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We use the Klein-Gordon equation in a curved spacetime to construct the relativistic analog of
the Schrödinger-Newton problem, where a scalar particle lives in a gravitational potential well
generated by its own probability distribution. A static, spherically symmetric metric is computed
from the field equations of general relativity, both directly and as modeled by a perfect-fluid
assumption that uses the Tolman-Oppenheimer-Volkov equation for hydrostatic equilibrium of the
mass density. The latter is appropriate for a Hartree approximation to the many-body problem of a
bosonic star. The simultaneous self-consistent solution of the Klein-Gordon equation in this curved
spacetime then yields solitons with a range of radial excitations. We compare results with the
nonrelativistic case.
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I. INTRODUCTION

If the probability distribution jΨj2 of a particle with mass
m is interpreted as a mass distribution mjΨj2, a gravita-
tional self-coupling can be considered. This was first
applied to bosonic stars by Ruffini and Bonazzola [1]
and then later considered as a mechanism for wave-
function collapse [2,3]. As formulated in a nonrelativistic
context, this is a coupling between the Schrödinger
equation and Newtonian gravity. This Schrödinger-
Newton problem has been studied extensively with numeri-
cal techniques [4–8]. It can be viewed as arising from a
semiclassical formulation of gravity [9], where matter is
quantized but gravity is not1 and where a nonrelativistic
limit is taken [10].
We instead directly consider the relativistic problem of a

scalar field bound in a spacetime curved by the probability

distribution for its own mass.2 The matter field contributes
to the stress-energy tensor that acts as a source term for the
general relativistic (GR) equations that determine the
metric [12,13]. The reduction of the GR equations for a
spherically symmetric spacetime is known [10]. The matter
obeys the Klein-Gordon (KG) equation in curved space-
time or, in the nonrelativistic case, the Schrödinger equa-
tion. The two sets of equations, GR and KG, must be solved
simultaneously.
For the hypothesized bosonic star, the matter equation

can be viewed as a Hartree approximation to the many-
body problem. This can be combined with the assumption
of a perfect fluid in hydrostatic equilibrium, which leads to
the Tolman-Oppenheimer-Volkov (TOV) equation for the
pressure [12–15]. The metric is then that of a perfect fluid
with a pressure determined by the TOV equation. This
equation and the KG equation are again solved self-
consistently.
The GR/KG system of equations can also be treated in

approximation via expansions in v=c and ℏ. Relativistic
corrections to the Schrödinger-Newton problem, up to first
post-Newtonian order, have been considered by BrizuelaPublished by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1In this context, the effect of wave-function collapse appears to
be inconsistent with causality [9].

2Self-gravitation of a Dirac field can also be considered. For a
recent discussion, see [11].
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and Duran-Cabacés [16]. Giulini and Großardt [10] con-
sider a WKB-type expansion. However, such approxima-
tions are not necessary because the original system of
equations can be solved numerically.
For the numerical calculation, we apply a finite-

difference approximation to the radial part of the KG
equation, which then becomes a matrix eigenvalue prob-
lem. The equations for the metric are solved on the same
discrete grid by a Runge-Kutta algorithm with an error term
consistent with the finite-difference approximation. The
two sets are solved self-consistently by iteration from an
initial guess.
We first consider the nonrelativistic Schrödinger–

Newton problem in Sec. II. This provides a basis for
comparison in considering the Einstein-Klein-Gordon sol-
iton in Sec. III, which recovers the nonrelativistic results in
the correct limit. In this section we treat both the perfect-
fluid model and the direct solution of the GR equations.
Throughout, we use units where ℏ and c are 1 but keep
Newton’s gravitational constant G explicit. We do limit our
discussion to spherically symmetric solutions; however,
axially symmetric solutions have been considered for the
nonrelativistic case [8,17].

II. SCHRÖDINGER-NEWTON SOLITONS

We assume spherical symmetry and therefore con-
sider only S states for the Schrödinger equation. The
angular part of the wave function then being trivial, we
focus on the radial equation for the reduced wave function
uðrÞ ¼ rRðrÞ,

−
1

2m
d2u
dr2

þ VðrÞuðrÞ ¼ EuðrÞ: ð2:1Þ

The self-coupling is through the potential V, which is
computed as the gravitational potential generated by a mass
distribution ρðrÞ ¼ mjψ j2 with ψ ¼ uðrÞ=r ffiffiffiffiffiffi

4π
p

. This
assumes a normalization of u as

R∞
0 juj2dr ¼ 1.

Inside the mass distribution, the gravitational field
magnitude FG is determined by Gauss’ law to be

FGðrÞ ¼
4πG
r2

Z
r

0

ρðr0Þr02dr0: ð2:2Þ

With the potential chosen to be zero at infinity, the potential
function is

VðrÞ ¼
Z

r

∞
mFGðr0Þdr0 ¼ 4πGm

Z
r

∞

dr0

r02

Z
r0

0

ρðr00Þr002dr00:

ð2:3Þ

A change of integration variable to ξ ¼ 1=r0, combined
with a division of the inner integral at r00 ¼ r ≤ 1=ξ, leaves

VðrÞ ¼ −4πGm
Z

1=r

0

dξ

�Z
r

0

ρðr00Þr002dr00

þ
Z

1=ξ

r
ρðr00Þr002dr00

�
: ð2:4Þ

By changing the order of integration, we have

VðrÞ ¼ −4πGm
�Z

r

0

ρðr00Þr002dr00
Z

1=r

0

dξ

þ
Z

∞

r
ρðr00Þr002dr00

Z
1=r00

0

dξ

�
: ð2:5Þ

The ξ integrals are now trivial. Use of ρ ¼ m
4πr2 juðrÞj2

reduces the expression for V to

VðrÞ¼−Gm2

�Z
r

0

juðr00Þj2
r

dr00 þ
Z

∞

r

juðr00Þj2
r00

dr00
�
: ð2:6Þ

This makes the Schrödinger equation (2.1) a nonlinear
equation.
We solve the combination of (2.1) and (2.6) self-

consistently by iteration. This is done numerically, with
a cutoff in radius rmax taken large enough to not influence
the solution significantly and with the second term in (2.6)
computed as an integral from zero to the cutoff minus the
integral from zero to r:

Z
rmax

r

juðr00Þj2
r00

dr00 ¼
Z

rmax

0

juðr00Þj2
r00

dr00 −
Z

r

0

juðr00Þj2
r00

dr00:

ð2:7Þ

TABLE I. Energy eigenvalues in units of G2m5 for the non-
relativistic (NR) Schrödinger-Newton solitons and the relativistic
Einstein-Klein-Gordon solitons, the latter being associated with
various values of the rescaled Schwarzschild radius ζS ¼ 2G2m4.
Here G is Newton’s gravitational constant and m is the mass
associated with the self-gravitating field. For the relativistic
results, “PF” indicates the perfect-fluid model and “GR,” the
direct general relativistic calculation. Relativistic effects increase
with ζS. Two radial excitations are listed, with n the number of
radial nodes in the wave function.

ζS Type n ¼ 0 n ¼ 1 n ¼ 2

NR −0.1628 −0.0309 −0.0125
0.01 PF −0.1631 −0.0308 −0.0125

GR −0.1631 −0.0308 −0.0125
0.1 PF −0.1663 −0.0308 −0.0126

GR −0.1657 −0.0309 −0.0125
0.2 PF −0.1701 −0.0311 −0.0126

GR −0.1688 −0.0310 −0.0126
0.5 PF −0.1839 −0.0315 −0.0126

GR −0.1795 −0.0313 −0.0126
1.0 PF −0.2218 −0.0322 −0.0127

GR −0.2045 −0.0318 −0.0127
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The wave function uðr00Þ goes to zero rapidly enough at
r00 ¼ 0 to avoid a singularity. The integrals are approxi-
mated by the trapezoidal rule, which generates values for
the potential V on the chosen grid, and the Schrödinger
equation is discretized on the same grid, to produce a
matrix eigenvalue problem from the finite-difference
representation.
For the numerical calculation, we introduce dimen-

sionless forms of Eqs. (2.1) and (2.6). The natural length
scale is the gravitational Bohr radius a ¼ 1=Gm3, and the
natural energy scale is G2m5. In terms of these we have a
dimensionless energy ϵ≡ E=G2m5 and dimensionless
radial coordinate ζ ≡ r=a and define a dimensionless wave
function ũ≡ ffiffiffi

a
p

u and potential Ṽ ≡ V=G2m5. The
Schrödinger-Newton system becomes

−
1

2

d2ũ
dζ2

þ ṼðζÞũðζÞ ¼ ϵũðζÞ ð2:8Þ

and

ṼðζÞ ¼ −
1

ζ

Z
ζ

0

jũðζ0Þj2dζ0 −
Z

ζmax

0

jũðζ0Þj2
ζ0

dζ0

þ
Z

ζ

0

jũðζ0Þj2
ζ0

dζ0: ð2:9Þ

We compute not only the lowest state but also radial
excitations, for which the potential is again obtained
self-consistently and therefore different for each state.3

Our results are consistent with earlier calculations [4–8].
Table I lists the results for the ground state and the lowest

FIG. 1. Plots of the modified radial wave function u in units of
ffiffiffi
a

p
, with a the gravitational Bohr radius 1=Gm3, for the ground-state

soliton (n ¼ 0) and two excited cases (n ¼ 1; 2), all for the nonrelativistic Schrödinger-Newton problem. Here n is the number of radial
nodes. The associated energies are listed in the first row of Table I. The dimensionless radial coordinate ζ is rescaled by a.

FIG. 2. Same as Fig. 1 but for the gravitational potential V, in units of G2m5. Each radial eigenfunction, labeled by n, has its own self-
consistent potential.
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two radial excitations. Figures 1 and 2 show the modified
radial wave function u and the shape of the gravitational
potential V for these same cases. However, our main
purpose is to compare with a fully relativistic calculation,
which we consider in the next section.

III. EINSTEIN-KLEIN-GORDON SOLITONS

A. Klein-Gordon equation in curved spacetime

For a proper representation of gravity in a relativistic
formulation, we must of course invoke spacetime curvature
as represented by a metric gμν. We are interested in static,
spherically symmetric solitons, which means that the
metric must have this symmetry. The KG equation for a
scalar particle of mass m in this curved spacetime is

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νΨðxÞ� þm2Ψ ¼ 0: ð3:1Þ

We choose spherical coordinates such that gμν is diagonal
and the line element is

ds2 ¼ g00dt2 − grrdr2 − r2dθ2 − r2sin2θdϕ2; ð3:2Þ

for which g≡ det½gμν� ¼ −g00grrr4 sin2 θ, with g00 and grr
functions only of the radial coordinate r. The KG equation
then takes the form

1

g̃r2 sin θ

�
∂

∂t

�
g̃r2 sin θ

g00

∂Ψ
∂t

�
−

∂

∂r

�
g̃r2 sin θ

grr

∂Ψ
∂r

�

−
∂

∂θ

�
g̃ sin θ

∂Ψ
∂θ

�
−

∂

∂ϕ

�
g̃

sin θ
∂Ψ
∂ϕ

��
þm2Ψ ¼ 0;

ð3:3Þ

where4 g̃≡ ffiffiffiffiffiffiffiffiffiffiffiffi
g00grr

p
so that

ffiffiffiffiffiffi−gp ¼ g̃r2 sin θ. For a static
metric and g̃ independent of angles, this reduces to

1

g00

∂
2Ψ
∂t2

−
1

g̃r2
∂

∂r

�
g̃r2

grr

∂Ψ
∂r

�
þ L2

r2
Ψþm2Ψ ¼ 0; ð3:4Þ

with the usual definition of L2 as

L2 ≡ −
�

1

sin θ
∂

∂θ

�
sin θ

∂

∂θ

�
þ 1

sin2 θ
∂
2

∂ϕ2

�
: ð3:5Þ

We then apply separation of variables with Ψ ¼
τðtÞRlðrÞYlmðθ;ϕÞ and isolate the t and r dependence as

1

τ

d2τ
dt2

¼ g00
g̃r2Rl

d
dr

�
g̃r2

grr

dRl

dr

�
−
�
lðlþ 1Þ

r2
þm2

�
g00 ≡ −E2:

ð3:6Þ

Here −E2 is the separation constant with E obviously
interpreted as an energy and E −m the binding energy. The
time-dependent τ function is just e�iEt.
We focus on the radial equation:

−
1

g̃r2
d
dr

�
g̃r2

grr

dRl

dr

�
þ lðlþ 1Þ

r2
Rl þm2Rl ¼

E2

g00
Rl: ð3:7Þ

To facilitate the numerical solution of this equation,
we wish to eliminate any first-derivative terms; a finite-
difference approximation will then yield a symmetric
matrix representation. To accomplish this, we introduce
a modified radial wave function ulðrÞ≡ hðrÞRlðrÞ with
hðrÞ chosen to eliminate any first-derivative terms in

d
dr

�
g̃r2

grr

dRl

dr

�
¼ d
dr

�
g̃r2

grrh

��
dul
dr

−
h0

h
ul

�

þ g̃r2

grrh

�
d2ul
dr2

−
h0

h
dul
dr

þ ðh0Þ2
h2

ul −
h00

h
ul

�
:

ð3:8Þ

The coefficient of dul
dr is set to zero:

d
dr

�
g̃r2

grrh

�
−

g̃r2

grrh
h0

h
¼ 0: ð3:9Þ

Except for a multiplicative constant, the solution is

h ¼ r

ffiffiffiffiffiffi
g̃
grr

s
: ð3:10Þ

The constant in h is irrelevant, given that h appears only in
ratios, or can be viewed as absorbed into the normalization
of ul. The condition (3.9) on h also eliminates two terms
proportional to ul, leaving

d
dr

�
g̃r2

grr

dRl

dr

�
¼ g̃r2

grrh

�
d2ul
dr2

−
h00

h
ul

�
: ð3:11Þ

This provides a relatively simple equation for ul:

−
d2ul
dr2

þh00

h
ulþ

�
lðlþ 1Þ

r2
þm2

�
grrul ¼

grr
g00

E2ul: ð3:12Þ

Solutions of this and the original radial equation for a fixed
metric, particularly the Schwarzschild metric, have been
considered numerically [19] and analytically [20–24].

3For perturbations of these solitons, see [18].
4For the Schwarzschild metric, g̃ ¼ 1. In [19] this was

incorrectly assumed true for other computed metrics, making
any non-Schwarzschild results there only qualitative.
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The normalization condition is

1 ¼
Z

∞

0

jRlj2
ffiffiffiffiffiffi
grr

p
r2dr ¼

Z
∞

0

julj2
grrffiffiffiffiffiffi
g00

p dr: ð3:13Þ

The probability density is

ρlm ¼ jRlj2jYlmj2 ¼
julj2
h2

jYlmj2: ð3:14Þ

B. Perfect-fluid approximation

To generate a spherically symmetric metric from a mass
density mρlm, we consider only l ¼ 0 and define the mass
density as

ρðrÞ ¼ mjuoj2
4πh2

: ð3:15Þ

This mass density is the source for the computation of the
metric. When viewed as a self-consistent solution in a
Hartree approximation to a many-body bosonic state, this
density can be modeled as a perfect fluid in hydrostatic
equilibrium. The metric is then determined by the TOV
equation [12–15] for the pressure pðrÞ,

dp
dr

¼ −G
½ρðrÞ þ pðrÞ�½μðrÞ þ 4πr3pðrÞ�

r½r − 2GμðrÞ� ; ð3:16Þ

with the mass function

μðrÞ≡ 4π

Z
r

0

ρðr0Þr02dr0: ð3:17Þ

For the spherically symmetric static case, the GR equations
are then satisfied by solutions of the form [13]

g00 ¼ e2AðrÞ; grr ¼
1

1 − 2GμðrÞ=r ; ð3:18Þ

with the metric function AðrÞ determined by

dA
dr

¼ G
μðrÞ þ 4πr3pðrÞ
r½r − 2GμðrÞ� : ð3:19Þ

These three equations, (3.16), (3.17), and (3.19), form a
coupled set of integro-differential equations for the metric
components with the boundary conditions μð0Þ ¼ 0,
AðrÞ ∼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GμðrÞ=rp

, pð∞Þ ¼ 0. The form of A
applies for r large enough that ρ is effectively zero and
all of the mass is contained. The mass function μ does not
reach m even at this range because the fluid structure
implicitly assumes internal gravitational binding energy.
Thus μð∞Þ is equal to the mass m minus the gravitational
binding energy of the fluid, and μ is computed without a
curvature contribution to the Jacobian [12].

Just as for the nonrelativistic case, there is a natural
length scale, the gravitational Bohr radius a ¼ 1=Gm3, and
an energy scale G2m5. From the latter we define the
dimensionless energy parameter ϵ in terms of the binding
energy

ΔE ¼ E −m ¼ Gm2

a
ϵ ¼ G2m5ϵ: ð3:20Þ

Unlike the nonrelativistic case, there is another length scale,
the Schwarzschild radius rS ¼ 2Gm. Therefore, in addition
to the rescaled radial coordinate ζ≡ r=a, we define a
dimensionless Schwarzschild radius ζS ¼ rS=a ¼ 2G2m4.
As shown in [19] and reproduced in Appendix A, the
magnitude of ζS determines the importance of relativistic
effects.
These parameters can be used to rescale the coupled

system of equations, including the reduced KG equation,
which must be solved self-consistently. We define

ũl ¼
ffiffiffi
a

p
ul; h̃ ¼ h=a; ρ̃ ¼ 4πa3

3m
ρ ¼ jũ0j2

3h̃2
; ð3:21Þ

and

μ̃ðζÞ ¼ μðaζÞ
m

¼
Z

ζ

0

jũ0j2
ffiffiffiffiffiffi
grr
g00

r
dζ0; p̃ðζÞ ¼ 4πa3

3m
pðaζÞ:

ð3:22Þ

The function A is already dimensionless. The full coupled
system of equations becomes5

−
d2ũ0
dζ2

þ
�
h̃00

h̃
þ 2

ζS
grr

�
1 −

1

g00

��
ũ0

¼
�
2ϵþ ζS

ϵ2

2

�
grr
g00

ũ0; ð3:23Þ

dμ̃
dζ

¼ jũ0j2
ffiffiffiffiffiffi
grr
g00

r
; μ̃ð0Þ ¼ 0; ð3:24Þ

dp̃
dζ

¼ −
ζS
2

½ρ̃ðζÞ þ p̃ðζÞ�½μ̃ðζÞ þ 3ζ3p̃ðζÞ�
ζ½ζ − ζSμ̃ðζÞ�

; p̃ð∞Þ ¼ 0;

ð3:25Þ

and

5In Eq. (16) of [19], which is the equivalent of the first
equation here for general l, there is an m2 factor that should be
2=ζS instead. Also, the terms on the right are slightly different
because here the energy scale is larger by a factor of 2, to
be consistent with earlier work on the Schrödinger-Newton
problem [8].
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dA
dζ

¼ ζS
2

μ̃ðζÞ þ 3ζ3p̃ðζÞ
ζ½ζ − ζSμ̃ðζÞ�

; A ∼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζSμ̃ðζÞ=ζ

p
;

ð3:26Þ
with

g00 ¼ e2A; grr ¼
1

1 − ζsμ̃ðζÞ=ζ
; ð3:27Þ

and the double prime in h̃00 meaning d2h̃=dζ2.
This system is solved self-consistently starting from an

initial guess for the metric, taken as flat inside ζS and the
Schwarzschild metric with radius ζS for ζ > ζS. The KG
equation (3.23) is solved for ũ0 and ϵ. This determines a
guess for the density for which the mass and pressure
functions are computed by outward and inward integration
of (3.24) and (3.25), respectively. Finally, (3.26) can be
integrated inward to find A. The expressions in (3.27) can
then be evaluated to determine an improved metric. The
cycle begins again and iterates until convergence to an
appropriate tolerance. Some further details of the numerical
calculation are given in Appendix B.
The results for eigenenergies are listed in Table I, with

the type designated as “PF.” As ζS is increased, the states
become more deeply bound, particularly for the ground
state. This is consistent with the change in the probability
amplitudes, plotted in Fig. 3, where the peaks are shifted
toward ζ ¼ 0 as ζS is increased. It is also consistent with the
analysis by Brizuela and Duran-Cabacés [16] of relativistic
corrections to the nonrelativistic case, showing that the

self-gravitation is increased. For small ζS, the amplitudes
agree with the nonrelativistic amplitudes, the two being
indistinguishable in the plot. For radial excitations the
relativistic effects are far less, and the amplitudes all match
the nonrelativistic shape for the full range of ζS values
considered.

C. Direct general relativistic calculation

The GR field equations Gμν ¼ 8πGTμν can be solved
directly in this static, spherically symmetric case. The
stress-energy tensor for the scalar field is [10]

Tμν ¼
1

2m
½ð∂μΨÞð∂νΨ�Þ þ ð∂μΨ�Þð∂νΨÞ − gμνð∂λΨÞð∂λΨ�Þ�

− gμν
m2

2
jΨj2: ð3:28Þ

Given this as the source, withΨ ¼ RðrÞe�iEt=
ffiffiffiffiffiffi
4π

p
, and the

metric coefficients written as

g00 ¼ e2AðrÞ and grr ¼ e2BðrÞ; ð3:29Þ
the field equations become [10]

e2A
�
1

r2
− e−2B

�
1

r2
−
2

r
B0
��

¼ 2G

�
e2AjRj2 þ 1

2m
e2ðA−BÞjR0j2 þ E2

2m
jRj2

�
; ð3:30Þ

FIG. 3. Plots of the ground-state radial probability amplitudes for the nonrelativistic and relativistic perfect-fluid cases as functions of
the dimensionless radial coordinate ζ. The relativistic amplitudes are distinguished by the different values of the rescaled Schwarzschild
radius ζS. For the Schrödinger–Newton soliton, the amplitude is simply the modified radial wave function

ffiffiffi
a

p
u; for the Einstein-Klein-

Gordon solitons, the amplitude is
ffiffiffi
a

p
u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grr=

ffiffiffiffiffiffi
g00

pp
. The KG amplitudes are made comparable by a rescaling to match the Schrödinger-

Newton peak height to that of the amplitude for ζS ¼ 0.01, which is then indistinguishable. The associated energies are listed in the
various rows of Table I.
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1

r2
ð1 − e2BÞ þ 2

r
A0

¼ 2G

�
−
m
2
e2BjRj2 þ 1

2m
jR0j2 þ E2

2m
e2ðB−AÞjRj2

�
; ð3:31Þ

r2e−2B
�
ðA0Þ2 − A0B0 þ A00 þ A0 − B0

r

�

¼ 2G

�
−
m
2
r2jRj2 − r2

2m
e−2BjR0j2þ r2E2

2m
e−2AjRj2

�
:

ð3:32Þ

Here a prime indicates differentiation with respect to r. The
KG equation for R, Eq. (3.7), can be written in terms of the
same metric functions as

−R00 −
�
2

r
þ A0 − B0

�
R0 þm2e2BR ¼ E2e2ðB−AÞR: ð3:33Þ

The third GR equation, Eq. (3.32), can be derived from this
radial KG equation and the first two GR equations.
The dimensionless forms of the first two GR equations

are

FIG. 4. Same as Fig. 3 but for the direct general relativistic calculation.

FIG. 5. Comparison of the wave functions for the perfect-fluid model and the direct general relativistic calculation, for ζS ¼ 1, and the
nonrelativistic wave function.

GRAVITATIONAL SOLITON SOLUTIONS TO SELF-COUPLED … PHYS. REV. D 107, 124049 (2023)

124049-7



dA
dζ

¼ 1

2ζ
ðe2B − 1Þ − ζSζ

4
e2BR̃2 þ ζ2Sζ

8

�
dR̃
dζ

�
2

þ ζSζ

4

�
1þ 1

2
ζSϵ

�
2

e2ðB−AÞR̃2; ð3:34Þ

dB
dζ

¼ −
1

2ζ
ðe2B − 1Þ þ ζSζ

4
e2BR̃2 þ ζ2Sζ

8

�
dR̃
dζ

�
2

þ ζSζ

4

�
1þ 1

2
ζSϵ

�
2

e2ðB−AÞR̃2; ð3:35Þ

with R̃ ¼ a3=2R ¼ ũ=h̃. Given the radial function ũ,
these equations can be solved numerically for the metric
functions A and B, and the radial KG equation is solved
self-consistently.
The result for the energy eigenvalues ϵ are listed in

Table I, designated as the type GR. Except for the largest
value of ζS, they are not significantly different from
those of the perfect-fluid model. The wave functions are
plotted in Fig. 4 and, for ζS ¼ 1, compared with the wave
function in the perfect-fluid model in Fig. 5. Again, the
ground state in the relativistic case is more deeply bound,
but not as much as in the perfect-fluid model; this can be
seen explicitly in Fig. 5 and Table I.

IV. SUMMARY

We have shown that the relativistic version of the
Schrödinger-Newton problem for scalar particles can be
solved for Einstein-Klein-Gordon solitons in spherically
symmetric spacetimes. This includes radial excitations. We
consider both a perfect-fluid model, consistent with a
Hartree approximation to a bosonic star, and the funda-
mental GR equations with the stress tensor of the KG field.
The results for the Schrödinger-Newton problem are
recovered in the nonrelativistic limit, which is controlled
by the ratio of the Schwarzschild radius to the gravitational
Bohr radius for the given mass.
The eigenenergies obtained are listed in Table I. The

relativistic cases are more deeply bound than the
nonrelativistic case, particularly for the ground state.
This can also be seen in the amplitudes, as plotted in
Figs. 3–5, where the relativistic peaks occur at smaller
radii. This is consistent with the findings of Brizuela
and Duran-Cabacés [16] in their analysis of relativistic
corrections to the nonrelativistic Schrödinger–Newton
problem. We also find that the perfect-fluid model binds
more deeply than occurs for the fundamental GR
equations that use only the stress-energy tensor of the
scalar field. Apparently, the additional assumption of
hydrostatic equilibrium increases the energy density and
consequently the spatial curvature.
The restriction to spherical symmetry can be relaxed to

consider cylindrical symmetry. This has been done at least
partially for the Schrödinger-Newton problem [8], though

with an unnecessary assumption of a cylindrically sym-
metric wave function with Lz ¼ 0. A more complete
nonrelativistic calculation could be done as well as con-
sideration of a relativistic formulation [25].
Our approach represents a form of semiclassical

gravity where the matter fields are treated quantum
mechanically but gravity classically. It requires self-
consistent solutions for the metric and the quantum
particle amplitude. The results of such computations
may provide a check on the structure of a theory of
quantum gravity.
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APPENDIX A: NONRELATIVISTIC LIMIT

For completeness, we repeat the argument from [19] that
ζS controls the importance of relativistic effects. For
simplicity, we consider the Schwarzschild geometry, for
which g00 ¼ 1 − 2Gm=r ¼ 1 − ζS=ζ ¼ 1=grr. In this case,
we have g̃ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

g00grr
p ¼ 1 and h ¼ r=

ffiffiffiffiffiffi
grr

p ¼ aζ=
ffiffiffiffiffiffi
grr

p
.

The h̃00=h̃ term in the modified KG equation (3.23) is then

h̃00

h̃
¼ −

ζ2S
4ζ2ðζ2 − ζ2SÞ

; ðA1Þ

and the modified radial equation becomes

−
d2ũ0
dζ2

−
1

4

ζ2S
ζ2ðζ − ζSÞ2

ũ0 −
2

ζ

1

ð1 − ζS=ζÞ2
ũ0

¼ 2ϵþ 1
2
ζSϵ

2

ð1 − ζS=ζÞ2
ũ0: ðA2Þ

Keeping ζS to first order, we obtain

−
d2ũ0
dζ2

−
2

ζ
ð1þ 2ζS=ζÞũ0 ¼

�
2ϵð1þ 2ζS=ζÞþ

1

2
ζSϵ

2

�
ũ0;

ðA3Þ

which can be rearranged as

−
d2ũ0
dζ2

−
2

ζ
ũ0 − ζS

�
4

ζ2
−
4ϵ

ζ
þ 1

2
ϵ2
�
ũ0 ¼ 2ϵũ0: ðA4Þ

The ζS terms are then revealed to be corrections to the
ordinary Coulomb problem of Newtonian gravity.
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APPENDIX B: DETAILS OF THE
NUMERICAL CALCULATION

Just as for the nonrelativistic case, the infinite
range of the radial coordinate is truncated at a distant
point and the density and pressure are assumed to be
zero beyond that point. The scaled KG equation is
represented by a matrix equation obtained from finite-
difference approximations to the derivatives of ũ0 and h̃
on an equally spaced grid. The metric is then computed
on this grid by solving the first-order equations for μ̃, p̃,
and A in the perfect-fluid model, or for A and B in the
fundamental GR equations, with a second-order Runge-
Kutta method, utilizing a matching step size. This
choice has an error term consistent with the chosen
finite-difference approximation to the KG equation. For
better accuracy, one could of course use higher order
methods, but these were sufficient for the purpose of
comparing the nonrelativistic and relativistic results,
with approximately four significant figures in the values
of scaled energies.

In order that the matrix representation of the KG
equation be symmetric, we introduce a new function ū≡
ũ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grr=g00

p
and multiply (3.23) by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grr=g00

p
. We also

define λ≡ 2ϵþ ζSϵ
2=2 as the direct eigenvalue of the

matrix. The differential equation solved numerically to
obtain the KG eigenstates is actually

−
ffiffiffiffiffiffi
g00
grr

r
d2

dζ2

� ffiffiffiffiffiffi
g00
grr

r
ū

�
þ g00

grr

h̃00

h̃
ūþ 2

ζS
g00

�
1 −

1

g00

�
ū ¼ λū:

ðB1Þ
The third term on the left-hand side is best evaluated as
2eA sinhA, which comes from g00 ¼ e2A, rather than in its
explicit form, because g00 can be close to 1. Also, the scaled
binding energy is best extracted from λ by a rearrangement
of the quadratic formula

ϵ ¼ λ

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζsλ=2

p : ðB2Þ
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