Þe6

þ ðlðlþ 1Þ − 20Þe7 þ
45

4
e8

�
: ð45Þ

Substituting in the numerical values for the ej from Table I,
we obtain

Mδω ¼ −½0.00070þ 0.00306i� · AT0: ð46Þ

In evaluating this, we have also used the l ¼ 2 mode in
Table II. This now allows us to obtain parametric expres-
sions for the αT-induced deviations in the QNM spectrum.
From (46) and Table II we find the following percentage
differences for the real and imaginary parts, respectively

δωR

ω0R
≈ −0.19 · AT0%;

δωI

ω0I
≈ 3.44 · AT0%: ð47Þ

Finally, we are also in a position to extract an expression
for the accuracy with which an experiment with ringdown
SNR ρ will be able to measure AT0. Reading off f and Q
from (46), as defined in (34), and substituting them into
the single-parameter error expression (42), we obtain an
estimate on its detectability in the same fashion as [100].25

This gives us26

σAT0
ρ ≈ 181: ð48Þ

The numerical value of this error calculation, as well as the
analogous ones which will follow in this section, will be
translated into αT constraints for specific detectors in
Sec. V. There, we will compare our results with other
existing and forecasted constraints.

C. Constraining multiple ATi

Having considered the single-parameter case above, a
natural next step is to consider a more complex functional
form for αT and hence for the ATi. Here we consider the
case where αT is controlled by two parameters, AT0 as
before and a second parameter AT1. Proceeding as before,
we then have

δω ¼ AT0 · E1
0 þ AT1 · E1

1: ð49Þ

Reading off expressions for f and Q from equation (49) as
before, we find the following error estimates from (43)

σAT0
ρ ≈ 302; σAT1

ρ ≈ 465: ð50Þ

One may wonder how we can constrain two parameters
with the measurement of a single mode. To this end note
that the measurement of a single mode carries information

TABLE II. Real and imaginary components of the quasinormal
frequencies ω0 of a Schwarzschild BH in GR for l ¼ 2, 3, 4, 5.
Quasinormal data is provided online [128,129].

Reð2Mω0Þ Imð2Mω0Þ
l ¼ 2 0.7474 −0.1779
l ¼ 3 1.1989 −0.1854
l ¼ 4 1.6184 −0.1883
l ¼ 5 2.0246 −0.1897

25Note that, in evaluating the final expression, we set AT0
to zero. This should simply be understood as capturing the
leading-order contributions to the error—depending on the actual
value of AT0 the precise error can differ by ≲Oð10%Þ.

26More precise results are provided in [1]. Ultimately, we will
only be interested in the robust order-of-magnitude constraints
here, so e.g., in Table III we will approximate σAT0

ρ ≈Oð102Þ.
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about the oscillation frequency of that mode as well as for
the associated damping time and these independent pieces
of information allow constraining two parameters here.
Once future observations are capable of measuring multiple
modes [65,116,130], this will of course allow constraining
a correspondingly larger parameter space.
Equation (50) shows that AT0 and AT1 can be constrained

to a similar order of precision. This re-iterates that terms at
higher order in a 1=r expansion are not parametrically
suppressed in their contribution to the QNM frequency
spectrum, so a 1=r expansion is not an ideal basis in terms
of observational constraints. Indeed, upon closer inspec-
tion, we find that constraints on AT0 and AT1 are strongly
correlated, as can be seen from the off-diagonal elements of
the covariance matrix for these two parameters

Σab ∼ 104
�

9 −16
−16 22

�
; ð51Þ

We can therefore diagonalize the covariance matrix to
obtain the eigenmodes that will be constrained by the data,
i.e., a more optimal basis from a detectability point of
view.27 Under standard matrix diagonalization procedures
we obtain

Σ̃ab ¼ S−1ΣabS ∼ 103
�
5 0

0 303

�
: ð52Þ

This transformation amounts to identifying the combina-
tions of AT0 and AT1 that yield uncorrelated parameters ATA
and ATB, i.e., we have performed the parameter trans-
formation ðAT0; AT1Þ → ðATA; ATBÞ such that the covari-
ance matrix of the latter is the one given by equation (52).
More explicitly, the relevant eigenmodes here are ATA ¼
−0.84AT0 − 0.54AT1 and ATB ¼ −0.54AT0 þ 0.84AT1.

28

Finally, the errors for the new parameters are

σATA
ρ ≈ 68; σATB

ρ ≈ 550; ð54Þ

where we indeed see that ATA can be constrained more
tightly than any parameter in the previous basis.

D. Dependence on scalar hair profile

Above we have derived expressions for the precision
with which a generic future experiment with SNR ρ will be
able to constrain the relevant parameter combinations
affecting QNM frequencies, namely the ATi. Here we

would like to investigate to what extent the specific form
of the scalar hair profile affects this. As we will argue, in
certain cases this argument can then also be inverted to
place constraints on the scalar hair itself. Recall that we are
parametrizing the scalar hair profile as

δϕ ¼ φc

�
2M
r

�
n
: ð55Þ

Here φc effectively captures the scalar field amplitude,
while n carries information about the radial dependence of
this profile. Until now we have set n ¼ 1.

1. Amplitude

The QNM frequencies derived above are functions of the
ATi, which we recall depend both on the scalar amplitude
φc as well as on the GTi (i.e., the interactions in the
underlying theory) via (28). This has an immediate impor-
tant consequence, namely that a detection of the specific
QNM shifts discussed here implies both a detection of
scalar hair and of nontrivial G4 and/or G5 interactions
contributing to the GTi [cf. (25)]. The scalar amplitude φc,
analogously to the amplitudes of QNMs, will depend on the
“initial conditions” for the ringdown phase. It is worth
emphasizing that, at present, it is not yet well-understood
how the nonlinear merger stage affects this amplitude in
scalar-tensor theories of interest, so we will leave φc as a
free parameter.29 It is interesting, then, to disentangle the
effect of φc and of GTi on the constrained ATi parameter(s).
This is shown in Fig. 2. As can clearly be seen, and indeed
as expected from (28), in the presence of a larger scalar hair
amplitude φc the constraint on the GTi becomes stronger.
More explicitly

σGTi
¼ σATi

φ−2
c : ð56Þ

Interestingly, this implies that one can I) infer a constraint
on the scalar hair amplitude from measurements of the
QNMs, given another nontrivial bound on the GTi e.g.,
from nonringdown related constraints on cGW (in other
words: in the event of a future detection of a cGW ≠ c from
another probe), and II) infer a constraint of the GTi, given
other independent information about the amplitude φc (in
other words, in the event of a complementary detection of
scalar hair).

27We thank Sigurd Naess for related discussions.
28Equivalently, the matrix S is built with the eigenvectors

of (51)

S ¼ ð s⃗1 s⃗2 Þ ∼
�
−0.84 −0.54
−0.54 0.84

�
: ð53Þ

29φc may be significantly enhanced or suppressed during the
nonlinear merger stage, so in the absence of comprehensive
numerical (merger) simulations for the theories in question, even
an order of magnitude estimate appears premature. Note that, in
cases where the scalar hair does affect the black hole geometry
[so unlike the “stealth” solutions (8) we consider here], this effect
on the geometry can be used to place additional constraints on the
nature and amplitude of the hair e.g., along the lines presented
in [131–135].
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2. Radial dependence

Having considered the effect of the scalar hair amplitude
above, we now investigate how our analysis is affected when
the functional form of the scalar hair, i.e., its r-dependence
and hence n in (55), changes. We have considered n ¼ 1
above and here we repeat the Fisher analysis for n ¼ 2 as a
complementary example (for further details on the effect
of general n see Appendix C). For concreteness, we again
consider the single-parameter AT0 case. The corrections to
the quasinormal frequencies are now given by

δω ¼ AT0 · E2
0; ð57Þ

where for n ¼ 2 the basis En
i (C7) becomes

E2
i ¼ 4

�
ð2Mω0Þ2e6þi þ

�
−lðlþ 1Þ þ 31

2

�
e8þi

þ
�
lðlþ 1Þ − 69

2

�
e9þi þ

76

4
e10þi

�
; ð58Þ

leading to the following expression for the error on AT0

σAT0
ρ ≈ 132: ð59Þ

We see that the precision with which AT0 can be measured
has improved for the n ¼ 2 case compared to n ¼ 1.We find

this tightening of constraints with increasing n to be generic
and discuss itmore inAppendixC, also for the two parameter
case with AT0 and AT1.

V. FORECASTING OBSERVATIONAL
CONSTRAINTS

In the previous section we derived parametric expres-
sions for the precision with which the parameters control-
ling the behavior of αT and hence cGW can be measured for
probes with a general ringdown SNR ρ. In this section we
now summarize and briefly discuss what this concretely
implies for a range of current and future missions, spanning
the frequency range from 10−4 Hz to 103 Hz. The main
results are collected in Table III.30

Before discussing forecasted constraints in detail for the
respective missions and frequency bands, this is a good
point to recall our introductory discussion in Sec. I about
how and where the frequency-dependence in cGW may be
localized and how this is tied to the regime (i.e., frequency
range) where the underlying theoretical framework is valid.
Rather obviously, any prediction derived from our starting
point—the Horndeski scalar-tensor action (2)—is only
trustworthy when (2) is a faithful description of the relevant
physics. Since (2) gives rise to a frequency-independent
cGW, we are therefore implicitly assuming that at the very
least in the frequency window spanning the ringdown
frequencies in question, cGW is constant as a function of
frequency to high accuracy. A natural scenario to consider
would therefore be the one alluded to in the Introduc-

tion; cGW effectively becomes a constant cð0ÞGW ≠ c at low
frequencies where (2) applies and may indeed be intimately
linked to dark energy phenomenology on cosmological
scales. Now we consider the ringdown following a SMBH
merger observable in the LISA band and effectively have

cGW ¼ cð0ÞGW there. We can therefore straightforwardly use
(2) to compute this ringdown signal. In this scenario we
also assume (2) stops being an accurate description of the
relevant gravitational physics between the LISA and LVK
bands and its unknown UV (high-energy) completion takes
over there, resulting in a transition back to cGW ¼ c at high
frequencies due to the Lorentz invariant nature of the UV
completion. The frequency dependence in cGW, induced by
the UV completion is sharply localized in frequency space
between the LISA and LVK bands and so fully consistent
with existing bounds on cGW from the LVK band. Now this
scenario—as explored in detail in the context of forecasting
upcoming multiband constraints in [30,58]—is only illus-
trative and the frequency dependence of cGW and the

FIG. 2. Here we show forecasted errors on the strength of the
interactions contributing to cGW as parametrized by GTi (26),
where we focus on GT0 as an example. The corresponding error
σGT0

is shown as a function of the scalar hair amplitude φc and of
the detector SNR as quantified by ρ. We see that σGT0

improves as
the scalar hair amplitude grows and as ρ increases, as expected
from (56). More concretely, for an SNR of ρ ∼ 10x and a scalar
hair amplitude of order φc ∼ 10y, we find σGT0

∼ 102−x−2y. From
Table III, at lower frequencies for LISA we would therefore
expect σGT0

∼ 10−3−2y constraints, while for LVK one would need
y≳ 8 to yield constraints on the underlying interactions there that
are competitive with or stronger than existing bounds in this band.

30It is worth pointing out that the ringdown SNRs quoted
implicitly depend on when precisely the transition from merger to
ringdown phase is assumed to take place. While discussing this in
detail is beyond the scope of this paper, we point the interested
reader to [113,115,136–140] for discussions on this.
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regime of validity of (2) can easily be altered depen-
ding on the UV completion and if the connection to dark
energy is loosened or severed completely. We refer to
[25,29,30,58] and [153] for more detailed discussions of
those two points, respectively, and note that in this paper
this is especially relevant in the context of forecasts for
frequency bands above (i.e., at higher frequencies than) the
LISA band. We will come back to this point below.
What would it take to extrapolate/extend the results from

the above sections to cases where cGW is frequency
dependent in the frequency window associated with ring-
down signals of interest? On the theoretical side, we
already pointed out that this would involve supplement-
ing/replacing (2) with the interactions inducing the fre-
quency dependence of cGW, which requires knowledge of
(or assumptions about) the UV completion of (2). The
resulting action could then be used to repeat the analysis for
this frequency window. It is worth highlighting that the
results of Secs. III and IV only know about the Horndeski
scalar-tensor action by assuming the corresponding modi-
fied form of the Regge-Wheeler equation (16). So any UV
completion that does not modify this form other than
inducing a frequency-dependent cGW and hence αT is
covered by the analysis in Secs. III and IV. We leave an

exploration of how UV completions might otherwise affect
the modified Regge-Wheeler equation and how this affects
the subsequent analysis for future work. On the observa-
tional side, a frequency-dependent cGW would introduce
another challenge in the ringdown analysis. Since different
parts (i.e., frequencies) of the waveform then travel at
different speeds, the received signal at the detector will be
stretched/squeezed/scrambled with respect to the signal
emitted at the source [30,154]—also see formally related
discussions in [155,156]. Specifically in the ringdown
context, this can make identifying the correct frequencies
more challenging and this therefore requires a dedicated
analysis [154].31 In practice this means that the strain
functions (33) accurately describe the signal at emission but
will be altered via nontrivial dispersion effects by the time
they reach the detector, so this needs to be taken into
account to correctly forecast constraints when a frequency-
dependent cGW affects the frequency window associated
with the signal under investigation. We will leave such a
dedicated analysis to future work and (as also motivated by
the theoretical considerations above) in this section forecast
constraints for different frequency bands, assuming an
effectively frequency-independent cGW within the band
under investigation (i.e., the LISA forecasts assume a
frequency-independent cGW in the LISA band and so on).

A. LISA band forecasts

As motivated above and in the introduction, the LISA
band is particularly promising in terms of testing for
deviations of cGW from the speed of light, given that a
frequency-dependent transition of cGW just or somewhat
below the LVK band is a natural prediction in a range
of candidate dark energy models. In terms of the amp-
litude parameters ATi, we see from Table III that one
expects the leading order such parameter to be constrained
at the 10−3 level with future LISA/TianQin observations
that are forecasted to yield a ringdown SNR of ∼Oð105Þ
[144,146]. Mapping this back to αT itself (27), this implies
one will be able to detect deviations down to the αT ∼
Oð10−4Þ level from LISA band ringdown alone in the
context of the models we consider,32 i.e.,

σLISA=TianQinαT ∼ 10−4: ð60Þ
Note that present forecasts for far-future missions such as
AMIGO predict the same order-of-magnitude ringdown
SNR, so this would not qualitatively alter constraints
on cGW in comparison with those expected from LISA/
TianQin for a single event.

TABLE III. Achievable order-of-magnitude ringdown SNRs
for a single observed event for different GW detectors and the
corresponding order-of-magnitude errors on αT . Errors in this
table are computed assuming AT0 is the only amplitude parameter
contributing to αT in (27), as an example. The error on αT , σαT , is
quoted as one order-of-magnitude less than the corresponding
error on AT0, as observed in Fig. 1. We stress that the precise
mapping of underlying amplitude parameters to αT mildly
depends on the precise functional form of the scalar hair and
the underlying interactions, but note that errors on other ATi
parameters and hence αT are qualitatively similar (see e.g.,
Table IV). A star (*) denotes that the quoted forecasted SNR
is not ringdown specific. For ET/CE we have quoted the ring-
down-specific ET forecast [141], in the current absence (to our
knowledge) of an analogous forecast for CE. For LISA, we note
that the quoted SNR is significantly larger than typical event
SNRs in the LISA mock data challenge which go up to ∼Oð103Þ
[142,143], while [144] forecast SNRs up to ∼Oð105Þ for
(sufficiently nearby and massive) events. This also illustrates
that there is still significant variance in the forecasted SNRs
relevant for the missions considered here.

Detector(s) Ringdown SNR (ρ) Error on αT

LVK 10 [141,145,146] 1
ET/CE 102 [141,147–149] 10−1

pre-DECIGO 102 [150] 10−1

DECIGO/AEDGE 103 [151,152]* 10−2

LISA 105 [144,146] 10−4

TianQin 105 [144] 10−4

AMIGO 105 [130] 10−4

31We thank Josu Aurrekoetxea and Pedro Ferreira for related
discussions.

32Note that, αT is generically about one order of magnitude
smaller than the dominant ATi—see Fig. 1. Also, as should be
obvious from (27), this mapping is mildly dependent on the i
coefficient.
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It is worth emphasizing that the main bounds discussed
here are forecasted for a single ringdown observation with
the SNR achievable by the relevant detector. It is reasonable
to expect that qualitatively improved constraints will be
obtained when combining multiple observations. Indeed,
for sufficiently large N (where N is the number of detected
events) the measurement precision for QNMs is expected to
improve as N−1=2 [157,158], assuming N identical events.
For the LISA band, expected event rates are somewhat
uncertain, but most estimates lie in the Oð10 − 100Þ per
year range for SMBH mergers (see e.g., [61–67,159]). An
improvement of up to two orders of magnitude on the
above constraints therefore seems achievable after several
years of operation, so that one may hope to ultimately reach
a precision of close to σLISA=TianQinαT ∼ 10−6. We again
emphasize that the N−1=2 scaling discussed here assumes
an idealized case with N identical events with the large
SNRs considered here and so the above should be taken as
an optimistic bound (e.g., many events to be detected will
be at higher redshifts and have correspondingly reduced
SNRs), also depending on the precise SMBH merger and
detection rates as discussed above.

B. LVK band forecasts

Having summarized results for the LISA band above, let
us consider the LVK band. The situation here is qualita-
tively different, given that there already are tight constraints
on cGW specific to this frequency band. Frommeasuring the
coincidence of the GW170817 signal in GW and optical
counterpart observations, one finds that αT ≲ 10−15 [2–6].
When even a very mild frequency dependence of cGW is
present in the LVK band, this bound can be strengthened to
αT ≲ 10−17 [30]. Contrast this with bounds from ringdown
observations alone, where the ATi can be constrained at the
∼Oð10Þ level with LVK observations with an improvement
by approximately an additional order of magnitude to be
expected from the future Einstein Telescope (ET)/Cosmic
Explorer(CE) missions—cf. Table III and see [141,147]
and [148,149] for ET and CE, respectively. Again mapping
this to constraints on αT itself, we therefore ultimately
expect

σET=CEαT ∼ 10−1; ð61Þ

once ET/CE are collecting data in the future.
The bound (61) given above is again for a single event

with the SNR achievable by ET/CE. Taking into account
the N−1=2 improvement of the measurement precision for N
detected events discussed above, we can again extrapolate
how this precision might be improved over time. For ET
Oð104–105Þ events with a ringdown SNR of Oð10Þ are
expected per year [103]. One may therefore reasonably
expect that constraints can eventually be improved by about
two orders of magnitude to σET=CEαT ∼ 10−3. In the LVK

context it is also interesting to point out that existing
(nonringdown-specific) constraints on cGW from GW
waveforms in the LVK band have already seen similar
improvements by stacking events. More specifically,
when comparing I) constraints on cGW from
GW170817 data alone (i.e., without using an optical
counterpart) [12] with II) constraints obtained using a
LVK catalog of 43 confident binary black hole mergers
(used to obtain bounds on the graviton mass in [160], but
straightforwardly reinterpretable to place bounds on
cGW), this improves these bounds on cGW by around
two orders of magnitude.33

At first sight (61) as well as the improved σET=CEαT ∼
10−3 bound reachable by stacking events are rather weak,
albeit complementary, constraints on cGW when compared
with the existing GW propagation bounds from
GW170817 discussed above. Also note that, for the
purposes of this subsection and as discussed in detail
above, we are assuming that (2) is a valid description of
the underlying physics in (at least part of) the LVK band.
As discussed, in dark energy-related theories within (2)
where cGW receives order one corrections on cosmologi-
cal scales one would not expect this to be the case. One
can remedy this [i.e., “return” the LVK band to within the
regime of validity of (2)] in two different ways. First, by
severing the connection to cosmology/dark energy and
looking at the constraints derived here in their own right.
Or second, by suppressing the cosmological αT from the
beginning while not precluding a more sizeable αT
around black hole spacetimes. We will briefly recap a
specific scenario related to the second case below.
However, a more general related point is the following:
The fact that the constraints derived in this paper are
computed for a different background solution than
cosmological background GW-propagation constraints
derived e.g., from GW170817 means that they never-
theless contain some interesting new information on the
scalar hair profile and the underlying interactions
encoded in GT along the lines discussed in Sec. IV D
—we show this in Fig. 2. More specifically, from (56)
and in the event of a scalar hair amplitude φc ∼Oð108Þ,
the constraint on the underlying interactions will be as
strong as constraints on the same interactions from
GW170817 and even stronger for a larger amplitude
φc. Reversing the argument, if future observations were
to identify a small but nonzero cosmological αT , this
would allow placing a bound on the scalar hair amplitude
from the ringdown constraints investigated here. For
concreteness, consider the following setup: The higher
derivative scalar interactions in the G3;4;5 terms in (2)
come with an implicit mass scale Λ. In cosmology this

33This improvement, while still partially driven by the larger
number N of observations included, is also partially due to other
events having higher individual SNRs than GW170817.
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scale is typically chosen to be Λ ¼ Λ3 ≡ ðMPlH2
0Þ1=3,

where this choice ensures those interactions give Oð1Þ
contributions to cosmology. However, if a different Λ is
chosen, the cosmological αT (and hence GT) scales as
αT ∼ ðΛ3=ΛÞ6. So raising the interaction scale Λ by just
three orders of magnitude suppresses the cosmological αT
down to a level of Oð10−18Þ, comfortably consistent with
bounds from GW170817. This setup also allows the full
LVK band to be within the regime of validity of the
physics described by (2)—see [153] for further details on
this scenario. Now suppose that a future constraint indeed
establishes GT ∼Oð10−18Þ, while future ringdown con-
straints from ET/CE along the lines investigated here do
not yield evidence for a nonzero αT . From (28) this
would allow us to derive a bound on the scalar hair φc ≲
Oð109Þ for frequencies in the LVK band. Note that other
complementary bounds on φc may be obtainable e.g.,
from considering even perturbations or going beyond
linear theory.

C. Intermediate band forecasts

With LISA and LVK forecasts discussed above, the
intermediate frequency band stands out as a third region
of interest. Here the upcoming AEDGE [152] and
DECIGO [161,162] experiments will detect and inves-
tigate GWs in the future. In the introduction we moti-
vated probing cGW in the LISA band by pointing out that
a frequency-dependent transition from a nearly constant
cGW ¼ c at LVK frequencies to a different low-frequency
cGW naturally occurs just or somewhat below the LVK
band in large classes of dark energy theories. This
motivation of course equally applies to the frequencies
probed by AEDGE/DECIGO. Candidate transitions in
this intermediate band may “leak out” into the LISA and/
or LVK bands, in which case the considerations outlined
above for those bands already promise tight constraints.
However, another interesting class of transitions are
those investigated by [30,58], where the transition is
effectively completely contained within the intermediate
frequency band and no detectable frequency dependence
leaks out into the LISA and/or LVK bands. In such a
case multiband observations using systems such as
GW150914 that are first observable in the LISA band
and eventually enter the LVK band can be used to obtain
an integrated constraint on any features residing at
intermediate frequencies and indeed will be able to
constrain αT down to a level of Oð10−15Þ [30,58]. In
addition, once AEDGE/DECIGO observations are avail-
able, direct constraints on cGW from this band will be
obtainable in analogy to the LVK/LISA analyses dis-
cussed above. Whenever there is significant frequency
dependence for cGW in band, a complementary ringdown-
specific analysis faces similar theoretical challenges as
discussed for the LVK band above, as well as the

observational modeling challenges mentioned earlier in
this section. So, as before, the bounds forecasted in this
subsection will be for the case where (2) applies within
(at least part of) the AEDGE/DECIGO band and hence
cGW is frequency-independent in this band to high
accuracy. With these assumptions and from ringdown
alone, we find that AEDGE/DECIGO will be able to
constrain the ATi at the ∼Oð10−1Þ level, cf. Table III.
Mapping this to constraints on αT itself, as before, this
implies

σAEDGE=DECIGOαT ∼ 10−2: ð62Þ

While weaker in magnitude than the integrated multiband
constraints discussed above, these bounds are comple-
mentary in the same sense as discussed in the LVK
section above. Note that one may again expect this bound
to be improved significantly when stacking multiple
observed events. Several dozen intermediate mass black
hole mergers with an SNR Oð103Þ should be observ-
able with AEDGE per year [152], so optimistically an
improvement up to σAEDGE=DECIGOαT ∼ 10−4 appears fea-
sible eventually.

VI. CONCLUSIONS

In this paper we have investigated how the speed of
gravitational waves cGW can be probed using black hole
ringdown observations. Focusing on scalar-tensor theories
of the Horndeski type and on odd-parity quasinormal
modes, our key findings are as follows:

(i) In the context of nonrotating black holes where the
metric background solution is given by Schwarzs-
child, we find that deviations of cGW from the speed
of light only affect the QNMs in the presence of a
nontrivial scalar hair profile ϕ ¼ ϕðrÞ in agreement
with the results of [100]. Any deviations from
cGW ¼ c are then proportional to the square of
the amplitude of the scalar hair.

(ii) For a single event, ringdown observations from
LISA and TianQin will be able to constrain cGW at
the Oð10−4Þ level. For AEDGE/DECIGO the
equivalent precision will be Oð10−2Þ. When stack-
ing observations over several years, both con-
straints may be improved by up to two orders of
magnitude, depending on precise event rates. While
those constraints are weaker than existing constraints
on cGW e.g., from GW170817, the importantly probe
different frequency ranges. This is particularly rel-
evant in the context of testing cGW, given large classes
of dark energy models naturally give rise to a
frequency-dependent transition in cGW below the
LVK band.

(iii) With ringdown constraints we are testing the
effect of deviations from cGW ¼ c on a different
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background solution than that relevant for GW
propagation constraints on cGW (black hole vs
cosmological space-times). The precise dependence
of cGW on interactions in the underlying theory is
different for these two backgrounds. We have high-
lighted examples where, in the presence of a
sufficiently large scalar hair profile, ringdown ob-
servations can provide novel constraints on those
interactions. Likewise, given complementary infor-
mation on those underlying interactions, we have
shown how ringdown observations can constrain the
nature of scalar hair. We stress that therefore even
LVK band ringdown measurements, where we find
that Oð10−1Þ level will be obtainable from the
Einstein Telecope/Cosmic Explorer for a single
event, can yield valuable information complemen-
tary to existing constraints on cGW.

Overall we have therefore derived forecasts for the pre-
cision with which ringdown observations will be able to
constrain the speed of gravitational waves cGW for various
detectors throughout the Oð10−4Þ −Oð103Þ Hz frequency
range. Our study has been idealized in the sense that we
have assumed I) the “usual” binary black hole merger
parameters (masses, amplitudes, phases) to be known and
focused on the effect of novel parameters associated with
cGW ≠ c, II) focused on a specific background solution for
the black hole geometry and scalar hair profile, and III) by
working with Horndeski scalar tensor theories, we have
implicitly assumed that cGW is approximately constant in
specific frequency windows/bands when forecasting con-
straints for those respective bands. A more comprehensive
analysis, extending the present work, investigating degen-
eracies and constraints in higher-dimensional parameter
spaces as well as a wider range of hairy black hole solutions
and underlying theoretical setups, will therefore be an
interesting next step. As has been mentioned, another
promising route to make our setup more physically realistic
is to extend the quasinormal mode calculations to rotating
black hole solutions [123–127]. Another step in this
direction would be to include in the analysis surrounding
matter fields that dynamically interact with the black hole

in a way that also affects the emitted quasinormal modes
(see e.g., [163–170]). It is also worth emphasizing that
there are several complementary probes of cGW in addition
to the gravitational wave probes discussed throughout this
paper and corresponding to energy/frequency scales out-
side of the range considered here. These include constraints
from cosmological large scale structure, currently at the
Oð1Þ level—see e.g. [31,32] and references therein—
which are expected to improve to Oð10−1Þ in the near
future [38]. While we have not mandated a specific sign for
any potential deviation of cGW away from c, theoretical
bounds from requiring causality, locality, and unitarity at
high energies can further yield information on these
deviations at the (comparatively) low energies probed by
gravitational waves and cosmology, noticeably mandating
cGW ≥ c for large classes of models [171,172]. We close by
reemphasizing that we have mostly focused on investigat-
ing how well cGW can be tested by ringdown observations,
for a single detected odd-parity quasinormal mode. As
more sources and modes are detected in the future and the
theoretical machinery to analyse them is further developed,
we fully expect further tightened constraints to become
obtainable.
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APPENDIX A: PARAMETRIZED HAIR

In this appendix we quote the results of [100], which
consider the full parametrized hair ansatz (7). The modified
Regge-Wheeler equation becomes

�
d2

dr2�
þ ω2ð1þ ε2αTðrÞÞ − AðrÞ

�
lðlþ 1Þ

r2
−
6M
r3

þ εδV1 þ ε2δV2

��
Q ¼ 0; ðA1Þ

where the potential perturbations are given by

δV1 ¼
1

2r2

�
4δA1 − 2rδA0

1 − 2ðlþ 2Þðl − 1ÞδC1 þ 2ðr − 3MÞδC0
1 − rðr − 2MÞδC00

1 −
G4ϕ

G4

ðrðr − 2MÞδϕ00
1

− 2ðr − 3MÞδϕ0
1Þ
�
; ðA2aÞ

TESTING THE SPEED OF GRAVITY WITH BLACK HOLE … PHYS. REV. D 107, 124054 (2023)

124054-17



δV2 ¼
1

4r2
½8δA2 − 4rδA0

2 þ 4ðlþ 2Þðl − 1ÞðδC2
1 − δC2Þ þ 3rðr − 2MÞδC02

1 þ 4ðr − 3MÞδC0
2

− 2rðr − 2MÞδC00
2 þ 4rδA1δC0

1 − 2r2ðδA0
1δC

0
1 þ δA1δC00

1Þ − 4ðr − 3MÞδC1δC00
1 þ 2rðr − 2MÞδC1δC00

1�

−
1

2r2
G4ϕ

G4

½−2ðr − 3MÞδϕ0
2 þ rðrδA0

1δϕ
0
1 − δA1ð2δϕ0

1 − rδϕ00
1Þ þ ðr − 2MÞðδϕ00

2 − δC0
1δϕ

0
1ÞÞ�

þ 1

4r2

�
G4ϕ

G4

�
2

½3rðr − 2MÞδϕ02
1 þ 2δϕ1ðrðr − 2MÞδϕ00

1 − 2ðr − 3MÞδϕ0
1Þ�

−
1

2r2
G4ϕϕ

G4

½rðr − 2MÞδϕ02
1 þ δϕ1ðrðr − 2MÞδϕ00

1 − 2ðr − 3MÞδϕ0
1Þ�

−
αTðrÞ
2r3

�
−5M þMrðr − 2MÞ−1 − 2rðlþ 2Þðl − 1Þ þ r2ðr − 2MÞ

�
δϕ00

1

δϕ0
1

�
2

þ r

�
rðr − 2MÞ δϕ

000
1

δϕ0
1

− 2ðr − 5MÞ δϕ
00
1

δϕ0
1

��
: ðA2bÞ

There are several observations we can make from these
expressions. Let us first point out that the modified Regge-
Wheeler equation in our main text (16) with (19) can be
recovered by setting δA1;2 ¼ δC1;2 ¼ G4ϕ ¼ G4ϕϕ ¼ 0.
However, we see that δA1; δC1 would contribute at lower
order (as well as δϕ1, ifG4ϕ ≠ 0). If present, such terms can
therefore significantly contribute to the ringdown signal.
Indeed, if the fiducial scalar hair is highly suppressed, i.e.,
when ε is very small, such lower-order-in-ε contributions
would be expected to dominate over any αT-induced
contributions. The motivation behind our simple setup
then is not to fully explore all parametric effects and
degeneracies in a comprehensive parameter space, but
rather to isolate and investigate observable signatures of
αT . Having said this, it has been shown that for known
scalar-tensor theories that have hairy black holes, namely
scalar-Gauss-Bonnet theory, the metric at leading pertur-
bative order remains Schwarzschild (i.e., δA1 ¼ δC1 ¼ 0)
[99], suggesting that several aspects of our simple setup are
concretely realized in relevant theories.
In addition, one could consider cases where G4ϕ ≠ 0 ≠

G4ϕϕ. It is interesting to point out that interactions contrib-
uting to G4ϕ in our background can be removed with a
conformal transformation of the metric. This is because we
still have X̂ ¼ 0,34 meaning that all terms in G4ϕ are X
independent or, in other words, those interactions are of the
form fðϕÞR in Jordan frame, which is well known to be
convertible to the usual Einstein-Hilbert term by a conformal
transformation. In the resulting Einstein frame representa-
tion, one then naturally finds G4ϕ ¼ 0 ¼ G4ϕϕ. This would
indeed make our assumptions more general and, because the
Horndeski group is closed under conformal transformations

andwearenot includingmatter fields, our calculationswould
follow exactly in the sameway. The price to pay for working
with the metric in the Einstein frame is that observations in
GW detectors are coupled to matter and therefore measure
the metric in Jordan frame. Hence, forecasts should ulti-
mately be made for gravitational waves as observed in the
detector/Jordan frame. We therefore abstain from removing
any interactions via a conformal transformation here and
explicitly highlight settingG4ϕ ¼ 0 ¼ G4ϕϕ as an additional
simplifying assumption. Note that this assumption is trivially
satisfied in theorieswhere the scalarϕ is endowedwith a shift
symmetry ϕ → ϕþ c.
To conclude this appendix, let us briefly consider the case

where one ormany ofG4ϕ; G4ϕϕ; δA2; δC2 are nonvanishing.
In this case an analogous analysis to the one performed in this
paper can still be carried out, where the functional form of
any nonvanishing such functions would need to be specified
as above. The additional parameters introduced in this
way mean a higher parameter space would then have to
be constrained, presumably degrading constraints on indi-
vidual parameters. Breaking degeneracies in such a higher-
dimensional parameter space would likely require the
measurements of multiple QNMs. We leave such a more
comprehensive exploration to future work.

APPENDIX B: COEFFICIENTS IN QUADRATIC
ACTION

In this appendix we quote the coefficients in the
quadratic action for a general A, B, and C, as derived in
[101,102]. The quadratic action is given by

Sð2Þ ¼
Z

dtdr

�
ā1h20 þ ā2h21

þ ā3

�
_h21 þ h020 − 2_h1h00 þ 2

C0

C
_h1h0

��
ðB1Þ34Recall that X̂ refers to the kinetic term X evaluated on the

“reference background” of ϕ̂ (i.e., δϕ ¼ 0).
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with the coefficients being

ā1 ¼
lðlþ 1Þ

4C

��
C0

ffiffiffiffi
B
A

r
H
�0

þ ðl − 1Þðlþ 2Þffiffiffiffiffiffiffi
AB

p F þ 2Cffiffiffiffiffiffiffi
AB

p εA

�
;

ā2 ¼ −
lðlþ 1Þ

2

ffiffiffiffiffiffiffi
AB

p �ðl − 1Þðlþ 2Þ
2C

Gþ εB

�
;

ā3 ¼
lðlþ 1Þ

4

ffiffiffiffi
B
A

r
H; ðB2Þ

where again the bar denotes that the āi are evaluated on the
background and, to avoid clutter, bars are implied every-
where on the right hand side. εA;B are contributions
that vanish on shell35 and

F ¼ 2

�
G4 þ

1

2
Bϕ0X0G5X − XG5ϕ

�
;

G ¼ 2

�
G4 − 2XG4X þ X

�
A0

2A
Bϕ0G5X þ G5ϕ

��
;

H ¼ 2

�
G4 − 2XG4X þ X

�
C0

2C
Bϕ0G5X þG5ϕ

��
: ðB3Þ

As shown in [101,102], this action can be rewritten to make
the presence of only one degree of freedom explicit

Sð2Þ ¼ lðlþ 1Þ
4ðl − 1Þðlþ 2Þ

×
Z

dtdr�

�
F
G

_Q2 −
�
dQ
dr�

�
2

− VðrÞQ2

�
; ðB4Þ

where the potential is given by

V ¼ lðlþ 1Þ A
C
F
H

−
C02

4C00

�
ABC02

C3

�0

−
C2F 2

4F 0

�
ABF 02

C2F 3

�0
−
2AF
CH

: ðB5Þ

Our quadratic action (9) and its coefficients as well as the
potential (14) can be recovered from the expressions above
by specifying our background, A ¼ B, C ¼ r2.

APPENDIX C: GENERAL SCALAR PROFILE

Here we repeat the derivation of quasinormal corrections
but for a more general scalar profile, given by

δϕ ¼ φc

�
2M
r

�
n
; ðC1Þ

which means αT is now given by

αT ¼ −
X∞
i¼0

ATi · n2
�
1 −

2M
r

��
2M
r

�
2nþiþ2

; ðC2Þ

where the new n-dependence is plotted in Fig. 3.
Substituting this back into ˜δV (21) we get

˜δV ¼
�

n
2M

�
2 X∞

i¼0

ATi

��
2M
r

�
2nþiþ2

ð2Mω0Þ2

þ
�
2M
r

�
2nþiþ4

�
−lðlþ 1Þ þ 9

2
þ 7

2
nþ n2

�

þ
�
2M
r

�
2nþiþ5

�
lðlþ 1Þ −

�
19

2
þ 17

2
nþ 2n2

��

þ
�
2M
r

�
2nþiþ6

�
21

4
þ 5nþ n2

��
: ðC3Þ

Note that setting n ¼ 1 recovers the expression (29). Again,
this can be written as

˜δV ¼ 1

ð2MÞ2
X∞
j¼0

aj

�
2M
r

�
j

ðC4Þ

with the only nonzero a-parameters for a given i contrib-
uting as

FIG. 3. Here we show αT (C2) for different choices of n in (C1)
as a function of 2M=r. i ¼ 0 has been set such that AT0 is the only
nonzero parameter (and fixed to a fiducial value of 1). We see that
αTðrÞ ¼ 0 at spatial infinity and at the horizon, but again observe
nontrivial behavior in the intermediate region. The size of αT
(partially controlled by AT0) is considerably enhanced by
increasing n. This is mainly due to the factor n2 accompanying
all δω [as can be seen from (C6) and (C7)].

35Expressions for εA;B, which are obtained by varying the
action with respect to A and B, are fully provided in [102].
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a2nþiþ2 ∋ ATi · n2ð2Mω0Þ2

a2nþiþ4 ∋ ATi · n2
�
−lðlþ 1Þ þ 9

2
þ 7

2
nþ n2

�

a2nþiþ5 ∋ ATi · n2
�
lðlþ 1Þ −

�
19

2
þ 17

2
nþ 2n2

��

a2nþiþ6 ∋ ATi · n2
�
21

4
þ 5nþ n2

�
: ðC5Þ

From these we find the following quasinormal frequency
corrections

δω ¼
X∞
j¼0

ajej ¼
X∞
i¼0

ATiEn
i ; ðC6Þ

where we have defined the following new basis for
convenience

En
i ¼ n2

�
ð2Mω0Þ2e2nþiþ2

þ
�
−lðlþ 1Þ þ 9

2
þ 7

2
nþ n2

�
e2nþiþ4

þ
�
lðlþ 1Þ −

�
19

2
þ 17

2
nþ 2n2

��
e2nþiþ5

þ
�
21

4
þ 5nþ n2

�
e2nþiþ6

�
: ðC7Þ

The basis for n ¼ 1 (31) and n ¼ 2 (58) used in the main
text can be straightforwardly recovered from this. Note that

FIG. 4. In this diagram we display the contributions to αT (C2) coming from different n values. These are ordered such that all
contributions to a specific ATi parameter appear in one diagonal, which in principle is extendible ad infinitum. Contributions from
different n also follow a pattern, which can be appreciated here by focusing on the colour of the balls. The vertical axis ej corresponds to
the parametrized basis from [111], which tells us the power of ð1=rÞj at which each contribution appears in the potential.
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here, because we have chosen to remain agnostic about n,
we have ended up with two indices, i.e., n and i that need to
be chosen in order to obtain numerical results. This is
shown explicitly in the super and subscripts of the newly

defined basis En
i . In Fig. 4 we display the corrections

coming from different choices of ði; nÞ, and make some
observations about their structure.
The step from these analytically calculated corrections

to the quasinormal modes to the errors on different ATi
parameters (and hence corrections on αT) is straightfor-
wardly repeated in the same fashion as shown in Sec. IV.
We show in Table IV the results for a few more illustrative
cases, but stress that such an analysis can easily be repeated
for any combination and superposition of ði; nÞ by adapting
the companion notebook provided in [1]. The general trend
we find that can already be appreciated in Table IV is that
errors decrease for increasing i and n (at least for the single-
parameter cases).
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