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The scrambling time and its delay are calculated using holography in an asymptotically AdS black hole
solution of the gauged Einstein-Maxwell dilaton-axion (EMDA) theory, the dyonic Kerr-Sen-AdS, black
hole, perturbed by rotating and charged shock waves along the equator. The leading term of the scrambling
time for a black hole with large entropy is logarithmic in the entropy and hence supports the fast scrambling
conjecture for this black hole solution, which implies that the system under consideration is chaotic. We
also find that the instantaneous minimal Lyapunov index is bounded by x = 22Ty /(1 — pL), which is
analogous to the surface gravity but for the rotating shock waves, and becomes closer to equality for the
near extremal black hole. For a small value of the AdS scale, we found that the Lyapunov exponent can
exceed the bound for a large value of L. Due to the presence of the electric and magnetic charge of the
shock waves, we also show that the scrambling process of this holographic system is delayed by a time
scale that depends on the charges of the shock waves. The calculations also hold for the ultraspinning
version of this black hole. The result of this paper generalizes the holographic calculations of chaotic
systems which are described by an EMDA theory in the bulk.

% and Seramika Ariwahjoedi4’3‘§

DOI: 10.1103/PhysRevD.107.124053

I. INTRODUCTION

Due to their extreme properties, such as a strong
gravitational field, black holes provide a good environment
for studying the quantum effects/signatures of gravity.
Previous studies of quantum gravity involve the study of
string theory and loop quantum gravity [1,2]. One of the
other ways to investigate the quantum properties of gravity
around a black hole is by understanding chaotic phenomena
of holographic systems that are dual to some black holes,
which has become an interesting topic until very recently
[3-8]. The study about chaotic phenomena of the one-
dimensional Sachdev-Ye-Kitaev (SYK) model [9] which is
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conjectured to be dual to the two-dimensional Jackiw-
Teitelboim (JT) gravity as the effective theory of a near-
extremal black hole near its horizon [10] also leads us to the
understanding of a possibility to study traversable worm-
holes in the lab [11-13]. According to the fast scrambling
conjecture [14], black holes are the fastest scrambler in
nature, with the scrambling time proportional to the
logarithm of its degrees of freedom or entropy,
t. ~log S, for systems with a large number of degrees of
freedom (see also [15-17]). A system can be considered
chaotic when the out-of-time-ordered correlators (OTOC)
decay exponentially. The time required for the OTOC to
vanish is known as the scrambling time, and for a fast
scrambler, it is logarithmic in entropy.

Another way to diagnose chaos in a quantum system is by
using the mutual information 7(A; B) = S4 + S — Saus.
where S 4 is the von Neumann entropy for the reduced density
matrix p, of a subsystem A. This can be done since /(A; B)
provides an upper bound for correlators. If /(A; B) = 0, then
the correlators also vanish [18], and the scrambling time
can be obtained from the time required for I(A;B) to
vanish. Using the help from holographic theories
such as the AdS/CFT correspondence [19], the mutual
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information can be calculated using the holographic
entanglement entropy, i.e., the Ryu-Takayanagi (RT) or
Hubeny-Rangamani-Takayanagi (HRT) formula [20-22].
Entanglement entropy of a subregion in a conformal field
theory (CFT) with an anti—de Sitter (AdS) dual is equal to the
area of a minimal surface in the bulk which is homologous to
the region divided by 4G . This can be used to calculate the
mutual information of a thermofield CFT which is dual to an
eternal black hole in the AdS bulk [23,24]. Recent calculation
of entanglement entropy using replica trick in the bulk shows
that it is also possible to calculate entanglement entropy of
black hole spacetimes with multiple horizons [25].

The chaotic behavior of a black hole is first studied in
[3], by calculating the mutual information in a CFT which
is dual to a three-dimensional Banadoz-Teitelboim-Zanelli
(BTZ) black hole (see also [26,27]). A tiny perturbation
traveling at the speed of light which is sent from the left
boundary at a very early time and near the horizon can get
highly blue-shifted and disrupt the geometry to make the
mutual information vanish. Such a perturbation is called
the gravitational shock waves which are represented by the
Dray-"t Hooft solution [28]. Adding the perturbation to the
bulk geometry also corresponds to disrupting the thermo-
field double state in the boundary CFT, causing the
correlator to vanish in late times. From [3], it is found
that the scrambling time for a black hole with large entropy
is given by ¢, = % log S, where S is the black hole entropy
and f is the inverse Hawking temperature. Furthermore, the
Lyapunov exponent is found to saturate the Maldacena,
Shenker, and Stanford (MSS) bound on chaos [29], i.e.,
A = 2x/p. This observation supports the fast scrambling
conjecture, which states that a black hole is maximally
chaotic. The chaotic feature of black holes can be tested for
other more general black holes such as charged and rotating
black holes. The charged extension is first studied in [4],
where the scrambling time for a Reissner-Nordstrom-AdS
black hole perturbed by neutral shock waves is calculated.
It is also found that the scrambling time is logarithmic in
entropy. The calculation is then generalized to charged and
rotating BTZ black holes perturbed by charged shocks [30].
Aside from the bulk calculations, the chaotic behavior of
black holes has also been studied from the CFT side.

A recent study [8] shows that the charged shell must
bounce inside the horizon and change its null trajectory for
the shock wave solution to not violate the null energy
condition from the null-shell formalism [31,32]. The
calculation is done for a four-dimensional Reissner-
Nordstrom-AdS black hole perturbed by charged shock
waves. This has an important implication for interpreting
the scrambling time obtained. According to standard
calculations, the effect of charged shock waves is to
increase the scrambling time by an extra factor that depends
on the charge of the shocks. However, since the shock
waves bounce inside the horizon, there is a maximum time
t;, for a null particle sent from the right asymptotic to meet

the shock waves inside the horizon. The difference between
t, and the time the shocks are sent is equal to the difference
between scrambling time with neutral shocks and charged
ones plus some terms in order of the thermal time /. Using
quantum circuit description, [8] concludes that the effect
of the charged shock waves is to delay the start of the
scrambling process.

Other than the charged shock waves, one may also
consider rotating shock waves. This is first done in [5] for
rotating BTZ black hole and in [6,7] for Kerr-AdS black
hole in four and five dimensions. The importance of adding
the angular momentum to the shocks is that the Lyapunov
exponent can be larger than the MSS bound [33] due to the
existence of a global conserved charge. Furthermore, the
solution survives the extremal limit even though the black
hole temperature becomes zero at extremality.

Aside from the standard Reissner-Nordstrom and Kerr
black holes, there are many known black hole solutions that
can be described microscopically using holographic theo-
ries [34-41]. It is very interesting to study the chaotic
behavior of various black holes, particularly in an asymp-
totically AdS spacetime, to give us a better understanding
of the chaotic properties of black holes or even holographic
theories in general. It is shown in [6] that the charged
version (the Kerr-Newman-AdS) black hole does not
provide much difference compared to the uncharged
Kerr-AdS black hole. However, there is another black hole
solution that is quite similar (to some extent) to the Kerr-
Newman-AdS black hole, but with extra dilaton and axion
scalar fields, named the dyonic Kerr-Sen-AdS, black hole.
The chaotic behavior of such a black hole has not been
studied before. Since the dilaton and axion fields are
present, the result will differ from the charged and rotating
Kerr-Newman-AdS black hole. Furthermore, it is widely
known that rotating black holes in AdS have an ultra-
spinning limit—a limit where the rotational parameter
reaches its maximum value. It is also interesting to study
the chaotic behavior of rotating black holes in such a limit
since it is known [40] that an ultraspinning version of a
dyonic Kerr-Sen-AdS black hole may still obey the reverse
isoperimetric inequality due to the existence of the dilaton
and axion fields. Charged and rotating perturbations, in
addition to the uncharged rotating perturbations, will also
give a significant effect on the chaotic dynamics of the
black holes, and it also has not been studied before,
especially in a four-dimensional rotating and charged black
holes with dilaton and axion fields.

In this work, we extend the calculations for the scram-
bling time for charged and rotating black holes in the
gauged Einstein-Maxwell dilaton-axion (EMDA) theory
perturbed by (electrically and magnetically) charged rotat-
ing shock waves. The black hole solution to the gauged
EMDA theory in four dimensions is called the dyonic
Kerr-Sen-AdS, [42]. The gauged version of the theory is
equipped with a negative cosmological constant which
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provides us with an asymptotically AdS spacetime.
Therefore, it is suitable for studying chaos in this black
hole background using AdS/CFT. The eternal black hole
form of this dyonic Kerr-Sen-AdS, black hole can also be
represented holographically by two CFTs in their left and
right asymptotic boundaries similar to [23], with extra
chemical potentials which correspond to the rotation and
(electric and magnetic) charges. Studying the chaotic
behavior of such a system also lead us to an even more
understanding of the holographic relation in the gauged
EMDA theory. Using the Kerr/CFT correspondence [43]
and its extensions [34-36,39], the extremal dyonic Kerr-
Sen-AdS, black hole entropy can be described microscopi-
cally by its dual two-dimensional CFT [40,41]. The dyonic
Kerr-Sen-AdS, solution is parametrized by its mass, AdS
scale, angular momentum, electric and magnetic charges,
and two extra charges which correspond to the dilaton and
axion fields.

Using holographic calculations, we found that the
scrambling time of the black hole is also logarithmic in
entropy. The minimal instantaneous Lyapunov exponent 4;
is bounded by k = 22Ty /(1 — uL), where Ty and p are the
temperature and the angular momentum of the black hole
respectively, and £ is the angular momentum (per unit
energy) of the shock waves. This indicates that the system
in the dyonic Kerr-Sen-AdS, black hole is chaotic and thus
supports the fast scrambling conjecture, even for the
rotating charged black hole in the EMDA theory. We show
that the ratio x/4; is constant with respect to £, and
approaches 1 as the AdS radius / becomes large. The
constant can vary, depending on the black hole parameters,
and thus we suggest that it should take the form x/A; = C,
for some constant C > 1. For example, it has been shown
recently that a three-dimensional rotating BTZ black hole
has C = 2 [5]. Interestingly, for a small value of [, [ = 1, we
observe that the bound 4; < « can be violated for large L.
This is unusual and it does not present in the case of an
uncharged Kerr-AdS, black hole [6]. The violations of
chaos bound have been observed earlier (see, for example,
[44-47]) using different methods, although only the stan-
dard MSS bound 27Ty is used. The violations are present
in the charged black hole cases, for some value of rotation
parameter (both black hole’s and particle’s rotation). In this
work, we show that the bound «/(1 —uL) can also be
violated due to the existence of the dilaton and axion
charges.

The structure of this paper is as follows: In Sec. II, we
review the dyonic Kerr-Sen-AdS, black hole solution and
its ultraspinning version in [42,48] including their thermo-
dynamics. In Sec. III, we construct the light cone coor-
dinates of the rotating and charged shockwaves and then
obtain the corresponding Dray-'t Hooft shock waves
solution for this geometry. In Sec. IV, we first briefly
explain the holographic CFT model for this dyonic Kerr-
Sen-AdS, black hole. Using the RT/HRT surfaces, we

calculate the corresponding entanglement entropy and
obtain the mutual information which is sensitive to the
charged and rotating shock waves in the bulk. From that,
we can obtain the scrambling time 7, and the scrambling
delay z, both for the dyonic Kerr-Sen-AdS, black hole and
its ultraspinning counterpart. We also calculate the mutual
information using holography, which leads to the calcu-
lations of the Lyapunov exponent. We show how the
Lyapunov exponent behaves as we change the black hole
parameters. These observations support the fast scrambling
conjecture for the dyonic Kerr-Sen-AdS, black hole. We
sum up our work in the Discussions and Conclusions
session in Sec. V.

II. DYONIC KERR-SEN-AdS; METRIC

In this section, we briefly review the black hole solution
to the gauged FEinstein-Maxwell dilaton-axion theory
known as the dyonic Kerr-Sen-AdS, black hole [42]. We
also write down the thermodynamic quantities and their
first-lawlike relation. The ultraspinning version of the
metric with ¢ - ¢/Z and a — [ is also given along with
its thermodynamics.

The dyonic Kerr-Sen-AdS, black hole is the solution to
the gauged Einstein-Maxwell dilaton-axion theory with
action

1 1 1
1= Vgld*x( R = = (3¢)? — = 2 (dy)?
16”GN/ |9l X< 5 (09)" =5 e ()

— e P2 +’§FF> + 1y, (1)

where ¢ and y are the dilaton scalar and axion pseudoscalar
field respectively, F' = dA is the electromagnetic tensor of
an Abelian gauge potential one-form A, with its Hodge
dual F. We use the notation (9¢)> = (9,¢)(0"¢), (dr)> =
(0u)(0"y), F>=F,F"* FF=F,F" with F"=
e PF,; where ¢ denotes a four-dimensional totally
antisymmetric tensor. The axion pseudoscalar y is defined
from dB = —e**xdy, where B, is an antisymmetric two-
form tensor and x denotes the Hodge duality operator. The
term [/, represents the cosmological-constant term which
comes from the gauged version of the standard EMDA
theory and It is given by

1
I =
A 1677,'GN

/ Vigld*x(4 + e~ + e (1 +2) /2. (2)

The solution for the dyonic Kerr-Sen-AdS, black hole is
given by [42]

A T ) Ay sin® 0
ds> = =2 X2+ Zdr? + = ag? + 2 Ty

) A A, ) » Q)

where
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X =dr - L7 g0,

2_d2_k2 2

Y:adt—(r = +a)d(ﬂ, (4)
2_d2_k2
Au):<1+i—77——>u%—f—k%+f)
—2Mr + p* + ¢, (5)
a? _ a?
Agzl—l—zcosze, ::1—1—2,

T =r?—d* -k + a*cos?0. (6)

Here, m, a,l,d, k, p, g are the mass, rotation, cosmological
constant (AdS length), dilaton charge, axion charge,
magnetic charge, and electric charge parameters, respec-
tively, with the relations d = (p>—gq?)/2m and
k = pg/m. Note that we use the shifted coordinate r —
r + d for mathematical simplicity. The potential A ,, its dual
Bﬂ defined from e ?%xF + xF = —dB, dilaton scalar and
axion pseudoscalar fields are given by

B q(r+d—p2/m)X_pcos€Y

A_ ’
> >
_ 2
B:p(r+d p/m)X_i_qcosQY’
> >
g (r+d)?+(acosf+k)
er =
Z b
kr — dacos@
x=2 (7)

(r+d)*+ (acos@ + k)*

The thermodynamic quantities of the dyonic Kerr-Sen-
AdS, black hole are given as follows:

mM=2, y=22 o2 p_L
= = = =
S:E(r%r—dz—kz—i—az),
alB
Q, = ,
R -d -k +
_q(ro+d—p*/m)
Q=55 3
r.—d —k +a
g _ Plre+d=p*/m)
r—-d-kK+ad’
212 —2d% — 2k 24P -MP
2”THIF+( . 2 jajz) ) (8)
(rX = d* = k* + a?)l

where r,_is the outermost horizon as the largest solution to
A(ry) =0. Here, M, J, Q, P are the mass, angular
momentum, electric charge, and magnetic charge of the
black holes as the corresponding conserved charges.

Furthermore, S is the entropy of the black hole while
Q,, @, ¥ denotes the angular momentum, electric potential,
and magnetic potential of the horizon respectively. For now,
we assume that the black hole is nonextremal, i.e.,
A'(r,) # 0 where the prime denotes the derivative with
respect to r. In this work, we treat the cosmological
constant parameter / as nondynamical such that the first-
law equation becomes

dM = TydS + Q,dJ + ®dQ + YdP + JdE/(2a).  (9)

The dyonic Kerr-Sen-AdS,; metric is rotating at r — o
with angular velocity

Q= ——. (10)

Therefore, a stationary observer at infinity can be obtained
by a coordinate transformation ¢ — ¢ + Q¢ and some of
the thermodynamic quantities are shifted by

a m
— J =—

M—)M:M—i—lz, = Q¢—>Q¢—Qw,

(11)

where now the newly shifted black hole angular velocity is
defined as

a(l+ (rfL —d? —kz)/lz)
ri —d> -+ a?

/’lEQ(p_Qoo: (12)

Now the angular velocity u becomes the new chemical
potential for the first-law relation

dM = TydS + pdJ + ®dQ + WdP. (13)

A. Ultraspinning dyonic Kerr-Sen-AdS,

The redefinition of the coordinate ¢ — ¢/E allows us to
obtain the ultraspinning limit a — [ of the dyonic Kerr-Sen-
AdS, black hole, which now has the metric and the
corresponding fields in the form of

A, % ) in‘d .
AP = -2 X2 4 Zdr? +—de? + 2 P,
z A sin“6 by
- 2 A A
A:q(r—i—dA p/m)X:pc?SHY’
> >
- 2 A A
B:p(r—de p/m)X+qC?SHY,
s _ (r+d)?+ (lcosd + k)
er = = s
2
kr —dl 0
=2 r cos (14)

r?+ (Icos@ + k)’
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with
X = drt — Isin®0de,
ldt — (r* — d* = K> + I?)de,
(P=d® =K+ P2/ =2Mr+p*+ 4>  (15)

>
S o~
([

3 =12 —d* - k* + PPcos?6. (16)

The periodicity of ¢ is now assumed to be given by A
instead of 2z. Notice that the standard dyonic Kerr-
Sen-AdS, metric ds®> cannot be obtained directly from
the ultraspinning metric d3°.

The thermodynamic quantities of the ultraspinning
dyonic Kerr-Sen-AdS, black hole are given by

o N H ALK s M
M=— = — =M = — = —
2w / 2ﬂ'ml Lo 2727 220
S_Hi2 2.2y @ !
S=Er_t-ryp), 0= "
A T = e
o _q(ro+d—p*/m) o p(ry+d—p*/2m)
¢ = 2 2 20 Y= 2 2 2 2
r—d? =k +1 ri—d =k +1
2ty =2+ " (17)

P P—d—+P

Again, r, is defined as the outermost horizon satisfying
A(#,) = 0 and we assume that the ultraspinning black hole
is also nonextremal with A’(r,) # 0. The first-lawlike

relation is now given by
dM = TydS + Q,dJ + ®dQ + PdP + Kdi,  (18)
where 4 also plays a role as the dynamical variable with a

new chemical potential

P—(ry+d+q*/m)(ri +d—p*/m)

K =
" a2 —d — I+ P)

(19)

III. EQUATORIAL ROTATING
SHOCK WAVE SOLUTIONS

A. Kruskal coordinates

Consider an equatorial (¢ = x/2) rotating null particle in
the background of the dyonic Kerr-Sen-AdS, black hole
with unit energy £ = 1 and angular momentum per unit
energy L. We will then call this the rotating shock wave.
Such a particle will have a geodesic & observed by a
stationary observer at infinity which satisfies

52:0’ é'gt:_g’ f'ngﬁ, 50:0 (20)
The last equality is required for the equatorial orbit, which
means that the particle always stays at the equator § = /2.

The corresponding Killing vector associated with axisym-
metry is given by {, = 9, — a/lz()q, and ¢, = d,,. There are
two solutions to Eq. (20), &, , where the negative solution is
obtained from reversing the axisymmetry —& — £ and
L — —L. The geodesic solution in the background of a
dyonic Kerr-Sen-AdS, black hole for unit energy (£ = 1) is
given by

¢, -dx =dr, —dr=du, E -dx=dr,+dr=dv,

(1)

where 7= (1 —aLl/l?)t— Ly and r, is the tortoiselike
coordinate given by

r.(r) = /idr, (22)
with f is defined from

FF=-AL—-a)+[La(l + (PP =d*>-K*)/1P)
— (P —d* -k +a*)P. (23)

With vanishing dilaton and axion charge, i.e., d, k — 0, we
recover the tortoiselike coordinate found in [6] and with
vanishing angular momentum £ — 0, we recover the
standard Kruskal coordinates for rotating dyonic Kerr-
Sen-AdS, black hole.

The Kruskal-like metric which follows the geodesic of
the rotating shock wave is given by

ds? = F(r)dudv + h(r)(dp + h,(r)dz)?,  (24)

with

A —d* -k - 1—al/P)2f?
R O & 1
h(r) = % (Aa= L)+ a(al(l + (P — & — i)/ )

— (P =d*> - k* +ad?))). (25)

We then shift the axial coordinate ¢ — nz + yz for two

reasons: one is to make sure that /,(r) 4y behaves like
O(r — r,) near the horizon and to recover the black hole’s
horizon area when integrating € from 0 to 7 and z from 0 to
27z. Thus, we have

1

Q, _
1—pul’

T1-ul

v n (26)

From the coordinate transformations, we have
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ds* = F(r)dudv + h(r)(dz + h.(r)de)?,  (27)

where h(r) = n*h(r) and h,(r) = 5~ (h,(r) + 7).

Furthermore, we would like to work with coordinates
that are affine at the horizon to generate the Dray-’t Hooft
solution later on. In this case, {u, v} coordinate is not
affine, i.e., the tangent vector y, = 9, satisfy y, - Vyi =
Ky (similar with %), where

K= %gi . oF. (28)

The new coordinates {U, V} are

U=-e", V=", k= K| (29)

r=rp°
and it can easily be shown that both d;; and 9y, are affine
coordinates at r,. The metric in the affine coordinates is
now written as

F(r)

ds? =
YTy

» dudV + h(r)(dz + h.(r)de)*.  (30)

The value of « is related to the black hole’s surface gravity
Ko by

Ko 27TTH
pu— pu— . 31
1—ul 1-pul (31)

K

This « has a form similar to the standard Kerr-AdS, black
hole with rotating shock waves. However, it differs in the
value of the Hawking temperature Ty and the angular
momentum p which now depends on the value of the
dilaton and axion charge d, k.

Next, we would like to generate the Kruskal-like
coordinates for the ultraspinning counterpart where the
metric is given by Eq. (14). Since the ultraspinning version
of the dyonic Kerr-Sen-AdS, has a null ¢ coordinate at the
boundary r — oo and hence the metric is nondiagonal, we
need to adopt the so-called conformal completion tech-
nique to compute the conserved quantities [42,49]. The
mass and the angular momentum of the ultraspinning
dyonic Kerr-Sen-AdS, black hole given by Eq. (17) is
obtained by calculating the conserved charge Q[¢] defined
in Eq. (9) of [42] for a Killing vector {. The timelike Killing
vector {, = 0, gives us the mass M, while the axial Killing
vector {, =0, gives us the angular momentum J.
Therefore, we also have to use the Killing vectors at
infinity ¢, = d, and {, = d, which corresponds to the
conserved energy £ and angular momentum £ of a rotating
shock wave around the ultraspinning black hole.

The geodesic of a rotating shock wave E” in the back-
ground of an ultraspinning dyonic Kerr-Sen-Black hole is
obtained by solving Eq. (20) with the ultraspinning black
hole metric in Eqgs. (14) and (15) and Killing vectors

{; = 0,,¢, = 9,. The solutions for unit energy £ = 1 and

an angular momentum per unit energy L are given in the
form of

E_-dx=di, + di = db,
(32)

&, -dx = di, — di = di,

where 7 =t — Lo and

=& (33)

FP=-AL—-12+(Ll=-(P ==+ P)2  (34)
Notice that both 7 and]:‘ cannot be obtained by taking a — /

limit of f. The Kruskal-like metric for the ultraspinning
black hole with rotating shock waves is given by

d3? = F(r)didd + h(r)(dg + he(r)d?)?,  (35)

where now we have

. A2 —d* - i 5 f?
F(r)—%, h(r):m,
o) = —A(E—l)2+l(ﬁl—(rz—dQ—k2+lz)). (36)

7
Following similar reasoning to the normal dyonic Kerr-

Sen-AdS,, we redefine the coordinate ¢ — # Z +7 7, where
now

A

R 1 X Q
= = (37)
1-Q,L 1-Q,L

Again, all of the functions appear in the ultraspinning

case {F,h, h;, 7,7} cannot be directly obtained from
{F, h, 57,11,7/} by taking the limit of @ — [ and thus they
are all completely different functions. After the coordinate
transformation ¢ — 772 +7 7, the Kruskal-like metric for
the ultraspinning black hole now takes the form

d3? = F(r)didd + h(r)(dz + hs(r)d?)®.  (38)

where A(r) = 72h(r) and h:(r) = 77" (h; + 7).

We also would like to work with affine coordinates
{0, V} instead of {i, d} for the ultraspinning black hole.
Following similar reasoning as before, we obtain

U = —eft, V = ef?, (39)
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where now & is given by
(40)

The metric in the affine coordinates { U/, V'} is now given by

P R
a3 = 2 4tra0 1 hir)(dz + ha(nar2. (@)
UV

In this coordinate system, we then generate the Dray-’t
Hooft solution for the ultraspinning dyonic Kerr-Sen-AdS,
black hole.

After we obtain the metric in Kruskal coordinates for the
dyonic Kerr-Sen-AdS, and its ultraspinning counterpart,
we now see how the functions F(r) and F(r) behave near
the horizon. Indeed, by expanding r near r. up to the
second order, we have

F() = F(r) (= r) + 3 P ) (= r b, (42)
F ) = Pl =r) 4+ S )= o (@)

withall F/(r,), F"(r.), F'(r.), E"(r,) are nonzero. Using
the definitions of the Kruskal coordinates in Eq. (29) and
the tortoiselike coordinates in (22) for the dyonic Kerr-Sen-
AdS, black hole, we may write that, near the horizon,

(r—ry)F'(ry) =-AUV, (44)

where A is some dimensionless proportionality constant
which depends on the dyonic Kerr-Sen-AdS, black hole
parameters.

One need to be more cautious when considering U V
near the horizon for the ultraspinning black hole because &
is now equipped with Qq, instead of u. However, it turns out
that the value of U/ V near the horizon is still linear in r — .
since the tortoise coordinate near the horizon behaves as

o (1-8,0)( —d* - K?)
’ A/("+)

Injr—r, |+C

1
— —Inlr— C, 45
Sinlr—r|+ (45)
where C is an integration constant in which the explicit
value depends on the geometry of the black hole.
Therefore, UV ~O(r—r,) near the horizon and we
may also write

>

(r=r)F(r.)=-A0V, (46)

where A is a dimensionless proportionality constant that
depends on the ultraspinning black hole parameters.

The expansions of the functions F(r) and F(r) near the
horizon can then be extended to the second order of r — r ..
For the standard dyonic Kerr-Sen-AdS,, we have

F | _AUVF'(r,)

AUV T T2

3 F,(r+)+(’)(U2V2), (47)

while for the ultraspinning black hole, we have

F AUV E" U
B A/(r+)+O(U2V2). (48)
AUV 2 F'(ry)

B. Extremal limits

From the turning-point analysis, the maximum value that
L can achieve if we need the perturbation to reach the
horizon from infinity is bounded by u~! (£,.x < u~ ') and
the equality holds at extremality, i.e., Ly = p~! for Ty —
0 [6]. For the dyonic Kerr-Sen-AdS, black hole, the value
of x also survives the extremal limit. By expanding the
value of r, near the extremal horizon radius ry, where
A(ry) = A'(ry) =0, to the first-order approximation, we
have

_aTy

Ty~
" or,

(ry = ro)- (49)

To

On the other hand, the value of (1 —uL) can also be
expanded near the extremal value r,

19
l—ul= (——ﬂ
Hor

>r0<r+ —r). (50)

Therefore, by taking the extremal limit r, — r,, we obtain
the extremal value of x,

ZH(OTH/aer)rO

= TN 00T s 51
Kext (ﬂ_laﬂ/ar+)ro L [ Hext ( )

where . 1s given by Eq. (12) with r,_ is replaced by r( and
Kex: 18 related by the definition of the left-moving Frolov-
Thorne temperature found by the Kerr/CFT correspon-
dence for the extremal dyonic Kerr-Sen-AdS, black hole

(0T y/ory), . .
T, = —W derived in [40,41].
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For the dyonic Kerr-Sen-AdS, black hole, we have

(U (5= =k)/P)(1 +a*/ P + (6r5 — 2d* = 2k*)/ IP)

Kext =

while for the ultraspinning counterpart (following the same
procedure), we have

(53)

A 7 Hext
Kext = _ZFTLQ(/}

(612 — 242 — 2K + 21%)
- 2r, 2 : (54)

Both «.,; and k. scales with the left-moving Frolov-
Thorne temperature calculated by the Kert/CFT. The
difference lies in the type of angular momentum which
appear in both . and &.,, where it is given by y.,, for the
former and QZ,’“ for the latter (instead of fi.). This
difference lies in the definition of angular velocities. For
the standard black hole, u is the difference between the
horizon’s angular velocity and the angular velocity of a
stationary observer at infinity. For the ultraspinning black
hole, however, we do not have a notion of the angular
velocity of a stationary observer at infinity because the ¢
coordinate becomes null. Instead, what appears in 1 — fl,,,[l
is the horizon’s angular velocity Q,p which is the chemical

potential for J. Up until this point, all of the hatted
functions for the ultraspinning black hole do not depend
on the new dynamical variable 4.

C. Dray-’t Hooft solution

After we obtain the Kruskal-like coordinates for rotating
null geodesic for both standard dyonic Kerr-Sen-AdS,
black hole and its ultraspinning counterpart, we are now
able to generate the Dray-’t Hooft solution. For a Kruskal-
like metric perturbed by an infalling rotating shock wave at
the equator located at U, for the standard black hole and at
U, for the ultraspinning black hole, the metric is given by
the shift for U > U,

V->V=V+a®(U -U,), (55)
for the dyonic Kerr-Sen-AdS,, and
Vo V="0+a0(0-0,). (56)

for its ultraspinning version. It is known that the shift
should contain a function f(0) which captures the pertur-
bation away from the equator. However, when we only
consider # = x/2, we may normalize the function such
that f(x/2) = 1. In this section, we will calculate the

52
2}’05 ’ ( )

Dray-t Hooft solution and the strength of the shock
waves a for the standard dyonic Kerr-Sen-AdS,; first, then
followed by its ultraspinning counterpart later on.

1. Standard Kerr-Sen-AdS,

We first present the coordinate 7z in terms of U and V.
The metric in Eq. (30) can then be written as

_ F(r)
A%

+ h(r) (dz +

ds? dudv

he(r)
2kUV

(Uav - VdU)>2. (57)

After applying the Dray-’t Hooft solution which gives the
shift in Eq. (56) due to the shock, the metric becomes

ds* — ds* — s(U)dU?,

% (58)
after the shift, where ds® is given by Eq. (30) with V is
replaced by V.

The strength of the shift, @ and & can be obtained by
requiring that the transverse volume element H =  /gggg..
(in the full coordinates involving 0) to be smooth at the
location of the shock. Suppose that after the shock wave
enters the black hole horizon, it increases the black hole
mass by a small amount E. To make the case more general,
we may also consider a perturbation which increases the
value of the electric charge of the black hole by a small
amount 6¢g and the magnetic charge by a small amount §p
as well although we assume that the trajectory of the
perturbation still follows the rotating shock waves geodesic
given by Eq. (21). In this case, the area of the horizon
changes according to the first law of thermodynamics,
which also change H at the horizon, since H is nothing but
the area of the horizon, divided 4z. By imposing H to be
smooth at the horizon, we have

H|Ug = H|U0—' (59)
Using Eq. (44) and taking the limit £y — 0 and Uy — 0
simultaneously, we have

_ (Hu _HrJr)F/(rJr)
T ARG (0)
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where H r. 18 the shifted horizon area divided by 4z. Upon
taking the limit of Ey — 0, we have (H, —H, ) — 0 as
well. However, a can be fixed by taking the limit U, — 0,
which means that the shocks hover very close to the
horizon, and were sent from the AdS boundary in the
far past 75 — 0.

To be more precise, since H,_is proportional to the area
of the horizon, we have

H, —H, x&S=pu(6M—us]—d5Q-"¥YsP), (61)

by the first law of thermodynamics given by Eq. (13),
where By = T3 is the inverse of the Hawking temperature.
The change in mass 5M is proportional to the energy of the
shock wave E, and the change in the angular momentum
8J = ML is proportional to EyL. From the thermody-
namic relation between Q, P and ¢, p, we have 6Q ~ dq
and 6P ~ 6p which is small, i.e., 5q,6p — 0, but can be
fixed by setting Q = 6q/E, and P = ép/E, with E; — 0
as well. Therefore, we may write

H, —H, ~pydoM(1 —ul—-®Q—-¥P), (62)
where now, aside from the angular momentum per unit
energy L, we also have the electric and magnetic charge per
unit energy, Q, P. Next, we need to calculate F'(r,)/
H'(r,). 1t is straightforward to show that, for large black
hole entropy S — oo, it is given by

/
fl(r+) _@’ (63)
H(r,) S
where B is some function of the black hole parameters and

it is dimensionless.

From the thermodynamic analysis, we obtain (by absorb-
ing all of the proportionality constants A, B, 2z into the
definition of M)

UyS

which is set to be fixed upon taking £, — 0 and U, — 0 for
large S.

2. Ultraspinning dyonic Kerr-Sen-AdS,

We may follow similar reasoning to calculate a for the
ultraspinning case. The value of & is still given by the form
of Eq. (60), with all functions hatted, after taking the limit
of Ey — 0 and U, — 0. The difference lies in the first-law
relation, where for the ultraspinning case, it is now given by

H, - IT:I,+ x 68
= B (68 — O8] — D60 — P5P — k62), (65)

from Eq. (18). The last term K61 appears from the new
dynamical variable 1. However, if we treat 4 as a constant, and
remain unchanged by the shock waves, we have K61 = 0.
The perturbation changes the black hole mass such that 5M is
also proportional to E,, and for the other dynamical
variables, we have 6J ~ EyL, Q ~ 8q/E,, P ~ 8p/E,, and
the first-law equation becomes

H, —H, ~ByslI(1-0,L-dQ-¥P). (66)
In this case, from Eq. (17), M is also proportional to 4, while
all A inside the parenthesis of Eq. (66) cancel out. Therefore,
Eq. (66) is also proportional to A and can be expressed
as 6M ~ AE,. . .

Since the value of F'(r,)/H'(r,) also scales as the
inverse of the black hole entropy S for large S, ie.,

F B
/(r-‘r) =, (67)
H(r.) §
for some B, the value of the shift
BuiEy(1—Q, L —dQ —¥P
a = ﬂH 0( ? _ Q ) , (68)

U,

does not depends on A. This is desired because the physical
scrambling time ¢, which is computed later on should not
depend on some arbitrary parameter A.

IV. LYAPUNOYV INDEX, SCRAMBLING TIME,
AND ITS DELAY

A. Dyonic Kerr-Sen-AdS, black
hole as the holographic model

The dyonic Kerr-Sen-AdS, black hole is an asymptoti-
cally AdS rotating black hole with a complete commuting
set of conserved charges given by (aside from the con-
served energy/mass M) J, Q, P given in Eq. (8) with their
corresponding chemical potentials are respectively given
by u, ®, . This eternal black hole in AdS is similar to [23]
and, using the AdS/CFT correspondence, assumed to be
dual to two copies of large-N CFT in its asymptotic
boundaries which are described by the thermofield double
(TFD) state

Ze_ﬁ”(H_”J_q)Q_TP) W)L ® W)k

1
|W> a V Z[ﬁH?/’t’q)7\P] n
(69)
where L and R denote the CFT who lives in the left- and

right-asymptotic boundaries respectively. The partition
function is given by
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ZLHHu“i] = Tr(e—/fH(H—ﬂf—‘PQ—‘PP))’ (7())

where u; are the chemical potentials, and the density matrix
is given by

o—Pu(H-p-®0-¥P)
Z[ﬂH? ﬂl]

The entanglement (von Neumann) entropy corresponds to
the reduced density matrix from tracing out one of the
asymptotic boundaries that recovers the Bekenstein-
Hawking entropy.

Chaos in the CFT can be scrutinized by the Lyapunov
exponent A; which appears in the decay of the out-of-time
ordered correlators (OTOC) corresponding to the TFD state
in Eq. (69),

p= (71)

(WOV(O)W(O)V(1))

WY V) =1-geh' ..., (72)

where €~ 1/N is the perturbation parameter which is
assumed to be inversely proportional to the number of
degrees of freedom of the CFT N. Thus, the OTOC
vanishes at

t, ~logN, (73)

which is defined to be the scrambling time. The system
admits fast scrambling for ¢, which depends logarithmi-
cally on N. The decay of OTOC can also be associated with
the decay of mutual information defined as

I(A;B) = Sy + S — Saus. (74)

where S, is the entanglement entropy associated with a
reduced density matrix p4. This can be understood from the
fact that the mutual information provides an upper bound
for correlations between two subsystems [18]

(0s05) = (04} (O8)*

1(A;B) >
ileniens

(75)

The dual CFT associated with this black hole has
nontrivial entanglement between the degrees of freedom
in the left and right boundaries. The entanglement entropy
of a subregion in the CFT can be calculated holographically
using the Ryu-Takayanagi (RT) or Hubeny-Rangamani-
Takayanagi (HRT) surfaces from the AdS/CFT correspon-
dence. The RT/HRT surface is minimal in the bulk which is
homologous to the subregion of the CFT. The entanglement
entropy is then given by the area of the RT/HRT surface
divided by 4Gy. This can also be used to calculate the
mutual information in Eq. (74), and from Eq. (75),
I(A; B) — 0 indicates scrambling and thus the scrambling
time ¢, can be determined from there. In this work, we

calculate /(A; B) for the CFT given by the TFD state in
Eq. (69) holographically, and extract its scrambling time 7,
and the Lyapunov exponent A; .

The scrambling phenomena happens after we mildly
perturb our TFD state at a very early time on the left
asymptotic boundary. In the bulk description, the perturba-
tion corresponds to a shock wave that propagates from the
boundary to the black hole. The geometry can be understood
as the Dray-’t Hooft solution. The following section shows
that even an infinitesimally small perturbation can still cause
scrambling, disrupting the entanglement.

B. Lyapunov exponent and scrambling time

We consider two subregions A and B to be identical at
their left and right asymptotic boundaries, respectively,
with the equator 0 = /2 serving as the boundary, follow-
ing [6]. The RT/HRT surface for both S, and Sp does not
depend on the Dray-’t Hooft shift a since they lie outside
the outer horizon r,. However, the RT/HRT surface
corresponding to S, p penetrates the horizon; we will call
this surface A, 5. It has a turning point inside it, then
connects to the other side of the asymptotic boundary.
Thus, a plays an important role here.

Due to its symmetry, the surface A, p can be obtained
by extremizing the following integral

}-2 ",2

A= 2n/df\/ﬁ —F + F= (76)

This surface consists of three segments, I, 11, and III, where
I stretches from the left asymptotic boundary (U,V) =
(I,-1) to a point which intersects V =0, i.e.,
(U,V) = (U,,0), I stretches from (U,V) = (U;,0) to
the turning point at r,, and II stretches from the turning
point to the intersection point at U = 0 and V = /2. The
area A,z is then equal to four times 4. Since the area
functional does not depend on 7, there exists a conserved
quantity defined as

_F\/ﬁ
— /Fihy, 77
rarerm VF 77

where F, = F(r,) and h, = h(r,) with r, is defined as
the turning point where i = 0 [not to be confused with the
tortoise coordinate r, defined in Eq. (22)].

By following similar calculations done in [6] (and earlier
by [4]), we have

a=2exp(Q; + 0, + 03), (78)

where the functions Q,, Q,, Q3 are defined as

ro fdr

Ql ES —21(' i _A s (79)
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Qz_zkljo%o_m)’ (80)

B "+M 1
Q3_2KA A <1+«/1+(Fh/F*h*)>’ (81)

where 7 is defined as the location where r, = 0. Both Q,
and Q, diverge as r, — r,, which correspond to a — 0.
On the other hand, Qs diverges as r, — r., where r,
satisfies

h(r)F'(re) + W (re)F(re) = 0. (82)
This limit corresponds to @ — oo, and hence it is the limit

where the shift @ becomes important. The area A, 5 can
then be obtained to be proportional to Qs, i.e.,

4
AAUB z?ﬂ V _F(rc)h(rc)Q3
= 4% V —F(r.)h(r.)loga.

(83)

1.0
1.07
. 0.8} 1.06
LI, 1.05
AL 1.04
0.4 1.03
1.02
0.2 012345 6
00 | | | | | |

FIG. 1.

By plugging in the value of « in Eq. (64) into A4 5 and use
Uy = e "%, we obtain

4
Asop % 4107/ =F(r)h(re) + = /=F(r)h(r.)

1o (ﬁHEou —uL - Q- \PP))

- (84

The area A,z grows linearly in time and picks up a
contribution from the perturbations £, O, P in the second
term. The rate of growth of A,z depends on
—F(r.)h(r.), which also gives us the information about
the quantum Lyapunov exponent. Following [6], the
instantaneous Lyapunov exponent is given by

A(min) _ 4z V _F(rc)h(rc)

L AH ’

(85)

where Ay is the horizon’s area. This Lyapunov exponent
depends on the angular momentum £, as shown in Fig. 1
for some particular example with two horizons, away from

I=5
1.25
1.20
1.15
1.10
10823 4 5
1 2 3 4 5
L
=100
10
0.8 1.0007 ]
I 1.0006
2, 08 1.0005 ]
0.4 1.0004 ]
1.
02! 000823456 7 ]
R R S S R S SR

Plot for the ratio between x and A; with respect to £ up to £ — 1/u. We use an example with m =1, a = 0.5, p = 0.2,

g = 0.1 and varying [ from [ = 1 (top left), / = 5 (top right), / = 10 (bottom left), and / = 100 (bottom right). Those examples are quite
far from extremality with the outer and inner horizons ratio given by r_/r, = {0.199265,0.100242,0.092043, 0.0887473} for [ =
{1,5,10, 100} respectively. For the first case with [/ = 1, A; and « intersect each other at £ = 0.759852 or in another perspective
L ~0.677925/u. For the other cases (I =5,10,100) the ratio is almost constant with respect to £. As [ gets higher, the ratio

approaches 1.
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Near Extremal

1.2
1.0
o8l  1.00030
< 1.00025
Y, 06 1.00020
L 1.00015
0.4} 1.00010
1.
0.2 00003 5055 10 15 20
030 05 1.0 15 2.0

L

FIG. 2. Similar plot with Fig. 1 for near-extremal case. We
choose m = 1.03865, a = 1, p = 0.2, ¢ = 0.2 which gives two
almost degenerate horizons r, = 1.04562 and r_ = 1.03103
with ratio r_/r, ~0.986. In this case, the ratio also constant
with respect to £ and it is close to 1.

extremality. This gives us enough insight that the Lyapunov
exponent 4; is approximately equal to x and the ratio x/4;
hardly depends on the angular momentum L of the shocks.
However, for smaller I, x/A; becomes more likely to
depends on £ and for the case [ = 1, we have x/1; < 1
for £ > 0.759852. In this particular case, the Lyapunov
exponent seems to violate its upper bound « for large £. At
near-extreme conditions, the difference between 4; and x
becomes even tighter, as shown in Fig. 2. This also
indicates that the Lyapunov exponent of the dyonic
Kerr-Sen-AdS, is also bounded by k, and approaches its
maximal value when the black hole approaches extremality.

More detailed behaviors of the Lyapunov exponent can
be seen in Fig. 3. Now, we scale up the angular momentum
of the particle as £ = s:—;,u‘l, following [6], so that it
approaches u£ — s when the black hole becomes extremal
at :—; — 1. Note that, in this paper, we work with the

solution in which there are only two real and positive
horizons, r, and r_ with r, > r_. For [ = 1, we observe
the violation of 4; <« bound for large L. Interestingly,

FIG. 3. Plot of both 4; and k with £ is scaled as £ = s =

1from——>()t0——>1 for s = {0.1,0.5,0.9, 1}. We vary [ from [ = 1

(top left), [ = 5 (top right), [ = 10 (bottom left), and [ = 160 (bottom nght) We gradually decrease the black hole’s mass while keeping
other parameters fixed; a = 0.5, p = 0.2, ¢ = 0.1. The corresponding mass are m € [1.5,0.65474] for | = 1, m € [2,0.55163] for
[ =5, me[1,0.54729] for [ = 10, and m € [1,0.54582] for [ = 100.
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such a violation has been observed earlier in various
black holes involving charges and rotations (see, for
example, [44-47]), for some large values of the rotation
parameter. In this work, although we are already using
k =ko/(1 —puL) > Ky, the Lyapunov exponent can still
surpass the value of « at large £. This violation was not
observed in the standard (uncharged) Kerr-Sen-AdS black
hole [6]. Such a violation might occur due to the existence
of extra charges such as the dilaton and axion charges. From
the plot, we also see that the Lyapunov exponent approach «
as [ becomes large, i.e., the ratio /4, approaches 1 in such
cases. All of the values of A; and x approach zero as we
reach extremality :—; since Ty — 0 at this limit. There is an

exception for s = 1, since £ — u~! at extremality and x
becomes k.. This feature is interesting in studying the
behavior of chaos in extremal black holes [50].

The violation of the standard MSS chaos bound in the
EMDA theory has been investigated earlier in [47] using
particle’s geodesic. They find that the violation is more
likely when the particle rotates in the opposite direction
from the black hole. Using our analysis, we also see how
the Lyapunov exponent behaves as we change the sign of £
to its negative counterpart. The result can be seen in Fig. 4.
However, in this case, the violation does not occur. For the
negative value of £, all 4; and x approach zero as the black
hole approaches extremality. This is because the numerator
(1 — pL) will never reach zero, while the temperature of the
black hole approaches zero at extremality. We suggest that
the chaotic behavior with a negative value of £ is also
crucial in understanding the chaotic behavior of an
extremal black hole. The behavior of 1; and x at extrem-
ality, whether they are zero or not, depends on the sign of L.
This needs to be investigated further.

The violation of the bound in our case can be understood
from the behavior of the black hole’s entropy for large and
small /. For small [/ with [ ~ a, the temperature becomes

Negative £, I=1
— )LL
1.57 — ]

FIG. 4. Plot of both 4; and « for /=1, with remaining
parameters are identical to the ones in Fig. 3 (top left). In this
case, we reverse the sign of £ by performing s — —s.

2r M
21Ty ~ - — . 86
HHETE T RSP (86)

Here, the role of the dilaton and axion charges d, k is to
lower the temperature, and hence, also lower the value of «.
On the other hand, for large [ with [ > a, we have

ro—M

27Ty = .
T r—d>-K+ad

(87)

In contrast with the previous case, here, the dilaton and
axion charges enlarge the black hole’s temperature. For the
black hole with nonvanishing d, k we expect lower value of
k for smaller /, and hence the violation of the chaos bound
may occur.

From the formula of the Lyapunov exponent given by
Eq. (85) alone, it is hard to see whether the violation of the k
bound for a small value of / is caused by the dilaton
or axion charges. However, this might be physically
interesting since such a violation does not occur in other
analogous black holes such as the standard Kerr-AdS,
calculations [6]. Conducting further investigations on
different types of black holes could be crucial in gaining
insights that allow us to pinpoint the source of the violation.

1. Ultraspinning case

For the ultraspinning case, we should be careful when
integrating the transverse volume since now ¢ takes
arbitrary periodicity, which is denoted by A In our
derivation around Eq. (37), we define # such that we
recover the horizon area when we integrate z from O to A.
Therefore, the area functional in the ultraspinning case
should be written as

.AZ/l/dT\/Z

Following similar derivations as before, we obtain the area
Ayup in the limit of r, — r, which corresponds to large
Q3. The value of r,. can be obtained by solving

A ~

h(ro)F'(re) + W (ro)E(r,) = 0. (89)

Thus, the area 4,5 is again proportional to Qs,

2 - A
Aaus z? \/ —F(r.)h(r.)Qs

= 2—; —I:"(rc)fz(rc) log &. (90)

Although the area A,z depends on 4, interestingly, the
minimal instantaneous Lyapunov index 4™ does not
depend on A. This is so because the black hole horizon

area Ay also depends linearly on A and the two cancel each
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other. For the ultraspinning case, we can write the
Lyapunov index as

ﬂ(min) B _F(rc)il<rc>
LR -d-+p)

(O1)

We can then study the behavior of 2™ using graphs for

the ultraspinning black hole and compare it with the value
of &.

It is known that for ultraspinning black holes, there exist
super-entropic cases which violate the reverse isoperimetric
inequality (RII) [51], which is given by

R £ s 92
= >
(r2+ _ d2 _ k2 + lZ) = ( )

for the dyonic Kerr-Sen-AdS, black hole [40-42]. An
ultraspinning dyonic Kerr-Sen-AdS, black hole always
violates the RII for 0 < ¢> + p*> <2ml or 0<d> + k> < %
However, for other values of g, p (or equivalently d, k), we
can have cases in which the RII is not violated. In this work,
we see the behavior of ™" and & for two cases: obeys RII
and violates RII. The result is shown in Fig. 5. It is interesting

(min)

that for both cases, 4;

is bounded by x and the ratio

x/A™™ does not depends on £ up to the fourth decimal
places. For the case which violates the RII, the gap between x

and 2™ is wider than the one which does not violate the RII.
It is interesting to learn more about the relationship between
the Lyapunov index and the violation of the RII for ultra-
spinning black holes.

After we obtain the area connecting two boundaries
Ajup, now we are ready to calculate the mutual
information,

I(A,B)%SA +SB_@ _F(rc)h(rc)
Gy
T
_@ _F(rc)h(rc)
« log <ﬂHE0(1 - Mﬁs— Q- TP)) (93)

The scrambling time 7, obtained from /(A; B) — 0 is then
given by

k(Aq + Ap)
dr _F(rc)h(rc)
1
1 —pul —®Q -¥YP’

xS9O log S +

+ log

(94)

while the ultraspinning version, following a similar deri-
vation, is given by

_Ultraspinning R=0.995016

14}
12
10l 12.5755
p 12.5755
— 8 12.5755
AL 6l 12.5754
4 12.5754
F 12.5754
of 0 51015202530
O I I I I I I
0 5 10 15 20 25 30
L
Ultraspinning R=1
3.0 ; ;
2.5F
200 2.55830
« 2.55828
— 1.5F 2.55826
AL 2.55824
1.0¢ 2.55822
2.5582
0.5¢ 8.0 05 1.0 1.5 2.0
0. : ‘ ‘ \
8.0 0.5 1.0 1.5 2.0
L
FIG.5. Plot similar to Fig. 1 for the ultraspinning cases. We use

m =100, p =0.2, ¢ = 0.1, [ = 1 for the first case (top) which
violates the RII, R = 0.995016. For the second case (bottom), we
use m =35, p=2, g=1, I =0.5 which does not violate the
RI, R =1. Both cases are nonextremal with r_/r, =
{0.000915922,0.478328} for the first and the second cases,
respectively.

calee?) zlog§+ k(Ay +Af)
4r \/ _F(rc)h(rc)
1
+log = (95)

1-Q,L-dQ-¥P

For a black hole with large entropy, the first term is
substantially larger than the rest and thus the scrambling
time is approximately given by

A

(£.0.P) J(zop) 1S
. ~—log—. 96
2 Zlog~ (96)

1
Ts ~—log§,
K

This indicates that the dyonic Kerr-Sen-AdS, and its
ultraspinning counterpart also follow the fast scrambling
conjecture [14]. For the ultraspinning case, 7, actually does
not depends on 4 because the entropy Sis proportional to A.
For an ultraspinning black hole with large entropy S5 o
while keeping the parameter A fixed, the term proportional
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to log A~! can be ignored, and hence the parameter A does
not contribute to the scrambling time.

However, despite being much smaller than the leading
log S term, the last term of Eqgs. (94) and (95) provide
insight into the delay of the scrambling time compared to
the standard scrambling time when Q, P = 0. Such a delay
was first investigated by [8] for a nonrotating charged black
hole. This term does depend on the thermodynamic
potentials (or chemical potentials) of the black hole; u,
@, P, and the external perturbations Q, P. If the trajectory
of the shock waves bounces near the horizon, this term can
be large. This will be further explored in the following
subsection.

The second term of Eq. (96) does not scale with entropy
and hence it is nonextensive since both A, + Az and

—F(r.)h(r.)/x have dimensions of the area.
Furthermore, it also not depends on the perturbations Q,
‘P and also the plot in Figs. 1 and 2 imply that it is also
approximately constant in £, at least for large value of /.
For the ultraspinning case, those arguments also hold (see
Fig. 5). Therefore, the second term, along with the first
term, will not contribute to the scrambling delays.

C. Scrambling time delays of the dyonic Kerr-Sen-AdS,

In this section, we investigate the phenomena of scram-
bling delays in the dyonic Kerr-Sen-AdS, and its ultra-
spinning counterpart. Scrambling time delays come from
the difference between the scrambling time from (electri-

cally and magnetically) charged and rotating shock waves
(£,Q.P)

s and the standard scrambling time from rotating
neutral shock waves r£‘3~°’°>, or in other words,
Az, = rSf’Q’P) _ Tg(ﬁ,o.o)
1 1—ul
=21 , 97
x BT uL— Q- ¥P (97)
AG = %iL,Q,P) _ %iﬁ,o,o)
1 1-Q,C
= —log A < o (98)
K 1-Q,L—-0Q-YP

for the dyonic Kerr-Sen-AdS, and its ultraspinning
counterpart respectively. From the first law of black hole
thermodynamics, a positive 65 implies that the value within
the logarithm is greater than one. Therefore, Az is positive,

which means that it prolongs the scrambling time. We do

not compare T&LQ’P) with 1(0’0'0) since x depends on £ and

therefore Az, (and A7,) becomes zero already as Q, P — 0
even though £ is nonzero.

In [8], the time difference corresponds to the delay of the
start of the scrambling process, or in other words, the
scrambling delay. They found that the time difference
(similar to Ar) for a Reissner-Nordstrom black hole is

equal to the difference between the bounce time ¢, and the
time when the shell is sent from the left boundary #,,;, for
time difference much larger than the thermal time . Using
the quantum circuit description, the time difference ¢, =
—t,,1 — 1y 1s then interpreted as the scrambling delay in [8].
In this work, we show that Az, and Az, also corresponds
to the scrambling delays for the dyonic Kerr-Sen-AdS,
black hole and its ultraspinning counterpart. We begin by
calculating the stress tensor for the rotating charged
shockwaves using the null junction formalism [31,32],
which is given by (see the Appendix for derivation)

S [o(r)|k"k*, (99)
up to some proportionality constant, where

[o(r)] = og(r) —or(r), (100)
with the L and R indexes correspond to the function in the
perturbed left region with parameters M + oM, q +
oq,p +0op,J +6J and unperturbed right region with
original parameters M, ¢, p, J. For the dyonic Kerr-Sen-
AdS, black hole, o;(r) is given by

INGLAG
fi(r) ’

with i = L, R. If [6(r)] < 0, the null energy condition is
violated. Therefore, the location of the bounce, r, can be
obtained from [6(r;,)] = 0.

Although it is difficult to exactly solve [6(r;)] = 0, we
show that we do not need the explicit form of r,, to find 7;, (the
“bounce time”). The increase of the black hole parameters
OM, 5Q, 0P, dJ is directly related to the increase of the black
hole entropy S by the thermodynamic first-law relation. To
make sure that the perturbations increase the black hole
entropy according to the second law, 65 > 0, thus the
perturbations also increase the horizon’s radius as
r,6r, ~6S. For small perturbation parameters oM, dq,
8p.8J, to the first order approximation, [6(r;)] =0 can
be written as

oi(r) = (101)

a
%55 =0.

o(S+55)=0a(s) =0 = =2

(102)

We are interested in the regime where Az, is particularly
large, much larger than the thermal time f ~ % This can be
achieved when the bounce happens very close to the
horizon, or r, = r,.. Therefore, Eq. (102) can be expanded

near r, such as
d (oo
—7ry) 5| =08
g, (as )

do
—0S
(55%)
Using Eq. (101) and the horizon’s temperature formula, the
first term of Eq. (103) can be written as

=0. (103)

Ty

Ty
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FIG. 6. Plot similar to Fig. 3 for ultraspinning black hole. The fixed parameters are a = 0.5, p = 0.2, ¢ = 0.1 while decreasing the

mass to approach extremality.
do
— S

which has a dimension of r, . Therefore

0o 0ry,
~ 0r, 0S
2B N(ry)
o 1—ul

Ty Ty

T45S, (104)

, 2L (%255)|,. inthe
b +
second term of Eq. (103) is dimensionless. We may extract
the location of the bounce r, to be (approximately)

ry—r, =RT6S = R(1 —pl —®Q —¥P), (105)
where R has a dimension of r, and in the order of O(5S).
We see that r, — r, corresponds to setting the condition
such that (1 — uL — ®Q —¥YP) — 0. From Eq. (97), set-
ting the bounce near the horizon corresponds to enlarging
the scrambling time difference Az,.

Using the Kruskal coordinate relation evaluated at r;,, we
have

U,V, = e*:(n), (106)

However, since we set the bounce to be close to the horizon,
we have

1
r*(rb) zﬂln

rp —ry
Rl

+C,

(107)

with R’ is some constant of dimension r_ and C is a
dimensionless constant that depends on the black hole
geometry. Also, for r, &~ r, we can approximate U, = U,
where Uy is the location where the original rotating shock
wave is sent. Using Egs. (105), (106), (107), as well as the
relation between U, and a, we obtain

aS R
bzﬁ@ec, (108)

where the factor % € is an O(1) dimensionless parameter

which depends on the black hole’s geometry and does not

scale with S or 8S. We see that V;, > 1 since a ~ O(1)
and fyE,/S - 0.

Again, by plugging in the value of a in Eq. (64) into
Eq. (108), we obtain the time delay 7, = 7, — 7;, for dyonic
Kerr-Sen-AdS, black hole, which is given by

L 1 o (® e
=-lo —log| — ,
ta K £ 1—pul —0Q -¥YP K £ IRe
1 1 1 R’
— AT* +;10g <1—/,{£> +;10g <|R e_c>.

Since r, =~ r,, the first term dominates all the remaining
terms and we see that z; also approximately equals to Az, for
the dyonic Kerr-Sen-AdS, black hole. The remaining terms
are in the order of thermal time § ~ % and do not scale like Az,
if we take r, & r,. If we set L — 0, i.e., for the nonrotating
shock waves, the result reduces to the scrambling delay
found in [8]. This indicates that the role of the charges
(electric and magnetic) in the dyonic Kerr-Sen-AdS, black
hole is more to delay the start of the scrambling, rather than to
prolong the scrambling process, at least for r, ~ r,.. For the
ultraspinning black hole, the scrambling delay is also similar
but with all of the parameters hatted,

1 1 1 R
T, = A7 -1 _— -1 —e ). 110
7, r*+kog<1_gq}£>+kog<Re > (110)

With vanishing Q, P, only the terms with ~O(f)
remain—away from extremality, these terms are small.
However, once we approach the extremal limit, the second
and the third terms of 7; may diverge, and therefore Az, can
only be interpreted as the scrambling delay away from
extremality. Furthermore, it is interesting to ask whether the
bounce still happens for Q, P — 0 but we keep £. From the
previous analysis, 7, becomes very small for small # which
means that we can send the perturbation from the right
asymptotic at the time close to 7, and still meet the left

(109)
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perturbations inside the horizon. This indicates that the
scrambling process starts immediately and the delay almost
did not happen. Therefore, the charges Q, P are the ones that
play the important role in delaying the scrambling process.

V. CONCLUSIONS

We study chaos in the dyonic Kerr-Sen-AdS, black hole
by calculating the scrambling time 7z, and find that the
leading term is logarithmic in entropy 7, ~logsS [see
Eq. (96)]. We use holographic entanglement entropy
calculations to calculate the mutual information /(A; B)
and obtain both scrambling time 7z, and the Lyapunov
exponent 4; by perturbing the black hole with rotating and
charged shock waves. This work generalizes the chaotic
behavior of black holes to the rotating black holes in the
EMDA theory. Both 7z, and 4; depend on the new
parameters, the dilaton and axion charges.

From Fig. 3, we show that the instantaneous minimal
Lyapunov exponent, for most of the cases, is bounded by
k =2xaTy/(1 —uL), and approaches x when :—; -1, 1ie.,

when the black hole approaches extremality. Furthermore,
for larger values of AdS length /, the Lyapunov exponent
also approaches k and saturates the bound. Only in the case
where [ = 1 that we found the Lyapunov exponent exceeds
K, for some large values of L. This violation may be caused
by the existence of charges, especially the dilaton and axion
charges. The fact that the Lyapunov exponent is approx-
imately equal to x also supports the fast scrambling
conjecture. For nonrotating black holes, the Lyapunov
exponent should saturate the MSS bound [29], which is
given by the black hole temperature. We see that from
earlier works on rotating black holes, the upper bound for
the Lyapunov index is modified by a factor of ﬁ which

can be greater than 277y [5,6,33].

We suspect that the cause for the violation of the x bound
here is due to the existence of the dilaton or axion charges and
in this work, we show such evidence using the plot given by
Fig. 3. We plan to do the analytical calculations of the
correction to the Lyapunov bound with the existence of
dilaton and axion charges in future works. The fact that such a
violation does not occur in the standard Kerr-AdS 4 black hole
[6] might help us to pinpoint the origin of the violation and
this carries significant physical interests. In future works, we
also plan to show that such a violation does not occur in a
Kerr-NUT-AdS black hole [52] at similar conditions (for a
small value of [). Furthermore, an investigation of the
butterfly velocity and entanglement velocity due to localized
shock waves [53] in the Kerr-Sen-AdS, background might
also help us to gain insight into the violation of the bound.'
We plan to investigate it in future works as well.

'We thank V. Jahnke for pointing this out and bringing the
reference about the butterfly velocity of a static anisotropic black
brane.

We also calculate the scrambling time and the Lyapunov
exponent for the ultraspinning version of the dyonic Kerr-
Sen-AdS,, i.e., the solution where the rotation parameter
has its maximal value, ¢ — [. The ultraspinning solution
provides us with new functions that cannot be obtained by
simply taking the limit of @ — [ from the standard dyonic
Kerr-Sen-AdS,. Due to the logarithmic behavior of the
scrambling time, the ultraspinning version also admits fast
scrambling. However, the ratio between « and the Lyapunov
exponent is quite large. Forexample, wehave k /A, = C ~ 12
for the case which violates the RII with R = 0.995016 and
C ~ 2.5 for the case with R = 1 (see Fig. 5). From Fig. 6 we
see that even though / is small, the violation of the chaos
bound does not present in the ultraspinning case. We
conclude that the ultraspinning counterpart of the dyonic
Kerr-Sen-AdS, black hole also admits chaotic behavior but
the Lyapunov exponent is relatively smaller than the standard
black hole, with larger C.

Due to the existence of charges, both in the black hole
and the shock waves, we also have the scrambling time
delay 7z, The subleading term of 7, in Egs. (94) and (95)
represent the difference between the scrambling time of
neutral black holes with the charged ones, and is denoted
by Arz,. For a perturbation that obeys 6S > 0, the afore-
mentioned term is positive and hence prolongs the scram-
bling process. However, since the shock wave bounces
inside the horizon at r;, (that is assumed to be very close to
the horizon), the role of the subleading term is to delay the
onset of scrambling, following the analysis of [8]. We show
that the scrambling process of a dyonic Kerr-Sen-AdS,
black hole is also delayed by calculating the time that is
needed to send a signal from the right asymptotic z, for the
signal to meet the shock waves inside the black hole
interior. The difference between 7, and 7, i.e., the time
when the shock wave is sent from the left asymptotic, is
equal to Az, up to some corrections in the order of . For
the bounce to happen near the horizon, Az, is much larger
than the thermal time /. The scrambling delay time depends
on the charges of the shock waves, Q and P. This is the
only function that depends on Q, P, indicating that the role
of the charges is to delay the scrambling. If we take £ — 0
(and also P — 0), we recover the scrambling delay found in
the nonrotating Reissner-Nordstrom black hole [8].

In conclusion, our calculations support the fast scram-
bling conjecture for the dyonic Kerr-Sen-AdS, black hole
to some extent. However, since our calculations only
focus on the nonextremal and near-extremal limits of the
black hole, it is also important to understand the chaotic
behavior of the extremal black hole. It is known that an
extremal black hole and a nonextremal black hole are
two distinct objects, and taking the extremal limit of a
nonextremal black hole does not obtain the properties of
the actual extremal black hole [25,54]. Therefore, the
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chaotic behavior of extremal dyonic Kerr-Sen-AdS, black
hole deserves more investigation for future works.
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APPENDIX: STRESS TENSOR FROM
NULL-SHELL FORMALISM

In this appendix we derive the stress tensor of the rotating
charged shock waves using the null-shell formalism in [32]
and hence we adopt their notation here. Starting with metric
in Eq. (57), we construct the normal vector to the shocks
following constant u = r, — 7 path, k¥ = ¢"*d, u, which is
given by

1

A
ko, = — <? 0,40, — h70z>, (A1)

F

while the other tangent generator is given by €% = &.
From here, we can obtain the transverse null vector by solving
N, Nt =0,

Nk =—1, N =0, (A2)

u

which results in

F f
N, dx* = 5 (dr + Kdr). (A3)

The transverse extrinsic curvature can then be calculated
from

505, (A4)

AN c
CAB = V,,N”eZeB = ?525% = 5
with i'(r) = dh(r)/dr. The difference between C,p evalu-
ated in the perturbed manifold with the unperturbed one is
proportional to the stress-energy tensor, as given by Eq. (99).
For vanishing all black hole parameters except those corre-
sponding to the Reissner-Nordstrom black hole, the result
recovers the stress tensor in [8].
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