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We present a numerical-relativity simulation of a black hole-neutron star merger in scalar-tensor (ST)
gravity with binary parameters consistent with the gravitational wave event GW200115. In this exploratory
simulation, we consider the Damour-Esposito-Farèse extension to Brans-Dicke theory, and maximize the
effect of spontaneous scalarization by choosing a soft equation of state and ST theory parameters at
the edge of known constraints. We extrapolate the gravitational waves, including tensor and scalar
(breathing) modes, to future null-infinity. The numerical waveforms undergo ∼22 wave cycles before the
merger, and are in good agreement with predictions from post-Newtonian theory during the inspiral. We
find the ST system evolves faster than its general-relativity (GR) counterpart due to dipole radiation,
merging a full gravitational-wave cycle before the GR counterpart. This enables easy differentiation
between the ST waveforms and GR in the context of parameter estimation. However, we find that dipole
radiation’s effect may be partially degenerate with the NS tidal deformability during the late inspiral stage,
and a full Bayesian analysis is necessary to fully understand the degeneracies between ST and binary
parameters in GR.
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I. INTRODUCTION

Increasing numbers of gravitational-wave (GW) events
[1–4] have allowed us to probe the extreme gravity envi-
ronment near the coalescence of a compact binary system,
which opens up a new chapter for tests of general relativity
(GR) [1,5–25]. To robustly test GR, there is a need for
accurate GW predictions both in GR and beyond-GR
theories, so that one can use Bayesian model selection to
ascertain which theory better agrees with GWobservations.
Scalar-tensor (ST) theory [26–29] is the simplest

alternative theory of gravity, where the strength of gravity
is modulated by scalar field(s). The original formulation
of ST theory was due to Jordan [26], Fierz [27], Brans
and Dicke [28,29] (JFBD), and was generalized by
Bergmann [30] and Wagoner [31] to capture more general

conformal factors, and by Damour and Esposito-Farèse
[32] to multiple scalar fields. An important feature of ST
theory is scalar radiation, an extra energy dissipation
channel in addition to the usual tensor radiation in GR.
The leading scalar radiation is dipolar, and thus more
important at low frequencies than the quadrupolar waves
that control a GR inspiral [13,32–46]. Under this effect,
the evolution of some strong-gravity systems can deviate
from the prediction of GR and leave imprints on observ-
ables. For instance, binary-pulsar systems have been
shown to be a good laboratory [33,34,39,47–59] (see
also Refs. [6,60–66] for reviews) since the celebrated
Hulse-Taylor PSR B1913þ 16 [67]. By measuring the
orbital decay rate of the systems, one can examine and
constrain ST theory via the parametrized post-Keplerian
formalism [47,48,66,68].
The strength of the dipole radiation depends on the scalar

charge αNS [32,57,69,70], which characterizes the ability of
an object to condense the scalar field. The scalar charge of a
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black hole (BH) vanishes as the no-hair theorems have been
shown to apply in ST [23,71–74]. For a binary system, the
dipole radiation power is proportional to its charge differ-
ence squared [33]: ðαA − αBÞ2, where A and B refer to the
two objects in the binary system. Consequently, if two
objects possess similar scalar charges, such as in near
equal-mass binary neutron star (BNS) systems where both
stars are similarly scalarized, the dipole radiation is sup-
pressed. Conversely, the best tests of ST can come from a
mixed system that consists of a neutron star (NS) and a BH,
as only one of them carries scalar charge.
While ST theory is strongly constrained in some

environments, deviations from GR could also be amplified
if a NS undergoes spontaneous scalarization1 in certain
conditions [75–84], as pointed out by Damour and
Esposito-Farèse [48,69]. At some critical central density,
the equilibrium solutions for NSs’ structures bifurcate into
several branches, and the GR branch becomes unstable
[85,86]. The most stable solution corresponds to a scalar-
ized NS with a much larger scalar charge [32,57,69,70].
Therefore, the dipole radiation and consequential devia-
tions from GR are significantly amplified in such scalar-
ized BHNS systems, which makes them, if they exist, ideal
environments for studying ST theory.
The LIGO-Virgo detectors [87,88] recently made the

landmark observations of the first BHNS binaries via GWs,
GW200105 and GW200115 [89]. With the upcoming
improvement in GW detector sensitivity [90], including
future third-generation detectors [91–94], we can look for
effects of gravitational dipole radiation at ever-increasing
precision. Therefore, it is timely and vital to give a precise
prediction of the evolution of the scalarized BHNS binaries
in ST, especially accurate modeling of their dipole GW
waveforms. Although there have been significant post-
Newtonian (PN) efforts dedicated toward constructing
waveforms in ST theory2 [13,32–46,97], PN theory breaks
down as one approaches the merger, or for strongly
scalarized NSs. To date, numerical relativity (NR) still
remains the only ab initio method to investigate ST theory
near the merger [74–76,98–104]. For compact binaries, NR
has been used to simulate binary black holes (BBHs) [74]
and BNSs [75,76,104] in ST. A numerical simulation of a
scalarized BHNS system is still missing. In this work, we
aim to fill this gap by performing fully nonlinear NR
simulations of a BHNS merger in ST theory, with a
particular focus on how GW emission is impacted by
spontaneous scalarization. Motivated by the LIGO-Virgo
observations, we consider a GW200115-like system [89].
This paper is organized as follows. In Sec. II we give a

brief introduction to ST theory and our simulation algo-
rithm. Section III concentrates on our numerical setup and

strategy to maximize the effect of spontaneous scalariza-
tion. Section IV provides our major simulation results. Next
in Sec. V we investigate distinguishability between wave-
forms in GR and ST, with a particular focus on to what
extent the ST waveform can be mimicked by tidal effects
predicted by GR. Finally in Sec. VI we provide some
concluding remarks.
Throughout this paper we use the geometric units with

c ¼ G� ¼ 1, where G� is the bare gravitational constant in
the Jordan frame. We use the total Jordan-frame mass to
normalize all dimensional quantities (e.g., time and dis-
tance). Meanwhile, we use the Latin letters a; b; c… for
spacetime indices, and i; j; k… to represent spatial indices.

II. EQUATIONS OF MOTION
AND NUMERICAL METHODS

In this work we consider a ST theory with a single
massless scalar field ϕ. We first provide some basic features
and equations of motion of this theory in Sec. II A. Then in
Sec. II B we introduce our numerical algorithm to perform
the NR simulation. Finally in Sec. II C we provide our
method for extrapolating the waveform to future null
infinity.

A. The Jordan and Einstein frames

The ST theory is governed by the action [30,31]

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

16π

�
ϕR −

ωðϕÞ
ϕ

∇cϕ∇cϕ

�
þ SM½gab;Ψm�;

ð1Þ

where gab is the metric, g is the metric determinant, R is the
Ricci scalar, SM is the action for all matter fields Ψm, and
ωðϕÞ is an arbitrary function of ϕ that parameterizes the
coupling between the scalar field and metric. The action in
Eq. (1) is written in the Jordan frame in which ϕ is
nonminimally coupled with the metric gab, whereas the
matter fields are minimally coupled to the metric and not
coupled with the scalar field ϕ, as required by the weak
equivalence principle. Therefore, test particles follow the
geodesics of the Jordan frame metric. NSs are treated as
perfect fluids and are governed by the law of conservation
of baryon number and energy momentum:

∇aðρ0uaÞ ¼ 0; ð2aÞ

∇aTab ¼ 0; ð2bÞ

where Tab is the stress-energy tensor in the Jordan frame.
The stress-energy tensor for an perfect fluid reads

Tab ¼ ρ0huaub þ Pgab; ð3Þ
1See Refs. [75–80] for two related phenomena: induced and

dynamical scalarization.
2See also Refs. [95,96] for an effective-field-theory approach.
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with ρ0 the rest mass density of the fluid, h the specific
enthalpy, P the pressure, and ua the 4-velocity.
The equations of motion for the metric and the scalar

field take complicated forms in the Jordan frame [see
Eq. (2.6) of Ref. [9] for example]. In particular, the
principal symbols of the PDE system is not diagonal in
the ðgab;ϕÞ field space, so it is not manifestly symmetric-
hyperbolic.3 Consequently, the Jordan frame sometimes is
not ideally suited for simulating the metric and scalar fields.
A standard approach to get around this issue is to apply a
conformal transformation [32]: ḡab ¼ ϕgab. Then the
action becomes:

S¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
R̄
16π

−
1

2
∇cψ∇cψ

�
þSM

�
ḡab
ϕ

;Ψm

�
; ð4Þ

where R̄ is the Ricci scalar derived from ḡab, and

dψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2ω

16π

r
dϕ
ϕ

: ð5Þ

The integration of Eq. (5) depends on the form of ωðϕÞ, and
we will explain more details below in Eqs. (17) and (18).
The transformed metric ḡab defines a new frame, called the
Einstein frame; and the scalar field ψ is minimally coupled
in the gravitational sector. The corresponding equations of
motion become manifestly symmetric-hyperbolic:

Ḡab ¼ 8πðT̄ψ
ab þ T̄abÞ; ð6aÞ

□ψ ¼ 1

2

d logϕ
dψ

T̄: ð6bÞ

Note that the principal part of the gravitational sector is
now identical to its GR counterpart. Here Ḡab is the
Einstein tensor obtained from ḡab, T̄ab ¼ Tab=ϕ is the
matter stress-energy tensor in the Einstein frame, T̄ ¼
ḡabT̄ab is its trace, and T̄

ψ
ab is the stress-energy tensor of the

scalar field, given by

T̄ψ
ab ¼ ∇aψ∇bψ −

1

2
ḡab∇cψ∇cψ : ð7Þ

On the other hand, a complication of the Einstein frame is
that the hydrodynamic equations gain additional source
terms:

∇aT̄ab ¼ −
1

2

d logϕ
dψ

T̄∇bψ ; ð8aÞ

∇aðρ̄0ūaÞ ¼ −
1

2

d logϕ
dψ

ρ̄0ūa∇aψ : ð8bÞ

The scalar field ψ is now directly coupled with the matter
fields. Because of the source terms on the right-hand side
(rhs), particles do not follow geodesics of ḡab.

B. Numerical algorithm

The single-scalar-field ST theory has been solved
numerically for BBHs [74] and BNSs [75,76], with the
pure Einstein frame [74,75], and the pure Jordan frame
[76]. In our case, we simulate the BHNS system using the
spectral Einstein code (SpEC) [107], developed by the
Simulating eXtreme Spacetimes (SXS) collaboration
[108]. SpEC adopts the generalized harmonic formalism
[109], where the Einstein equations are cast into a first-
order symmetric hyperbolic (FOSH) form. It is ideal to use
SpEC to evolve the metric and the scalar field sectors in the
Einstein frame [Eq. (6)]. The reason is twofold. (a) The
equations of motion in the Einstein frame are manifestly
symmetric-hyperbolic, as mentioned in Sec. II A. Therefore
the well-posedness of the Cauchy problem is straightfor-
wardly established. (b) The principal parts of Eq. (6) are
identical to that of GR with a Klein-Gordon field.
Consequently, we can utilize the existing GR FOSH system
[109] and the FOSH system for scalar fields [110,111] to
perform the simulations.
For the hydrodynamics, one could in principle approach

the problem in the same Einstein frame by evolving Eq. (8).
But this will complicate the problem because the extra
source terms in Eq. (8), which depend on the scalar field,
need to be added to the existing hydrodynamic code
infrastructure in SpEC [112]. Furthermore, any routine in
SpEC that assumes the simple form of energy-momentum
and Baryon number conservation in Eq. (2) will need to be
revisited. To save the amount of code changes required,
here we propose a simpler algorithm to fulfill the goal.
We adopt a hybrid scheme, illustrated in Fig. 1.We evolve

the hydrodynamic system in the Jordan frame, where the
corresponding equations [Eq. (2)] are the same as their GR
counterparts due to theweak equivalence principle. This lets
us use the entire relativistic hydrodynamics module without
modification. Meanwhile, we use the FOSH systems to treat
themetric and the scalar field in the Einstein frame. Since the
Jordan and Einstein frames are related, a proper data flow
needs to be established to evolve them together. An essential
step is to pass the Jordan-frame metric gab and stress-energy
tensor Tab back and forth (see Appendix A for details): The
Einstein-frame metric ḡab is converted to its Jordan-frame
version gab via gab ¼ ḡab=ϕ, then gab is sent to the Jordan
frame for evolving the hydrodynamics. Similarly, the
Jordan-frame stress-energy tensor Tab is converted to the
Einstein-frame one through T̄ab ¼ Tab=ϕ, and inserted into
the Einstein equations in Eq. (6).
Within SpEC, this communication is made easier by the

two-grid method already used in hydrodynamics simula-
tions [112], wherein the metric sector is evolved on a
pseudospectral grid, while the hydrodynamic equations are

3Nevertheless, well-posed formulations of ST theories have
been found by Salgado et al. [105,106].
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evolved on a finite difference grid that can handle shocks.
At each time step, the metric from the pseudospectral grid is
already interpolated onto the finite difference grid and is fed
to the hydrodynamic equations, and the matter fields are
passed by interpolation from the finite difference grid to the
pseudospectral grid and are fed to the stress-energy tensor
in the Einstein equations. For the ST simulations, the metric
and the scalar field are evolved in the Einstein frame [see
Eq. (6)] on the pseudospectral grid, but before the metric is
interpolated to the finite difference grid, it is first converted
to the Jordan frame. Similarly, the hydrodynamics equa-
tions [see Eq. (2)] are evolved in the Jordan frame, but
before the matter terms are transformed to the Einstein
frame, they are first interpolated to the pseudospectral grid.

C. Waveform extrapolation

One of the most important tasks of our numerical
simulations is to compute GWs at future null infinity, where
we approximate GWdetectors to reside. Methods have been
developed, including wave extrapolation [113,114] and
Cauchy-characteristic extraction (CCE) [115,116], to
extract the GWs from simulations with finite domains.
This paper adopts the extrapolation method and leaves
CCE for future work.
Following the standard treatment in PN theory

[36,42,43,45], we define a new conformally transformed
metric g̃ab by

g̃ab ¼ ðϕ=ϕ0Þgab ¼ ḡab=ϕ0; ð9Þ

which differs from the Einstein frame metric ḡab by a factor
of ϕ0, the asymptotic value of the scalar field. The factor is
introduced so that the metric g̃ab takes its Minkowski form

ηab ≡ diagð−1; 1; 1; 1Þ far from the system. In our simu-
lations, we find that the value of ϕ0 is always close to 1, and
the difference is negligible, so we will not distinguish g̃ab
from ḡab below. The gravitational perturbation h̃ab associ-
ated with g̃ab is given by

h̃ab ¼ ηab −
ffiffiffiffiffiffi
−g̃

p
g̃ab; ð10Þ

whose indices are raised and lowered by ηab. Then the
Jordan-frame metric can be written as [42]

gab ¼ ηab þ h̃ab −
1

2
h̃ηab −Ψηab þO

�
1

r2

�
; ð11Þ

where

Ψ ¼ ϕ − ϕ0

ϕ0

: ð12Þ

Due to the equation of geodesic deviation [117], the GW
measured by a detector corresponds to the components of the
Riemann curvature tensor,

R0i0j ¼ −
1

2
̈h̃TTij −

1

2
Ψ̈ðN̂iN̂j − δijÞ; ð13Þ

where “TT” refers to the transverse-traceless projection of
h̃ij, and N̂i is GW’s propagation direction. As a result, the
tensor field h̃TTij contributes to the þ and × polarizations of
theGWsignal as in GR,while the scalar fieldΨ corresponds
to a transverse breathing mode.4

FIG. 1. The algorithm of our numerical simulations. We use pseudospectral methods to evolve the Einstein-frame metric and scalar
field, while we use shock-capturing finite difference to simulate the Jordan-frame matter fields. In practice, we convert the Einstein-
frame metric ḡab to the Jordan-frame one via gab ¼ ḡab=ϕ, and then send gab to the finite difference domain for hydrodynamics
simulations. Similarly, we transfer the Jordan-frame stress-energy tensor Tab from the finite difference grid to the pseudospectral grid,
convert it to the Einstein-frame stress-energy tensor through T̄ab ¼ Tab=ϕ, and then insert T̄ab into the Einstein equations in Eq. (6).

4Longitudinal and vector polarizations vanish in ST
gravity [117].
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To extract the three GW polarizations from our numeri-
cal simulations, we notice that the gravitational perturba-
tion h̃ab is associated with the Einstein-frame metric ḡab, so
we can restrict ourselves to this frame during the extrapo-
lation. On the scalar sector side, ψ [defined in Eq. (5)] is our
evolved variable in the Einstein frame. We can convert it
to the observableΨ by integrating Eq. (5) and then inserting
the result into Eq. (12). Note that the integration depends on
the form of ωðϕÞ and we will provide more details in
Eq. (17). In practice, we first measure the values of h̃ and ψ
at multiple extraction radii at each timestep, and then
extrapolate their values to null infinity Iþ. For each radius,
we decompose h̃ ¼ h̃þ − ih̃× and ψ into a sum over a set of
(spin-weighted) spherical harmonics sYlmðι;φÞ,

rh̃=M ¼
X
l;m

−2Ylmðι;φÞh̃lm þOðr−1Þ; ð14aÞ

rψ=M ¼
X
l;m

Ylmðι;φÞψ lm þOðr−1Þ; ð14bÞ

where we used the fact that h̃;ψ ∼ 1=r in the wave zone.
Each field h̃lm and ψ lm is extrapolated to Iþ following the
algorithm outlined in Refs. [114,118–120], with the Python

package SCRI [121,122]. In particular, the null rays are
parametrized by an approximate retarded time u, given by

u ¼ tcorr − r�; ð15Þ

with

r� ¼ rþ 2ME log

�
r

2ME − 1

�
; ð16Þ

where ME ¼ mE
NS þmE

BH is the total Einstein-frame mass,
and we refer to Refs. [113,114] for the expression of the
corrected time tcorr. Finally these fields are interpolated to

common sets of u and fit in powers of 1=r, allowing to
approximate the r → ∞ limit.

III. BINARY AND SCALAR PARAMETERS

In Sec. III A, we provide the binary parameters we
consider for the BHNS system, which are chosen to be
consistent with GW200115 [89]. Then in Sec. III B, we
introduce our strategy for choosing the parameters of the
scalar field and the NS. As mentioned in Introduction, a NS
can undergo significant scalarization under certain con-
ditions, leading to non-negligible dipole radiation while the
scalarized NS orbits in the binary system. This extra energy
dissipation channel accelerates the evolution of the BHNS
system and thus makes the emitted GWs distinguishable
from their GR counterparts. In our simulations, we want to
highlight such distinctions by optimally picking the ST
theory parameters and the EOS of the NS.

A. The binary parameters

We summarize the parameters of the GW200115-like
BHNS system [89] we consider in Table I. The binary
system consists of a nonrotating NS with a Jordan-
frame massmJ

NS of 1.5M⊙, and a spinning BH withmJ
BH ¼

5.7M⊙. The dimensionless spin of the BH χBHinit is−0.19, i.e.,
it is antialigned with the orbital angular momentum. We
set the initial separation between the BH and the NSDinit to
11.7M, where M ≡mJ

BH þmJ
NS ¼ 7.2M⊙ is the total

Jordan-frame mass; and place the outer boundary of the
system at Rbdry ¼ 500M. The system undergoesNcycle ∼ 12

cycles prior to themerger. The orbital eccentricity is reduced
iteratively to eorb ∼ 1.6 × 10−4 [123].
Due to our two-grid method described in Fig. 1, the NS

resides in the Jordan frame while the BH is in the Einstein
frame. So in practice one needs to specify the Einstein-
frame mass of the BH mE

BH instead, which is related to the
Jordan-frame mass mJ

BH through [32]

TABLE I. Summary of the parameters of the GW200115-like BHNS system we consider. The NS has a baryonic mass mB and a
Jordan-frame massmJ

NS. Its radius in the Jordan frame is RJ
ST. In the absence of the scalar field, its radius is RGR, and CGR ¼ mJ

NS=RGR is
its compactness. The GR tidal Love number of the NS is kGR2 ; ΛGR

2 is the corresponding tidal deformability; αNS is its scalar charge. To
maximize the effect of spontaneous scalarization, we choose ðβ0; α0Þ ¼ ð−4.5;−3.5 × 10−3Þ. The BH has a Jordan-frame massmJ

BH. Its
dimensionless spin along is denoted by χBHinit and is antialigned with the Newtonian angular momentum direction L̂N . The mass-weighted
tidal deformability of the BNHS system is Λ̃GR

2 . Rbdry indicates the radius of the simulation domain, in the unit of total mass
M ¼ 7.2M⊙, and Ncycle is the number of orbital cycles before merger. The remnant is a BH with massmf and spin χf, wheremf is in the
unit of M.

mB=M⊙ mJ
NS=M⊙ χNSinit RJ

ST/km RGR/km CGR kGR2 ΛGR
2

1.71 1.5 0.0 10.58 10.55 0.21 0.0803 131.1

αNS mJ
BH=M⊙ χBHinit Λ̃GR

2 Rbdry=M Ncycle mf=M χf

0.18 5.7 −0.19L̂N 2.95 500 12 0.98 0.38
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mE
BH ¼ mJ

BHffiffiffiffi
ϕ

p ;

where ϕ is evaluated at the position of the BH. We find that
jϕ − 1j≲ 5 × 10−5 in the vicinity of the BH, during the
inspiral stage, therefore the difference between mJ

BH and
mE

BH is negligible; thus we simply set mE
BH ¼ 5.7M⊙.

B. The parameters of the scalar field and the NS

For a given Jordan-frame mass mJ
NS, the strength of

spontaneous scalarization for the NS depends on ωðϕÞ, as
well as the EOS and compactness [70,124]. To look for the
optimal choices to maximize the scalarization in our BHNS
simulation, we consider a single Tolman-Oppenheimer-
Volkoff (TOV) NS in an isolated gravity environment and
investigate the impact of the scalar field on the stellar
internal structure.
The function ωðϕÞ characterizes the coupling between

the scalar field and gravity. In this work we follow
Ref. [125], whose idea was to Taylor expand the coupling
function lnϕ in ψ ,

ϕ ¼ exp ½−4 ffiffiffi
π

p
α0ðψ − ψ0Þ − 4πβ0ðψ − ψ0Þ2�: ð17Þ

Using Eq. (5), we obtain

ω ¼ 1

2

1

½α0 þ
ffiffiffiffiffiffi
4π

p
β0ðψ − ψ0Þ�2

−
3

2
: ð18Þ

Here ψ0 is the asymptotic value of ψ that can also be
associated with cosmological expansion [126–128]. For
simplicity, we follow Ref. [75] and set ψ0 ¼ 0. The other
two constants α0 and β0 determine the features of the ST
theory. In particular, if β0 ¼ 0 we get the JFBD theory
[26–29], which is parametrized by α0 ¼ −ð3þ 2ωBDÞ−1=2,
where ωBD is the Brans-Dicke (BD) parameter. In the
low-density solar system environment, its value is
severely restricted to ωBD > 40000 by the Cassini mission
[6,129], which corresponds to jα0j≲ 3.5 × 10−3. In addi-
tion, current binary pulsar measurements place a con-
straint β0 ≳ −4.5, because no spontaneous scalarization
has been detected yet [9]. See also Refs. [53–55,58] for
more recent updates.
As pointed out by Damour and Esposito-Farèse [48,125],

even though a scalar-tensor theory with jα0j ≪ 1 is indis-
tinguishable from GR within the weak-gravity regime, a
negative value of β0 can lead to significant relativistic
deviations in a strong-gravity environment, such as sponta-
neous scalarization of a NS. The size of the scalarization is
characterized by the scalar charge αNS [32,125]. In this
paper, we adopt the definition of αNS from Refs. [32,125],
which differs from the convention used by the PN commu-
nity by a minus sign (see Appendix A of Ref. [43] for
translating notation); consequently, we have αNS < 0. For a

Newtonian star, αNS reduces to α0; thus is independent
of its internal structure (a proof can be found inAppendixB).
For a strongly self-gravitating scalarized star, its structure is
governed by the TOVequationwith an extra scalar field, see,
e.g., Eqs. (7)–(9) of Ref. [125]; we provide a brief review in
Appendix B. We numerically solve the TOV equation, and
the choice of the EOS will be discussed shortly. Then we
compute the corresponding scalar charge αNS with Eq. (B5).
Figure 2 shows αNS as a function of the Jordan-frame mass
mJ

NS, using a variety of β0 (the upper panel, with α0 being
fixed to−3.5 × 10−3) and α0 (the lower panel, with β0 being
fixed to −4.5) values. Notice that sharp transitions develops
at mJ

NS ∼ 1.4M⊙ and 1.8M⊙ as α0 → 0. The NSs between
these masses are spontaneously scalarized. In addition, we
see the scalar charge increases with the absolute value of α0

FIG. 2. The scalar charge of a NS as a function of mJ
NS,

with a variety of α0, β0. Upper panel: varying β0 while
α0 ¼ −3.5 × 10−3; lower panel: varying α0 with β0 ¼ −4.5.
The EOS is summarized in Table I, which has been selected
to amplify the scalarization. The vertical dashed lines correspond
to the NS in our simulation (mJ

NS ¼ 1.5M⊙). We choose ψ0 ¼ 0

in both panels.
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and β0 for a fixed mJ
NS (e.g. the vertical dashed line).

Therefore, we chose ðβ0; α0Þ ¼ ð−4.5;−3.5 × 10−3Þ below
to maximize the effect of scalarization.
On the other hand, we can also leverage the freedom of

choosing an EOS to magnify the scalarization. Here we
restrict ourselves to the spectral EOSs provided in [130],
which allows a broad range of cold and beta-equilibrium
EOSs (see Fig. 1 of Ref. [130]). The parametrization reads

PðρÞ ¼
(
κ0ρ

Γ0 ; ρ < ρ0;

P0 exp ½
R
x
0 Γðx̃Þdx̃�; ρ > ρ0;

ð19Þ

with ρ0 a reference density, P0 ¼ Pðρ0Þ, ΓðxÞ ¼ γ2x2 þ
γ3x3 and x ¼ lnðρ=ρ0Þ. Among the options, we find the
following soft EOS that gives rise to the strongest scala-
rization effect (obtained from Table III of Ref. [130]):

Γ0 ¼ 2; ρ0 ¼ 8.44019× 10−5; P0 ¼ 1.20112× 10−7

γ2 ¼ 0.475296; γ3 ¼ −0.117048:

Note that ρ0 and P0 are in G� ¼ c ¼ M⊙ ¼ 1 units. This
specific EOS can produce macroscopic properties that are
compatible with current constraints, including the mass-
radius relation, tidal deformability, and maximum NS mass
[130]. However, it should be noted that this EOS lacks
composition and temperature dependence [130], which
makes it less realistic in those aspects.
For comparison, we also solve a NS with the

same Jordan-frame mass in GR, and summarize the
corresponding stellar properties in Table I. The compact-
ness of the NS is CGR ∼ 0.22, with a tidal Love number kGR2
of ∼0.08 [131] and a tidal deformability ΛGR

2 ¼ 2
3

kGR
2

C5
GR

of

∼131.1 [132] in the absence of the scalar field.
To end this section, we emphasize that our choices for

the EOS and the ST theory parameters are intentionally
made to produce a large scalar field: the values of ðα0; β0Þ
lie on the edge of existing constraints [6,9,53–55,129],
even though they may not be preferred in the actual
astrophysical environment. The current idealized configu-
ration is to justify our simulation code and to investigate the
maximum possible detectability of the dipole radiation
emitted by BHNS systems. Future work is being planned to
explore more moderate scenarios.

IV. NUMERICAL RESULTS

We present our main simulation results in this section.
For comparison, the BHNS system is evolved in both GR
and ST theory, and two numerical resolutions are adopted
for each case by specifying different numerical error
tolerances to the adaptive mesh refinement (AMR) algo-
rithm in SpEC [133]. Below we first give a qualitative
panorama view of the GR system in Sec. IVA, and the ST
system in Sec. IV B. Then in Sec. IV C we compare the GR

and ST simulations. Finally in Sec. IV D, we conduct more
quantitative discussions by comparing our numerical wave-
forms to existing PN predictions in ST.

A. The BHNS system in GR

We first evolve the system with GR, whose initial
data are built based on the method in Refs. [134,135].
For the GW200115-like binary parameters we consider
(see Table I), the NS is swallowed quickly by the BH
during the merger, and there is no tidal disruption. The
remnant BH has a mass of mf ¼ 0.9785M, with M ¼
7.2M⊙ the total Jordan-frame mass defined in Sec. III A.
The remnant dimensionless spin is χf ¼ 0.38. As a
standard numerical diagnostic, we plot the volume-
weighted generalized harmonic constraint energy [see
Eq. (53) of Ref. [109]] in Fig. 3, where the orange (blue)
curve refers to the low (high) resolution run. As expected,
the constraint energy decreases with increasing resolu-
tion, once the initial transients (known as junk radiation)
leave the domain ðt > Rbdry ¼ 500MÞ. Here Rbdry is the
radius of our simulation domain, as summarized in
Table I. In addition, we remark that the constraints jump
drastically near t ¼ 1938M, when the NS starts to plunge
into the BH.
The top panel of Fig. 4 shows the dominant l ¼ m ¼ 2

harmonic h̃22 emitted by the BHNS system, with low (in
orange) and high (in blue) resolution. We see that the two
waveforms manifest significant dephasing near the merger.
Our current waveforms are less accurate than other recent
BHNS SpEC simulations [136] even though we use the same
criteria to set the numerical error tolerances in AMR. This
is mainly because the NS we consider is softer, which has a
smaller radius and would require finer grids to resolve its
structure. However, as the main purpose of this study is to

FIG. 3. The evolution of the volume-weighted constraint
energy for the metric, evolved with GR. The orange (blue) curve
corresponds to the low (high) resolution. The vertical dashed line
indicates the onset of the merger.
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get a first qualitative understanding of BHNS binaries in
ST, we expect the current accuracy to be sufficient (see
more details in Sec. IV C).
The leading tidal effect in the GW phase evolution

appears at 5PN order [132], and is captured by a mass-
weighted tidal parameter Λ̃GR

2 [137]

Λ̃GR
2 ¼ 16

13

ðM þ 11mJ
BHÞ

M5
mJ 4

NSΛGR
2 : ð20Þ

After plugging in the values listed in Table I, we find Λ̃GR
2 is

around 2.95, implying that the emitted GWs are almost
indistinguishable from that of a BBH system with the same
spins and mass ratio. To demonstrate this, we compare the
BHNS waveform to that of an equivalent BBH system
(black dashed line in the top panel of Fig. 4). The data of
the BBH binary are obtained from the NRSur7dq4

surrogate model [138]. We align the two waveforms
h̃BHNS22 and h̃Sur22 by minimizing their mismatch M:

M ¼ 1 −
ðh̃BHNS22 jh̃Sur22 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðh̃BHNS22 jh̃BHNS22 Þðh̃Sur22 jh̃Sur22 Þ
q ; ð21Þ

over time and phase shifts. Here the time-domain inner
product between two signals a, b is given by

ðajbÞ ¼ Re
Z

t2

t1

aðtÞ�bðtÞdt; ð22Þ

where the star denotes complex conjugation, and we choose
the optimization window to be ½t1; t2� ¼ ½200M; 800M�. We
provide the phase evolution ϕ22 of the aligned waveforms:

ϕ22 ≡ arg h̃22; ð23Þ

FIG. 4. Upper panels: The GW harmonic h̃22 of the BHNS system evolved with GR, using a low (in orange) and high resolution (in
blue). Two BHNS waveforms are compared to that of the BBH system (in black) which has the same mass ratio and spins. We align the
three waveforms by minimizing their mismatch over time and phase shifts, with the optimization window chosen to be ½200M; 800M�.
Middle panels: the GW phases of the high-resolution BHNS binary (in blue) and the BBH binary (in black). Lower panels: the GW
phase difference between the BBH and the BHNS system (in black). It is compared to the numerical resolution difference of the BHNS
waveform (in blue).
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in the middle panel of Fig. 4, as well as the corresponding
waveformphasedifferencesΔϕ22 in thebottompanel.We see
the phase difference between the BHNS andBBH ð∼0.4 radÞ
remains comparable toNRnumerical resolution difference up
to∼10M prior to thewaveform peak, which indicates that the
tidal effect of this system is negligible.

B. The BHNS system in ST: Scalar field

Let us then move on to the ST simulation. For simplicity,
we use the same initial data as its GR counterpart to evolve
the system, where the scalar field is absent5; while this
means the initial data do not correctly capture a snapshot of
the binary system in ST gravity that started at an infinite time
in the past. This is also true for the GR simulation presented
in Sec. IVA, where Fig. 3 displays the presence of spurious
initial transients during t < Rbdry ¼ 500M. In our ST
simulations, the system undergoes an extra transient regime
at the beginning of the evolution, during which a scalar field
cloud grows dynamically around the NS. In Fig. 5, we plot
the scalar field value ψc measured at the stellar center as a
function of time. During the first 50M, the value of ψc
increases and asymptotes to the value predicted by the
isolated NS solver (the horizontal dashed line) that we used
in Sec. III B, which serves as a cross-check of our numerical
code. Note that theψc growth timescale is much shorter than
the aforementioned initial transients ðt ∼ 500MÞ, therefore
we expect that our results are not impacted by this additional
transition from GR to ST.
We also provide the volume-weighted generalized har-

monic constraint energy [see Eq. (53) of Ref. [109]] in
the top panel of Fig. 6 and find that the additional scalar

field does not worsen the constraint violation compared to
the GR system (Fig. 3): the evolution of the constraint is
identical modulo a shift to an earlier time, due to the
hastened merger of the ST system. In addition, as for the
scalar field’s FOSH system [110,111], we need to introduce
an auxiliary dynamical variable Φi ≡ ∂iψ , and its associ-
ated constraint energy:

Eψ ¼
������

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

h
Cð1Þ
i Cð1Þ

i þ Cð2Þ
i Cð2Þ

i

ivuut
������; ð24Þ

where k · k denotes L2 norm over the domain. The

derivative constraint for ψ, Cð1Þ
i , reads

Cð1Þ
i ¼ ð∂iψÞnum −Φi; ð25Þ

where ð∂iψÞnum corresponds to the numerical spatial
derivative of ψ . The second derivative constraint for ψ,

Cð2Þ
i , is given by

Cð2Þ
i ¼ ½ijk�∂jΦk ðsum on j; kÞ ð26Þ

with ½ijk� being the Levi-Civita symbol, with ½123� ¼ þ1.
We provide the evolution of Eψ in the lower panel of Fig. 6.
As expected, it also decreases with increasing resolution.
Finally, to close this subsection, we give a qualitative

description of the scalar field ψ in Fig. 7 by taking a

FIG. 5. The evolution of the scalar field ψ measured at the
center of the NS. The plot describes the growth of the scalar field
around the NS at the beginning of the simulation. The horizontal
dashed line corresponds to the prediction by solving equations of
motion for an isolated NS in Sec. III B.

FIG. 6. The evolution of the volume-weighted constraint
energy for the metric (the upper panel) and the scalar field
(the lower panel), evolved with ST. The red (green) curve
corresponds to the low (high) resolution. The vertical dashed
line indicates the onset of the merger.

5It is straightforward to check that the GR initial data satisfy
the ST constraint equations.
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snapshot of its distribution at t ¼ 2062.3M across the entire
computational domain. In the wave zone, the distribution of
the scalar field in the x–y plane (left panel) is singly periodic
in φ like eiφ, where φ is the azimuthal angle defined in
Eq. (14b); and in the y–z plane (right panel), we see
vanishing on the z axis with a single maximum at the
equatorial plane (z ¼ 0), like sin ι. These patterns are
consistent with the dipolar nature Y11 ∼ sin ιeiφ of the scalar
field, and we will discuss this in more detail in Sec. IV D.

C. Comparison between the GR and ST

Figure 8 displays the evolution of the coordinate sep-
aration between the two compact objects for the GR and the
ST systems. We first see that the merger portions of both
systems can be aligned perfectly through a time shift,
namely, they have a similar _R − R dependence near the
merger and thus a similar plunge dynamic, implying a
similar orbital separation (and therefore similar frequency)
for the onset of the plunge. This feature is different from the
BNS simulations in Ref. [75], where ST binaries were
found to merge at significantly larger orbital separation (see
their Fig. 1). The difference arises from the size of the
gravitational attraction. Recall that the gravitational pull in
ST gravity is characterized by the effective gravitational
constant Geff ¼ G�ð1þ αAαBÞ [32], which is amplified for
BNS systems when both the NSs have a nonzero scalar
charge. Consequently, their plunges happen at larger orbital
separations. By contrast, the gravitational pull in our ST
BHNS system is similar to its GR counterpart because the
BH’s scalar charge vanishes, so the scalar sector has
negligible impact on the plunge separation. However, the
ST simulation does exhibit a non-negligible deviation from
its GR counterpart over a longer timescale. As shown in
Fig. 8, the ST simulation has a shorter total duration than the

GR case, even though they both start at the same separation.
This is because the scalarized NS admits an additional
energy dissipation channel via scalar radiation; therefore the
system in ST gravity evolves faster during the inspiral.
A direct consequence of the hastened dynamics is a

shortening of the GW signal. Figure 9 provides the l ¼ m ¼
2 harmonic of the STwaveform for two different resolutions
(solid curves). For reference, h̃22 in GR is plotted as the blue
dashed curve. Here we still align the waveforms by mini-
mizing the mismatch in Eq. (21) over time and phase shifts.
The same time window ½t1; t2� ¼ ½200M; 800M� is used.
After the peak of the STwaveform, it takes theGRwaveform
an extra GW cycle, Δϕ22 ∼ 6.34 rad [Eq. (23)], to reach its
peak, smaller than GR’s numerical resolution difference at
the peak ð∼0.6 radÞ. Therefore our simulations are able to

FIG. 7. A snapshot of the field log jψ j at t ¼ 2062.3M across the entire computational domain, with the outer boundary being at
500M. The orbital angular momentum is aligned with the z axis.

FIG. 8. The evolution of the orbital separation for the BHNS
system, in the ST gravity (green) and GR (blue).
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capture the effect of scalar radiation well above the numeri-
cal resolution difference, even though our simulations are
less accurate than other recent BHNS SpEC simulations
[136], as discussed in Sec. IVA.

D. Comparing to post-Newtonian theory

We now carry out quantitative comparisons between the
simulated GW waveforms and existing PN waveform
predictions in ST. As pointed out in Refs. [43,45], the
relative size of the leading scalar dipolar radiation and
leading tensor quadrupolar radiation is given by

F nd

F d
¼

�
24

5ζS2
−

�
x; ð27Þ

with F being energy flux. In our simulation, we find the
factor above is greater than 25, i.e. quadrupolar radiation
dominates, so we are in the quadrupole-driven regime [43].

We first consider the gravitational modes h̃lm, whose PN
expressions read [43]

h̃lm ¼ 2G̃ð1 − ζÞηx
ffiffiffiffiffiffiffiffi
16π

5

r
Ĥlme−imϕ; ð28Þ

where η ¼ mJ
BHm

J
NS=ðmJ

BH þmJ
NSÞ2 is the symmetric mass

ratio, x ¼ ðG̃MαΩorbÞ2=3 is the PN expansion parameter,
Ωorb is the orbital frequency, and we give ϕ below. We
summarize the definition of ST parameters G̃; ζ; α in
Table II. In Eq. (28), comparing with Eq. (65) of Ref. [43],
we removed an overall factorM=r which is already divided
out in Eq. (14a). The expressions for Ĥlm are long and they
can be found in Eq. (67) of Ref. [43]. Because the dipolar
scalar radiation starts 1PN earlier than the leading quad-
rupolar gravitational radiation, the inspiral is separated into
two parts: dipolar (D) or nondipolar (ND). The phase factor
ϕ reads

FIG. 9. Upper panel: The STwaveforms with a low (in red) and high (in green) resolution. They are compared to the GR waveform (in
blue). Lower panel: the phase difference between the GR and ST waveforms (in orange). For reference, the numerical resolution
differences of the GR and the ST waveform are also presented in blue and green, respectively. In addition, we summarize some of the
binary parameters in the title.
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ϕ ¼ ϕnd þ ϕd; ð29aÞ

ϕnd ¼ −
x−5=2

32ηξ

�
1þ 5

3
ρnd2 xþ 5

2
ρnd3 x3=2 þ 5ρnd4 x2

þ 5

2
ρspin3 x3=2 þ 5ρspin4 x2

�
; ð29bÞ

ϕd ¼
25S2

−ζx−7=2

5376ηξ2

�
1þ 7

5
ρd2xþ

7

4
ρd3x

3=2 þ 7

3
ρd4x

2

�
; ð29cÞ

with the coefficients ρnd=di ’s being listed in Eq. (B10) of
Ref. [43]. The ST parameters ξ and S� are defined in
Table II, andwe see that all of them depend on the sensitivity
of the NS

sNS ¼
�
d lnmJ

NS

d lnϕ

�
ϕ0

: ð30Þ

The relationship between sNS and the scalar charge αNS
reads [43]

TABLE II. Summary of PN parameters used for ST gravity. We
have used the fact that a BH’s scalar charge vanishes: αBH ¼ 0,
and thus sBH ¼ 1=2 following Eq. (31). Note that α is not to be
confused with the scalar charge αNS.

ω0 G̃ ζ α S− Sþ ξ

1−3α2
0

2α2
0

1þα2
0

ϕ0

α2
0

1þα2
0

1
1þα2

0

−α1=2sNS α1=2ð1 − sNSÞ 1þ ζS2
þ

6

FIG. 10. Comparing the numerical waveforms (in green and blue) to the PN model (in magenta). (a) shows the ST tensor harmonic h̃22
(top) and the scalar modes Ψ11 (middle) and Ψ22 (bottom). Note that the modes Ψlm are defined in Eq. (36). (b) provides the GR tensor
harmonic h̃22.
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sNS ¼
1

2
−
αNS
2α0

; ð31Þ

where α0 is the ST parameter defined in Eq. (18).
Equation (29) is controlled by the quadrupolar radiation,
while Eq. (29c) is controlled by the dipolar radiation starting
at −1PN. Spin effects are not considered in Ref. [43]; here
we simply add the spin contributions in GR, leading to the
second line in Eq. (29b), and we leave the relevant ST
corrections for future studies. The expressions of ρspini ’s can
be found in Eq. (4.16) of Ref. [139],

ρspin3 ¼ 1

12

X
i¼1;2

χiðL̂N · ŝiÞ
�
113

m2
i

M2
þ 75η

�
; ð32Þ

ρspin4 ¼ 1

48
ηχ1χ2½247ðŝ1 · ŝ2Þ−721ðL̂N · ŝ1ÞðL̂N · ŝ2Þ�; ð33Þ

where L̂N and ŝi stand for the unit vector along the orbital
angular momentum and the individual spin si. Furthermore,
we note that tidal effects are ignored in Eq. (29a), which
formally enter into the phase evolution at 5PN order [132].
This is reasonable for this study, as the system’s mass-
weighted tidal deformability Λ̃GR

2 ∼ 2.95 is very small and it
has little impact on the binary dynamics, as shown in Fig. 4.
In the top panel of Fig. 10(a), we compare the ST numerical
waveform h̃22 to the PN prediction, finding good agreement
until ∼500M before the merger. For reference, we also plot
the GR waveform h̃22 and the corresponding PN prediction
in Fig. 10(b). Additionally, in Appendix D, we present a
more detailed comparison by demonstrating the hierarchical
contributions of each PN term.
We then compare the scalar modes ψ lm extracted from

our simulation with predictions from PN. The PN pre-
diction for the ðl; mÞ harmonic of the transverse breathing
mode Ψ [see Eq. (11)] is given by [45]

Ψlm ¼ 2iG̃ζ
ffiffiffi
α

p
S−η

ffiffiffi
x

p ffiffiffiffiffiffi
8π

3

r
Φ̂lme−imϕ; ð34Þ

where the expression of Φ̂lm can be found in Eq. (6.10) of
Ref. [45]; and Ψlm is defined in parallel with Eq. (14b):

rΨ=M ¼
X
l;m

Ylmðι;φÞΨlm: ð35Þ

Here Ψlm is related to our numerical extracted scalar mode
ψ lm [Eq. (14b)] via

Ψlm ¼ −4
ffiffiffi
π

p
α0ψ lm; ð36Þ

where Eq. (17) has been used. We compare our numerical
scalar modes Ψ11 and Ψ22 to the PN predictions in the
middle and bottom rows of Fig. 10(a), and refer to

Appendix C for other (subdominant) modes. Similar to
h̃22, the PN predictions for the ψ lm phase evolution are
accurate until ∼500M before merger; however, their
amplitudes do not match as accurately as their phases.

V. WAVEFORM DISTINGUISHABILITY

We have discussed features of the BHNSs in GR and ST.
Then in this section, we investigate how our numerical
simulations can help place constraints on ST theory with
GW200115 and future BHNS observations. Specifically,
here we focus on whether a ST waveform can be distin-
guished from a GR waveform. We estimate this by
computing the mismatch M between the two waveforms,
defined in Eq. (21). Note that in Eq. (22), we used a flat
noise curve for simplicity, namely assuming an idealized
detector.
We first compute the mismatch between the GR and ST

waveform h̃22 presented in Fig. 9 and find M ¼ 0.38.
Since the error in our simulations is larger than other BHNS
SpEC simulations (see discussions around Figs. 4 and 9), we
terminate the integration in Eq. (22) at the peak of the ST
waveform ðt2 ¼ 2102MÞ to avoid the ringdown region.
One criterion for the distinguishability of two waveforms
reads [140–144]

M >
D
2ρ2

; ð37Þ

where D ¼ 5 is the number of free intrinsic parameters
(chirp mass, mass ratio, spin magnitudes on both compact
objects, and tidal deformability) of our nonprecessing
systems, and ρ is the signal-to-noise ratio (SNR). After
inserting the numbers, we find ρ > 2.56 is needed to
distinguish ST from GR. Such a low SNR threshold is
not surprising for this specific case with extreme scalariza-
tion and an idealized detector, given the significant dephas-
ing between the two waveforms shown in Fig. 9. For more
moderate ST parameters and more realistic detectors, the
deviation is not expected to be as large, and we leave this
exploration for future work.
The subsequent question to consider is the extent to

which tidal effects within GR can replicate the ST wave-
form. To explore this question, we employ an effective-
one-body (EOB) model known as SEOBNRv4T [145,146].
This model includes tidal effects and is characterized by
tidal deformability coefficients Λl in its tidal sector, with
l ¼ 2 being the focus in this case. To generate the
SEOBNRv4T waveforms with varying ΛGR

2 , we utilize
LALSuite [147]. Figure 11 showcases the mismatch of these
waveforms with the STwaveform h̃22 as a function of ΛGR

2

while fixing other intrinsic parameters at their NR values.
The mismatch first decreases when ΛGR

2 is small, and
the best match M ∼ 0.023 happens at ΛGR

2 ∼ 4000. As
a comparison, we repeat the same calculation for the
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mismatch between the SEOBNRv4T model and the GR
waveform. The result is shown as the blue curve in Fig. 11,
and we can see the mismatch grows monotonically with
ΛGR
2 (recall the tidal effect is negligible in the GR

simulation). To better understand the feature, in Fig. 12
we provide the SEOBNRv4T waveforms with a variety of
ΛGR
2 , ranging from 0 to 6000. In particular, we mark the

best-fit waveform (ΛGR
2 ¼ 4000) with black crosses. With

increasing ΛGR
2 , we see the tidal waveforms gradually shift

backward in time, because the tidal effect accelerates the
evolution and shortens the length of waveforms. This
behavior is similar to the effect of the scalar field and
dipole radiation. Notably, as ΛGR

2 approaches 4000, the last
two wave cycles of the SEOBNRv4T waveforms (at
t ∼ 2075M) align more closely with ST’s phase evolution,
resulting in a smaller mismatch. Further increasing ΛGR

2

beyond this point causes the tidal waveforms to deviate
again from the ST waveform. Therefore, the mismatch in
Fig. 11 bounces back.

FIG. 12. Comparing the ST waveform (black) with the SEOBNRv4T model, with a variety of ΛGR
2 , ranging from 0 to 6000. The

minimum mismatch M ∼ 0.023 happens at ΛGR
2 ∼ 4000.

FIG. 11. The mismatch of the SEOBNRv4T model with the ST
waveform (green) and the GR result (blue), as a function of tidal
deformability ΛGR

2 . For the sake of comparison, we also compute
the mismatch between two resolutions for ST (green dashed line)
and GR (blue dashed line).
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Our preliminary mismatch comparison shows that both
the tidal and scalar sectors could produce similar and
potentially degenerate imprints in GWs given the length of
our simulations (∼12 cycles before the merger). A limita-
tion of our analysis is that the NR waveforms are relatively
short and lacked low-frequency components—the dipole
radiation appears at −1PN whereas the tidal effect at 5PN.
A longer waveform with a broader frequency span may
break the degeneracy. A more comprehensive analysis is
therefore necessary to fully characterize these features
using longer waveforms with a broader frequency span
and Bayesian parameter estimation. We leave this explora-
tion to future research.

VI. CONCLUSION

In this paper, we numerically simulate a fully relativistic
BHNS binary system in ST theory, chosen to be consistent
with GW200115 [89]. To maximize the effect of sponta-
neous scalarization, we set the ST parameters ðβ0; α0Þ to be
at the boundary of known constraints from other observa-
tions [9]: ð−4.5;−3.5 × 10−3Þ. In addition, we select a soft
EOS for the NS so that it can generate a large scalar charge,
as summarized in Table I. Following Refs. [134,135], we
construct the initial data without including the scalar sector.
Instead, the scalar field dynamically grows during the first
∼50M, and quickly approaches the desired value predicted
by the isolated NS solver.
We evolve the BHNS system with both GR and ST. For

the GR binary, we find the soft EOS results in GW
emissions that are nearly identical to those of a BBH
system with the same spins and mass ratio. In contrast, the
ST binary exhibits dominant dipolar radiation due to
spontaneous scalarization, with the spatial distribution of
the scalar field ψ matching the dipolar emission pattern
throughout the computational domain. As a result of this
additional dipolar radiation, the ST binary evolves faster
than its GR counterpart, and the ST binary reaches its peak
amplitude one whole GW cycle earlier than the GR
counterpart. We also compare our waveforms, including
the tensor mode h̃22 and scalar breathing modesΨ11;22, with
existing PN waveform predictions in ST [43,45,139], and
find reasonable agreement up to ∼500M before the merger.
Finally, we compute the mismatch between our ST wave-
form and the SEOBNRv4T model as a function of tidal
deformability ΛGR

2 . We find the ST waveform could be
partially mimicked by a GR tidal waveform with a large
ΛGR
2 ∼ 4000, due to the tidal effect accelerating the evo-

lution of the binary.
Throughout the analysis, we pick optimal choices for the

EOS and the ST theory parameters in order to produce a
significant scalarization effect, and thus strong dipolar
radiation. Under this idealized scenario, we find that the
GR and STwaveforms should be distinguishable for SNRs
above 2.56. To fully understand observational prospects of

constraining ST theory using BHNS systems, future work
should explore a wider range of EOSs and more moderate
ST parameters. Specifically, the scalar field’s ability to alter
the properties of NSs, such as compactness and radius, may
play a crucial role in determining whether the NSs are
disrupted or not [148], potentially leading to rich phenom-
ena in the corresponding GW and even electromagnetic
emissions for ST binary systems.
Our mismatch tests using the SEOBNRv4T model and

the GR waveforms indicate that the ST sector might be
partially degenerate with tidal effects during the late
inspiral stage (excluding low-frequency regime), which
can lead to parameter estimation biases. Here we restrict
ourselves to a single degree of freedom:ΛGR

2 , while holding
other parameters such as mass ratio and spins constant. A
possible avenue for future work is to carry out a more
systematic full Bayesian parameter estimation to better
account for these degeneracies.
Finally, our waveforms are obtained at null infinity

through extrapolation following Refs. [114,118–120], with
the Python package SCRI [121,122]. The method is an
approximate approach that relies on the asymptotic behavior
of several fields given by the peeling theorem [149]. While
this approximate approach captures linear signals, it does not
accurately capture nonlinear features such as the memory
effect [150–155]. The more correct Cauchy-characteristic
extraction (CCE) [115,116] method would be required to
fully account for these effects. Therefore, another future
avenue could be to evolve the coupled metric-scalar system
using a CCE framework adapted to ST, and investigate the
memory effect in ST gravity [150–153,156–158].

ACKNOWLEDGMENTS

We thank Laura Bernard, David Trestini, Luc Blanchet,
Noah Sennet, Sylvain Marsat, and Alessandra Buonanno
for sharing Mathematica notebooks with PN expressions.
We thank David Trestini, Hector Silva, and Dongze Sun for
useful discussions. V. V. acknowledges funding from the
European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie Grant
Agreement No. 896869. V. V. was supported by a
Klarman Fellowship at Cornell. V. V. is a Marie Curie
Fellow. L. C. S. was partially supported by NSF CAREER
Award No. PHY-2047382. S. M. and M. S. acknowledge
funding from the Sherman Fairchild Foundation and by
NSF Grants No. PHY-2011961, No. PHY-2011968, and
No. OAC-2209655 at Caltech.

APPENDIX A: THE TWO-GRID METHOD
AND TRANSFORMATIONS

In the Einstein frame, we adopt the 3þ 1 decomposition
of the metric [159]

ds2 ¼ −ᾱ2dt2 þ γ̄ijðdxi þ β̄idtÞðdxj þ β̄jdtÞ; ðA1Þ
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where ᾱ, β̄i, γ̄ij are the lapse, shift, and 3-metric in the
Einstein frame. They, their spatial derivatives, and the
extrinsic curvature Kij are transformed to the Jordan
frame via:

α¼ 1ffiffiffiffi
ϕ

p ᾱ; βi ¼ β̄i; γij ¼
1

ϕ
γ̄ij; γij¼ϕγ̄ij;

Kij ¼
1ffiffiffiffi
ϕ

p
�
K̄ijþ

γ̄ij
2

d logϕ
dψ

n̄k∂kψ

�
;

∂kα¼
1ffiffiffiffi
ϕ

p
�
∂kᾱ−

ᾱ

2

d logϕ
dψ

∂kψ

�
;

∂kβ
i ¼ ∂kβ̄

i;

∂kγ
ij ¼ϕ

�
∂kγ̄

ijþ γ̄ij
d logϕ
dψ

∂kψ

�
; ðA2Þ

where the future-directed unit timelike normal is given by

n̄a ¼ ᾱ−1ð∂at − β̄i∂ai Þ: ðA3Þ

On the other hand, the transformation of the stress-energy
tensor T̄ab can be established from its definition

T̄ab ¼ 2ffiffiffiffiffiffi
−ḡ

p δSM
δḡab

: ðA4Þ

After inserting

ḡab ¼ ϕgab;ffiffiffiffiffiffi
−ḡ

p ¼ ϕ2 ffiffiffiffiffiffi
−g

p
; ðA5Þ

into Eq. (A4), we obtain

T̄ab ¼ 2ffiffiffiffiffiffi
−ḡ

p δSM
δḡab

¼ 1

ϕ3

2ffiffiffiffiffiffi−gp δSM
δgab

¼ 1

ϕ3
Tab; ðA6Þ

which leads to T̄ab ¼ Tab=ϕ.

APPENDIX B: STRUCTURE OF NEUTRON
STARS IN ST GRAVITY

Following Ref. [125], the Einstein-frame metric of an
isolated, nonspinning NS can be written as

ds̄2 ¼ −eνðrÞdt2 þ dr2

1 − 2μðrÞ=rþ r2ðdθ2 þ sin2 θdϕ2Þ:

ðB1Þ
Then the equations of motion are given by

μ0 ¼ 4πr2A4ðρ0h−PÞþ1

2
rðr−2μÞφ2; ðB2aÞ

ν0 ¼ 8π
r2A4P
r − 2μ

þ rφ2 þ 2μ

rðr − 2μÞ ; ðB2bÞ

ψ 0 ¼ 1ffiffiffiffiffiffi
4π

p φ; ðB2cÞ

φ0 ¼ 4π
rA4

r − 2μ
½ðα0 þ β0

ffiffiffiffiffiffi
4π

p
ψÞðρ0h − 4PÞ

þ rφðρ0h − 2PÞ� − 2ðr − μÞ
rðr − 2μÞφ; ðB2dÞ

P0 ¼ −ρ0h
�
1

2
ν0 þ ðα0 þ β0

ffiffiffiffiffiffi
4π

p
ψÞφ

�
; ðB2eÞ

with A ¼ ϕ−1=2. Note that P, ρ0, and h are in the Jordan
frame. The system of coupled ordinary differential equa-
tions can be solved as an initial value problem integrating
out from r ¼ ϵ > 0. The asymptotic expansion of the
solution near the stellar center r → 0 is

μðrÞ ∼ 1

3!
μ3r3;

νðrÞ ∼ 1

2!
ν2r2;

φðrÞ ∼ φ1r;

ψðrÞ ∼ ψc þ
1

2!

1ffiffiffiffiffiffi
4π

p φ1r2;

PðrÞ ∼ Pc þ
1

2!
P2r2; ðB3Þ

where

μ3 ¼ 8πA4
cðρchc − PcÞ;

ν2 ¼ 8πA4
cPc þ

μ3
3
;

φ1 ¼
4π

3
A4
cðα0 þ β0

ffiffiffiffiffiffi
4π

p
ψcÞðρchc − 4PcÞ;

P2 ¼ −ρchc
�
1

2
ν2 þ ðα0 þ β0

ffiffiffiffiffiffi
4π

p
ψcÞφ1

�
: ðB4Þ

We start the integration of Eq. (B2) at ϵ ¼ 10−7RE
ST away

from the stellar center, and terminate at the stellar surface.
From surface values, we obtain the scalar charge of the NS
via [125]

αNS ¼
2φ

ν0

����
surf

; ðB5Þ

and the Einstein-frame mass

mE
NS ¼ exp

�
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2NS

p arctanh
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2NS
p
1þ 2=ðrν0Þ

��

×
r2ν0

2

�
1 −

2μ

r

�
1=2

����
surf

: ðB6Þ
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It is related to the Jordan-frame mass through [32]

mJ
NS ¼ mE

NSð1þ α0αNSÞ: ðB7Þ
For a Newtonian star, Eq. (B2) reduce to

μ0 ¼ 4πr2A4ðψ∞Þρ0; ðB8aÞ

P0 ¼ −
ρ0μ

r2
; ðB8bÞ

where the scalar field ψ decouples from the matter and it
becomes constant across the star. Here we denote its
(background) value as ψ∞. Next we can compute the
baryonic mass mB and the Einstein-frame mass mE

NS of
the NS:

mB ¼ A3ðψ∞Þ
Z

4πρ0r2dr; ðB9aÞ

FIG. 13. Same as Fig. 10, some other scalar and tensor modes. Note that the modes Ψlm are defined in Eq. (36).
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mE
NS ¼ A4ðψ∞Þ

Z
4πρ0r2dr ¼ mBAðψ∞Þ: ðB9bÞ

As shown in Refs. [32,125], the scalar charge can be
computed alternatively through

αNS ¼
1ffiffiffiffiffiffi
4π

p
�
∂ lnmE

NS

∂ψ∞

�
mB
: ðB10Þ

After plugging Eq. (B9b), we obtain αNS ¼ α0
[see Eq. (17)].

APPENDIX C: SOME OTHER SCALAR
AND TENSOR MODES

Figure 13 displays additional scalar and tensor modes of
the ST simulation.

APPENDIX D: HIERARCHICAL
CONTRIBUTIONS FROM PN TERMS

In Fig. 10, we compared the ST waveforms with the
existing PN predictions that include all the PN orders.
Exploring the hierarchical contributions of each PN term is
also an interesting aspect to investigate. Here we focus on
the amplitude of h̃22 [Eq. (28)], Ψ11 and Ψ22 [Eq. (34)],
which are controlled by Ĥlm and Φ̂lm [43]. Table III
outlines all the relevant PN orders of h̃22, Ψ11, and Ψ22.
Our convention considers the leading Newtonian quadru-
pole approximation in GR, namelyOð1Þ in Ĥlm, as 0PN. In
contrast, the prefactor of Eq. (34) is 0.5PN ðx1=2Þ lower
than that of Eq. (28), thus the term Oð1Þ in Φ̂lm repre-
sents −0.5PN.
We depict the size of each PN term as solid lines

with different colors in Fig. 14. For reference, the
dashed lines represent the ones with all the PN con-
tributions. The lowest PN order contributes the most,
while higher PN corrections improve consistency. The
amplitude of Ψ22 is the least accurate. Higher PN terms
may be needed to improve the agreement with numeri-
cal simulations.

TABLE III. Summary of all the PN orders in the amplitude of
h̃22, Ψ11, and Ψ22.

Modes Available PN orders References

h̃22 0PN, 1PN, 1.5PN, 2PN Equation (67) of [43]
Ψ11 −0.5PN, 0.5PN, 1PN Equation (6.10b) of [45]
Ψ22 0PN, 1PN Equation (6.10c) of [45]

FIG. 14. Contributions of individual PN orders to the amplitude of h̃22 (top), Ψ11 (middle), and Ψ22 (bottom). It is important to note
that a PN curve only includes contributions from the specific PN order, not lower PN orders. The magenta dashed curves refer to the ones
that include all the PN terms.
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2220 (1993).

SIZHENG MA et al. PHYS. REV. D 107, 124051 (2023)

124051-20

https://doi.org/10.1088/0264-9381/26/7/073001
https://doi.org/10.1088/0264-9381/26/7/073001
https://arXiv.org/abs/0704.0749
https://doi.org/10.1086/181708
https://doi.org/10.1086/181708
https://doi.org/10.1088/0264-9381/29/24/245004
https://doi.org/10.1088/0264-9381/29/24/245004
https://doi.org/10.1103/PhysRevLett.70.2220
https://doi.org/10.1103/PhysRevLett.70.2220
https://doi.org/10.1088/1361-6382/ab2eda
https://doi.org/10.1088/1361-6382/ab2eda
https://doi.org/10.1086/180734
https://doi.org/10.1086/180734
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.1007/BF01877518
https://doi.org/10.1088/0264-9381/29/23/232002
https://doi.org/10.1088/0264-9381/29/23/232002
https://doi.org/10.1103/PhysRevD.87.081506
https://doi.org/10.1103/PhysRevD.89.084005
https://doi.org/10.1103/PhysRevD.91.024033
https://doi.org/10.1103/PhysRevD.91.024033
https://doi.org/10.1103/PhysRevD.89.044024
https://doi.org/10.1103/PhysRevD.93.124004
https://doi.org/10.1103/PhysRevD.93.124004
https://doi.org/10.1103/PhysRevD.96.084019
https://doi.org/10.1103/PhysRevD.96.084019
https://doi.org/10.1103/PhysRevD.86.124036
https://doi.org/10.1103/PhysRevD.93.064005
https://doi.org/10.1103/PhysRevD.93.064005
https://doi.org/10.1103/PhysRevD.102.044010
https://arXiv.org/abs/2211.01766
https://doi.org/10.1143/PTP.98.359
https://doi.org/10.1103/PhysRevD.57.4802
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.3847/2041-8213/ac082e
https://doi.org/10.1007/s41114-018-0012-9
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/28/9/094013
https://doi.org/10.1088/0264-9381/28/9/094013
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1103/PhysRevD.100.124013
https://doi.org/10.1103/PhysRevD.106.104016
https://doi.org/10.1103/PhysRevD.101.021501
https://doi.org/10.1103/PhysRevD.55.2024
https://doi.org/10.1103/PhysRevD.55.2024
https://doi.org/10.1103/PhysRevD.51.4236
https://doi.org/10.1103/PhysRevD.51.4236
https://doi.org/10.1103/PhysRevD.51.4208
https://doi.org/10.1103/PhysRevD.51.4208
https://doi.org/10.1103/PhysRevD.50.7304
https://doi.org/10.1103/PhysRevD.50.7304
https://doi.org/10.1143/PTP.49.1195
https://doi.org/10.1143/PTP.49.1195
https://doi.org/10.1103/PhysRevD.57.4789
https://doi.org/10.1103/PhysRevLett.128.091103
https://doi.org/10.1103/PhysRevLett.128.091103
https://doi.org/10.1088/0264-9381/23/14/010
https://doi.org/10.1103/PhysRevD.77.104010
http://www.black-holes.org/SpEC.html
http://www.black-holes.org/SpEC.html
http://www.black-holes.org/SpEC.html
http://www.black-holes.org/SpEC.html
http://www.black-holes.org/SpEC.html
http://www.black-holes.org/
http://www.black-holes.org/
http://www.black-holes.org/
https://doi.org/10.1088/0264-9381/23/16/S09
https://doi.org/10.1103/PhysRevD.70.084017
https://doi.org/10.1103/PhysRevD.69.104006
https://doi.org/10.1103/PhysRevD.69.104006
https://doi.org/10.1103/PhysRevD.78.104015
https://doi.org/10.1103/PhysRevD.78.104015
https://doi.org/10.1103/PhysRevD.80.124045
https://doi.org/10.1103/PhysRevD.80.124045
https://doi.org/10.1103/PhysRevD.103.024039
https://doi.org/10.1103/PhysRevD.102.044052
https://doi.org/10.1103/PhysRevD.102.044052
https://doi.org/10.1103/PhysRevD.107.064013
https://doi.org/10.1103/PhysRevD.107.064013
https://doi.org/10.1103/PhysRevD.87.104006
https://arXiv.org/abs/1409.4431
https://doi.org/10.1103/PhysRevD.93.084031
https://github.com/moble/scri
https://github.com/moble/scri
https://doi.org/10.1103/PhysRevD.83.104034
https://doi.org/10.1103/PhysRevD.104.044017
https://doi.org/10.1103/PhysRevD.104.044017
https://doi.org/10.1103/PhysRevLett.70.2220
https://doi.org/10.1103/PhysRevLett.70.2220


[126] D. Anderson, N. Yunes, and E. Barausse, Phys. Rev. D 94,
104064 (2016).

[127] P. J. Steinhardt and C. M. Will, Phys. Rev. D 52, 628
(1995).

[128] B. Boisseau, G. Esposito-Farese, D. Polarski, and A. A.
Starobinsky, Phys. Rev. Lett. 85, 2236 (2000).

[129] B. Bertotti, L. Iess, and P. Tortora, Nature (London) 425,
374 (2003).

[130] F. Foucart, M. D. Duez, A. Gudinas, F. Hebert, L. E.
Kidder, H. P. Pfeiffer, and M. A. Scheel, Phys. Rev. D
100, 104048 (2019).

[131] T. Hinderer, Astrophys. J. 677, 1216 (2008).
[132] E. E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502

(2008).
[133] B. Szilágyi, Int. J. Mod. Phys. D 23, 1430014

(2014).
[134] F. Foucart, L. E. Kidder, H. P. Pfeiffer, and S. A.

Teukolsky, Phys. Rev. D 77, 124051 (2008).
[135] N. Tacik, F. Foucart, H. P. Pfeiffer, C. Muhlberger, L. E.

Kidder, M. A. Scheel, and B. Szilágyi, Classical Quantum
Gravity 33, 225012 (2016).

[136] F. Foucart et al., Phys. Rev. D 103, 064007 (2021).
[137] L. Wade, J. D. E. Creighton, E. Ochsner, B. D. Lackey,

B. F. Farr, T. B. Littenberg, and V. Raymond, Phys. Rev. D
89, 103012 (2014).

[138] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D.
Gerosa, L. C. Stein, L. E. Kidder, and H. P. Pfeiffer, Phys.
Rev. Res. 1, 033015 (2019).

[139] L. E. Kidder, Phys. Rev. D 52, 821 (1995).
[140] E. E. Flanagan and S. A. Hughes, Phys. Rev. D 57, 4566

(1998).
[141] L. Lindblom, B. J. Owen, and D. A. Brown, Phys. Rev. D

78, 124020 (2008).

[142] S. T. McWilliams, B. J. Kelly, and J. G. Baker, Phys. Rev.
D 82, 024014 (2010).

[143] K. Chatziioannou, A. Klein, N. Yunes, and N. Cornish,
Phys. Rev. D 95, 104004 (2017).

[144] M. Boyle et al., Classical Quantum Gravity 36, 195006
(2019).

[145] T. Hinderer et al., Phys. Rev. Lett. 116, 181101 (2016).
[146] J. Steinhoff, T. Hinderer, A. Buonanno, and A. Taracchini,

Phys. Rev. D 94, 104028 (2016).
[147] LIGO Scientific Collaboration, LIGOAlgorithm Library—

LALSuite, free software (GPL) (2018), 10.7935/GT1W-
FZ16.

[148] F. Foucart, T. Hinderer, and S. Nissanke, Phys. Rev. D 98,
081501 (2018).

[149] E. Newman and R. Penrose, J. Math. Phys. (N.Y.) 3, 566
(1962).

[150] S. M. Du and A. Nishizawa, Phys. Rev. D 94, 104063
(2016).

[151] K. Koyama, Phys. Rev. D 102, 021502 (2020).
[152] S. Hou and Z.-H. Zhu, J. High Energy Phys. 01 (2021) 083.
[153] A. Seraj, J. High Energy Phys. 05 (2021) 283.
[154] K. Mitman, J. Moxon, M. A. Scheel, S. A. Teukolsky, M.

Boyle, N. Deppe, L. E. Kidder, and W. Throwe, Phys. Rev.
D 102, 104007 (2020).

[155] K. Mitman et al., Phys. Rev. D 103, 024031 (2021).
[156] S. Tahura, D. A. Nichols, A. Saffer, L. C. Stein, and K.

Yagi, Phys. Rev. D 103, 104026 (2021).
[157] S. Tahura, D. A. Nichols, and K. Yagi, Phys. Rev. D 104,

104010 (2021).
[158] L. Heisenberg, N. Yunes, and J. Zosso, arXiv:2303.02021.
[159] T. W. Baumgarte and S. L. Shapiro, Numerical Relativity:

Solving Einstein’s Equations on the Computer (Cambridge
University Press, Cambridge, England, 2010).

NUMERICAL SIMULATIONS OF BLACK HOLE-NEUTRON STAR … PHYS. REV. D 107, 124051 (2023)

124051-21

https://doi.org/10.1103/PhysRevD.94.104064
https://doi.org/10.1103/PhysRevD.94.104064
https://doi.org/10.1103/PhysRevD.52.628
https://doi.org/10.1103/PhysRevD.52.628
https://doi.org/10.1103/PhysRevLett.85.2236
https://doi.org/10.1038/nature01997
https://doi.org/10.1038/nature01997
https://doi.org/10.1103/PhysRevD.100.104048
https://doi.org/10.1103/PhysRevD.100.104048
https://doi.org/10.1086/533487
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1142/S0218271814300146
https://doi.org/10.1142/S0218271814300146
https://doi.org/10.1103/PhysRevD.77.124051
https://doi.org/10.1088/0264-9381/33/22/225012
https://doi.org/10.1088/0264-9381/33/22/225012
https://doi.org/10.1103/PhysRevD.103.064007
https://doi.org/10.1103/PhysRevD.89.103012
https://doi.org/10.1103/PhysRevD.89.103012
https://doi.org/10.1103/PhysRevResearch.1.033015
https://doi.org/10.1103/PhysRevResearch.1.033015
https://doi.org/10.1103/PhysRevD.52.821
https://doi.org/10.1103/PhysRevD.57.4566
https://doi.org/10.1103/PhysRevD.57.4566
https://doi.org/10.1103/PhysRevD.78.124020
https://doi.org/10.1103/PhysRevD.78.124020
https://doi.org/10.1103/PhysRevD.82.024014
https://doi.org/10.1103/PhysRevD.82.024014
https://doi.org/10.1103/PhysRevD.95.104004
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1103/PhysRevLett.116.181101
https://doi.org/10.1103/PhysRevD.94.104028
https://doi.org/10.7935/GT1W-FZ16
https://doi.org/10.7935/GT1W-FZ16
https://doi.org/10.1103/PhysRevD.98.081501
https://doi.org/10.1103/PhysRevD.98.081501
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1724257
https://doi.org/10.1103/PhysRevD.94.104063
https://doi.org/10.1103/PhysRevD.94.104063
https://doi.org/10.1103/PhysRevD.102.021502
https://doi.org/10.1007/JHEP01(2021)083
https://doi.org/10.1007/JHEP05(2021)283
https://doi.org/10.1103/PhysRevD.102.104007
https://doi.org/10.1103/PhysRevD.102.104007
https://doi.org/10.1103/PhysRevD.103.024031
https://doi.org/10.1103/PhysRevD.103.104026
https://doi.org/10.1103/PhysRevD.104.104010
https://doi.org/10.1103/PhysRevD.104.104010
https://arXiv.org/abs/2303.02021

