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Three-dimensional static and spinning black hole solutions of the Einstein-Klein-Gordon system are
obtained for a particular scalar field configuration. At large distances, and for a small scalar field, the
solutions reduce to the Bañados Teitelboim Zanelli black hole. The scalar field dresses the black hole with
secondary scalar hair, since the scalar charge is related to the conserved black hole mass. A self-interacting
potential is included, containing a mass term that is above the Breitenlohner-Freedman bound in three
dimensions. Independence of the scalar potential from the conserved black hole charges imposes fixed
mass and angular momentum to scalar charge ratios. The thermodynamic properties as well as the energy
conditions of the black hole are analyzed.

DOI: 10.1103/PhysRevD.107.124047

I. INTRODUCTION

Gravity in three dimensions has been studied exten-
sively, and it is interesting in many ways. One of the main
advantages of working in three dimensions is that space-
time has simple enough topology and it can be charac-
terized completely and explicitly, giving important insights
into black hole physics and the structure of quantum
gravity; it also can provide information on how the
dimensionality of spacetime affects the resulting physics.
Einstein’s theory of gravitation, general relativity (GR) in
four or higher dimensions and in the absence of matter,
admits Schwarzchild black holes, while in three dimensions
the Weyl tensor, which describes the distortion of the shape
of a body in the presence of the gravitational force, vanishes
by definition while the Ricci tensor, describing how this
force changes the volume of the body, vanishes in the
absence of matter. Therefore, since Riemann ¼ Weylþ
Ricci we can only have flat spacetime. Hence, the theory
can only admit a conical singularity as a solution of the
field equations [1]. As a result, a negative cosmological
constant was included to make the Ricci tensor non-zero
and the three dimensional black hole was found [2,3] by
Bañados, Teitelboim, and Zanelli (hereafter BTZ black
hole). The BTZ black hole possesses two black hole
horizons, it can arise from collapsing matter [4], and it
has well-posed thermodynamic properties: it quantizes; for
example, the entropy is given by a Bekenstein-Hawking
area law, where the area is replaced by the circumference
of the black hole. The fundamental length scale of the
three-dimensional black hole is the anti–de Sitter (AdS)

radius, since the mass term turns out to be a dimensionless
constant.
After the discovery of the BTZ black hole, scalar fields

minimally and nonminimally coupled to gravity were
introduced as matter fields. In [5,6] three-dimensional black
holes with a conformally coupled scalar field, being regular
everywhere, were discussed. The entropy in these cases is
modified due to the nonminimal coupling between matter
and gravity. After these first results other hairy black holes
in three dimensions were discussed [7–12]. In [13] three-
dimensional gravity with a negative cosmological constant in
the presence of a scalar field and an Abelian gauge field was
introduced. Both fields are conformally coupled to gravity,
the scalar field through a nonminimal coupling with the
curvature and the gauge field by means of a Lagrangian
given by a power of the Maxwell field. A sixth-power self-
interaction potential, which does not spoil conformal invari-
ance, is also included in the action, resulting in a very simple
relation between the scalar curvature and the cosmological
constant. The cases where the entropy is positive were
pointed out, the authors arguing that the appearance of
nonphysical negative entropy in the Jordan frame results in a
naked singularity in the Einstein frame.
The (2þ 1)-dimensional charged black holes with scalar

hair were derived, where the scalar potential is not fixed
ad hoc, but derived from Einstein’s equations in [14,15].
In [16] exact three-dimensional black holes with a non-
minimal scalar field were discussed, the coupling parameter
being left arbitrary. In [17,18] the motion and trajectories
of photons and the quasinormal modes of a three-
dimensional rotating Hořava-AdS black hole were calcu-
lated. In [19–21], static black holes in three-dimensional
dilaton gravity and modifications of the BTZ black hole by
a dilaton scalar were investigated, the dilaton case attracting
more attention over the years [22–26]. Three-dimensional
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black holes in modified theories of gravity have also been
studied. The fðRÞ gravity black holes are found in [27–30],
while BTZ-like black holes in the Einstein Gauss Bonnet
theory have been recently obtained [31–35], and while
scalar fields in three-dimensional modified gravity have
also been investigated in the Horndeski theory [36] in a
general scalar tensor theory [37]. Finally, scalar fields have
been added to three-dimensional fðRÞ gravity and the
resulting black holes were discussed [38,39].
As we already discussed, a scale has to be introduced

with the presence of a cosmological constant, to generate
the BTZ black hole in (2þ 1) dimensions. In this work we
will follow another approach. We will introduce a scalar
field, parametrizing a matter distribution, which backreacts
on a (2þ 1)-dimensional metric. The scalar field is
characterized by a parameter called scalar charge. When
the scalar field backreacts to the spacetime metric, this
scalar charge appears in the metric introducing an effective
cosmological constant. Then a hairy black hole is gener-
ated, which at small distances because matter is strongly
backreacting to the metric a new BTZ-like black hole is
generated, while at large distances because the backreaction
is weak, the BTZ black hole is found. We discuss the
thermodynamic properties and the energy conditions of the
hairy BTZ-like black hole solution as well as the rotat-
ing case.
This work is organized as follows. In Sec. II we derive

static solutions of the Einstein-Klein-Gordon system and
discuss the geometric properties of the new black hole
solutions, as well as the energy conditions and the
thermodynamic properties of these solutions. In Sec. III
we derive novel rotating solutions that reduce to the ones
obtained in Sec. II, once the angular momentum of the
black hole vanishes, and discuss their thermodynamics.
We discuss the resultant scalar potentials, which from a
field theory point of view have to be independent of the
black hole parameters, a fact implying that the black holes
produced have a fixed mass to the angular momentum
ratio. Finally, in Sec. IV we point out the prospects of
our work.

II. STATIC BLACK HOLE SOLUTIONS

We consider a simple model of a scalar field minimally
coupled to gravity in three dimensions in the action

S ¼ 1

8π

Z
d3x

ffiffiffiffiffiffi
−g

p �
R
2
−
1

2
∂
αϕ∂αϕ − VðϕÞ

�
; ð1Þ

which consists of the Ricci scalar and a self-interacting
scalar field minimally coupled to gravity. By variation of
this action we obtain the field equations

Gμν ≡ Rμν −
1

2
gμνR ¼ Tμν; ð2Þ

□ϕ −
∂V
∂ϕ

¼ 0; ð3Þ

Tμν ¼ ∂μϕ∂νϕ −
1

2
gμν∂αϕ∂αϕ − gμνVðϕÞ: ð4Þ

To solve the field equations we assume that the scalar
field has a Coulomb-like form as in the four-dimensional
theory [40], with the solution first appearing in [41]. We
find that the scalar field dresses the black hole with
secondary hair, with the scalar charge appearing in the
conserved black hole mass. The null energy condition is
violated inside the event horizon, a feature also appearing
in the four-dimensional sibling [40], and we point out that
this is a global feature in any spacetime having a vanishing
1=grrðrþÞ ¼ 0 at the event horizon of the black hole, where
only radial dependence on the scalar field is assumed.
At large distances, the solution reduces to the BTZ black
hole, while the scalar potential admits an even power
law expansion, with the mass term being above the
Breitenlohner-Freedman bound.
We consider a (2þ 1)-dimensional metric ansatz of

the form

ds2 ¼ −hðrÞdt2 þ 1

bðrÞ dr
2 þ r2dθ2; ð5Þ

where hðrÞ, bðrÞ are the two unknown metric functions to
be found solving the field equations. Since the metric only
depends on r, we will consider that ϕ is only r-dependent,
hence ϕ ¼ ϕðrÞ, V ¼ VðrÞ. The tt; rr; θθ components
of the Einstein field equation and the Klein-Gordon
equation read

b0ðrÞ þ rbðrÞϕ0ðrÞ2 þ 2rVðrÞ ¼ 0; ð6Þ

bðrÞ
�
h0ðrÞ
rhðrÞ − ϕ0ðrÞ2

�
þ 2VðrÞ ¼ 0; ð7Þ

− bðrÞh0ðrÞ2 þ 2hðrÞ2ðbðrÞϕ0ðrÞ2 þ 2VðrÞÞ
þ hðrÞðb0ðrÞh0ðrÞ þ 2bðrÞh00ðrÞÞ ¼ 0; ð8Þ

1

2
b0ðrÞϕ0ðrÞ þ bðrÞ

��
h0ðrÞ
2hðrÞ þ

1

r

�
ϕ0ðrÞ þ ϕ00ðrÞ

�

−
V 0ðrÞ
ϕ0ðrÞ ¼ 0: ð9Þ

Using the Bianchi identity one can prove that (9) can be
obtained from the Einstein equations. Hence, we have a
system with three independent equations in four unknown
functions. As a result one of the unknowns has to be fixed
ad hoc. However, if one fixes the scalar potential from
the beginning in (1), then the system can be, at least in
principle, integrated, since one will have three unknown
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functions and three equations. Hence, we fix the form of the
scalar field as

ϕðrÞ ¼ A
r
; ð10Þ

where A is a scalar length scale that controls the behavior
of the scalar field, which we will call scalar charge. Note
that the scalar charge has been defined as the term
controlling the Oðr−1Þ term of the scalar field at infinity
in four dimensions, and we will use the same terminology
in our work. We have checked that using ϕðrÞ ¼ A=rn with
n > 0, exact results can be obtained for different n;
however, for n ¼ 1 we can find simple exact solutions.
There is a pole in the scalar field function for r → 0;

however, this will not be a problem because of the presence
of a curvature singularity at r ¼ 0 as we will discuss, and
then the solution will be valid for r > 0. Then, we find that

bðrÞ ¼ c1r2

A2c23
e

A2

2r2

�
A2c2e

A2

2r2 þ c3
�
; ð11Þ

hðrÞ ¼ r2
�c3
A2

e−
A2

2r2 þ c2
�
; ð12Þ

VðrÞ ¼ c1c2
2c23r

2
e
A2

r2 ðA2 − 2r2Þ − c1
A2c3

e
A2

2r2 ; ð13Þ

where c1, c2, c3 are constants of integration to be
determined from the boundary conditions. Note here that
at large distances, the solution asymptotes to

bðr → ∞Þ ∼ c1r2

c23

�
c3
A2

þ c2

�
þ c1ð2A2c2 þ c3Þ

2c23

þ A2c1ð4A2c2 þ c3Þ
8c23r

2
þO

��
1

r

�
4
�
; ð14Þ

hðr → ∞Þ ∼þA2c3
8r2

þ c3r2

A2
þ c2r2 −

c3
2
þO

��
1

r

�
4
�
;

ð15Þ

Vðr→∞Þ∼−
c1
c23

�
c3
A2

þc2

�
−
A2c1c2þc1c3

2c23r
2

þO
��

1

r

�
4
�
:

ð16Þ

From the above relations we can see that we have some
Oðr2Þ terms that survive at large distances which we can
identify as cosmological constant terms that are generated
by the vacuum of the scalar field theory and depend on A.
For c1 ¼ A4ðc2 þ ΛÞ2, c3 ¼ −A2ðc2 þ ΛÞ, where Λ is an
effective cosmological constant, we rewrite the asymptotic
expressions of the metric functions at large distances

bðr → ∞Þ ∼ −Λr2 þ 1

2
A2ðc2 − ΛÞ

þ A4ð3c2 − ΛÞ
8r2

þO
��

1

r

�
4
�
; ð17Þ

hðr → ∞Þ ∼ −Λr2 þ 1

2
A2ðc2 þ ΛÞ − A4ðc2 þ ΛÞ

8r2

þO
��

1

r

�
4
�
: ð18Þ

To compute the mass of the black hole, we will use the
quasilocal method [20]. The quasilocal energy at a finite
distance r0 is defined as

Eðr0Þ ¼ 2
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

b0ðr0Þ
p

−
ffiffiffiffiffiffiffiffiffiffiffi
bðr0Þ

p �
; ð19Þ

where b0 determines the zero of the energy [which we take
to be the pure AdS spacetime b0ðrÞ ¼ −Λr2] and the
quasilocal mass at r0 can be obtained as

mðr0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p
Eðr0Þ: ð20Þ

Now, the Arnowitt Deser Misner mass of the black hole can
be read off by taking the limit at r0 → ∞,

M ¼ −
1

2
A2ðc2 − ΛÞ: ð21Þ

Setting c2 ¼ A2Λ−2M
A2 we can rewrite the solution in terms

of the black hole mass M, the scalar charge A, and the
effective cosmological constant Λ, which are the param-
eters of our solution

hðrÞ¼ r2
�
A2Λ−2M

A2
−e−

A2

2r2

�
A2Λ−2M

A2
þΛ

��
; ð22Þ

bðrÞ ¼ 2r2e
A2

2r2ðM − A2ΛÞ − r2e
A2

r2 ð2M − A2ΛÞ
A2

; ð23Þ

VðrÞ ¼ e
A2

r2 ðA2 − 2r2ÞðA2Λ − 2MÞ
2A2r2

þ 2e
A2

2r2ðA2Λ −MÞ
A2

;

ð24Þ

VðϕÞ ¼ 2e
ϕ2

2 ðA2Λ −MÞ
A2

þ eϕ
2ðϕ2 − 2ÞðA2Λ − 2MÞ

2A2
:

ð25Þ

Their asymptotic expressions now read

hðr → ∞Þ ∼ −Λr2 þ ðA2Λ −MÞ

−
A2ðA2Λ −MÞ

4r2
þO

��
1

r

�
4
�
; ð26Þ
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bðr → ∞Þ ∼ −Λr2 −Mþ A4Λ − 3A2M
4r2

þO
��

1

r

�
4
�
;

ð27Þ

Vðr → ∞Þ ∼ Λþ A2Λ
2r2

þ A2ðA2Λ −MÞ
4r4

þ 3A6Λ − 5A4M
24r6

þO
��

1

r

�
8
�
; ð28Þ

Vðϕ → 0Þ ∼ Λþ Λϕ2

2
þ ϕ4

�
Λ
4
−

M
4A2

�
þ ϕ6

�
Λ
8
−
5M
3A2

�
þOðϕ8Þ: ð29Þ

We can see that at large distances, the solution resembles
the BTZ black hole, while corrections in the structure of
spacetime appear as Oðð1rÞsÞ terms, where s ≥ 2 which are
supported by the existence of the scalar field. Moreover,
the scalar field dresses the black hole with secondary
scalar hair, since the conserved mass is given by the scalar
charge in addition to an integration constant. The potential
has a mass term given by m2 ¼ V 00ðϕ ¼ 0Þ ¼ Λ, which is
above the Breitenlohner-Freedman bound in three dimen-
sions [42,43], and for small ϕ (large r), the potential admits
an even power series expansion. It is also invariant under
the substitution ϕ → −ϕ. The potential (25) contains both
the mass and the scalar charge of the black hole spacetime.
However, this should not happen. As a result we have to
find a way to render the potential independent of the black
hole mass and scalar charge. By inspection we can see that
we can define the conserved mass to scalar charge ratio q as

q ¼ M
A2

; ð30Þ

and now the potential will be

VðϕÞ¼e
ϕ2

2 ð2Λ−2qÞþeϕ
2

�
Λϕ2

2
−Λ−qϕ2þ2q

�
; ð31Þ

Vðϕ → 0Þ ∼ Λþ Λϕ2

2
þ Λ − q

4
ϕ4 þ 3Λ − 5q

24
ϕ6 þOðϕ8Þ;

ð32Þ

where now q is the parameter of our theory. Now the
potential is general enough and the theory (1) can yield
black holes with different masses and scalar charges. The
mass of the resulting compact object might reduce through
Hawking evaporation for example, but a varying mass
implies a varying scalar charge, so that their ratio q is
constant. Therefore, from a field theory point of view we
can argue that the scalar charge A is kind of a thermody-
namic variable, since it has to vary whenM is changing. In
Fig. 1 we plot the scalar potential as a function of r and ϕ,
where we can see that the potential is always negative in
order to support the hairy structure and to violate the no-
hair theorem. Moreover, from the plot of VðϕÞ it is clear
that the theory contains a global maximum located at
VmaxðϕÞ ¼ Λ. We have also checked that the on-shell
action is constant at large distances. The 1=grr component
has two roots given by

r� ¼ �A

�
ln

�
4ðA2Λ −MÞ2
ðA2Λ − 2MÞ2

��−1=2
: ð33Þ

We work on the solution in AdS spacetime, the horizon
being rþ. From now on, we will set Λ ¼ −l−2, where l
denotes the AdS radius. In addition, note that there always
exists a horizon when M and A are positive and the scalar
field does not imply any bound for the existence of a
horizon. In the limit of small scalar charge A, we obtain, at
zero order, the BTZ black hole

hðrÞ∼r2
�
1

l2
−
M
r2

�
þA2r2

�
M
4r4

−
1

r2l2

�
þOðA4Þ; ð34Þ

bðrÞ ∼ r2
�
1

l2
−
M
r2

�
−
3A2M
4r2

þOðA4Þ; ð35Þ

FIG. 1. The potentials VðrÞ and VðϕÞ for M ¼ −Λ ¼ 1, while changing the scalar charge A.
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VðrÞ ∼ −
1

l2
−
A2ð2r2 þ l2MÞ

4ðr4l2Þ −
A4ð3r2 þ 20l2MÞ

12ðr6l2Þ
þOðA6Þ: ð36Þ

This is related to the asymptotic nature of the scalar field.
In our case, the scalar field decays fast enough [Oðr−1Þ],
and hence its impact on the conserved mass is mild, in the
sense that the mass is not completely determined by the
scalar hair parameter A. As a result, sending ϕ to zero we
can obtain the massive BTZ black hole. We note that this
is not the case when ϕ falls like Oðr−1=2Þ [5–7,9,12–14]
where the mass is given explicitly in terms of the scalar hair
parameter. In our case, the mass (21) depends on the scalar
hair A but also on an independent integration constant c2.
Therefore, the integration constant can take any particular
value, and we can always have a massive black hole
solution when A approaches zero and the scalar field
vanishes. Recently another solution appeared [44], where
the scalar field falls faster at infinity [Oðr−1Þ as in our case],
the no-hair limit in this case is also well-defined, and the
BTZ black hole is obtained in the limit of the vanishing
scalar field.
In Fig. 2 we plot hðrÞ as a function of r for different

scalar charges and rþ as a function of the scalar charge A,
and we can see that as A grows, the bigger the event
horizon radius becomes. We should also note that the
horizon rþ is also a root of hðrÞ even though hðrÞ ≠ bðrÞ
[in fact, hðrÞ=bðrÞ ¼ e−

A2

r2 ]; therefore, the black hole has
the same causal structure as the static BTZ black hole,
where inside the horizon we still have one time and two
position coordinates. There exists a singularity at the
origin as can be seen by calculating the Kretschmann
scalar, which is plotted in Fig. 3. Its expression is
complicated, but by checking the limits we can see that
it is divergent at the origin, while regular for any other
r > 0 and at large distances is related to the cosmological
constant

RαβγδRαβγδðr → ∞Þ ∼ 12

l4
þ 8A2

r2l4
þO

��
1

r

�
4
�
: ð37Þ

A. Energy conditions

In this subsection we will discuss the energy conditions
of the obtained spacetime. For this reason we rewrite the
Einstein field equation as

Gμ
ν ¼ Tμ

ν: ð38Þ

In this frame of reference, we can identify Tt
t ¼ −ρ,

Tr
r ¼ pr, Tθ

θ ¼ pt ¼ −ρ being the energy density, the
radial pressure, and the transverse pressure, respectively.
The energy conditions are obtained from these expressions.
The weak energy condition (WEC) states that given a
timelike vector field ta, the quantity Tabtatb is positive,
Tabtatb ≥ 0 → ρ > 0. The null energy condition (NEC)
states that Tablalb ≥ 0 → ρþ pr > 0, where lala ¼ 0, so
that the geometry will have a focusing effect on null
geodesics. The explicit expressions read

FIG. 2. Left: hðrÞ versus r forM ¼ l ¼ 1, while changing the scalar charge A. Right: rþ as a function of A, while changing the mass
of the black hole for l ¼ 1.

FIG. 3. The Kretschmann scalar RαβγδRαβγδðrÞ for M ¼ −Λ ¼
1=l2 ¼ 1 while changing A.
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ρ ¼ T þ V ¼ bðrÞϕ02=2þ VðrÞ ¼ e
A2

2r2ðA2 − 2r2ÞðA2 þ l2MÞ − e
A2

r2 ðA − rÞðAþ rÞðA2 þ 2l2MÞ
A2r2l2

; ð39Þ

pr ¼ T − V ¼ bðrÞϕ02=2 − VðrÞ ¼ e
A2

2r2ðA2 þ 2r2ÞðA2 þ l2MÞ − r2e
A2

r2 ðA2 þ 2l2MÞ
A2r2l2

; ð40Þ

ρþ pr ¼ 2T ¼ bðrÞϕ0ðrÞ2 ¼ 2e
A2

2r2ðA2 þ l2MÞ − e
A2

r2 ðA2 þ 2l2MÞ
r2l2

; ð41Þ

where T ¼ bðrÞϕ02=2 is the kinetic energy of the scalar
field. The energy density ρ is negative inside and on the
black hole horizon. Inside the horizon, bðrÞ is negative, ϕ02
is always positive, and the potential is negative everywhere
as we can see from Fig. 1, resulting in negative energy
density inside the black hole. On the horizon, we have
bðrþÞ ¼ 0; hence, the contribution from the kinetic energy
of the scalar field vanishes and the potential makes the
energy density negative. Outside of the black hole horizon
bðrÞ is positive, but the effect of the potential energy is
stronger than the kinetic energy, resulting in negative
energy density everywhere, as we can see in Fig. 4. At
large distances, the kinetic energy asymptotes as

T ðr → ∞Þ ∼ A2

2r2l2
−
A2M
2r4

þO
��

1

r

�
6
�
; ð42Þ

while the expression for the potential energy in the limit
r → þ∞ is given in (28). The leading order term in the
kinetic energy is positive, and since all constants A;l;M
are finite constants, the kinetic energy is positive for large r.
We can see in (28) that the potential will cancel this positive
contribution of the kinetic energy; therefore, the sum
ρ ¼ T þ V will always be negative. It is known that too
negative a potential might threaten the WEC of a regular
scalar field. In our case the potential is the quantity that
violates WEC. For the NEC, we can see that at the event
horizon rþ, we have ρþ prþ ¼ 0 due to the fact that
bðrþÞ ¼ 0. Outside and on the horizon the NEC is satisfied,
while inside the event horizon the NEC is violated. This is a
common feature of black hole spacetimes that arise from an
action that consists of the Ricci scalar of Einstein’s gravity
and a simple nonminimally self-interacting scalar field in
arbitrary dimensions that satisfies grrðrþÞ ¼ 0, ϕ ¼ ϕðrÞ,

FIG. 4. The energy density ρ, the radial pressure pr, and the radial pressure ρþ pr forM ¼ l ¼ 1while changing the scalar charge A.
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and not a peculiar case of our model. This behavior is
indeed present in the four-dimensional case [40,45]. In
Fig. 4 we plot the energy density (WEC) and the sum of the
energy density and radial pressure (NEC) of our black hole
in order to illustrate the discussion above. In Fig. 4 we also
plot the radial pressure. We can see that the radial pressure
is negative for some region inside the black hole horizon,
while at the horizon and outside of the horizon, the radial
pressure is positive.

B. Thermodynamics

In this subsection we will discuss the thermodynamics
of the black hole solution. We begin with the temperature.
To derive the black hole temperature, at first we perform a
Wick rotation and move to imaginary time t → iτ where τ
will now be periodic, the period of which we have to find
in order to specify the temperature. We will now ignore
the angular part of the spacetime metric and then we are
left with

ds2 ¼ hðrÞdτ2 þ 1

bðrÞ dr
2: ð43Þ

We now expand the metric functions near the horizon

hðr → rþÞ ¼ hðrþÞ þ h0ðrþÞðr − rþÞ þ � � �
¼ h0ðrþÞðr − rþÞ; ð44Þ

bðr → rþÞ ¼ bðrþÞ þ b0ðrþÞðr − rþÞ þ � � �
¼ b0ðrþÞðr − rþÞ; ð45Þ

and the reduced spacetime element reads

ds2 ¼ h0ðrþÞðr − rþÞdτ2 þ
1

b0ðrþÞðr − rþÞ
dr2: ð46Þ

Even if it is not clear at this point, the above line element
describes a cone in Euclidean space and has a conical
singularity at the tip r → 0, unless we fix the period of τ in a
particular way. Therefore, we will now compare this line
element with the line element of two-dimensional flat
spacetime in polar coordinates that reads

dS2 ¼ dR2 þ R2dΘ2; ð47Þ

where Θ is periodic of period TΘ ¼ 2π and we will treat τ
as an angular coordinate, in order for the spacetime to be
truly Euclidean. By setting ds2 ¼ dS2 we can relate the two
radial coordinates

dR2 ¼ 1

b0ðrþÞðr − rþÞ
dr2; ð48Þ

which by integration will yield the relation

R ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rþ
b0ðrþÞ

r
; ð49Þ

and now we are left with the angular coordinates

h0ðrþÞðr − rþÞdτ2 ¼ R2dΘ2; ð50Þ

which again by integration yield

Θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0ðrþÞb0ðrþÞ

p
2

τ →
Θ
τ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0ðrþÞb0ðrþÞ

p
2

: ð51Þ

Θ is periodic with TΘ ¼ 2π, and by denoting β the period
of τ we have

β ¼ 4πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0ðrþÞb0ðrþÞ

p → T≡ 1

β
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0ðrþÞb0ðrþÞ

p
4π

; ð52Þ

which is the temperature of our black hole spacetime.
Substituting the functions we find

TðrþÞ ¼
ðA2 þ 2r2þÞðA2 þ l2MÞ − r2þe

A2

2r2þðA2 þ 2l2MÞ
2πA2rþl2

;

ð53Þ

and substituting the horizon radius we can express the
temperature as a function of the black hole mass

TðMÞ ¼ ðA2 þ l2MÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ðA2 þ l2MÞ − ln ðA2 þ 2l2MÞ þ lnð2Þ

p
ffiffiffi
2

p
πAl2

: ð54Þ

The temperature is always real and positive. In Fig. 5 we
plot the temperature of the black hole. We can see that the
temperature increases as the mass of the black hole is
growing. Moreover, the temperature is nonzero and finite
for zero mass, which happens because a horizon exists even

for the massless case, given by rþðM ¼ 0Þ ¼ A=ð2 ln 2Þ.
For small A, it becomes

TðrþÞ ∼
rþ
2πl2

þ A2ð2r2þ − l2MÞ
8πr3þl2

þOðA4Þ; ð55Þ
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while the BTZ temperature corresponds to TBTZ ¼
rþ=ð2πl2Þ ¼ ffiffiffiffiffiffi

M
p

=2πl. As a result, the hairy black hole
possesses a larger temperature at the event horizon. Using
the Wald formula [46,47], we can calculate the entropy of
the black hole as

S ¼ −2π
Z

dθ
ffiffiffiffiffi
r2þ

q �
∂L

∂Rαβγδ

�				
r¼rþ

ε̂αβε̂γδ; ð56Þ

where ε̂αβ is the binormal to the horizon surface [48],
L is the Lagrangian of the theory L ¼ ð8πÞ−1 ×
ðR=2 − ∂

αϕ∂αϕ=2 − VðϕÞÞ, and

∂L
∂Rαβγδ

				
r¼rþ

¼ 1

2
ðgαγgβδ − gβγgαδÞ: ð57Þ

Hence, the entropy will be given by the Bekenstein-
Hawking area law

S ¼ A
4
¼ πrþ

2
; ð58Þ

where A ¼ 2πrþ is the circumference of the three-
dimensional black hole. The hairy black holes possess a
larger event horizon radius in comparison to the BTZ black
hole, which has an event horizon at rþ ¼ l

ffiffiffiffiffiffi
M

p
,

rþ ∼ l
ffiffiffiffiffiffi
M

p
þ 3A2

8l
ffiffiffiffiffiffi
M

p þOðA3Þ: ð59Þ

Hence, they are thermodynamically preferred over the BTZ
black hole, having higher entropy, when the scalar charge is
small. The black hole spacetime is thermally stable in the
canonical ensemble, which can be seen by evaluating the
heat capacity

CðrþÞ ¼ T
dS
dT

				
r¼rþ

¼ πA

2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ðA2 þ l2MÞ − ln ðA2 þ 2l2MÞ þ lnð2Þ

p ; ð60Þ

which is always positive. For negligible scalar hair
we obtain the heat capacity of the BTZ black hole
C ¼ πrþ=2 ¼ πl

ffiffiffiffiffiffi
M

p
=2.

In general, one cannot impose that the internal energy
of the black hole coincides with the mass of the black hole,
as the matter fields may contribute to the internal energy.
As a result the first law cannot simply be dM ¼ TdS
but dE ¼ TdS, where E is the internal energy. We can
reexpress the horizon of the black hole as

rþ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln
�
4ðql2þ1Þ2
ð2ql2þ1Þ2

�r ; ð61Þ

where we have substituted the mass parameter with q
via (30). It is therefore clear that the only free parameter
of the system that one is allowed to vary is A. Now, we
have that

TdS ¼ T
∂S
∂rþ

drþ ¼ T
∂S
∂rþ

∂rþ
∂A

dA ¼ T
∂S
∂A

dA ¼ Aðql2 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð2ql2 þ 2Þ − ln ð2ql2 þ 1Þ

p
2
ffiffiffi
2

p
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln
�
4ðql2þ1Þ2
ð2ql2þ1Þ2

�r : ð62Þ

Integrating the above expression we get

EðAÞ ¼ A2ðql2 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð2ql2 þ 2Þ − ln ð2ql2 þ 1Þ

p
4
ffiffiffi
2

p
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln
�
4ðql2þ1Þ2
ð2ql2þ1Þ2

�r ; ð63Þ

FIG. 5. The temperature of the black hole for l ¼ 1 as a
function of M, while changing the scalar charge.
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which is the internal energy of the black hole. It is clear
that when the effect of the scalar field theory is negligible
we have that

Eðq → 0Þ ∼ A2q
8

þ A2

8l2
¼ MBTZ

8
þ A2

8l2
; ð64Þ

which is a nice way to express that the fields contribute
to the total energy of the black hole. We note that the
conserved black hole mass and the geometric mass in the
BTZ black hole differ by a factor of 1=8.

III. ROTATING BLACK HOLE SOLUTIONS

To discuss rotating solutions, we impose the metric
ansatz

ds2 ¼ −hðrÞdt2 þ 1

bðrÞ dr
2 þ r2ðdθ þ uðrÞdtÞ2; ð65Þ

where we have introduced the angular shift function uðrÞ.
Inserting this ansatz in the field equations (2) and (3) we
obtain the following solution:

uðrÞ ¼ J
A2

e−
A2

2r2 −
J
A2

; ð66Þ

bðrÞ ¼
r2e

A2

2r2

�
− 2J2

A2 þ 2A2

l2 þ 2M
�

A2
þ
r2e

A2

r2

�
−A2

�
− 2J2

A2 þ 2A2

l2 þ 2M
�
þ A4

l2 − J2
�

A4
þ J2r2

A4
; ð67Þ

hðrÞ ¼ e−A
2=r2bðrÞ; ð68Þ

VðrÞ ¼ −
8r4e

A2

2r2ðA2l2Mþ A4 − J2l2Þ þ 2r2e
A2

r2 ðA2 − 2r2Þð2A2l2Mþ A4 − J2l2Þ þ J2l2ð2A2r2 þ A4 þ 4r4Þ
4A4r4l2

; ð69Þ

VðϕÞ ¼ −
8e

ϕ2

2 ðA2l2Mþ A4 − J2l2Þ þ 2eϕ
2ðϕ2 − 2Þð2A2l2Mþ A4 − J2l2Þ þ J2l2ðϕ4 þ 2ϕ2 þ 4Þ

4A4l2
; ð70Þ

while the scalar field is the same as (10) and J is the angular momentum of the black hole. We used the quasilocal method to
derive the angular momentum and the conserved black hole mass [20]

J ¼ lim
r0→∞

ffiffiffiffiffiffiffiffiffiffiffi
bðr0Þ

p
u0ðr0Þr30ffiffiffiffiffiffiffiffiffiffiffi

hðr0Þ
p ; ð71Þ

M ¼ lim
r0→∞

� ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p
Eðr0Þ − Juðr0Þ

�
: ð72Þ

The asymptotic expressions at large distances yield

uðr → ∞Þ ∼ −
J
2r2

þ A2J
8r4

−
A4J
48r6

þ A6J
384r8

þO
��

1

r

�
10
�
; ð73Þ

hðr → ∞Þ ∼ r2

l2
þ
�
−
A2

l2
−M

�
þ

A4

l2 þ A2Mþ J2

4r2
−
3A2J2l2 þ A4l2Mþ A6

24r4l2
þO

��
1

r

�
6
�
; ð74Þ

bðr → ∞Þ ∼ r2

l2
−Mþ − A4

l2 − 3A2Mþ J2

4r2
þ
A2
�
− 3A4

l2 − 7A2Mþ 3J2
�

24r4
þO

��
1

r

�
6
�
; ð75Þ

Vðr → ∞Þ ∼ −
1

l2
−

A2

2r2l2
−
A2l2Mþ A4

4r4l2
þO

��
1

r

�
6
�
; ð76Þ

Vðϕ → 0Þ ∼ −
1

l2
−

ϕ2

2l2
þ ϕ4

�
−

M
4A2

−
1

4l2

�
þ 1

24
ϕ6

�
3J2

A4
−
5M
A2

−
3

l2

�
þOðϕ8Þ: ð77Þ
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We can see that at large distances we obtain a solution
similar to the rotating BTZ black hole, with changes in the
structure of spacetime being related to A, and in the small
hair case, we also obtain the rotating BTZ black hole. The
horizon is given by bðrÞ ¼ 0 [34,49], which is also a root

of hðrÞ. bðrÞ has two roots, which can be computed
analytically but these expressions are lengthy, so we will
not give them here. The existence of horizons provides
bounds for the angular momentum of the black hole.
Therefore, black holes can only exist when

A > 0 & l > 0 & M > 0 &

�
J2 ≤

A4

l2
þ 2A2M or

A4

l2
þ 2A2M < J2 ≤

ðA2 þ l2MÞ2
l2

�
: ð78Þ

In the cases where the inequalities are saturated
[J2 ¼ A4=l2 þ 2A2M or J2 ¼ ðA2 þ l2MÞ2=l2] in the
above expressions we have black holes with a single event
horizon, while in any other case the black holes develop
two horizons, an inner and an event horizon. The rotating
solution admits a region of spacetime where the Killing
field ∂=∂t is spacelike, which transforms into the condition

gtt > 0 → −hðrÞ þ r2uðrÞ2 > 0: ð79Þ

It is clear that at the event horizon, the previous condition
holds, and also for some region outside of the horizon [34].

In Fig. 6 we plot the scalar potential where it is obvious that
between the inner and event horizons, negative potential
wells are developed, while as we increase the mass
parameter, the wells become deeper. In addition, it is clear
from both figures that in the rotating case, the vacuum of
the field theory represents a local maximum, and not a
global one. One should also note the fact that the potential
energy is bounded from below, which will play a crucial
role in the stability of the system. Moreover, in Fig. 7 we
plot the metric function bðrÞ and gtt in order to study
the geometry. From Fig. 7 (left) we can see that the black
hole develops two horizons, while for the degenerate case

FIG. 7. bðrÞ and gttðrÞ having set l ¼ A ¼ 1, J ¼ 2, while varying the mass parameter.

FIG. 6. VðrÞ having set l ¼ A ¼ 1, J ¼ 2, while varying the mass parameter.
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J2 ¼ ðA2 þ l2MÞ2=l2, the horizons coincide. The gtt
component is positive at the horizon and for some region
after the horizon, denoting the presence of an ergoregion,
as in the BTZ black hole [2–4]. The scalar potential
depends on the conserved black hole charges. We can
eliminate these charges by introducing a new constant χ,
such as

χ ¼ J2

A4
; ð80Þ

besides q ¼ M=A2. Now the potential will read

VðϕÞ ¼ eϕ
2

�
ϕ2

�
−qþ χ

2
−

1

2l2

�
þ 2q − χ þ 1

l2

�

þ e
ϕ2

2

�
−2qþ 2χ −

2

l2

�
− χ −

χϕ4

4
−
χϕ2

2
; ð81Þ

Vðϕ → 0Þ ∼ −
1

l2
−

ϕ2

2l2
þ ϕ4ð−ql2 − 1Þ

4l2

þ ϕ6ð−5ql2 þ 3χl2 − 3Þ
24l2

þOðϕ8Þ: ð82Þ

Consequently, our theory will give black hole spacetimes
with a fixed angular momentum to the conserved mass ratio
given by

χ

q2
¼ J2

M2
: ð83Þ

Both the conserved mass and the angular momentum are
allowed to vary, in a consistent way, so the ratio J2=M2

will always be constant. To compute the Hawking temper-
ature we will use the concept of surface gravity, which is
defined by

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
∇μXν∇μXν

r
; ð84Þ

where Xμ is a Killing vector field of our spacetime defined
as Xμ ¼ ð1; 0;ΩÞ, where Ω is the angular velocity at the
horizon of the black hole, defined as

Ω ¼ −
gtθ
gθθ

				
r¼rþ

: ð85Þ

Evaluating the surface gravity we find

κ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
bðrÞðhðrÞðru0ðrÞ þ 2ðuðrÞ þ ΩÞÞ2 − ðh0ðrÞ − r2ðuðrÞ þ ΩÞu0ðrÞÞ2Þ

hðrÞ

s 					
r¼rþ

: ð86Þ

Now, we can find the temperature as

TðrþÞ ¼
κ

2π
¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðrÞ

�
h0ðrÞ2
hðrÞ − r2u0ðrÞ2

�s 					
r¼rþ

¼
A4e

A2

r2þ − J2l2
�
e

A2

2r2þ − 1
�
2

4πA2rþl2
�
e

A2

r2þ − e
A2

2r2þ
� ; ð87Þ

which of course reduces to the temperature of the BTZ black hole, when A approaches 0. The entropy is given by the same
formula as in the nonrotating case (58). The heat capacity is found to be

CðrþÞ ¼ πr3þ

 
2

 
A2

 
Jl

 
1

Jl − e
A2

2r2þðA2 þ JlÞ
þ 1

e
A2

2r2þðA2 − JlÞ þ Jl

!
− 3

!
þ r2þ

!!−1

; ð88Þ

which for small A reduces to the heat capacity of the
rotating BTZ black hole

Cðrþ; A → 0Þ ¼ 1

6
πrþ

�
16r4þ

3J2l2 þ 4r4þ
− 1

�
> 0: ð89Þ

Because of the complexity of (78) in order for the existence
of horizons, we will perform a numerical analysis for the
thermodynamics of this solution and plot the temperature,
the entropy, and the heat capacity as functions of the black
hole mass M for appropriate values of A; J;l. In Fig. 8

we fix A ¼ 0.5, l ¼ 1, J ¼ 2 and plot the corresponding
thermodynamic quantities for the allowed values of mass.
It is clear all thermodynamic quantities are positive and
growing with the increase of mass, in accordance with the
BTZ black hole case. Moreover, these black holes are
thermally stable in the canonical ensemble and do not
develop any phase transition. The system under consid-
eration is complicated, and therefore we cannot present
simple calculations to show that the internal energies of the
black hole do not coincide; however, we do not expect a
different behavior from the nonrotating case.
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IV. CONCLUSIONS

In this work we consider a three-dimensional gravity
theory with a self-interacting scalar field minimally
coupled to gravity. We do not specify the form of the
scalar potential, and to solve the field equations we choose
a specific form of the scalar field that is characterized by a
scalar charge. Solving the field equations we find a
solution in which the scalar field backreacts to the metric
and a hairy black hole is generated. The presence of the
scalar charge is introducing a scale in the theory, and in
the scalar potential an effective cosmological constant
appears. Motivated by field theory, we introduce a
parameter as the ratio of the black hole mass to the scalar
charge, and this parameter appears in the potential. In this
way the potential is independent of the mass of the black
hole and the scalar charge. The introduction of this
parameter allows the black hole mass to vary, along with
the scalar charge in a particular way, so that their ratio is
kept constant.
We find that the form of the hairy black hole depends on

the way matter parametrized by the scalar field backreacts
to the background gravitational metric. At large distances
because matter is weakly backreacting to gravity, the BTZ
black hole is generated with the scalar charge playing the
role of the cosmological constant which is necessary for the

existence of the BTZ black hole. At small distances a novel
hairy BTZ-like black hole is produced, because matter is
strongly backreacting to the gravitational metric. We
discussed the thermodynamics of the solutions, where
we found that the hairy black hole possesses a larger event
horizon than the BTZ case and hence has a higher
temperature and entropy at the event horizon. We also
discuss the first law of the thermodynamics, which for the
hairy BTZ-like black hole has to be modified.
Finally, we discuss rotating solutions introducing angu-

lar momentum through an angular shift function. We find a
similar behavior as in the nonrotating case, at large
distances we obtain a solution similar to the rotating
BTZ black hole, with changes in the structure of spacetime
being related to the scalar charge, while in the small scalar
charge case, we obtain the rotating BTZ black hole. At
small distances the rotating BTZ black hole is modified but
because of the complexity we did not give an explicit form
of the rotating hairy BTZ-like black hole at small distances.
Performing a numerical analysis for the thermodynamics of
this solution and studying the temperature, the entropy, and
the heat capacity as functions of the black hole mass, the
scalar charge, and the angular momentum, we found a
similar behavior for the nonrotating case of the hairy BTZ-
like black hole.

FIG. 8. The temperature T, the entropy S, and the heat capacity C as functions of the black hole mass.
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