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The scrambling time and its delay are calculated using holography in an asymptotically AdS black hole
solution of the gauged Einstein-Maxwell dilaton-axion (EMDA) theory, the dyonic Kerr-Sen-AdS4 black
hole, perturbed by rotating and charged shock waves along the equator. The leading term of the scrambling
time for a black hole with large entropy is logarithmic in the entropy and hence supports the fast scrambling
conjecture for this black hole solution, which implies that the system under consideration is chaotic. We
also find that the instantaneous minimal Lyapunov index is bounded by κ ¼ 2πTH=ð1 − μLÞ, which is
analogous to the surface gravity but for the rotating shock waves, and becomes closer to equality for the
near extremal black hole. For a small value of the AdS scale, we found that the Lyapunov exponent can
exceed the bound for a large value of L. Due to the presence of the electric and magnetic charge of the
shock waves, we also show that the scrambling process of this holographic system is delayed by a time
scale that depends on the charges of the shock waves. The calculations also hold for the ultraspinning
version of this black hole. The result of this paper generalizes the holographic calculations of chaotic
systems which are described by an EMDA theory in the bulk.
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I. INTRODUCTION

Due to their extreme properties, such as a strong
gravitational field, black holes provide a good environment
for studying the quantum effects/signatures of gravity.
Previous studies of quantum gravity involve the study of
string theory and loop quantum gravity [1,2]. One of the
other ways to investigate the quantum properties of gravity
around a black hole is by understanding chaotic phenomena
of holographic systems that are dual to some black holes,
which has become an interesting topic until very recently
[3–8]. The study about chaotic phenomena of the one-
dimensional Sachdev-Ye-Kitaev (SYK) model [9] which is

conjectured to be dual to the two-dimensional Jackiw-
Teitelboim (JT) gravity as the effective theory of a near-
extremal black hole near its horizon [10] also leads us to the
understanding of a possibility to study traversable worm-
holes in the lab [11–13]. According to the fast scrambling
conjecture [14], black holes are the fastest scrambler in
nature, with the scrambling time proportional to the
logarithm of its degrees of freedom or entropy,
t� ∼ log S, for systems with a large number of degrees of
freedom (see also [15–17]). A system can be considered
chaotic when the out-of-time-ordered correlators (OTOC)
decay exponentially. The time required for the OTOC to
vanish is known as the scrambling time, and for a fast
scrambler, it is logarithmic in entropy.
Another way to diagnose chaos in a quantum system is by

using the mutual information IðA;BÞ ¼ SA þ SB − SA∪B,
whereSA is thevonNeumannentropy for the reduced density
matrix ρA of a subsystem A. This can be done since IðA;BÞ
provides an upper bound for correlators. If IðA;BÞ ¼ 0, then
the correlators also vanish [18], and the scrambling time
can be obtained from the time required for IðA;BÞ to
vanish. Using the help from holographic theories
such as the AdS=CFT correspondence [19], the mutual
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information can be calculated using the holographic
entanglement entropy, i.e., the Ryu-Takayanagi (RT) or
Hubeny-Rangamani-Takayanagi (HRT) formula [20–22].
Entanglement entropy of a subregion in a conformal field
theory (CFT) with an anti–de Sitter (AdS) dual is equal to the
area of a minimal surface in the bulk which is homologous to
the region divided by 4GN. This can be used to calculate the
mutual information of a thermofield CFTwhich is dual to an
eternal blackhole in theAdSbulk [23,24]. Recent calculation
of entanglement entropy using replica trick in the bulk shows
that it is also possible to calculate entanglement entropy of
black hole spacetimes with multiple horizons [25].
The chaotic behavior of a black hole is first studied in

[3], by calculating the mutual information in a CFT which
is dual to a three-dimensional Banadoz-Teitelboim-Zanelli
(BTZ) black hole (see also [26,27]). A tiny perturbation
traveling at the speed of light which is sent from the left
boundary at a very early time and near the horizon can get
highly blue-shifted and disrupt the geometry to make the
mutual information vanish. Such a perturbation is called
the gravitational shock waves which are represented by the
Dray-’t Hooft solution [28]. Adding the perturbation to the
bulk geometry also corresponds to disrupting the thermo-
field double state in the boundary CFT, causing the
correlator to vanish in late times. From [3], it is found
that the scrambling time for a black hole with large entropy
is given by t� ¼ β

2π logS, where S is the black hole entropy
and β is the inverse Hawking temperature. Furthermore, the
Lyapunov exponent is found to saturate the Maldacena,
Shenker, and Stanford (MSS) bound on chaos [29], i.e.,
λL ¼ 2π=β. This observation supports the fast scrambling
conjecture, which states that a black hole is maximally
chaotic. The chaotic feature of black holes can be tested for
other more general black holes such as charged and rotating
black holes. The charged extension is first studied in [4],
where the scrambling time for a Reissner-Nordström-AdS
black hole perturbed by neutral shock waves is calculated.
It is also found that the scrambling time is logarithmic in
entropy. The calculation is then generalized to charged and
rotating BTZ black holes perturbed by charged shocks [30].
Aside from the bulk calculations, the chaotic behavior of
black holes has also been studied from the CFT side.
A recent study [8] shows that the charged shell must

bounce inside the horizon and change its null trajectory for
the shock wave solution to not violate the null energy
condition from the null-shell formalism [31,32]. The
calculation is done for a four-dimensional Reissner-
Nordström-AdS black hole perturbed by charged shock
waves. This has an important implication for interpreting
the scrambling time obtained. According to standard
calculations, the effect of charged shock waves is to
increase the scrambling time by an extra factor that depends
on the charge of the shocks. However, since the shock
waves bounce inside the horizon, there is a maximum time
tb for a null particle sent from the right asymptotic to meet

the shock waves inside the horizon. The difference between
tb and the time the shocks are sent is equal to the difference
between scrambling time with neutral shocks and charged
ones plus some terms in order of the thermal time β. Using
quantum circuit description, [8] concludes that the effect
of the charged shock waves is to delay the start of the
scrambling process.
Other than the charged shock waves, one may also

consider rotating shock waves. This is first done in [5] for
rotating BTZ black hole and in [6,7] for Kerr-AdS black
hole in four and five dimensions. The importance of adding
the angular momentum to the shocks is that the Lyapunov
exponent can be larger than the MSS bound [33] due to the
existence of a global conserved charge. Furthermore, the
solution survives the extremal limit even though the black
hole temperature becomes zero at extremality.
Aside from the standard Reissner-Nordström and Kerr

black holes, there are many known black hole solutions that
can be described microscopically using holographic theo-
ries [34–41]. It is very interesting to study the chaotic
behavior of various black holes, particularly in an asymp-
totically AdS spacetime, to give us a better understanding
of the chaotic properties of black holes or even holographic
theories in general. It is shown in [6] that the charged
version (the Kerr-Newman-AdS) black hole does not
provide much difference compared to the uncharged
Kerr-AdS black hole. However, there is another black hole
solution that is quite similar (to some extent) to the Kerr-
Newman-AdS black hole, but with extra dilaton and axion
scalar fields, named the dyonic Kerr-Sen-AdS4 black hole.
The chaotic behavior of such a black hole has not been
studied before. Since the dilaton and axion fields are
present, the result will differ from the charged and rotating
Kerr-Newman-AdS black hole. Furthermore, it is widely
known that rotating black holes in AdS have an ultra-
spinning limit—a limit where the rotational parameter
reaches its maximum value. It is also interesting to study
the chaotic behavior of rotating black holes in such a limit
since it is known [40] that an ultraspinning version of a
dyonic Kerr-Sen-AdS black hole may still obey the reverse
isoperimetric inequality due to the existence of the dilaton
and axion fields. Charged and rotating perturbations, in
addition to the uncharged rotating perturbations, will also
give a significant effect on the chaotic dynamics of the
black holes, and it also has not been studied before,
especially in a four-dimensional rotating and charged black
holes with dilaton and axion fields.
In this work, we extend the calculations for the scram-

bling time for charged and rotating black holes in the
gauged Einstein-Maxwell dilaton-axion (EMDA) theory
perturbed by (electrically and magnetically) charged rotat-
ing shock waves. The black hole solution to the gauged
EMDA theory in four dimensions is called the dyonic
Kerr-Sen-AdS4 [42]. The gauged version of the theory is
equipped with a negative cosmological constant which
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provides us with an asymptotically AdS spacetime.
Therefore, it is suitable for studying chaos in this black
hole background using AdS=CFT. The eternal black hole
form of this dyonic Kerr-Sen-AdS4 black hole can also be
represented holographically by two CFTs in their left and
right asymptotic boundaries similar to [23], with extra
chemical potentials which correspond to the rotation and
(electric and magnetic) charges. Studying the chaotic
behavior of such a system also lead us to an even more
understanding of the holographic relation in the gauged
EMDA theory. Using the Kerr/CFT correspondence [43]
and its extensions [34–36,39], the extremal dyonic Kerr-
Sen-AdS4 black hole entropy can be described microscopi-
cally by its dual two-dimensional CFT [40,41]. The dyonic
Kerr-Sen-AdS4 solution is parametrized by its mass, AdS
scale, angular momentum, electric and magnetic charges,
and two extra charges which correspond to the dilaton and
axion fields.
Using holographic calculations, we found that the

scrambling time of the black hole is also logarithmic in
entropy. The minimal instantaneous Lyapunov exponent λL
is bounded by κ ¼ 2πTH=ð1 − μLÞ, where TH and μ are the
temperature and the angular momentum of the black hole
respectively, and L is the angular momentum (per unit
energy) of the shock waves. This indicates that the system
in the dyonic Kerr-Sen-AdS4 black hole is chaotic and thus
supports the fast scrambling conjecture, even for the
rotating charged black hole in the EMDA theory. We show
that the ratio κ=λL is constant with respect to L, and
approaches 1 as the AdS radius l becomes large. The
constant can vary, depending on the black hole parameters,
and thus we suggest that it should take the form κ=λL ¼ C,
for some constant C > 1. For example, it has been shown
recently that a three-dimensional rotating BTZ black hole
has C ¼ 2 [5]. Interestingly, for a small value of l, l ¼ 1, we
observe that the bound λL < κ can be violated for large L.
This is unusual and it does not present in the case of an
uncharged Kerr-AdS4 black hole [6]. The violations of
chaos bound have been observed earlier (see, for example,
[44–47]) using different methods, although only the stan-
dard MSS bound 2πTH is used. The violations are present
in the charged black hole cases, for some value of rotation
parameter (both black hole’s and particle’s rotation). In this
work, we show that the bound κ=ð1 − μLÞ can also be
violated due to the existence of the dilaton and axion
charges.
The structure of this paper is as follows: In Sec. II, we

review the dyonic Kerr-Sen-AdS4 black hole solution and
its ultraspinning version in [42,48] including their thermo-
dynamics. In Sec. III, we construct the light cone coor-
dinates of the rotating and charged shockwaves and then
obtain the corresponding Dray-’t Hooft shock waves
solution for this geometry. In Sec. IV, we first briefly
explain the holographic CFT model for this dyonic Kerr-
Sen-AdS4 black hole. Using the RT/HRT surfaces, we

calculate the corresponding entanglement entropy and
obtain the mutual information which is sensitive to the
charged and rotating shock waves in the bulk. From that,
we can obtain the scrambling time τ� and the scrambling
delay τd both for the dyonic Kerr-Sen-AdS4 black hole and
its ultraspinning counterpart. We also calculate the mutual
information using holography, which leads to the calcu-
lations of the Lyapunov exponent. We show how the
Lyapunov exponent behaves as we change the black hole
parameters. These observations support the fast scrambling
conjecture for the dyonic Kerr-Sen-AdS4 black hole. We
sum up our work in the Discussions and Conclusions
session in Sec. V.

II. DYONIC KERR-SEN-AdS4 METRIC

In this section, we briefly review the black hole solution
to the gauged Einstein-Maxwell dilaton-axion theory
known as the dyonic Kerr-Sen-AdS4 black hole [42]. We
also write down the thermodynamic quantities and their
first-lawlike relation. The ultraspinning version of the
metric with φ → φ=Ξ and a → l is also given along with
its thermodynamics.
The dyonic Kerr-Sen-AdS4 black hole is the solution to

the gauged Einstein-Maxwell dilaton-axion theory with
action

I ¼ 1

16πGN

Z ffiffiffiffiffi
jgj

p
d4x

�
R −

1

2
ð∂ϕÞ2 − 1

2
e2ϕð∂χÞ2

− e−ϕF2 þ χ

2
FF̃

�
þ IΛ; ð1Þ

where ϕ and χ are the dilaton scalar and axion pseudoscalar
field respectively, F ¼ dA is the electromagnetic tensor of
an Abelian gauge potential one-form Aμ with its Hodge
dual F̃. We use the notation ð∂ϕÞ2 ¼ ð∂μϕÞð∂μϕÞ, ð∂χÞ2 ¼
ð∂μχÞð∂μχÞ, F2 ¼ FμνFμν, FF̃ ¼ FμνF̃μν with F̃μν ¼
εμναβFαβ where εμναβ denotes a four-dimensional totally
antisymmetric tensor. The axion pseudoscalar χ is defined
from dB ¼ −e2ϕ⋆dχ, where Bμν is an antisymmetric two-
form tensor and ⋆ denotes the Hodge duality operator. The
term IΛ represents the cosmological-constant term which
comes from the gauged version of the standard EMDA
theory and It is given by

IΛ ¼ 1

16πGN

Z ffiffiffiffiffi
jgj

p
d4xð4þ e−ϕ þ eϕð1þ χ2ÞÞ=l2: ð2Þ

The solution for the dyonic Kerr-Sen-AdS4 black hole is
given by [42]

ds2 ¼ −
Δ
Σ
X2 þ Σ

Δ
dr2 þ Σ

Δθ
dθ2 þ Δθ sin2 θ

Σ
Y2; ð3Þ

where
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X ¼ dt −
a sin2θ

Ξ
dφ;

Y ¼ adt −
ðr2 − d2 − k2 þ a2Þ

Ξ
dφ; ð4Þ

ΔðrÞ ¼
�
1þ r2 − d2 − k2

l2

�
ðr2 − d2 − k2 þ a2Þ

− 2Mrþ p2 þ q2; ð5Þ

Δθ ¼ 1 −
a2

l2
cos2θ; Ξ ¼ 1 −

a2

l2
;

Σ ¼ r2 − d2 − k2 þ a2cos2θ: ð6Þ

Here, m; a; l; d; k; p; q are the mass, rotation, cosmological
constant (AdS length), dilaton charge, axion charge,
magnetic charge, and electric charge parameters, respec-
tively, with the relations d ¼ ðp2 − q2Þ=2m and
k ¼ pq=m. Note that we use the shifted coordinate r →
rþ d for mathematical simplicity. The potential Aμ, its dual
Bμ defined from e−ϕ⋆F þ χF ¼ −dB, dilaton scalar and
axion pseudoscalar fields are given by

A ¼ qðrþ d − p2=mÞ
Σ

X −
p cos θ

Σ
Y;

B ¼ pðrþ d − p2=mÞ
Σ

X þ q cos θ
Σ

Y;

eϕ ¼ ðrþ dÞ2 þ ða cos θ þ kÞ2
Σ

;

χ ¼ 2
kr − da cos θ

ðrþ dÞ2 þ ða cos θ þ kÞ2 : ð7Þ

The thermodynamic quantities of the dyonic Kerr-Sen-
AdS4 black hole are given as follows:

M ¼ m
Ξ
; J ¼ ma

Ξ
; Q ¼ q

Ξ
; P ¼ p

Ξ
;

S ¼ π

Ξ
ðr2þ − d2 − k2 þ a2Þ;

Ωφ ¼ aΞ
r2þ − d2 − k2 þ a2

;

Φ ¼ qðrþ þ d − p2=mÞ
r2þ − d2 − k2 þ a2

;

Ψ ¼ pðrþ þ d − p2=mÞ
r2þ − d2 − k2 þ a2

;

2πTH ¼ rþð2r2þ − 2d2 − 2k2 þ a2 þ l2Þ −Ml2

ðr2þ − d2 − k2 þ a2Þl2 ; ð8Þ

where rþ is the outermost horizon as the largest solution to
ΔðrþÞ ¼ 0. Here, M, J, Q, P are the mass, angular
momentum, electric charge, and magnetic charge of the
black holes as the corresponding conserved charges.

Furthermore, S is the entropy of the black hole while
Ωφ;Φ;Ψ denotes the angular momentum, electric potential,
and magnetic potential of the horizon respectively. For now,
we assume that the black hole is nonextremal, i.e.,
Δ0ðrþÞ ≠ 0 where the prime denotes the derivative with
respect to r. In this work, we treat the cosmological
constant parameter l as nondynamical such that the first-
law equation becomes

dM ¼ THdSþ ΩφdJ þΦdQþ ΨdPþ JdΞ=ð2aÞ: ð9Þ

The dyonic Kerr-Sen-AdS4 metric is rotating at r → ∞
with angular velocity

Ω∞ ¼ −
a
l2
: ð10Þ

Therefore, a stationary observer at infinity can be obtained
by a coordinate transformation φ → φþ Ω∞t and some of
the thermodynamic quantities are shifted by

M → M̄ ¼ M þ a
l2
; J ¼ m

Ξ2
; Ωφ → Ωφ −Ω∞;

ð11Þ

where now the newly shifted black hole angular velocity is
defined as

μ≡Ωφ −Ω∞ ¼ að1þ ðr2þ − d2 − k2Þ=l2Þ
r2þ − d2 − k2 þ a2

: ð12Þ

Now the angular velocity μ becomes the new chemical
potential for the first-law relation

dM̄ ¼ THdSþ μdJ þΦdQþ ΨdP: ð13Þ

A. Ultraspinning dyonic Kerr-Sen-AdS4

The redefinition of the coordinate φ → φ=Ξ allows us to
obtain the ultraspinning limit a → l of the dyonic Kerr-Sen-
AdS4 black hole, which now has the metric and the
corresponding fields in the form of

dŝ2 ¼ −
Δ̂
Σ̂
X̂2 þ Σ̂

Δ̂
dr2 þ Σ̂

sin2θ
dθ2 þ sin4θ

Σ̂
Ŷ2;

A ¼ qðrþ d − p2=mÞ
Σ̂

X̂ ¼ p cos θ

Σ̂
Ŷ;

B ¼ pðrþ d − p2=mÞ
Σ̂

X̂ þ q cos θ

Σ̂
Ŷ;

eϕ ¼ ðrþ dÞ2 þ ðl cos θ þ kÞ2
Σ̂

;

χ ¼ 2
kr − dl cos θ

r2 þ ðl cos θ þ kÞ2 ; ð14Þ
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with

X̂ ¼ dt − lsin2θdφ;

Ŷ ¼ ldt − ðr2 − d2 − k2 þ l2Þdφ;
Δ̂ðrÞ ¼ ðr2 − d2 − k2 þ l2Þ2=l2 − 2Mrþ p2 þ q2; ð15Þ

Σ̂ ¼ r2 − d2 − k2 þ l2cos2θ: ð16Þ

The periodicity of φ is now assumed to be given by λ
instead of 2π. Notice that the standard dyonic Kerr-
Sen-AdS4 metric ds2 cannot be obtained directly from
the ultraspinning metric dŝ2.
The thermodynamic quantities of the ultraspinning

dyonic Kerr-Sen-AdS4 black hole are given by

M̂¼ μ

2π
m; Ĵ¼ μ

2π
ml¼Ml; Q̂¼ μ

2π
q; P̂¼ μ

2π
p;

Ŝ¼μ

2
ðr2þ−d2−k2þ l2Þ; Ω̂φ¼

l
r2þ−d2−k2þ l2

;

Φ̂¼qðrþþd−p2=mÞ
r2þ−d2−k2þ l2

; Ψ̂¼pðrþþd−p2=2mÞ
r2þ−d2−k2þ l2

;

2πT̂H¼2
rþ
l2
−

m
r2þ−d2−k2þ l2

: ð17Þ

Again, rþ is defined as the outermost horizon satisfying
Δ̂ðr̂þÞ ¼ 0 and we assume that the ultraspinning black hole
is also nonextremal with Δ̂0ðrþÞ ≠ 0. The first-lawlike
relation is now given by

dM̂ ¼ T̂HdŜþ Ω̂φdĴ þ Φ̂dQ̂þ Ψ̂dP̂þ K̂dλ; ð18Þ

where λ also plays a role as the dynamical variable with a
new chemical potential

K ¼ m
l2 − ðrþ þ dþ q2=mÞðrþ þ d − p2=mÞ

4πðr2þ − d2 − k2 þ l2Þ : ð19Þ

III. EQUATORIAL ROTATING
SHOCK WAVE SOLUTIONS

A. Kruskal coordinates

Consider an equatorial (θ ¼ π=2) rotating null particle in
the background of the dyonic Kerr-Sen-AdS4 black hole
with unit energy E ¼ 1 and angular momentum per unit
energy L. We will then call this the rotating shock wave.
Such a particle will have a geodesic ξμ observed by a
stationary observer at infinity which satisfies

ξ2 ¼ 0; ξ · ζt ¼ −E; ξ · ζφ ¼ L; ξθ ¼ 0: ð20Þ

The last equality is required for the equatorial orbit, which
means that the particle always stays at the equator θ ¼ π=2.

The corresponding Killing vector associated with axisym-
metry is given by ζt ¼ ∂t − a=l2∂φ and ζφ ¼ ∂φ. There are
two solutions to Eq. (20), ξμ�, where the negative solution is
obtained from reversing the axisymmetry −E → E and
L → −L. The geodesic solution in the background of a
dyonic Kerr-Sen-AdS4 black hole for unit energy (E ¼ 1) is
given by

ξþ · dx ¼ dr� − dτ≡ du; ξ− · dx ¼ dr� þ dτ≡ dv;

ð21Þ

where τ ¼ ð1 − aL=l2Þt − Lφ and r� is the tortoiselike
coordinate given by

r�ðrÞ ¼
Z

f̃
Δ
dr; ð22Þ

with f̃ is defined from

f̃2 ¼ −ΔðL − aÞ2 þ ½Lað1þ ðr2 − d2 − k2Þ=l2Þ
− ðr2 − d2 − k2 þ a2Þ�2: ð23Þ

With vanishing dilaton and axion charge, i.e., d; k → 0, we
recover the tortoiselike coordinate found in [6] and with
vanishing angular momentum L → 0, we recover the
standard Kruskal coordinates for rotating dyonic Kerr-
Sen-AdS4 black hole.
The Kruskal-like metric which follows the geodesic of

the rotating shock wave is given by

ds2 ¼ FðrÞdudvþ h̃ðrÞðdφþ h̃τðrÞdτÞ2; ð24Þ

with

FðrÞ ¼ Δðr2 − d2 − k2Þ
f̃2

; h̃ðrÞ ¼ ð1 − aL=l2Þ−2
r2 − d2 − k2

f̃2

Ξ2
;

h̃τðrÞ ¼
Ξ
f̃2

ððΔða − LÞ þ aðaLð1þ ðr2 − d2 − k2Þ=l2Þ

− ðr2 − d2 − k2 þ a2ÞÞÞ: ð25Þ

We then shift the axial coordinate φ → ηzþ γτ for two
reasons: one is to make sure that h̃τðrÞ þ γ behaves like
Oðr − rþÞ near the horizon and to recover the black hole’s
horizon area when integrating θ from 0 to π and z from 0 to
2π. Thus, we have

γ ¼ Ωφ

1 − μL
; η ¼ 1

1 − μL
: ð26Þ

From the coordinate transformations, we have
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ds2 ¼ FðrÞdudvþ hðrÞðdzþ hτðrÞdτÞ2; ð27Þ

where hðrÞ ¼ η2h̃ðrÞ and hτðrÞ≡ η−1ðh̃τðrÞ þ γÞ.
Furthermore, we would like to work with coordinates

that are affine at the horizon to generate the Dray-’t Hooft
solution later on. In this case, fu; vg coordinate is not
affine, i.e., the tangent vector χu ¼ ∂u satisfy χu ·∇χμu ¼
Kχμu (similar with χμv), where

K ¼ 1

2
ξ� · ∂F: ð28Þ

The new coordinates fU;Vg are

U ¼ −eκu; V ¼ eκv; κ ≡Kjr¼rþ ; ð29Þ

and it can easily be shown that both ∂U and ∂V are affine
coordinates at rþ. The metric in the affine coordinates is
now written as

ds2 ¼ FðrÞ
κ2UV

dUdV þ hðrÞðdzþ hτðrÞdτÞ2: ð30Þ

The value of κ is related to the black hole’s surface gravity
κ0 by

κ ¼ κ0
1 − μL

¼ 2πTH

1 − μL
: ð31Þ

This κ has a form similar to the standard Kerr-AdS4 black
hole with rotating shock waves. However, it differs in the
value of the Hawking temperature TH and the angular
momentum μ which now depends on the value of the
dilaton and axion charge d, k.
Next, we would like to generate the Kruskal-like

coordinates for the ultraspinning counterpart where the
metric is given by Eq. (14). Since the ultraspinning version
of the dyonic Kerr-Sen-AdS4 has a null φ coordinate at the
boundary r → ∞ and hence the metric is nondiagonal, we
need to adopt the so-called conformal completion tech-
nique to compute the conserved quantities [42,49]. The
mass and the angular momentum of the ultraspinning
dyonic Kerr-Sen-AdS4 black hole given by Eq. (17) is
obtained by calculating the conserved charge Q½ζ� defined
in Eq. (9) of [42] for a Killing vector ζ. The timelike Killing
vector ζt ¼ ∂t gives us the mass M̂, while the axial Killing
vector ζφ ¼ ∂φ gives us the angular momentum Ĵ.
Therefore, we also have to use the Killing vectors at
infinity ζt ¼ ∂t and ζφ ¼ ∂φ which corresponds to the
conserved energy E and angular momentum L of a rotating
shock wave around the ultraspinning black hole.
The geodesic of a rotating shock wave ξ̂μ in the back-

ground of an ultraspinning dyonic Kerr-Sen-Black hole is
obtained by solving Eq. (20) with the ultraspinning black
hole metric in Eqs. (14) and (15) and Killing vectors

ζt ¼ ∂t; ζφ ¼ ∂φ. The solutions for unit energy E ¼ 1 and
an angular momentum per unit energy L are given in the
form of

ξ̂þ · dx ¼ dr̂� − dτ̂≡ dû; ξ̂− · dx ¼ dr̂� þ dτ̂≡ dv̂;

ð32Þ

where τ̂ ¼ t − Lφ and

r� ≡
Z ˆ̃fdr

Δ̂
; ð33Þ

with

ˆ̃f
2 ¼ −Δ̂ðL − lÞ2 þ ðLl − ðr2 − d2 − k2 þ l2ÞÞ2: ð34Þ

Notice that both τ̂ and ˆ̃f cannot be obtained by taking a → l
limit of f̃. The Kruskal-like metric for the ultraspinning
black hole with rotating shock waves is given by

dŝ2 ¼ F̂ðrÞdûdv̂þ ˆ̃hðrÞðdφþ ˆ̃hτ̂ðrÞdτ̂Þ2; ð35Þ

where now we have

F̂ðrÞ ¼ Δ̂ðr2 − d2 − k2Þ
ˆ̃f
2

; ˆ̃hðrÞ ¼ f̃2

r2 − d2 − k2
;

ˆ̃hτ̂ðrÞ ¼
−Δ̂ðL − lÞ2 þ lðLl − ðr2 − d2 − k2 þ l2ÞÞ

f̃2
: ð36Þ

Following similar reasoning to the normal dyonic Kerr-
Sen-AdS4, we redefine the coordinate φ → η̂ ẑþγ̂ τ̂, where
now

η̂ ¼ 1

1 − Ω̂φL
; γ̂ ¼ Ω̂φ

1 − Ω̂φL
: ð37Þ

Again, all of the functions appear in the ultraspinning

case fF̂; ˆ̃h; ˆ̃hτ̂; η̂; γ̂g cannot be directly obtained from
fF; h̃; h̃τ; η; γg by taking the limit of a → l and thus they
are all completely different functions. After the coordinate
transformation φ → η̂ ẑþγ̂ τ̂, the Kruskal-like metric for
the ultraspinning black hole now takes the form

dŝ2 ¼ F̂ðrÞdûdv̂þ ĥðrÞðdẑþ ĥτ̂ðrÞdτ̂Þ2; ð38Þ

where ĥðrÞ ¼ η̂2 ˆ̃hðrÞ and ĥτ̂ðrÞ ¼ η̂−1ð ˆ̃hτ̂ þ γ̂Þ.
We also would like to work with affine coordinates

fÛ; V̂g instead of fû; v̂g for the ultraspinning black hole.
Following similar reasoning as before, we obtain

Û ¼ −eκ̂ û; V̂ ¼ eκ̂ v̂; ð39Þ
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where now κ̂ is given by

κ̂ ¼ 2πT̂H

ð1 − Ω̂φLÞ
: ð40Þ

The metric in the affine coordinates fÛ; V̂g is now given by

dŝ2 ¼ F̂ðrÞ
κ̂2Û V̂

dÛdV̂ þ ĥðrÞðdẑþ ĥτ̂ðrÞdτ̂Þ2: ð41Þ

In this coordinate system, we then generate the Dray-’t
Hooft solution for the ultraspinning dyonic Kerr-Sen-AdS4
black hole.
After we obtain the metric in Kruskal coordinates for the

dyonic Kerr-Sen-AdS4 and its ultraspinning counterpart,
we now see how the functions FðrÞ and F̂ðrÞ behave near
the horizon. Indeed, by expanding r near rþ up to the
second order, we have

FðrÞ ¼ F0ðrþÞðr − rþÞ þ
1

2
F00ðrþÞðr − rþÞ2 þ � � � ; ð42Þ

F̂ðrÞ ¼ F̂0ðrþÞðr − rþÞ þ
1

2
F̂00ðrþÞðr − rþÞ2 þ � � � ; ð43Þ

with all F0ðrþÞ; F00ðrþÞ; F̂0ðrþÞ; F̂00ðrþÞ are nonzero. Using
the definitions of the Kruskal coordinates in Eq. (29) and
the tortoiselike coordinates in (22) for the dyonic Kerr-Sen-
AdS4 black hole, we may write that, near the horizon,

ðr − rþÞF0ðrþÞ ¼ −AUV; ð44Þ

where A is some dimensionless proportionality constant
which depends on the dyonic Kerr-Sen-AdS4 black hole
parameters.
One need to be more cautious when considering Û V̂

near the horizon for the ultraspinning black hole because κ̂
is now equipped with Ω̂φ instead of μ. However, it turns out
that the value of Û V̂ near the horizon is still linear in r − rþ
since the tortoise coordinate near the horizon behaves as

r� ≈
ð1 − Ω̂φLÞðr2þ − d2 − k2Þ

Δ̂0ðrþÞ
ln jr − rþj þ C

¼ 1

2κ̂
ln jr − rþj þ C; ð45Þ

where C is an integration constant in which the explicit
value depends on the geometry of the black hole.
Therefore, Û V̂ ∼Oðr − rþÞ near the horizon and we
may also write

ðr − rþÞF̂0ðrþÞ ¼ −Â Û V̂; ð46Þ

where Â is a dimensionless proportionality constant that
depends on the ultraspinning black hole parameters.
The expansions of the functions FðrÞ and F̂ðrÞ near the

horizon can then be extended to the second order of r − rþ.
For the standard dyonic Kerr-Sen-AdS4, we have

F
AUV

¼ −1 −
AUV
2

F00ðrþÞ
F0ðrþÞ

þOðU2V2Þ; ð47Þ

while for the ultraspinning black hole, we have

F̂

Â Û V̂
¼ −1 −

Â Û V̂
2

F̂00ðrþÞ
F̂0ðrþÞ

þOðÛ2V̂2Þ: ð48Þ

B. Extremal limits

From the turning-point analysis, the maximum value that
L can achieve if we need the perturbation to reach the
horizon from infinity is bounded by μ−1 (Lmax ≤ μ−1) and
the equality holds at extremality, i.e., Lmax ¼ μ−1 for TH →
0 [6]. For the dyonic Kerr-Sen-AdS4 black hole, the value
of κ also survives the extremal limit. By expanding the
value of rþ near the extremal horizon radius r0, where
Δðr0Þ ¼ Δ0ðr0Þ ¼ 0, to the first-order approximation, we
have

TH ≈
∂TH

∂rþ

����
r0

ðrþ − r0Þ: ð49Þ

On the other hand, the value of ð1 − μLÞ can also be
expanded near the extremal value r0,

1 − μL ≈
�
1

μ

∂μ

∂rþ

�
r0

ðrþ − r0Þ: ð50Þ

Therefore, by taking the extremal limit rþ → r0, we obtain
the extremal value of κ,

κext ¼
2πð∂TH=∂rþÞr0
ðμ−1∂μ=∂rþÞr0

¼ −2πTLμext; ð51Þ

where μext is given by Eq. (12) with rþ is replaced by r0 and
κext is related by the definition of the left-moving Frolov-
Thorne temperature found by the Kerr/CFT correspon-
dence for the extremal dyonic Kerr-Sen-AdS4 black hole

TL ≡ −
ð∂TH=∂rþÞr0
ð∂μ=∂rþÞr0

derived in [40,41].
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For the dyonic Kerr-Sen-AdS4 black hole, we have

κext ¼
ð1þ ðr20 − d2 − k2Þ=l2Þð1þ a2=l2 þ ð6r20 − 2d2 − 2k2Þ=l2Þ

2r0Ξ
; ð52Þ

while for the ultraspinning counterpart (following the same
procedure), we have

κ̂ext ¼ −2πT̂LΩ̂ext
φ ð53Þ

¼ ð6r2þ − 2d2 − 2k2 þ 2l2Þ
2rþl2

: ð54Þ

Both κext and κ̂ext scales with the left-moving Frolov-
Thorne temperature calculated by the Kerr/CFT. The
difference lies in the type of angular momentum which
appear in both κext and κ̂ext where it is given by μext for the
former and Ω̂ext

φ for the latter (instead of μ̂ext). This
difference lies in the definition of angular velocities. For
the standard black hole, μ is the difference between the
horizon’s angular velocity and the angular velocity of a
stationary observer at infinity. For the ultraspinning black
hole, however, we do not have a notion of the angular
velocity of a stationary observer at infinity because the φ
coordinate becomes null. Instead, what appears in 1 − Ω̂φL
is the horizon’s angular velocity Ω̂φ which is the chemical
potential for Ĵ. Up until this point, all of the hatted
functions for the ultraspinning black hole do not depend
on the new dynamical variable λ.

C. Dray-’t Hooft solution

After we obtain the Kruskal-like coordinates for rotating
null geodesic for both standard dyonic Kerr-Sen-AdS4
black hole and its ultraspinning counterpart, we are now
able to generate the Dray-’t Hooft solution. For a Kruskal-
like metric perturbed by an infalling rotating shock wave at
the equator located at U0 for the standard black hole and at
Û0 for the ultraspinning black hole, the metric is given by
the shift for U > U0,

V → Ṽ ¼ V þ αΘðU − U0Þ; ð55Þ

for the dyonic Kerr-Sen-AdS4, and

V̂ → ˆ̃V ¼ V̂ þ α̂ΘðÛ − Û0Þ; ð56Þ

for its ultraspinning version. It is known that the shift
should contain a function fðθÞ which captures the pertur-
bation away from the equator. However, when we only
consider θ ¼ π=2, we may normalize the function such
that fðπ=2Þ ¼ 1. In this section, we will calculate the

Dray-’t Hooft solution and the strength of the shock
waves α for the standard dyonic Kerr-Sen-AdS4 first, then
followed by its ultraspinning counterpart later on.

1. Standard Kerr-Sen-AdS4
We first present the coordinate τ in terms of U and V.

The metric in Eq. (30) can then be written as

ds2 ¼ FðrÞ
κ2UV

dUdV

þ hðrÞ
�
dzþ hτðrÞ

2κUV
ðUdV − VdUÞ

�
2

: ð57Þ

After applying the Dray-’t Hooft solution which gives the
shift in Eq. (56) due to the shock, the metric becomes

ds2 → d̃s2 −
F

κ2UV
δðUÞdU2; ð58Þ

after the shift, where d̃s2 is given by Eq. (30) with V is
replaced by Ṽ.
The strength of the shift, α and α̂ can be obtained by

requiring that the transverse volume element H ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
gθθgzz

p
(in the full coordinates involving θ) to be smooth at the
location of the shock. Suppose that after the shock wave
enters the black hole horizon, it increases the black hole
mass by a small amount E0. To make the case more general,
we may also consider a perturbation which increases the
value of the electric charge of the black hole by a small
amount δq and the magnetic charge by a small amount δp
as well although we assume that the trajectory of the
perturbation still follows the rotating shock waves geodesic
given by Eq. (21). In this case, the area of the horizon
changes according to the first law of thermodynamics,
which also change H at the horizon, since H is nothing but
the area of the horizon, divided 4π. By imposing H to be
smooth at the horizon, we have

HjUþ
0
¼ HjU0−: ð59Þ

Using Eq. (44) and taking the limit E0 → 0 and U0 → 0
simultaneously, we have

α ¼ ðH̃rþ −HrþÞF0ðrþÞ
U0AH̃0ðrþÞ

; ð60Þ
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where H̃rþ is the shifted horizon area divided by 4π. Upon
taking the limit of E0 → 0, we have ðH̃rþ −HrþÞ → 0 as
well. However, α can be fixed by taking the limit U0 → 0,
which means that the shocks hover very close to the
horizon, and were sent from the AdS boundary in the
far past τ0 → ∞.
To be more precise, since Hrþ is proportional to the area

of the horizon, we have

H̃rþ −Hrþ ∝ δS ¼ βHðδM̄ − μδJ −ΦδQ −ΨδPÞ; ð61Þ

by the first law of thermodynamics given by Eq. (13),
where βH ¼ T−1

H is the inverse of the Hawking temperature.
The change in mass δM̄ is proportional to the energy of the
shock wave E0 and the change in the angular momentum
δJ ¼ δM̄L is proportional to E0L. From the thermody-
namic relation between Q, P and q, p, we have δQ ∼ δq
and δP ∼ δp which is small, i.e., δq; δp → 0, but can be
fixed by setting Q ¼ δq=E0 and P ¼ δp=E0 with E0 → 0
as well. Therefore, we may write

H̃rþ −Hrþ ∼ βHδM̄ð1 − μL −ΦQ − ΨPÞ; ð62Þ

where now, aside from the angular momentum per unit
energy L, we also have the electric and magnetic charge per
unit energy, Q, P. Next, we need to calculate F0ðrþÞ=
H̃0ðrþÞ. It is straightforward to show that, for large black
hole entropy S → ∞, it is given by

F0ðrþÞ
H̃0ðrþÞ

¼ B
S
; ð63Þ

where B is some function of the black hole parameters and
it is dimensionless.
From the thermodynamic analysis, we obtain (by absorb-

ing all of the proportionality constants A;B; 2π into the
definition of δM̄)

α ¼ βHE0ð1 − μL −ΦQ −ΨPÞ
U0S

; ð64Þ

which is set to be fixed upon taking E0 → 0 andU0 → 0 for
large S.

2. Ultraspinning dyonic Kerr-Sen-AdS4
We may follow similar reasoning to calculate α for the

ultraspinning case. The value of α̂ is still given by the form
of Eq. (60), with all functions hatted, after taking the limit
of E0 → 0 and Û0 → 0. The difference lies in the first-law
relation, where for the ultraspinning case, it is now given by

ˆ̃Hrþ − Ĥrþ ∝ δŜ

¼ β̂HðδM̂ − Ω̂φδĴ − Φ̂δQ̂ − Ψ̂δP̂ − K̂δλÞ; ð65Þ

from Eq. (18). The last term K̂δλ appears from the new
dynamical variable λ.However, ifwe treat λ as a constant, and
remain unchanged by the shock waves, we have K̂δλ ¼ 0.
The perturbation changes the black holemass such that δM̂ is
also proportional to E0, and for the other dynamical
variables, we have δĴ ∼ E0L;Q ∼ δq=E0;P ∼ δp=E0, and
the first-law equation becomes

ˆ̃Hrþ − Ĥrþ ∼ β̂HδM̂ð1 − Ω̂φL − Φ̂Q − Ψ̂PÞ: ð66Þ

In this case, fromEq. (17), δM̂ is also proportional to λ, while
all λ inside the parenthesis of Eq. (66) cancel out. Therefore,
Eq. (66) is also proportional to λ and can be expressed
as δM̂ ∼ λE0.
Since the value of F̂0ðrþÞ=Ĥ0ðrþÞ also scales as the

inverse of the black hole entropy Ŝ for large Ŝ, i.e.,

F̂0ðrþÞ
H0ðrþÞ

¼ B̂

Ŝ
; ð67Þ

for some B̂, the value of the shift

α ¼ β̂HλE0ð1 − Ω̂φL − Φ̂Q − Ψ̂PÞ
Û0Ŝ

; ð68Þ

does not depends on λ. This is desired because the physical
scrambling time t� which is computed later on should not
depend on some arbitrary parameter λ.

IV. LYAPUNOV INDEX, SCRAMBLING TIME,
AND ITS DELAY

A. Dyonic Kerr-Sen-AdS4 black
hole as the holographic model

The dyonic Kerr-Sen-AdS4 black hole is an asymptoti-
cally AdS rotating black hole with a complete commuting
set of conserved charges given by (aside from the con-
served energy/mass M) J, Q, P given in Eq. (8) with their
corresponding chemical potentials are respectively given
by μ, Φ, Ψ. This eternal black hole in AdS is similar to [23]
and, using the AdS=CFT correspondence, assumed to be
dual to two copies of large-N CFT in its asymptotic
boundaries which are described by the thermofield double
(TFD) state

jψi¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z½βH;μ;Φ;Ψ�p X

n

e−βHðH−μJ−ΦQ−ΨPÞjψniL⊗ jψniR;

ð69Þ

where L and R denote the CFT who lives in the left- and
right-asymptotic boundaries respectively. The partition
function is given by
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Z½βH; μi� ¼ Trðe−βHðH−μJ−ΦQ−ΨPÞÞ; ð70Þ

where μi are the chemical potentials, and the density matrix
is given by

ρ ¼ e−βHðH−μJ−ΦQ−ΨPÞ

Z½βH; μi�
: ð71Þ

The entanglement (von Neumann) entropy corresponds to
the reduced density matrix from tracing out one of the
asymptotic boundaries that recovers the Bekenstein-
Hawking entropy.
Chaos in the CFT can be scrutinized by the Lyapunov

exponent λL which appears in the decay of the out-of-time
ordered correlators (OTOC) corresponding to the TFD state
in Eq. (69),

hWð0ÞVðtÞWð0ÞVðtÞi
hWWihVVi ¼ 1 − εeλLt þ � � � ; ð72Þ

where ε ∼ 1=N is the perturbation parameter which is
assumed to be inversely proportional to the number of
degrees of freedom of the CFT N. Thus, the OTOC
vanishes at

t� ∼ logN; ð73Þ

which is defined to be the scrambling time. The system
admits fast scrambling for t� which depends logarithmi-
cally on N. The decay of OTOC can also be associated with
the decay of mutual information defined as

IðA;BÞ ¼ SA þ SB − SA∪B; ð74Þ

where SA is the entanglement entropy associated with a
reduced density matrix ρA. This can be understood from the
fact that the mutual information provides an upper bound
for correlations between two subsystems [18]

IðA;BÞ ≥ ðhOAOBi − hOAihOBiÞ2
2kOAk2kOBk2

: ð75Þ

The dual CFT associated with this black hole has
nontrivial entanglement between the degrees of freedom
in the left and right boundaries. The entanglement entropy
of a subregion in the CFT can be calculated holographically
using the Ryu-Takayanagi (RT) or Hubeny-Rangamani-
Takayanagi (HRT) surfaces from the AdS=CFT correspon-
dence. The RT/HRT surface is minimal in the bulk which is
homologous to the subregion of the CFT. The entanglement
entropy is then given by the area of the RT/HRT surface
divided by 4GN. This can also be used to calculate the
mutual information in Eq. (74), and from Eq. (75),
IðA;BÞ → 0 indicates scrambling and thus the scrambling
time t� can be determined from there. In this work, we

calculate IðA;BÞ for the CFT given by the TFD state in
Eq. (69) holographically, and extract its scrambling time t�
and the Lyapunov exponent λL.
The scrambling phenomena happens after we mildly

perturb our TFD state at a very early time on the left
asymptotic boundary. In the bulk description, the perturba-
tion corresponds to a shock wave that propagates from the
boundary to the black hole. The geometry can be understood
as the Dray-’t Hooft solution. The following section shows
that even an infinitesimally small perturbation can still cause
scrambling, disrupting the entanglement.

B. Lyapunov exponent and scrambling time

We consider two subregions A and B to be identical at
their left and right asymptotic boundaries, respectively,
with the equator θ ¼ π=2 serving as the boundary, follow-
ing [6]. The RT/HRT surface for both SA and SB does not
depend on the Dray-’t Hooft shift α since they lie outside
the outer horizon rþ. However, the RT/HRT surface
corresponding to SA∪B penetrates the horizon; we will call
this surface AA∪B. It has a turning point inside it, then
connects to the other side of the asymptotic boundary.
Thus, α plays an important role here.
Due to its symmetry, the surface AA∪B can be obtained

by extremizing the following integral

A ¼ 2π

Z
dτ

ffiffiffi
h

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F þ F

f̃2 _r2

Δ2

s
: ð76Þ

This surface consists of three segments, I, II, and III, where
I stretches from the left asymptotic boundary ðU;VÞ ¼
ð1;−1Þ to a point which intersects V ¼ 0, i.e.,
ðU;VÞ ¼ ðU1; 0Þ, II stretches from ðU;VÞ ¼ ðU1; 0Þ to
the turning point at r⋆, and II stretches from the turning
point to the intersection point at U ¼ 0 and V ¼ α=2. The
area AA∪B is then equal to four times A. Since the area
functional does not depend on τ, there exists a conserved
quantity defined as

−F
ffiffiffi
h

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F þ Ff̃2 _r2=Δ2

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
F⋆h⋆

p
; ð77Þ

where F⋆ ≡ Fðr⋆Þ and h⋆ ≡ hðr⋆Þ with r⋆ is defined as
the turning point where _r ¼ 0 [not to be confused with the
tortoise coordinate r� defined in Eq. (22)].
By following similar calculations done in [6] (and earlier

by [4]), we have

α ¼ 2 expðQ1 þQ2 þQ3Þ; ð78Þ

where the functions Q1, Q2, Q3 are defined as

Q1 ¼ −2κ
Z

r0

r̄

f̃dr
−Δ

; ð79Þ
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Q2 ¼ 2κ

Z
∞

r⋆

f̃dr
Δ

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðFh=F⋆h⋆Þ

p �
; ð80Þ

Q3 ¼ 2κ

Z
rþ

r⋆

f̃dr
Δ

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðFh=F⋆h⋆Þ
p �

; ð81Þ

where r̄ is defined as the location where r� ¼ 0. Both Q1

and Q2 diverge as r⋆ → rþ, which correspond to α → 0.
On the other hand, Q3 diverges as r⋆ → rc, where rc
satisfies

hðrcÞF0ðrcÞ þ h0ðrcÞFðrcÞ ¼ 0: ð82Þ

This limit corresponds to α → ∞, and hence it is the limit
where the shift α becomes important. The area AA∪B can
then be obtained to be proportional to Q3, i.e.,

AA∪B ≈
4π

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrcÞhðrcÞ

p
Q3

¼ 4π

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrcÞhðrcÞ

p
log α: ð83Þ

By plugging in the value of α in Eq. (64) intoAA∪B and use
U0 ¼ e−κτ0 , we obtain

AA∪B ≈ 4πτ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrcÞhðrcÞ

p
þ 4π

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrcÞhðrcÞ

p
× log

�
βHE0ð1 − μL −ΦQ −ΨPÞ

S

�
: ð84Þ

The area AA∪B grows linearly in time and picks up a
contribution from the perturbations L, Q, P in the second
term. The rate of growth of AA∪B depends onffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrcÞhðrcÞ

p
, which also gives us the information about

the quantum Lyapunov exponent. Following [6], the
instantaneous Lyapunov exponent is given by

λðminÞ
L ¼ 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrcÞhðrcÞ

p
AH

; ð85Þ

where AH is the horizon’s area. This Lyapunov exponent
depends on the angular momentum L, as shown in Fig. 1
for some particular example with two horizons, away from

FIG. 1. Plot for the ratio between κ and λL with respect to L up to L → 1=μ. We use an example with m ¼ 1, a ¼ 0.5, p ¼ 0.2,
q ¼ 0.1 and varying l from l ¼ 1 (top left), l ¼ 5 (top right), l ¼ 10 (bottom left), and l ¼ 100 (bottom right). Those examples are quite
far from extremality with the outer and inner horizons ratio given by r−=rþ ¼ f0.199265; 0.100242; 0.092043; 0.0887473g for l ¼
f1; 5; 10; 100g respectively. For the first case with l ¼ 1, λL and κ intersect each other at L ¼ 0.759852 or in another perspective
L ≈ 0.677925=μ. For the other cases (l ¼ 5; 10; 100) the ratio is almost constant with respect to L. As l gets higher, the ratio
approaches 1.
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extremality. This gives us enough insight that the Lyapunov
exponent λL is approximately equal to κ and the ratio κ=λL
hardly depends on the angular momentum L of the shocks.
However, for smaller l, κ=λL becomes more likely to
depends on L and for the case l ¼ 1, we have κ=λL < 1
for L > 0.759852. In this particular case, the Lyapunov
exponent seems to violate its upper bound κ for large L. At
near-extreme conditions, the difference between λL and κ
becomes even tighter, as shown in Fig. 2. This also
indicates that the Lyapunov exponent of the dyonic
Kerr-Sen-AdS4 is also bounded by κ, and approaches its
maximal value when the black hole approaches extremality.
More detailed behaviors of the Lyapunov exponent can

be seen in Fig. 3. Now, we scale up the angular momentum
of the particle as L ¼ s r−

rþ
μ−1, following [6], so that it

approaches μL → s when the black hole becomes extremal
at r−

rþ
→ 1. Note that, in this paper, we work with the

solution in which there are only two real and positive
horizons, rþ and r− with rþ > r−. For l ¼ 1, we observe
the violation of λL ≤ κ bound for large L. Interestingly,

FIG. 2. Similar plot with Fig. 1 for near-extremal case. We
choose m ¼ 1.03865, a ¼ 1, p ¼ 0.2, q ¼ 0.2 which gives two
almost degenerate horizons rþ ¼ 1.04562 and r− ¼ 1.03103
with ratio r−=rþ ≈ 0.986. In this case, the ratio also constant
with respect to L and it is close to 1.

FIG. 3. Plot of both λL and κ with L is scaled as L ¼ s r−
rþ
μ−1 from r−

rþ
→ 0 to r−

rþ
→ 1, for s ¼ f0.1; 0.5; 0.9; 1g. We vary l from l ¼ 1

(top left), l ¼ 5 (top right), l ¼ 10 (bottom left), and l ¼ 100 (bottom right). We gradually decrease the black hole’s mass while keeping
other parameters fixed; a ¼ 0.5, p ¼ 0.2, q ¼ 0.1. The corresponding mass are m ∈ ½1.5; 0.65474� for l ¼ 1, m ∈ ½2; 0.55163� for
l ¼ 5, m ∈ ½1; 0.54729� for l ¼ 10, and m ∈ ½1; 0.54582� for l ¼ 100.
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such a violation has been observed earlier in various
black holes involving charges and rotations (see, for
example, [44–47]), for some large values of the rotation
parameter. In this work, although we are already using
κ ¼ κ0=ð1 − μLÞ > κ0, the Lyapunov exponent can still
surpass the value of κ at large L. This violation was not
observed in the standard (uncharged) Kerr-Sen-AdS black
hole [6]. Such a violation might occur due to the existence
of extra charges such as the dilaton and axion charges. From
the plot, we also see that the Lyapunov exponent approach κ
as l becomes large, i.e., the ratio κ=λL approaches 1 in such
cases. All of the values of λL and κ approach zero as we
reach extremality r−

rþ
since TH → 0 at this limit. There is an

exception for s ¼ 1, since L → μ−1 at extremality and κ
becomes κext. This feature is interesting in studying the
behavior of chaos in extremal black holes [50].
The violation of the standard MSS chaos bound in the

EMDA theory has been investigated earlier in [47] using
particle’s geodesic. They find that the violation is more
likely when the particle rotates in the opposite direction
from the black hole. Using our analysis, we also see how
the Lyapunov exponent behaves as we change the sign of L
to its negative counterpart. The result can be seen in Fig. 4.
However, in this case, the violation does not occur. For the
negative value of L, all λL and κ approach zero as the black
hole approaches extremality. This is because the numerator
ð1 − μLÞwill never reach zero, while the temperature of the
black hole approaches zero at extremality. We suggest that
the chaotic behavior with a negative value of L is also
crucial in understanding the chaotic behavior of an
extremal black hole. The behavior of λL and κ at extrem-
ality, whether they are zero or not, depends on the sign ofL.
This needs to be investigated further.
The violation of the bound in our case can be understood

from the behavior of the black hole’s entropy for large and
small l. For small l with l ≈ a, the temperature becomes

2πTH ≈
2rþ
l2

−
M

r2þ − d2 − k2 þ l2
: ð86Þ

Here, the role of the dilaton and axion charges d, k is to
lower the temperature, and hence, also lower the value of κ.
On the other hand, for large l with l ≫ a, we have

2πTH ¼ rþ −M
r2þ − d2 − k2 þ a2

: ð87Þ

In contrast with the previous case, here, the dilaton and
axion charges enlarge the black hole’s temperature. For the
black hole with nonvanishing d, k we expect lower value of
κ for smaller l, and hence the violation of the chaos bound
may occur.
From the formula of the Lyapunov exponent given by

Eq. (85) alone, it is hard to see whether the violation of the κ
bound for a small value of l is caused by the dilaton
or axion charges. However, this might be physically
interesting since such a violation does not occur in other
analogous black holes such as the standard Kerr-AdS4
calculations [6]. Conducting further investigations on
different types of black holes could be crucial in gaining
insights that allow us to pinpoint the source of the violation.

1. Ultraspinning case

For the ultraspinning case, we should be careful when
integrating the transverse volume since now ϕ takes
arbitrary periodicity, which is denoted by λ. In our
derivation around Eq. (37), we define η̂ such that we
recover the horizon area when we integrate ẑ from 0 to λ.
Therefore, the area functional in the ultraspinning case
should be written as

A ¼ λ

Z
dτ

ffiffiffî
h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F̂ þ F̂

ˆ̃f
2
_r2cΔ2

vuut : ð88Þ

Following similar derivations as before, we obtain the area
AA∪B in the limit of r⋆ → rc which corresponds to large
Q3. The value of rc can be obtained by solving

ĥðrcÞF̂0ðrcÞ þ ĥ0ðrcÞF̂ðrcÞ ¼ 0: ð89Þ

Thus, the area AA∪B is again proportional to Q3,

AA∪B ≈
2λ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F̂ðrcÞĥðrcÞ

q
Q3

¼ 2λ

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F̂ðrcÞĥðrcÞ

q
log α̂: ð90Þ

Although the area AA∪B depends on λ, interestingly, the

minimal instantaneous Lyapunov index λðminÞ
L does not

depend on λ. This is so because the black hole horizon
areaAH also depends linearly on λ and the two cancel each

FIG. 4. Plot of both λL and κ for l ¼ 1, with remaining
parameters are identical to the ones in Fig. 3 (top left). In this
case, we reverse the sign of L by performing s → −s.
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other. For the ultraspinning case, we can write the
Lyapunov index as

λðminÞ
L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F̂ðrcÞĥðrcÞ

q
ðr2þ − d2 − k2 þ l2Þ : ð91Þ

We can then study the behavior of λðminÞ
L using graphs for

the ultraspinning black hole and compare it with the value
of κ̂.
It is known that for ultraspinning black holes, there exist

super-entropic cases which violate the reverse isoperimetric
inequality (RII) [51], which is given by

R ¼
�

r2þ
r2þ − d2 − k2 þ l2

�
1=6

≥ 1; ð92Þ

for the dyonic Kerr-Sen-AdS4 black hole [40–42]. An
ultraspinning dyonic Kerr-Sen-AdS4 black hole always
violates the RII for 0≤ q2þp2 < 2ml or 0≤ d2þk2< l2.
However, for other values of q, p (or equivalently d, k), we
can have cases in which the RII is not violated. In this work,

we see the behavior of λðminÞ
L and κ̂ for two cases: obeys RII

and violates RII. The result is shown in Fig. 5. It is interesting

that for both cases, λðminÞ
L is bounded by κ and the ratio

κ=λðminÞ
L does not depends on L up to the fourth decimal

places. For the casewhich violates the RII, the gap between κ

and λðminÞ
L iswider than the onewhich does not violate theRII.

It is interesting to learn more about the relationship between
the Lyapunov index and the violation of the RII for ultra-
spinning black holes.
After we obtain the area connecting two boundaries

AA∪B, now we are ready to calculate the mutual
information,

IðA;BÞ ≈ SA þ SB −
πτ0
GN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrcÞhðrcÞ

p
−

π

κGN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrcÞhðrcÞ

p
× log

�
βHE0ð1 − μL −ΦQ − ΨPÞ

S

�
: ð93Þ

The scrambling time τ� obtained from IðA;BÞ → 0 is then
given by

κτðL;Q;PÞ
� ≈ log Sþ κðAA þABÞ

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrcÞhðrcÞ

p
þ log

1

1 − μL −ΦQ −ΨP
; ð94Þ

while the ultraspinning version, following a similar deri-
vation, is given by

κ̂τ̂ðL;Q;PÞ
� ≈ log

Ŝ
λ
þ κ̂ðAA þABÞ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F̂ðrcÞĥðrcÞ

q
þ log

1

1 − Ω̂φL − Φ̂Q − Ψ̂P
: ð95Þ

For a black hole with large entropy, the first term is
substantially larger than the rest and thus the scrambling
time is approximately given by

τðL;Q;PÞ
� ∼

1

κ
logS; τ̂ðL̂;Q̂;P̂Þ

� ∼
1

κ̂
log

Ŝ
λ
: ð96Þ

This indicates that the dyonic Kerr-Sen-AdS4 and its
ultraspinning counterpart also follow the fast scrambling
conjecture [14]. For the ultraspinning case, τ̂� actually does
not depends on λ because the entropy Ŝ is proportional to λ.
For an ultraspinning black hole with large entropy Ŝ → ∞
while keeping the parameter λ fixed, the term proportional

FIG. 5. Plot similar to Fig. 1 for the ultraspinning cases. We use
m ¼ 100, p ¼ 0.2, q ¼ 0.1, l ¼ 1 for the first case (top) which
violates the RII,R ¼ 0.995016. For the second case (bottom), we
use m ¼ 5, p ¼ 2, q ¼ 1, l ¼ 0.5 which does not violate the
RII, R ¼ 1. Both cases are nonextremal with r−=rþ ¼
f0.000915922; 0.478328g for the first and the second cases,
respectively.
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to log λ−1 can be ignored, and hence the parameter λ does
not contribute to the scrambling time.
However, despite being much smaller than the leading

log S term, the last term of Eqs. (94) and (95) provide
insight into the delay of the scrambling time compared to
the standard scrambling time whenQ;P ¼ 0. Such a delay
was first investigated by [8] for a nonrotating charged black
hole. This term does depend on the thermodynamic
potentials (or chemical potentials) of the black hole; μ,
Φ, Ψ, and the external perturbations Q, P. If the trajectory
of the shock waves bounces near the horizon, this term can
be large. This will be further explored in the following
subsection.
The second term of Eq. (96) does not scale with entropy

and hence it is nonextensive since both AA þAB andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrcÞhðrcÞ

p
=κ have dimensions of the area.

Furthermore, it also not depends on the perturbations Q,
P and also the plot in Figs. 1 and 2 imply that it is also
approximately constant in L, at least for large value of l.
For the ultraspinning case, those arguments also hold (see
Fig. 5). Therefore, the second term, along with the first
term, will not contribute to the scrambling delays.

C. Scrambling time delays of the dyonic Kerr-Sen-AdS4

In this section, we investigate the phenomena of scram-
bling delays in the dyonic Kerr-Sen-AdS4 and its ultra-
spinning counterpart. Scrambling time delays come from
the difference between the scrambling time from (electri-
cally and magnetically) charged and rotating shock waves

τðL;Q;PÞ
� and the standard scrambling time from rotating

neutral shock waves τðL;0;0Þ� , or in other words,

Δτ� ≡ τðL;Q;PÞ
� − τðL;0;0Þ�

¼ 1

κ
log

1 − μL
1 − μL −ΦQ − ΨP

; ð97Þ

Δτ̂� ≡ τ̂ðL;Q;PÞ
� − τ̂ðL;0;0Þ�

¼ 1

κ̂
log

1 − Ω̂φL

1 − Ω̂φL − Φ̂Q − Ψ̂P
; ð98Þ

for the dyonic Kerr-Sen-AdS4 and its ultraspinning
counterpart respectively. From the first law of black hole
thermodynamics, a positive δS implies that the value within
the logarithm is greater than one. Therefore, Δτ is positive,
which means that it prolongs the scrambling time. We do

not compare τðL;Q;PÞ
� with τð0;0;0Þ� since κ depends on L and

therefore Δτ� (and Δτ̂�) becomes zero already asQ;P → 0
even though L is nonzero.
In [8], the time difference corresponds to the delay of the

start of the scrambling process, or in other words, the
scrambling delay. They found that the time difference
(similar to Δτ) for a Reissner-Nordström black hole is

equal to the difference between the bounce time tb and the
time when the shell is sent from the left boundary twL, for
time difference much larger than the thermal time β. Using
the quantum circuit description, the time difference td ¼
−twL − tb is then interpreted as the scrambling delay in [8].
In this work, we show that Δτ� andΔτ̂� also corresponds

to the scrambling delays for the dyonic Kerr-Sen-AdS4
black hole and its ultraspinning counterpart. We begin by
calculating the stress tensor for the rotating charged
shockwaves using the null junction formalism [31,32],
which is given by (see the Appendix for derivation)

Sμν ∝ ½σðrÞ�kμkν; ð99Þ
up to some proportionality constant, where

½σðrÞ�≡ σRðrÞ − σLðrÞ; ð100Þ

with the L and R indexes correspond to the function in the
perturbed left region with parameters M þ δM; qþ
δq; pþ δp; J þ δJ and unperturbed right region with
original parameters M, q, p, J. For the dyonic Kerr-Sen-
AdS4 black hole, σiðrÞ is given by

σiðrÞ ¼
ΔiðrÞh0iðrÞ

f̃iðrÞ
; ð101Þ

with i ¼ L, R. If ½σðrÞ� < 0, the null energy condition is
violated. Therefore, the location of the bounce, rb can be
obtained from ½σðrbÞ� ¼ 0.
Although it is difficult to exactly solve ½σðrbÞ� ¼ 0, we

show thatwedo not need the explicit formof rb to find τb (the
“bounce time”). The increase of the black hole parameters
δM; δQ; δP; δJ is directly related to the increase of the black
hole entropy δS by the thermodynamic first-law relation. To
make sure that the perturbations increase the black hole
entropy according to the second law, δS > 0, thus the
perturbations also increase the horizon’s radius as
rþδrþ ∼ δS. For small perturbation parameters δM; δq;
δp; δJ, to the first order approximation, ½σðrbÞ� ¼ 0 can
be written as

σðSþ δSÞ − σðSÞ ¼ 0 ⇒
∂σ

∂S
δS ¼ 0: ð102Þ

We are interested in the regime where Δτ� is particularly
large, much larger than the thermal time β ∼ 1

κ. This can be
achieved when the bounce happens very close to the
horizon, or rb ≈ rþ. Therefore, Eq. (102) can be expanded
near rþ such as�

∂σ

∂S
δS

�����
rþ

þ ðrb − rþÞ
d
drb

�
∂σ

∂S
δS

�����
rþ

¼ 0: ð103Þ

Using Eq. (101) and the horizon’s temperature formula, the
first term of Eq. (103) can be written as
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�
∂σ

∂S
δS

�����
rþ

¼ ∂σ

∂rb

∂rb
∂S

δS

����
rþ

¼ 2Ξ
rþ

h0ðrþÞ
1 − μL

THδS; ð104Þ

which has a dimension of rþ. Therefore, d
drb

ð∂σ
∂S δSÞjrþ in the

second term of Eq. (103) is dimensionless. We may extract
the location of the bounce rb to be (approximately)

rb − rþ ¼ R̃THδS ¼ Rð1 − μL −ΦQ −ΨPÞ; ð105Þ
where R has a dimension of rþ and in the order of OðδSÞ.
We see that rb → rþ corresponds to setting the condition
such that ð1 − μL −ΦQ −ΨPÞ → 0. From Eq. (97), set-
ting the bounce near the horizon corresponds to enlarging
the scrambling time difference Δτ�.
Using the Kruskal coordinate relation evaluated at rb, we

have

UbVb ¼ e2κr�ðrbÞ; ð106Þ
However, since we set the bounce to be close to the horizon,
we have

r�ðrbÞ ≈
1

2κ
ln

���� rb − rþ
R0

����þ C; ð107Þ

with R0 is some constant of dimension rþ and C is a
dimensionless constant that depends on the black hole
geometry. Also, for rb ≈ rþ, we can approximate Ub ≈U0,
where U0 is the location where the original rotating shock
wave is sent. Using Eqs. (105), (106), (107), as well as the
relation between U0 and α, we obtain

Vb ≈
αS

βHE0

R
R0 e

C; ð108Þ

where the factor R
R0 eC is an Oð1Þ dimensionless parameter

which depends on the black hole’s geometry and does not

scale with S or δS. We see that Vb ≫ 1 since α ∼Oð1Þ
and βHE0=S → 0.
Again, by plugging in the value of α in Eq. (64) into

Eq. (108), we obtain the time delay τd ¼ τ0 − τb for dyonic
Kerr-Sen-AdS4 black hole, which is given by

τd ¼
1

κ
log

�
1

1 − μL −ΦQ −ΨP

�
þ 1

κ
log

�
R0

R
e−C

�
;

¼ Δτ� þ
1

κ
log

�
1

1 − μL

�
þ 1

κ
log

�
R0

R
e−C

�
: ð109Þ

Since rb ≈ rþ, the first term dominates all the remaining
terms andwe see that τd also approximately equals toΔτ� for
the dyonic Kerr-Sen-AdS4 black hole. The remaining terms
are in the order of thermal timeβ ∼ 1

κ and donot scale likeΔτ�
if we take rb ≈ rþ. If we set L → 0, i.e., for the nonrotating
shock waves, the result reduces to the scrambling delay
found in [8]. This indicates that the role of the charges
(electric and magnetic) in the dyonic Kerr-Sen-AdS4 black
hole ismore to delay the start of the scrambling, rather than to
prolong the scrambling process, at least for rb ≈ rþ. For the
ultraspinning black hole, the scrambling delay is also similar
but with all of the parameters hatted,

τ̂d ¼ Δτ̂� þ
1

κ̂
log

�
1

1 − Ω̂φL

�
þ 1

κ̂
log

�
R̂0

R̂
e−Ĉ

�
: ð110Þ

With vanishing Q, P, only the terms with ∼OðβÞ
remain—away from extremality, these terms are small.
However, once we approach the extremal limit, the second
and the third terms of τd may diverge, and thereforeΔτ� can
only be interpreted as the scrambling delay away from
extremality. Furthermore, it is interesting to ask whether the
bounce still happens forQ;P → 0 but we keepL. From the
previous analysis, τd becomes very small for small β which
means that we can send the perturbation from the right
asymptotic at the time close to τ0 and still meet the left

FIG. 6. Plot similar to Fig. 3 for ultraspinning black hole. The fixed parameters are a ¼ 0.5, p ¼ 0.2, q ¼ 0.1 while decreasing the
mass to approach extremality.
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perturbations inside the horizon. This indicates that the
scrambling process starts immediately and the delay almost
did not happen. Therefore, the chargesQ,P are the ones that
play the important role in delaying the scrambling process.

V. CONCLUSIONS

We study chaos in the dyonic Kerr-Sen-AdS4 black hole
by calculating the scrambling time τ� and find that the
leading term is logarithmic in entropy τ� ∼ log S [see
Eq. (96)]. We use holographic entanglement entropy
calculations to calculate the mutual information IðA;BÞ
and obtain both scrambling time τ� and the Lyapunov
exponent λL by perturbing the black hole with rotating and
charged shock waves. This work generalizes the chaotic
behavior of black holes to the rotating black holes in the
EMDA theory. Both τ� and λL depend on the new
parameters, the dilaton and axion charges.
From Fig. 3, we show that the instantaneous minimal

Lyapunov exponent, for most of the cases, is bounded by
κ ¼ 2πTH=ð1 − μLÞ, and approaches κ when r−

rþ
→ 1, i.e.,

when the black hole approaches extremality. Furthermore,
for larger values of AdS length l, the Lyapunov exponent
also approaches κ and saturates the bound. Only in the case
where l ¼ 1 that we found the Lyapunov exponent exceeds
κ, for some large values of L. This violation may be caused
by the existence of charges, especially the dilaton and axion
charges. The fact that the Lyapunov exponent is approx-
imately equal to κ also supports the fast scrambling
conjecture. For nonrotating black holes, the Lyapunov
exponent should saturate the MSS bound [29], which is
given by the black hole temperature. We see that from
earlier works on rotating black holes, the upper bound for
the Lyapunov index is modified by a factor of 1

1−μL, which
can be greater than 2πTH [5,6,33].
We suspect that the cause for the violation of the κ bound

here is due to the existence of the dilaton or axion charges and
in this work, we show such evidence using the plot given by
Fig. 3. We plan to do the analytical calculations of the
correction to the Lyapunov bound with the existence of
dilaton and axion charges in futureworks. The fact that such a
violationdoes not occur in the standardKerr-AdS4 blackhole
[6] might help us to pinpoint the origin of the violation and
this carries significant physical interests. In future works, we
also plan to show that such a violation does not occur in a
Kerr-NUT-AdS black hole [52] at similar conditions (for a
small value of l). Furthermore, an investigation of the
butterfly velocity and entanglement velocity due to localized
shock waves [53] in the Kerr-Sen-AdS4 background might
also help us to gain insight into the violation of the bound.1

We plan to investigate it in future works as well.

We also calculate the scrambling time and the Lyapunov
exponent for the ultraspinning version of the dyonic Kerr-
Sen-AdS4, i.e., the solution where the rotation parameter
has its maximal value, a → l. The ultraspinning solution
provides us with new functions that cannot be obtained by
simply taking the limit of a → l from the standard dyonic
Kerr-Sen-AdS4. Due to the logarithmic behavior of the
scrambling time, the ultraspinning version also admits fast
scrambling. However, the ratio between κ and the Lyapunov
exponent is quite large. For example,wehave κ=λL ¼ C ∼ 12
for the case which violates the RII with R ¼ 0.995016 and
C ∼ 2.5 for the case withR ¼ 1 (see Fig. 5). From Fig. 6 we
see that even though l is small, the violation of the chaos
bound does not present in the ultraspinning case. We
conclude that the ultraspinning counterpart of the dyonic
Kerr-Sen-AdS4 black hole also admits chaotic behavior but
the Lyapunov exponent is relatively smaller than the standard
black hole, with larger C.
Due to the existence of charges, both in the black hole

and the shock waves, we also have the scrambling time
delay τd. The subleading term of τ� in Eqs. (94) and (95)
represent the difference between the scrambling time of
neutral black holes with the charged ones, and is denoted
by Δτ�. For a perturbation that obeys δS > 0, the afore-
mentioned term is positive and hence prolongs the scram-
bling process. However, since the shock wave bounces
inside the horizon at rb (that is assumed to be very close to
the horizon), the role of the subleading term is to delay the
onset of scrambling, following the analysis of [8]. We show
that the scrambling process of a dyonic Kerr-Sen-AdS4
black hole is also delayed by calculating the time that is
needed to send a signal from the right asymptotic τd for the
signal to meet the shock waves inside the black hole
interior. The difference between τd and τ0, i.e., the time
when the shock wave is sent from the left asymptotic, is
equal to Δτ� up to some corrections in the order of β. For
the bounce to happen near the horizon, Δτ� is much larger
than the thermal time β. The scrambling delay time depends
on the charges of the shock waves, Q and P. This is the
only function that depends onQ, P, indicating that the role
of the charges is to delay the scrambling. If we take L → 0

(and alsoP → 0), we recover the scrambling delay found in
the nonrotating Reissner-Nordström black hole [8].
In conclusion, our calculations support the fast scram-

bling conjecture for the dyonic Kerr-Sen-AdS4 black hole
to some extent. However, since our calculations only
focus on the nonextremal and near-extremal limits of the
black hole, it is also important to understand the chaotic
behavior of the extremal black hole. It is known that an
extremal black hole and a nonextremal black hole are
two distinct objects, and taking the extremal limit of a
nonextremal black hole does not obtain the properties of
the actual extremal black hole [25,54]. Therefore, the

1We thank V. Jahnke for pointing this out and bringing the
reference about the butterfly velocity of a static anisotropic black
brane.
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chaotic behavior of extremal dyonic Kerr-Sen-AdS4 black
hole deserves more investigation for future works.
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APPENDIX: STRESS TENSOR FROM
NULL-SHELL FORMALISM

In this appendix we derive the stress tensor of the rotating
charged shock waves using the null-shell formalism in [32]
and hence we adopt their notation here. Starting with metric
in Eq. (57), we construct the normal vector to the shocks
following constant u ¼ r� − τ path, kμ ¼ gμν∂νu, which is
given by

kμ∂μ ¼
1

F

�
Δ
f̃
∂r þ ∂τ − hτ∂z

�
; ðA1Þ

while the other tangent generator is given by eμz ¼ δμz.
Fromhere,we can obtain the transverse null vector by solving

NμNμ ¼ 0; Nμkμ ¼ −1; Nμe
μ
z ¼ 0; ðA2Þ

which results in

Nμdxμ ¼
F
2

�
dτ þ f̃

Δ
dr

�
: ðA3Þ

The transverse extrinsic curvature can then be calculated
from

CAB ¼ ∇νNμe
μ
Ae

ν
B ¼ Δh0

2f̃
δzAδ

z
B ≡ σ

2
δzAδ

z
B; ðA4Þ

with h0ðrÞ ¼ dhðrÞ=dr. The difference between CAB evalu-
ated in the perturbed manifold with the unperturbed one is
proportional to the stress-energy tensor, as given by Eq. (99).
For vanishing all black hole parameters except those corre-
sponding to the Reissner-Nordström black hole, the result
recovers the stress tensor in [8].

[1] C. Rovelli and L. Smolin, Loop space representation of
quantum general relativity, Nucl. Phys. B331, 80 (1990).

[2] S. Ariwahjoedi, J. S. Kosasih, C. Rovelli, and F. P. Zen, How
many quanta are there in a quantum spacetime?, Classical
Quantum Gravity 32, 165019 (2015).

[3] S. H. Shenker and D. Stanford, Black holes and the butterfly
effect, J. High Energy Phys. 03 (2014) 067.

[4] S. Leichenauer, Disrupting entanglement of black holes,
Phys. Rev. D 90, 046009 (2014).

[5] V. Malvimat and R. R. Poojary, Fast scrambling due to
rotating shockwaves in BTZ, Phys. Rev. D 105, 126019
(2022).

[6] V. Malvimat and R. R. Poojary, Fast scrambling of mutual
information in Kerr-AdS4 spacetime, Phys. Rev. D 107,
026019 (2023).

[7] V. Malvimat and R. R. Poojary, Fast scrambling of mutual
information in Kerr-AdS5, J. High Energy Phys. 03 (2023)
099.

[8] G. T. Horowitz, H. Leung, L. Queimada, and Y. Zhao,
Bouncing inside the horizon and scrambling delays, J. High
Energy Phys. 11 (2022) 25.

[9] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-
Kitaev model, Phys. Rev. D 94, 106002 (2016).

[10] J.Maldacena,D. Stanford, andZ.Yang,Conformal symmetry
and its breaking in two-dimensional nearly anti-de Sitter
space, Prog. Theor. Exp. Phys. 2016, 12C104 (2016).

[11] D. Jafferis, A. Zlokapa, J. D. Lykken, D. K. Kolchmeyer,
S. I. Davis, N. Lauk, H. Neven, and M. Spiropulu, Travers-
able wormhole dynamics on a quantum processor, Nature
(London) 612, 51 (2022).

[12] B. Kobrin, T. Schuster, and N. Y. Yao, Comment on
“traversable wormhole dynamics on a quantum processor”,
arXiv:2302.07897.

[13] S. Nezami, H.W. Lin, A. R. Brown, H. Gharibyan, S.
Leichenauer, G. Salton, L. Susskind, B. Swingle, and M.
Walter, Quantum gravity in the lab. II. Teleportation by size
and traversablewormholes, PRXQuantum 4, 010321 (2023).

[14] Y. Sekino and L. Susskind, Fast scramblers, J. High Energy
Phys. 10 (2008) 065.

[15] P. Hayden and J. Preskill, Black holes as mirrors: Quantum
information in random subsystems, J. High Energy Phys. 09
(2007) 120.

[16] L. Susskind,Addendum to fast scramblers, arXiv:1101.6048.
[17] N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P.

Hayden, Towards the fast scrambling conjecture, J. High
Energy Phys. 04 (2013) 022.

PRIHADI, ZEN, DWIPUTRA, and ARIWAHJOEDI PHYS. REV. D 107, 124053 (2023)

124053-18

https://doi.org/10.1016/0550-3213(90)90019-A
https://doi.org/10.1088/0264-9381/32/16/165019
https://doi.org/10.1088/0264-9381/32/16/165019
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1103/PhysRevD.90.046009
https://doi.org/10.1103/PhysRevD.105.126019
https://doi.org/10.1103/PhysRevD.105.126019
https://doi.org/10.1103/PhysRevD.107.026019
https://doi.org/10.1103/PhysRevD.107.026019
https://doi.org/10.1007/JHEP03(2023)099
https://doi.org/10.1007/JHEP03(2023)099
https://doi.org/10.1007/JHEP11(2022)025
https://doi.org/10.1007/JHEP11(2022)025
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1093/ptep/ptw124
https://doi.org/10.1038/s41586-022-05424-3
https://doi.org/10.1038/s41586-022-05424-3
https://arXiv.org/abs/2302.07897
https://doi.org/10.1103/PRXQuantum.4.010321
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1088/1126-6708/2007/09/120
https://arXiv.org/abs/1101.6048
https://doi.org/10.1007/JHEP04(2013)022
https://doi.org/10.1007/JHEP04(2013)022


[18] M.M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac,
Area Laws in Quantum Systems: Mutual Information and
Correlations, Phys. Rev. Lett. 100, 070502 (2008).

[19] J. Maldacena, The large N limit of superconformal field
theories and supergravity, Int. J. Theor. Phys. 38, 1113
(1999).

[20] S. Ryu and T. Takayanagi, Holographic Derivation of
Entanglement Entropy from the anti–de Sitter Space/
Conformal Field Theory Correspondence, Phys. Rev. Lett.
96, 181602 (2006).

[21] S. Ryu and T. Takayanagi, Aspects of holographic entan-
glement entropy, J. High Energy Phys. 08 (2006) 045.

[22] V. E. Hubeny, M. Rangamani, and T. Takayanagi, A
covariant holographic entanglement entropy proposal,
J. High Energy Phys. 07 (2007) 062.

[23] J. Maldacena, Eternal black holes in anti-de Sitter, J. High
Energy Phys. 04 (2003) 021.

[24] T. Hartman and J. Maldacena, Time evolution of entangle-
ment entropy from black hole interiors, J. High Energy
Phys. 05 (2013) 014.

[25] H. L. Prihadi, F. P. Zen, S. Ariwahjoedi, and D. Dwiputra,
Replica trick calculation for entanglement entropy of static
black hole spacetimes, Int. J. Geom. Methods Mod. Phys.
20, 2350132 (2023).

[26] S. H. Shenker and D. Stanford, Multiple shocks, J. High
Energy Phys. 12 (2014) 046.

[27] S. H. Shenker and D. Stanford, Stringy effects in scram-
bling, J. High Energy Phys. 05 (2015) 132.

[28] T. Dray and G. ’t Hooft, The effect of spherical shells of
matter on the Schwarzschild black hole, Commun. Math.
Phys. 99, 613 (1985).

[29] J. Maldacena, S. H. Shenker, and D. Stanford, A bound on
chaos, J. High Energy Phys. 08 (2016) 106.

[30] A. P. Reynolds and S. F. Ross, Butterflies with rotation and
charge, Classical Quantum Gravity 33, 215008 (2016).

[31] C. Barrabès and W. Israel, Thin shells in general relativity
and cosmology: The lightlike limit, Phys. Rev. D 43, 1129
(1991).

[32] E. Poisson, A reformulation of the barrabes-israel null-shell
formalism, arXiv:gr-qc/0207101.

[33] I. Halder, Global symmetry and maximal chaos, arXiv:
1908.05281.

[34] M. F. Sakti, A. Suroso, and F. P. Zen, CFT duals on extremal
rotating NUT black holes, Int. J. Mod. Phys. D 27, 1850109
(2018).

[35] M. F. Sakti, A. Suroso, and F. P. Zen, Kerr/CFT correspon-
dence on Kerr-Newman-NUT-Quintessence black hole, Eur.
Phys. J. Plus 134, 580 (2019).

[36] M. F. Sakti, A. Suroso, and F. P. Zen, Kerr–Newman–NUT–
Kiselev black holes in Rastall theory of gravity and Kerr/
CFT correspondence, Ann. Phys. (Amsterdam) 413, 168062
(2020).

[37] H. L. Prihadi, M. F. Sakti, G. Hikmawan, and F. P. Zen,
Dynamics of charged and rotating NUT black holes in
Rastall gravity, Int. J. Mod. Phys. D 29, 2050021 (2020).

[38] M. F. Sakti, H. L. Prihadi, A. Suroso, and F. P. Zen, Rotating
and twisting charged black holes with cloud of strings and
quintessence, J. Phys. Conf. Ser. 1949, 012016 (2021).

[39] M. F. Sakti and F. P. Zen, CFT duals on rotating charged
black holes surrounded by quintessence, Phys. Dark Uni-
verse 31, 100778 (2021).

[40] M. F. A. R. Sakti and P. Burikham, Dual CFT on a dyonic
Kerr-Sen black hole and its gauged and ultraspinning
counterparts, Phys. Rev. D 106, 106006 (2022).

[41] M. F. A. R. Sakti, Hidden conformal symmetry for dyonic
Kerr-Sen black hole and its gauged family, Eur. Phys. J. C
83, 255 (2023).

[42] D. Wu, P. Wu, H. Yu, and S. Q. Wu, Notes on the
thermodynamics of superentropic AdS black holes, Phys.
Rev. D 101, 024057 (2020).

[43] M. Guica, T. Hartman, W. Song, and A. Strominger, The
Kerr/CFT correspondence, Phys. Rev. D 80, 124008 (2009).

[44] Q.-Q. Zhao, Y.-Z. Li, and H. Lü, Static equilibria of charged
particles around charged black holes: Chaos bound and its
violations, Phys. Rev. D 98, 124001 (2018).

[45] B. Gwak, N. Kan, B.-H. Lee, and H. Lee, Violation of
bound on chaos for charged probe in Kerr-Newman-AdS
black hole, J. High Energy Phys. 09 (2022) 026.

[46] C. Yu, D. Chen, B. Mu, and Y. He, Violating the chaos
bound in five-dimensional, charged, rotating Einstein-
Maxwell-Chern-Simons black holes, Nucl. Phys. B987,
116093 (2023).

[47] C. Yu, D. Chen, and C. Gao, Bound on Lyapunov exponent
in Einstein-Maxwell-dilaton-axion black holes, Chin. Phys.
C 46, 125106 (2022).

[48] A. Gnecchi, K. Hristov, D. Klemm, C. Toldo, and O.
Vaughan, Rotating black holes in 4d gauged supergravity,
J. High Energy Phys. 01 (2014) 127.

[49] W. Chen, H. Lü, and C. N. Pope, Mass of rotating black
holes in gauged supergravities, Phys. Rev. D 73, 104036
(2006).

[50] A. Banerjee, A. Kundu, and R. R. Poojary, Rotating black
holes in AdS spacetime, extremality, and chaos, Phys. Rev.
D 102, 106013 (2020).

[51] R. A. Hennigar, R. B. Mann, and D. Kubizňák, Entropy
Inequality Violations from Ultraspinning Black Holes,
Phys. Rev. Lett. 115, 031101 (2015).

[52] M. F. Sakti, A. M. Ghezelbash, A. Suroso, and F. P. Zen,
Hidden conformal symmetry for Kerr-Newman-NUT-AdS
black holes, Nucl. Phys. B953, 114970 (2020).

[53] V. Jahnke, Delocalizing entanglement of anisotropic black
branes, J. High Energy Phys. 01 (2018) 102.

[54] S. M. Carroll, M. C. Johnson, and L. Randall, Extremal
limits and black hole entropy, J. High Energy Phys. 11
(2009) 109.

CHAOS AND FAST SCRAMBLING DELAYS OF A DYONIC KERR- … PHYS. REV. D 107, 124053 (2023)

124053-19

https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1126-6708/2007/07/062
https://doi.org/10.1088/1126-6708/2003/04/021
https://doi.org/10.1088/1126-6708/2003/04/021
https://doi.org/10.1007/JHEP05(2013)014
https://doi.org/10.1007/JHEP05(2013)014
https://doi.org/10.1142/S0219887823501323
https://doi.org/10.1142/S0219887823501323
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/BF01215912
https://doi.org/10.1007/BF01215912
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1088/0264-9381/33/21/215008
https://doi.org/10.1103/PhysRevD.43.1129
https://doi.org/10.1103/PhysRevD.43.1129
https://arXiv.org/abs/gr-qc/0207101
https://arXiv.org/abs/1908.05281
https://arXiv.org/abs/1908.05281
https://doi.org/10.1142/S0218271818501092
https://doi.org/10.1142/S0218271818501092
https://doi.org/10.1140/epjp/i2019-12937-x
https://doi.org/10.1140/epjp/i2019-12937-x
https://doi.org/10.1016/j.aop.2019.168062
https://doi.org/10.1016/j.aop.2019.168062
https://doi.org/10.1142/S0218271820500212
https://doi.org/10.1088/1742-6596/1949/1/012016
https://doi.org/10.1016/j.dark.2021.100778
https://doi.org/10.1016/j.dark.2021.100778
https://doi.org/10.1103/PhysRevD.106.106006
https://doi.org/10.1140/epjc/s10052-023-11412-2
https://doi.org/10.1140/epjc/s10052-023-11412-2
https://doi.org/10.1103/PhysRevD.101.024057
https://doi.org/10.1103/PhysRevD.101.024057
https://doi.org/10.1103/PhysRevD.80.124008
https://doi.org/10.1103/PhysRevD.98.124001
https://doi.org/10.1007/JHEP09(2022)026
https://doi.org/10.1016/j.nuclphysb.2023.116093
https://doi.org/10.1016/j.nuclphysb.2023.116093
https://doi.org/10.1088/1674-1137/ac90af
https://doi.org/10.1088/1674-1137/ac90af
https://doi.org/10.1007/JHEP01(2014)127
https://doi.org/10.1103/PhysRevD.73.104036
https://doi.org/10.1103/PhysRevD.73.104036
https://doi.org/10.1103/PhysRevD.102.106013
https://doi.org/10.1103/PhysRevD.102.106013
https://doi.org/10.1103/PhysRevLett.115.031101
https://doi.org/10.1016/j.nuclphysb.2020.114970
https://doi.org/10.1007/JHEP01(2018)102
https://doi.org/10.1088/1126-6708/2009/11/109
https://doi.org/10.1088/1126-6708/2009/11/109

