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In our previous papers [Phys. Rev. D 104, 064025 (2021); 105, 064074 (2022); 106, 084007 (2022)], we
analyzed the asymptotic behavior of future directed null geodesics near future null infinity, and then we
showed a proposition on the accessibility of the null geodesics to future null infinity in a specific class of
asymptotically flat spacetimes. In this paper, we adopt the retarded time of the Bondi coordinate as the
parameter for the null geodesics and then see that one can relax the assumptions imposed in our previous
studies. As a consequence, we obtain a new null-access theorem for generic asymptotically flat spacetimes.
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I. INTRODUCTION

Black holes are characterized by such strong gravity that
photons cannot escape from them. Observation of photon
emissions from the neighborhood of a black hole shows us
a dark region called the shadow, which is reported by Event
Horizon Telescope Collaboration [1,2]. In the mathematical
formulation for observation of a strong gravity region
such as a black hole shadow [3], asymptotic behavior of
null geodesics near future null infinity is important, because
a distant observer is approximately located at future null
infinity. In our previous papers [4–6], we have addressed
this issue.
Naively, any null geodesic emanating from near future

null infinity in a noninward direction would trivially reach
future null infinity. However, this turned out to be rather
nontrivial. In Refs. [4–6] (see [6] and its erratum for the
strongest evaluation so far), it was shown that, in four
dimensions, gravity affects the null geodesic motion at the
leading order in the radial coordinate expansion near future
null infinity, while it does not in higher dimensions. In
particular, sufficient conditions for null geodesics to reach
future null infinity were presented. This condition con-
strains both the metric and the initial direction of the null
geodesic. For the metric, it was assumed that, near future
null infinity, the null energy condition holds, and the
gravitational wave and matter radiation are not strong

enough compared to the Planck luminosity density [7].
For the constraints on the null geodesic, it was assumed that
a corresponding photon is emitted in an inward direction at
a small angle to a constant radial surface or in an outward
direction so that the radial coordinate expansion works
throughout the geodesic we consider.
In this paper, we reexamine the analyses in our previous

papers, especially in Refs. [4,6], and then we will relax the
assumption. As a consequence, we could have a proposi-
tion on accessibility of null geodesics to future null infinity
which is applicable to the generic four-dimensional
asymptotically flat spacetime. We call this theorem the
“null-access theorem,” which would give fairly optimal
conditions that guarantee the accessibility of null geodesics
to future null infinity for general situations. We will discuss
only the four-dimensional case, because, in the higher-
dimensional case, it has been already shown in Refs. [4,6]
that the null energy condition and the assumptions for the
metric are not required.
The rest of this paper is organized as follows. In Sec. II,

we give the radial component of null geodesic equation
near future null infinity and present the main proposition
(the null-access theorem). In Sec. III, we prove the main
proposition. Section IV is devoted to a summary and
discussion. In Appendix A, we provide a detailed analysis
on the null geodesic equations. In Appendix B, we show
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that the difference between the total derivative and partial
derivative of the position of a photon with respect to the
retarded time along the geodesic is negligible at the leading
order in our estimation. In Appendix C, we discuss the
exceptional case that our main proposition is not directly
applicable, but one can discuss the accessibility of the null
geodesics to future null infinity in a merely simple proof.
In Appendix D, the details of the proof of showing the
divergence of the radial coordinate along the null geodesic
is presented by studying the null geodesic equations
explicitly, while the essential point is given in the main
text. Throughout this paper, we assume the metric to be
C2− functions (i.e., class C1;1).

II. ASYMPTOTICS AND MAIN PROPOSITION

In this section, we first give the asymptotic form of
the metric and the radial component of the null geodesic
equation in four-dimensional asymptotically flat space-
times. Then, we present our main proposition. The proof
will be given in Sec. III.

A. Null geodesic equations near future null infinity

We consider a four-dimensional asymptotically flat space-
time. In the Bondi coordinates fu; r; xIg, where u, r, and xI
are the retarded time, radial, and angular coordinates,
respectively, the nonzero components of the metric gμν near
future null infinity behave as [8,9]

guu ¼ −1þmr−1 þOðr−2Þ; gur ¼ −1þOðr−2Þ;
gIJ ¼ ωIJr2 þ hð1ÞIJ rþOðr0Þ; guI ¼ Oðr0Þ: ð1Þ

Here, ωIJ is the metric of the unit two-dimensional sphere,
and future null infinity is described by the limit of r → ∞
while u is kept finite. We note, in this case, that expansion

coefficients, such asm and hð1ÞIJ , are assumed to be bounded,
which will be used later. Although Eq. (1) originates from
the vacuum Einstein equation, we will not use the Einstein
equation itself. Spacetimes that we will analyze are generic
in the sense that we do not assume other conditions than
Eq. (1) such as ∂m=∂u ≤ 0, while it was assumed in
Refs. [4,6]. Note that we do not restrict the gravity theory
to general relativity as long as the asymptotic behavior of the
metric satisfies Eq. (1).
The integration ofmðu; xIÞ over the solid angle yields the

Bondi mass:

MðuÞ ≔ 1

8π

Z
S2
mdΩ: ð2Þ

As the gauge condition, we impose

detðgIJÞ ¼ det ðr2ωIJÞ; ð3Þ

which gives us ωIJhð1ÞIJ ¼ 0.
We basically adopt the retarded time u to parametrize the

worldline of a photon in this paper. For the angular vector
space, then, we introduce the unit vector eK (with respect to
the metric ωIJ) by

eK ≔
�
ωIJ

dxI

du
dxJ

du

�−1=2 dxK

du
: ð4Þ

For any tensor αIJðu; xIÞ in angular space, it is useful to
define a function αðu; xI; dxJ=duÞ as

α

�
u; xI;

dxJ

du

�
≔ αKLeKeL

¼
�
ωIJ

dxI

du
dxJ

du

�−1
αKLðu; xMÞ

dxK

du
dxL

du
:

ð5Þ

Note that αðu; xI; dxJ=duÞ depends on the direction of
dxJ=du but not on its norm. A tensor

ΩIJ ≔ ωIJ −
1

2

∂hð1ÞIJ

∂u
þ 1

2

∂m
∂u

ωIJ ð6Þ

appears as an important quantity to determine the behavior
of null geodesics near future null infinity, that was shown
in our previous analysis of Refs. [4–6]. The first term in
Eq. (6) is interpreted as the centrifugal force in the r
component of the geodesic equation (see Refs. [4–6] for
details). For ΩIJ, a function defined in Eq. (5) is

Ω
�
u; xI;

dxJ

du

�
¼ 1 −

1

2

∂hð1Þ

∂u

�
u; xI;

dxJ

du

�
þ 1

2

∂m
∂u

ðu; xIÞ:

ð7Þ

For a comparison, we summarize the proposition shown
in Ref. [6] (see the erratum, too; there are crucial
corrections).
Proposition 1.—Consider a four-dimensional asymptoti-

cally flat spacetime in which the metric near future null
infinity is written as Eq. (1) with the Bondi coordinates
by C2− functions. Suppose that ΩIJ defined by Eq. (6) is
positive definite and ∂m=∂u ≤ 0 holds everywhere near
future null infinity. We define Ωi as the infimum of Ω,
where Ω is introduced in Eq. (7). Then, take a point p with
a sufficiently large coordinate value r ¼ r0. Any null
geodesic emanating from p reaches future null infinity if

0 <

�
dr
du

����
p
− βcrit

�
−1

¼ oðr0Þ ð8Þ
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holds, where1

βcrit ≔
−3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 − 6Ωi
p
3

: ð9Þ

To be more specific, the phrase “a sufficiently large
coordinate value r ¼ r0”means that r ¼ r0 is large enough
compared to the coefficients of the r expansion of the
metric and their derivatives with respect to u and xI .
We will reexamine the assumption in Proposition 1 by
carefully analyzing the integrals of quantities involved in
the geodesic equations along the geodesic. This makes the
analysis sharp, and then one can have a statement on the
accessibility of future directed null geodesics to future null
infinity which is applicable to the generic asymptotically
flat spacetime.
After long calculations, near future null infinity, we can

write down the r component of the geodesic equation as
(see Appendix A for the details)

d2r
du2

¼
�
2

�
dr
du

�
2

þ
�
3 −

∂hð1Þ

∂u

�
u; xI;

dxJ

du

��
dr
du

þΩ
	

× ½r−1 þOðr−2Þ�: ð10Þ

B. Main proposition

Now we are ready to present our main proposition.
Before that, we give a useful lemma.
Lemma 1.—Consider a four-dimensional asymptotically

flat spacetime in which the metric near future null infinity
is written as Eq. (1) with the gauge condition of Eq. (3).
Let Ωi denote the infimum of Ω:

Ωi ≔ inf
u;xI ;dxJ=du

Ω; ð11Þ

where Ω is given in Eq. (7). Then, Ωi should satisfy

Ωi ≤ 1: ð12Þ

For the comparison, we stress that the condition
∂m=∂u ≤ 0 was assumed to show Ωi ≤ 1 (which played
an important role to discuss whether photons reach
future null infinity) in Ref. [6], whereas we do not assume
∂m=∂u ≤ 0 here.
This lemma can be proven as follows. The gauge

condition of Eq. (3), that is, ωIJhð1ÞIJ ¼ 0, gives us

ωIJΩIJ ¼ 2þ ∂m
∂u

: ð13Þ

Since ωIJ is given by ωIJ ¼ eI1e
J
1 þ eI2e

J
2 with a pair of unit

orthonormal vectors eI1 and eI2, we have

ωIJΩIJ ¼ min
dxJ=du

Ωþ max
dxJ=du

Ω ≥ 2 min
dxJ=du

Ω; ð14Þ

for each u; xI. Then, we see

Ωi ≤ 1þ 1

2
inf
u;xI

∂m
∂u

: ð15Þ

Since m is bounded, the infimum of ∂m=∂u must not
be positive even though we do not assume ∂m=∂u ≤ 0
explicitly. Therefore, Eq. (15) gives us Eq. (12), which
completes a proof of Lemma 1.
The proposition of this paper is summarized as follows.
Proposition 2 (null-access theorem).—Consider a generic

four-dimensional asymptotically flat spacetime in which
the metric near future null infinity is written as Eq. (1) with
the Bondi coordinates by C2− functions. We assume the
gauge condition of Eq. (3). We define Ωi as the infimum of
Ω, where Ω is introduced in Eq. (7). Then, take a point p
with a sufficiently large coordinate value r ¼ r0. Any null
geodesic emanating from p reaches future null infinity if

0 <

�
dr
du

����
p
− βcrit

�
−1

¼ oðr0Þ ð16Þ

holds, where, for Ωi > 0,

βcrit ≔
−3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 − 6Ωi
p
3

ð17Þ

and, for Ωi ≤ 0, βcrit is an arbitrary positive constant.
There are several remarks. (i) First, we note that βcrit is

real by virtue of Lemma 1. (ii) We would stress again
that this proposition does not assume ∂m=∂u ≤ 0 nor the
positive definiteness of ΩIJ assumed for Proposition 1
shown in Ref. [6]. (iii) The condition (16) does not include
the case of u0 ¼ 0 at p, where the prime denotes the
derivative with respect to the affine parameter. However,
we can show that the future directed null geodesics with
u0 ¼ 0 will reach future null infinity. See Appendix C for
the details.

III. PROOF OF PROPOSITION 2

The proof of Proposition 2 is composed of three steps. At
the first step, it is shown that dr=du will become non-
negative even for the case with initially negative dr=du.
The second and third steps show that u is kept finite and
that r goes to infinity, respectively.

A. Asymptotic behavior of dr=du

We first discuss the case with dr=du < 0 at the initial
point p, which gives us Ωi > 0 from the assumption of the

1Note that βcrit in Ref. [6] represents the same quantity as _rcrit.
Throughout this paper, we do not use “dot” notation to distin-
guish between total and partial derivatives.
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proposition. As was derived in Ref. [6] and its erratum,
there exists u1, which is larger than the value of u at the
initial point p, satisfying both2

dr
du

ðu1Þ > 0; ð18Þ

rðu1Þ ≥ C1r0; ð19Þ

where C1 is a positive constant defined as

C1 ≔
1

3

�
3

�
dr
du

ð0Þ
�

2

þ 6
dr
du

ð0Þ þ 2Ωi

	

×

�
2

�
dr
du

ð0Þ
�

2

þ 3
dr
du

ð0Þ þ Ωi

	
−1
: ð20Þ

Note that βcrit defined by Eq. (17) is the largest solution
to the quadratic equation for ðdr=duÞð0Þ such that the
numerator in the expression (20) of C1 vanishes, but the
denominator does not. Thus, the condition (16) tells us
C1 ¼ 1=oðr0Þ and then Eq. (19) enables the r expansion
adopted here to work appropriately (see Ref. [6] for
details). For Ωi ≤ 0, at the initial point p in Proposition
2, we have dr=dujp > 0 under the condition of Eq. (16).
Here, we take rðu1Þ ¼ r0 at p.
Now, we see ðdr=duÞðu1Þ > 0 for both Ωi > 0 and

Ωi ≤ 0 cases. From now on, in order to deal with both cases
in a unified manner with the common notation, we
introduce C1, which was defined for Ωi > 0 as Eq. (20),
to be C1 ¼ 1 for Ωi ≤ 0. Then, we see that the equality
holds with in Eq. (19) for the Ωi ≤ 0 case.

B. Finiteness of u

Let us show that u does not diverge along future directed

null geodesics in the current setup. Using hð1Þ for hð1ÞIJ
defined through Eq. (5), we define β1ðu; xI; dxJ=duÞ as

β1

�
u; xI;

dxJ

du

�
≔ −2

�
3−

∂hð1Þ

∂u

�
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3−

∂hð1Þ

∂u

�
2

−Ω

s

ð21Þ

if u, xI , and dxJ=du satisfy

�
3 −

∂hð1Þ

∂u

�
2

−Ω ≥ 0; ð22Þ

and, otherwise, we set

β1 ¼ 0: ð23Þ

If dr=du > β1, we see that

1

4

�
dr
du

�
2

þ
�
3 −

∂hð1Þ

∂u

�
dr
du

þΩ > 0 ð24Þ

holds, which we will use for the estimate of the left-hand
side of Eq. (10) later. Defining β2 as

β2 ≔ sup
u;xI ;dxJ=du

β1

�
u; xI;

dxJ

du

�
; ð25Þ

we see that Eq. (24) holds for dr=du > β2. But there is
still a possibility that 0 < ðdr=duÞðu1Þ ≤ β2. Therefore,
let us show by contradiction that, even if we start with
0 < ðdr=duÞðu1Þ ≤ β2, ðdr=duÞðu2Þ > β2 is satisfied for
some u2 (> u1). In other words, we impose the condition
dr=du ≤ β2 for any u ≥ u1 which leads us to the contra-
diction as shown in the next paragraph.
We first show that ðdr=duÞðuÞ is positive for u > u1 by

contradiction. So let us suppose this positivity is violated
for some u > u1, under the assumption dr=du ≤ β2. This
guarantees the existence of the minimum umin of u > u1
satisfying ðdr=duÞðuÞ ¼ 0. Note that, for u1 < u < umin,
0 < dr=du ≤ β2 is satisfied, and, thus, Eq. (19) gives

rðuÞ ≥ rðu1Þ ≥ C1r0: ð26Þ

For Ωi > 0 at u ¼ umin, Eq. (10) gives d2r=du2 > 0,
whereas, since ðdr=duÞðuÞ is positive for u1 < u < umin,
d2r=du2 should be negative. This results in a contradiction.
For Ωi ≤ 0, more detailed analysis is required. For
u1 < u < umin, Eq. (10) together with Eq. (B10) gives us3

d
du

�
r
dr
du

�
>

�
−

d
du

�
dr
du

hð1Þ
�
þ Ω̂

	
½1þOðr−10 Þ�; ð27Þ

where

Ω̂ ≔ 1 −
1

2

dhð1Þ

du
þ 1

2

dm
du

: ð28Þ

2In erratum of Ref. [6], rðuÞ was evaluated as

rðuÞ ≥ 1

2
r0ð3_rð0Þ2 þ 6_rð0Þ þ 2ΩiÞð2_rð0Þ2 þ 3_rð0Þ þ ΩiÞ−1

× ½1þOðr−10 Þ�;

where the dot denotes the derivative with respect to u. Equa-
tion (19) is obtained by noting 1þOðr−10 Þ > 2=3 for sufficiently
large r0.

3Note that the partial derivative with respect to u does not
appear. We did some careful estimation. See Appendix B for the
details.
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Then, the integration of Eq. (27) implies

rðuÞ dr
du

ðuÞ − rðu1Þ
dr
du

ðu1Þ >
�
−
dr
du

ðuÞhð1ÞðuÞ þ dr
du

ðu1Þhð1Þðu1Þ þ u − u1

−
1

2
hð1ÞðuÞ þ 1

2
hð1Þðu1Þ þ

1

2
mðuÞ − 1

2
mðu1Þ

	
½1þOðr−10 Þ�

¼ ½1þOðr−10 Þ�ðu − u1Þ þOðr00Þ; ð29Þ

where, in the last equality, we used the condition 0 <
dr=du ≤ β2 and the fact that β2, hð1ÞðuÞ, and mðuÞ are
quantities of Oðr00Þ. Recalling u1 ¼ u0 for Ωi ≤ 0, we
obtain ðdr=duÞðu1Þ > βcrit > 0 due to Eq. (16). Then,
Eq. (29) gives

rðuminÞ
dr
du

ðuminÞ > rðu1Þ
dr
du

ðu1Þ þOðr00Þ > 0; ð30Þ

where, in the second inequality, we used the fact that, since
the first term is comparable to r10, it dominates over the
second term ofOðr00Þ. This result contradicts the definition
of umin. Thus, ðdr=duÞðuÞ is positive4 for u > u1.
In a similar way to the derivation of Eq. (27), we have

dr
du

ðuÞ − dr
du

ðu1Þ > ½r−10 þOðr−20 Þ�ðu − u1Þ þOðr−10 Þ:
ð31Þ

The left-hand side of the above can be arbitrarily large
by taking sufficiently large u, which means that
ðdr=duÞðuÞ > β2 holds at finite u.
Next, let us investigate the behavior after ðdr=duÞðuÞ >

β2 is achieved. We set a value of u ≥ u1 satisfying
ðdr=duÞðuÞ > β2 as u2. We can take u2 ¼ u1 for the case
ðdr=duÞðu1Þ > β2. Using Eq. (24), Eq. (10) implies

d2r
du2

>
7

4

�
dr
du

�
2

r−1½1þOðr−1Þ�

>
3

2

�
dr
du

�
2

r−1 ð32Þ

for u satisfying ðdr=duÞðuÞ > β2. This means that, once
ðdr=duÞðuÞ > β2 is achieved, ðdr=duÞðuÞ keeps increas-
ing. Therefore, ðdr=duÞðuÞ > β2 is satisfied for u > u2.
From Eq. (32), we see

d2

du2
½r−1=2ðuÞ� < 0: ð33Þ

Integrating this inequality, we have

dr
du

ðuÞ > C2r3=2ðuÞ ð34Þ

for a positive constant C2 ≔ rðu2Þ−3=2ðdr=duÞðu2Þ, which
is independent of u. This is rewritten as

0 <
du
dr

ðuÞ < ð1=C2Þr−3=2ðuÞ: ð35Þ

Integrating this inequality for ½u2; u�, we obtain

u < u2 þ ð2=C2Þ½r−1=2ðu2Þ − r−1=2ðuÞ�
< u2 þ ð2=C2Þr−1=2ðu2Þ; ð36Þ

where we used C2 > 0 in the second inequality. This means
that, for some u3, u is bounded as u < u3.
We now show that the null geodesic actually arrives at

future null infinity. Suppose, for the sake of contradiction,
that the null geodesic stays within the region r < r3
with some finite constant r3. Since dr=du > β2, the
null geodesic exists within the region r2 ≤ r < r3.
Here, we note that every r-constant surface crosses
u ¼ u3, and, furthermore, the region r2 ≤ r < r3 and
u2 ≤ u < u3 is finite. Then, any causal curve starting
from ðu;rÞ¼ðu2;r2Þ and staying within r2≤ r<r3 inevi-
tably arrives at u ¼ u3.

5 This contradicts the property
u < u3 that has been proven above. Therefore, the value
of r of the null geodesic under consideration must diverge.
In Appendix D, the proof of showing the divergence of r is
explicitly presented by studying the null geodesic equa-
tions for completeness. This completes the proof of the
null-access theorem.

IV. SUMMARY AND DISCUSSION

In this paper, we have established the null-access
theorem (Proposition 2) that shows the accessibility of

4One may be interested in the case of rðuminÞ ¼ ∞ and
ðdr=duÞðuminÞ ¼ 0. We do not have to care about this possibility
in our proof, since rðuminÞ ¼ ∞ for finite umin means that the null
geodesic reaches future null infinity.

5We tacitly suppose that, near the asymptotic region, the affine
parameter of any future null geodesics never becomes infinite
within r2 ≤ r < r3 and u2 ≤ u < u3. Even without this implicit
assumption, the divergence of r can be proven, as shown in
Appendix D.
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null geodesics to future null infinity in the generic four-
dimensional asymptotically flat spacetime. The effect of the
tiny difference from the exactly flat Minkowski spacetime
on the null geodesics is of the same order as the centrifugal
force near future null infinity, even though the difference
of geometry decays as one approaches infinity. This makes
the behavior of null geodesics nontrivial, as we have shown
in Refs. [4–6]. We proved here that βcrit introduced by
Eq. (17) gives us the minimum initial value of dr=du to
guarantee that the geodesic will reach future null infinity.
Note that the condition for the initial direction in our null-
access theorem in the present paper is specific to four
dimensions. In higher-dimensional asymptotically flat
spacetimes, the effects of the difference from the exactly
flat spacetime on geodesic equations are of higher order
compared to that of the centrifugal force, where Ωi is
replaced by 1 as seen in Refs. [4–6].
Proposition 2 gives us a sufficient condition for null

geodesics emanating from near future null infinity, not a
necessary condition. In the Vaidya spacetime, null geo-
desics emitted inwardly at larger angles to the r-constant
surface than those constrained by Eq. (16) also reach future
null infinity [6]. In this case, null geodesics may pass rather
small r regions where expansion with 1=r does not work.
This is why we eliminated such cases and constrained
dr=du as Eq. (16) in Proposition 2.
We have used the asymptotic behavior of the metric

Eq. (1) near future null infinity which is suitable for
general relativity. However, it would be possible to extend
Proposition 2 to other gravitational theories (see Ref. [10]
for an extension of Ref. [4] to Brans-Dicke theory).
Another possible extension would be to discuss the
spacetime with the cosmological constant. These issues
are left for future work.
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APPENDIX A: DETAILS OF NULL GEODESIC
EQUATIONS NEAR FUTURE NULL INFINITY

In this appendix, we derive the evolution equation of
rðuÞ by using the geodesic equations and the condition for
the geodesic to be null. See Appendix C for the case of
u0 ¼ 0, where the prime denotes the derivative with respect
to the affine parameter. Let us define jðxIÞ0j as

jðxIÞ0j ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωIJðxIÞ0ðxJÞ0

q
: ðA1Þ

Near future null infinity, the r component of the geodesic
equation is written as

r00 ¼ −Γr
uuu02 − 2Γr

uru0r0 − Γr
rrr02 − 2Γr

uIu
0ðxIÞ0 − 2Γr

rIr
0ðxIÞ0 − Γr

IJðxIÞ0ðxJÞ0

¼
�
1

2

∂m
∂u

r−1 þOðr−2Þ
	
u02 þOðr−2Þu0r0 þOðr−3Þr02 þOðr−1Þu0ðxIÞ0

þOðr−1Þr0ðxIÞ0 þ
" 

ωIJ −
1

2

∂hð1ÞIJ

∂u

!
rþOðr0Þ

#
ðxIÞ0ðxJÞ0

¼
�
1

2

∂m
∂u

r−1 þOðr−2Þ
	
u02 þOðr−2Þr02 þ

" 
ωIJ −

1

2

∂hð1ÞIJ

∂u

!
rþOðr0Þ

#
ðxIÞ0ðxJÞ0; ðA2Þ

where, in the last line, we used the arithmetic-geometric mean inequalities

ju0r0j ≤ 1

2
u02 þ 1

2
r02; ðA3Þ

ju0jjðxIÞ0j ≤ 1

2
r−1u02 þ 1

2
rjðxIÞ0j2; ðA4Þ

jr0jjðxIÞ0j ≤ 1

2
r−1r02 þ 1

2
rjðxIÞ0j2: ðA5Þ
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Similarly, for the u and xI components, we have

u00 ¼ −Γu
uuu02 − 2Γu

uIu
0ðxIÞ0 − Γu

IJðxIÞ0ðxJÞ0
¼ Oðr−2Þu02 þOðr−2Þu0ðxIÞ0 − ½ωIJrþOðr0Þ�ðxIÞ0ðxJÞ0
¼ Oðr−2Þu02 − ½ωIJrþOðr0Þ�ðxIÞ0ðxJÞ0; ðA6Þ

ðxIÞ00 ¼ −ΓI
uuu02 − 2ΓI

uru0r0 − 2ΓI
uJu

0ðxJÞ0 − 2ΓI
rJr

0ðxJÞ0 − ΓI
JKðxJÞ0ðxKÞ0

¼ Oðr−2Þu02 þOðr−4Þu0r0 þOðr−1Þu0ðxJÞ0 þOðr−1Þr0jðxIÞ0j þOðr0ÞjðxIÞ0j2: ðA7Þ

The condition for the geodesic tangent to be null becomes

0 ¼ ½−1þOðr−1Þ�u02 þ ½−2þOðr−2Þ�u0r0 þ ½ωIJr2 þOðr1Þ�ðxIÞ0ðxJÞ0 þOðr0Þu0ðxJÞ0
¼ ½−1þOðr−1Þ�u02 þ ½−2þOðr−2Þ�u0r0 þ ½ωIJr2 þOðr1Þ�ðxIÞ0ðxJÞ0; ðA8Þ

where we used Eq. (A4) in the last line. This gives us

jðxIÞ0j2 ¼ ½r−2 þOðr−3Þ�u02 þ 2½r−2 þOðr−3Þ�u0r0: ðA9Þ

Thus, for u0 > 0, Eq. (A9) is rewritten as���� dxIdu

����2 ¼ ½r−2 þOðr−3Þ� þ 2½r−2 þOðr−3Þ� dr
du

: ðA10Þ

Using Eqs. (A6) and (A9), for u0 > 0, Eq. (A2) becomes

d2r
du2

¼ ΩIJr
dxI

du
dxJ

du
þOðr0Þ

���� dxIdu

����2

þ 2½r−1 þOðr−2Þ�
�
dr
du

�
2

þ
��

1 −
∂m
∂u

�
r−1 þOðr−2Þ

	
dr
du

: ðA11Þ

With Eq. (A9) and the definition of Ω of Eq. (7), Eq. (A11)
is expressed as Eq. (10) in the main text.
Similarly, Eq. (A7) is rewritten as

d2xI

du2
¼ Oðr−2Þ þOðr−4Þ dr

du
þOðr−1Þ dx

I

du

þOðr−1Þ dr
du

dxI

du
þOðr0Þ

���� dxIdu

����2 ðA12Þ

for u0 > 0.

APPENDIX B: DIFFERENCE BETWEEN TOTAL
AND PARTIAL DERIVATIVE

In this appendix, we show that the differences between
the total and partial derivatives of hð1Þ and m are of higher
order, which will be used in the main text. For this purpose,
we restrict our attention to the case where

0 <
dr
du

ðuÞ ≤ β2 ðB1Þ

and Eq. (26) hold. Let us check the case of hð1Þ first. We
easily see that

d
du

�
hð1Þ
�
u;xI;

dxJ

du

�	
¼ ∂hð1Þ

∂u
þ ∂hð1Þ

∂xK
dxK

du
þ ∂hð1Þ

∂ðdxKdu Þ
d2xK

du2

ðB2Þ

holds. With Eq (B1), Eq. (A10) shows us

jdxI=duj ¼ Oðr−1Þ; ðB3Þ

jdxI=duj−1 ¼ Oðr1Þ: ðB4Þ

Getting back to the concrete expression for hð1Þ following
Eq. (5), we can estimate the quantities appearing in the
left-hand side of Eq. (B2) as

∂hð1Þ

∂xK
¼ ∂hð1ÞMN

∂xK
eMeN ¼ Oðr0Þ; ðB5Þ

∂hð1Þ

∂ðdxKdu Þ
¼ −2

�
ωIJ

dxI

du
dxJ

du

�−2
ωKL

dxL

du
hð1ÞMN

dxM

du
dxN

du

þ 2

�
ωIJ

dxI

du
dxJ

du

�−1
hð1ÞKL

dxL

du

¼ Oðr1Þ: ðB6Þ

In the last equality for both Eqs. (B5) and (B6), we used
Eqs. (B3) and (B4).
In addition, with the help of Eqs. (B1) and (B3),

Eq. (A12) tells us

d2xI

du2
¼ Oðr−2Þ: ðB7Þ

ASYMPTOTIC BEHAVIOR …. IV. NULL-ACCESS THEOREM … PHYS. REV. D 107, 124050 (2023)

124050-7



Then, using Eqs. (26), (B3), and (B5)–(B7) in the estimate,
Eq. (B2) gives us

dhð1Þ

du
−
∂hð1Þ

∂u
¼ Oðr−1Þ ¼ Oðr−10 Þ: ðB8Þ

In a similar way, we see that

dm
du

−
∂m
∂u

¼ Oðr−10 Þ ðB9Þ

holds.
The following calculation will be used for the derivation

of Eq. (27):

d
du

�
dr
du

hð1Þ
�

¼ d2r
du2

hð1Þ þ dr
du

�
∂hð1Þ

∂u
þOðr−10 Þ

�

¼
�
2

�
dr
du

�
2

þ
�
3 −

∂hð1Þ

∂u

�
dr
du

þ Ω
	

× ½r−1 þOðr−2Þ�hð1Þ

þ dr
du

�
∂hð1Þ

∂u
þOðr−10 Þ

�

¼ dr
du

∂hð1Þ

∂u
þOðr−10 Þ; ðB10Þ

where we used Eq. (B8) in the first equality, Eq. (10) in the
second equality, and Eqs. (B1) and (26) in the last equality.

APPENDIX C: SPECIAL CASE OF u0 = 0

Under the same setup without the condition (16) in
Proposition 2, in this appendix, we will show that the
null geodesic emanating from a point p reaches future null
infinity if u0 ¼ 0 holds at p, where the prime denotes the
derivative with respect to the affine parameter λ. In the
Minkowski spacetime, u0 ¼ 0 implies r0 > 0 for a future
directed affine parameter. Without loss of generality,

following this, we can set the affine parameter so that
r0 > 0 holds at p.
For any point with u0 ¼ 0, the null condition of Eq. (A9)

implies that ðxIÞ0 ¼ 0 holds at this point. Then, the u
component of the geodesic equation of Eq. (A6) gives us
u00 ¼ 0 at this point. Therefore, we can see that u0 ¼ 0
holds at any point along the future directed null geodesic,
which means that u is kept finite when the affine parameter
goes to infinity. We also see that ðxIÞ0 ¼ 0 holds at any
point along the null geodesic due to the null condition of
Eq. (A9). Then, at a point with u0 ¼ 0, Eq. (A2) becomes
r00 ¼ Oðr−2Þr02 and then we see that6

r00 > −C3r−2r02 ðC1Þ

holds for some positive constant C3. Dividing both sides of
Eq. (C1) with r0 and integrating them, we have

log r0 >
C3

r
þ C4 > C4 ðC2Þ

for some constant C4, where we used C3 > 0 in the second
inequality. This gives us7

r0 > eC4λþ C5 ðC3Þ

for some constant C5, which implies that

lim
λ→∞

r ¼ ∞: ðC4Þ

Therefore, the null geodesic reaches future null infinity.

APPENDIX D: DIVERGENCE OF r

In this appendix, we explicitly show that r will diverge
using the geodesic equations focusing on u > u2. Because
of Eqs. (A2) and (A9), we have

r00 ¼ Oðr−2Þr02 þ ½Ωr−1 þOðr−2Þ�u02 þ 2

��
1 −

1

2

∂hð1Þ

∂u

�
r−1 þOðr−2Þ

	
u0r0

> −C6r−2r02 þ
�
−
1

2

∂hð1Þ

∂u
þ 1

2

∂m
∂u

�
r−1u02 −

∂hð1Þ

∂u
r−1u0r0

¼
�
−C6r−2 þ

�
−
1

2

∂hð1Þ

∂u
þ 1

2

∂m
∂u

�
r−1
�
du
dr

�
2

−
∂hð1Þ

∂u
r−1

du
dr

	
r02

>

�
−C6 −

���� − 1

2

∂hð1Þ

∂u
þ 1

2

∂m
∂u

����C−2
2 r−2−

���� ∂hð1Þ
∂u

����C−1
2 r−1=2

	
r−2r02; ðD1Þ

6Note that a quantity ofOðr−2Þ in r00 ¼ Oðr−2Þr02 depends on u and xI . We take the infimum of this quantity throughout the spacetime
such that C3 is a constant throughout the spacetime.

7Equation (C3) guarantees that r0 will not become nonpositive.
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where the prime denotes the derivative with respect to the
affine parameter λ, C6 is a positive constant independent of
rðλÞ, and we used Eq. (35) in the last line. Then, there exists
a positive value C7ðu; xI; dxJ=du; u2Þ > 0 such that it does
not depend on r and

r00 > −C7

�
u; xI;

dxJ

du
; u2

�
r−2r02 ðD2Þ

holds.8 Note that C7ðu; xI; dxJ=du; u2Þ is not necessarily
small enough. Let C8ðu2Þð> 0Þ be the supremum of
C7ðu; xI; dxJ=du; u2Þ for u > u2. From Eq. (D2), we see

r00 > −C8ðu2Þr−2r02 ðD3Þ

and then it is rearranged to

ðlog r0Þ0 > C8ðu2Þð1=rÞ0 ðD4Þ

for r0 > 0. Here, let λ1 satisfy uðλ1Þ > u2. By integrating
Eq. (D4) for the interval ½λ1; λ�, we obtain

log r0ðλÞ > log r0ðλ1Þ þ C8ðu2Þðr−1ðλÞ − r−1ðλ1ÞÞ
> log r0ðλ1Þ − C8ðu2Þ=rðλ1Þ: ðD5Þ

This gives us

r0ðλÞ > r0ðλ1Þe−C8ðu2Þ=rðλ1Þ: ðD6Þ

Integration of Eq. (D6) for the interval ½λ1; λ� yields

rðλÞ > rðλ1Þ þ r0ðλ1Þe−C8ðu2Þ=rðλ1Þðλ − λ1Þ; ðD7Þ

and then we can see

lim
λ→∞

r ¼ ∞: ðD8Þ

Thus, r goes to infinity along the current null geodesics,
while u is kept finite.
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