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From the quantum point of view, singularity should not exist. Recently, Bah and Heidmann constructed a
five-dimensional singularity free topology star/black hole [Phys. Rev. Lett. 126, 151101 (2021)]. By
integrating the extra dimension, a four-dimensional static spherically symmetric black hole with a magnetic
charge and scalar hair can be obtained. In this paper, we study the quasinormal modes (QNMs) of the
magnetic field and gravitational field on the background of this four-dimensional charged black hole with
scalar hair. The odd parity of the gravitational perturbations couples with the even parity of the magnetic
field perturbations. Two coupled second-order derivative equations are obtained. Using the matrix-valued
direct integration method and the matrix-valued continued fraction method, we obtain the fundamental
QNM frequencies numerically. The effect of the magnetic charge on the QNMs is studied. The differences
of the frequencies of the fundamental QNMs between the charged black hole with scalar hair and the
Reissner-Nordström black hole are very small for the angular number l ¼ 2.
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I. INTRODUCTION

Black hole physics has entered a new era since the
detection of the gravitational waves from a binary black
hole merger by Laser Interferometer Gravitational-Wave
Observatory (LIGO) and Virgo [1] and the first picture of a
supermassive black hole at the center of galaxy M87
photographed by the Event Horizon Telescope (EHT)
[2–7]. Recently, the picture of the black hole in our
Milky Way was also taken by EHT [8–13]. These break-
throughs provide us with more possibilities to test some
fundamental physical problems, for example, the singu-
larity problem in the mathematical aspect [14,15]. Usually,
a spacetime singularity is located at the center of a black
hole. However, from the quantum aspect, spacetime should
not be singular. To mimic black holes classically, some
ultracompact objects have been constructed, such as
gravastars [16], boson stars [17], and wormholes [18–
21]. For more details, see the review [22] and references
therein. But usually they need some exotic matters, and the
UV origin is unclear. From the top-down point of view,
string theory is regarded as the candidate that can unify
quantum theory and gravity. Some horizonless models
constructed from string theory, such as fuzz balls [23],

are similar to black holes up to the Planck scale, and they
have smooth microstate geometries. However, a lot of
degrees of freedom in supergravity are needed, and the
astrophysical observations of these horizonless models are
difficult [24–26]. Recently, a five-dimensional nonsingular
topological star/black hole model was proposed based on a
five-dimensional Einstein-Maxwell theory [27,28]. The
spacetime in this model has advantages in both microstate
(smooth geometry) and macrostate geometries (similar to
classical black holes). So it is interesting to study their
astrophysical observations. Last year, Lim studied the
motion of a charged particle in this nonsingular topological
star/black hole model [29]. The thermodynamic stability of
the solutions has been carefully analyzed in Ref. [30].
Integrating the extra dimension, a four-dimensional
Einstein-Maxwell-dilaton theory can be obtained, and a
static spherically symmetric solution was solved in this
background [25,26]. Shadows of this black hole were
studied in Ref. [31]. In this paper, we will study the
quasinormal modes (QNMs) of this model.
As the characteristic modes of a dissipative system,

QNMs play important roles in a lot of aspects of our world.
Because of the presence of the event horizon, black holes
are natural dissipative systems. For a binary black hole
merger system, there are three stages: inspiral, merger, and
ringdown. In the ringdown stage, the gravitational waves
are regarded as a superposition of QNMs [32]. Compared
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with the normal modes, the eigenfunctions of QNMs
generally do not form a complete set, and they are not
normalizable [33]. The frequencies of QNMs are complex,
and the imaginary parts are related to the decay timescale of
the perturbation. One can use the QNMs to infer the mass
and angular momentum of a black hole [34] and to test the
validity of the no-hair theorem [35–37]. The echoes in the
ringdown signals can be used to distinguish the black hole
from the ultracompact objects [15,22,38]. Recently, the
pseudospectrum of gravitational physics showed that the
QNM spectrum is unstable for the fundamental mode and
the overtone modes [39,40]. Besides, the properties of
QNMs can also be used to constrain modified gravity
theories [41–49]. The stability under perturbations of the
background spacetime can also be partly revealed from
the QNM frequencies [50,51]. Except for black hole
physics, QNMs are also very useful in other dissipative
systems, such as leaky resonant cavities [52] and brane
world theories [53–55]. So, QNMs have been studied
widely [56–60].
In this paper, we are interested in the QNMs of the four-

dimensional spherically symmetric Bah-Heidmann black
hole with a magnetic charge. The organization of this paper
is as follows. In Sec. II, we briefly review the Bah-
Heidmann black hole and the Kaluza-Klein (KK) reduc-
tion. In Sec. III, we study the linear perturbation of the
electromagnetic field and gravitational field. Separating the
radial part of the perturbed fields from the angular part, we
derive the perturbation equations. In Sec. IV, we compute
the quasinormal frequencies (QNFs) using the matrix-
valued direct integration method. Finally, we give our
conclusions in Sec. V.

II. THE CHARGED BLACK HOLE
WITH SCALAR HAIR

In this section we briefly review the black hole/topo-
logical star model proposed by Bah and Heidmann [27,28].
We start from a five-dimensional Einstein-Maxwell theory.
The action is

S ¼
Z

d5x
ffiffiffiffiffiffi
−ĝ

p �
1

16πG5

R̂ −
1

16π
F̂MNF̂MN

�
; ð1Þ

where F̂MN is the electromagnetic field tensor and G5 is the
five-dimensional gravitational constant. The quantities with
a hat denote that they are constructed in the five-dimen-
sional spacetime. The capital Latin letters M;N;… denote
the five-dimensional coordinates. The metric can be
assumed as [61]

ds2 ¼ −fSðrÞdt2 þ fBðrÞdy2 þ
1

fSðrÞfBðrÞ
dr2

þ r2dθ2 þ r2sin2θdϕ2: ð2Þ

The extra dimension, denoted by the coordinate y, is a
warped circle with radius Ry. The field strength with a
magnetic flux is

F̂ ¼ P sin θdθ ∧ dϕ: ð3Þ

The solution with double Wick rotation symmetry is [61]

fBðrÞ ¼ 1 −
rB
r
;

fSðrÞ ¼ 1 −
rS
r
;

P ¼ � 1

G5

ffiffiffiffiffiffiffiffiffiffiffiffi
3rSrB

p
: ð4Þ

That is to say, the metric (2) is invariant under rotation (t, y,
rS, rB) → (iy, it, rB, rS). There are two coordinate
singularities located at r ¼ rS (corresponding to a horizon)
and r ¼ rB (corresponding to a degeneracy of the y-circle).
Bah and Heidmann found that, after some coordinate
transformations, a smooth bubble locates at r ¼ rB
[27,28]. This provides an end of the spacetime. For
rS ≥ rB, the bubble is hidden behind the horizon and the
metric (2) describes a black string. For rS < rB, the
spacetime ends at the bubble before reaching the horizon,
and the metric (2) describes a topological star [27,28].
We can integrate the extra dimension y (this process is

called Kaluza-Klein reduction). Then, a four-dimensional
Einstein-Maxwell-dilaton theory is obtained from the five-
dimensional Einstein-Maxwell theory

S4 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG4

R4 −
3

8πG4

gμν∂μΦ∂νΦ

−
e−2Φ

16πe2
FμνFμν

�
; ð5Þ

where e2 ≡ 1
2πRy

and Φ is a dilaton field. The Greek letters

μ; ν;…, denote the four-dimensional coordinates. Here, gμν
and Fμν are the four-dimensional metric (15) and the
electromagnetic field strength, respectively. The four-
dimensional Ricci scalar R4 is determined by the metric
gμν, and the four-dimensional gravitational constant is
defined as

G4 ¼ e2G5: ð6Þ

Varying the action (5) with respect to the scalar field Φ, the
vector potential Aμ, and the metric gμν, we obtain the field
equations

6

G4

□Φþ e−2Φ

e2
FμνFμν ¼ 0; ð7Þ

∇μFμν ¼ 0; ð8Þ
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Rμν −
1

2
gμν ¼ 8πG4Tμν; ð9Þ

where □ is the four-dimensional D’Alembert operator,
Tμν ¼ Ts

μν þ Tm
μν is the energy momentum tensor contain-

ing the contributions of the scalar field and the magnetic
field:

Ts
μν ¼

3

4πG4

∇μΦ∇νΦ −
3

8πG4

gμν□Φ; ð10Þ

Tm
μν ¼

e−2Φ

4πe2
FμαFα

ν −
e−2Φ

16πe2
gμνFαβFαβ: ð11Þ

The dilaton field Φ can be obtained as

e2Φ ¼ f−1=2B : ð12Þ

We can solve the vector potential corresponding to the
magnetic field as

Aμ ¼
�
0; 0; 0;−

e
2

ffiffiffiffiffiffiffiffiffiffiffiffi
3rBrS
G4

s
cos θ

�
: ð13Þ

Thus, the field strength reads as

Fμν ¼

2
6666664

0 0 0 0

0 0 0 0

0 0 0 e
2

ffiffiffiffiffiffiffiffi
3rBrS
G4

q
sin θ

0 0 − e
2

ffiffiffiffiffiffiffiffi
3rBrS
G4

q
sin θ 0

3
7777775
: ð14Þ

The four-dimensional metric is

ds24 ¼ f
1
2

B

�
−fSdt2 þ

dr2

fBfS
þ r2dθ2 þ r2 sin2 θdϕ2

�
: ð15Þ

Note that, when rB ¼ 0, this metric recovers to the
Schwarzschild one.
The parameters rS and rB are related to the four-

dimensional Arnowitt-Deser-Misner mass M and the mag-
netic charge Qm as

M ¼
�
2rS þ rB
4G4

�
; ð16Þ

Qm ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
3rBrS
G4

s
: ð17Þ

On the other hand, for each M and Qm, which are physical
parameters, there are two solutions of ðrS; rBÞ,

rð1ÞS ¼ 2G4ðM −M△Þ; rð1qÞB ¼ G4ðM þM△Þ; ð18Þ

rð2ÞS ¼ G4ðM þM△Þ; rð2ÞB ¼ 2G4ðM −M△Þ; ð19Þ

where

M2
△
¼ M2 −

� ffiffiffi
2

p
Qmffiffiffiffiffiffiffiffi
3G4

p
�2

: ð20Þ

Note that, in four-dimensional spacetime, when r < rB, f
1=2
B

becomes imaginary. So, r ¼ rB is the end of the spacetime.
This is consistent with the result in five-dimensional space-
time [27,28]. Usually, a black string scenario has the
Gregory-Laflamme instability [62]. However, compact extra
dimensions leading to a discrete KK mass spectrum make it
possible to avoid the Gregory-Laflamme instability. Stotyn
and Mann demonstrated that the solution (18) is unstable

under perturbation, while, when Ry >
4
ffiffi
3

p
3
Qm, the solution

(19) is stable. That is to say, the solution (19) does not have
the Gregory-Laflamme instability. Actually, the spacetime at
r ¼ rB is singular in four-dimensional spacetime. When
rB ≥ rS, the metric (15) corresponds to a naked singularity,
and when rB < rS, the metric (15) corresponds to a black
hole, which is named as a charged black holewith scalar hair.
In this paper, wewill only focus on the case rB < rS, i.e., the
charged black hole with scalar hair.

III. PERTURBATION EQUATIONS

With the background solution (12), (15), and (13), we
can derive the equations of motion for the perturbations.
The perturbed scalar field, vector potential, and metric field
can be written as

Φ ¼ Φ̄þ φ; ð21Þ

Aμ ¼ Āμ þ aμ; ð22Þ

gμν ¼ ḡμν þ hμν; ð23Þ

where the quantities with a bar represent the background
fields and φ, aμ, and hμν denote the corresponding
perturbations. Because the background spacetime is spheri-
cally symmetric, the perturbations can be divided into three
parts based on their transformations under rotations on the
two-sphere: scalars, two-dimensional vectors, and two-
dimensional tensors. The spherical harmonic function
Yl;mðθ;ϕÞ behaves as a scalar under rotations, so it is
the scalar base. The two-dimensional vector and tensor
bases are introduced as follows [63–67]:

ðV1
l;mÞa ¼ ∂aYl;mðθ;ϕÞ; ð24Þ

ðV2
l;mÞa ¼ γbcϵac∂bYl;mðθ;ϕÞ; ð25Þ
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for the vector part, and

ðT1
l;mÞab ¼ ðYl;mÞ;ab; ð26Þ

ðT2
l;mÞab ¼ Yl;mγab; ð27Þ

ðT3
l;mÞab ¼

1

2
½ϵcaðYl;mÞ;cb þ ϵcbðYl;mÞ;ca�; ð28Þ

for the tensor part. Here, the Latin letters a, b, c denote the
angular coordinates θ and ϕ, γ is the induced metric on the
two-sphere with radius 1, and ϵ is the totally antisymmetric
tensor in two dimensions. The semicolon denotes the
covariant derivative on the two-sphere.
The above quantities behave differently under the space

inversion, i.e., ðθ;ϕÞ → ðπ − θ; π þ ϕÞ. A quantity is called
even or polar if it acquires a factor of ð−1Þl under space
inversion. A quantity is called odd or axial if it acquires a
factor of ð−1Þlþ1 under space inversion. So the above
quantities can be divided into two classes, the even parts
V1
l;m; T

1
l;m; T

2
l;m, and the odd parts V2

l;m; T
3
l;m. Note that, the

spherical harmonic function Yl;mðθ;ϕÞ is even parity.
Usually the gravitational and electromagnetic perturbations
will mix, for example, the Reissner-Nordström (RN) black
hole. But the even-parity and odd-parity perturbations
usually do not mix, the RN black hole with electric charge
does not mix the polar and axial contributions. Only the
even-parity (or odd-parity) perturbations of the gravita-
tional and electromagnetic parts mix. However, we can see
from Eqs. (12), (15), and (13) that the background scalar
field and metric field are even parity and the background
vector potential is odd parity. So we expect that the scalar
perturbation and even-parity parts of the metric perturba-
tions couple to the odd-parity parts of the electromagnetic
perturbations to the linear order (type-I coupling). And the
odd-parity parts of the metric perturbations couple to the
even-parity parts of the electromagnetic perturbations to
the linear order (type-II coupling). Note that the scalar
perturbation only contains the even part. Actually, these
coupled perturbation equations have been studied in
Refs. [68,69]. In this paper, we study the type-II coupling
perturbations.
Based on the principle of general covariance, the theory

should keep covariant under an infinitesimal coordinate
transformation. Thus, we can choose a specific gauge to
simplify the problem. In the Regge-Wheeler gauge [66], the
odd parts of the perturbation hμν can be written as

hμν ¼
X
l

e−iωt

2
6664
0 0 0 h0
0 0 0 h1
0 0 0 0

� � 0 0

3
7775 sin θ∂θYl;0ðθÞ: ð29Þ

The magnetic field also has a gauge freedom. Following
Ref. [70], we denote

f̃μν ¼ ∂μaν − ∂νaμ; ð30Þ

and the even parts of the perturbation f̃μν can be written as

f̃μν ¼
X
l

e−iωt

2
6664
0 f01 f02 0

� 0 f12 0

0 � 0 0

0 � 0 0

3
7775 sin θ∂θYl;0ðθÞ: ð31Þ

Note that we have chosen m ¼ 0 for simplicity, because
the perturbation equations do not depend on the value
of m [66]. The asterisks denote elements obtained by
symmetry. The functions h0, h1, f01, f02, and f12 only
depend on the coordinate r. The perturbation of the vector
potential can be expanded as

at ¼ −
X
l

e−iωtf02Yl;0; ð32Þ

ar ¼ −
X
l

e−iωtf12Yl;0; ð33Þ

aθ ¼ 0; ð34Þ

aϕ ¼ 0: ð35Þ

The field strength f01 can be derived from Eq. (30) as

f01 ¼ ∂rf02 þ iωf12: ð36Þ

Substituting Eqs. (29) and (31) into the equations of motion
(8) and (9), after some algebra calculations we can obtain
the following master perturbation equations:

d2ψg

dr2�
þ ðω2 − V11Þψg − V12ψm ¼ 0; ð37Þ

d2ψm

dr2�
þ ðω2 − V22Þψm − V21ψg ¼ 0; ð38Þ

where

ψg ≡ f1=4B fS
1

r
h1; ð39Þ

ψm ≡ ffiffiffiffiffiffi
fB

p
r2f01; ð40Þ

r� is the tortoise coordinate defined as

dr� ¼
1ffiffiffiffiffiffi
fB

p
fS

dr; ð41Þ

and
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V11 ¼ fS

�
lðlþ 1Þ

r2
−
3ðr2Bð13rS − 9rÞ þ 16rSr2Þ

16fBr5

�

þ fS
3rBð2r − 7rSÞ

4fBr4
; ð42Þ

V12 ¼ −
2ifSf

1=4
B

elðlþ 1Þr3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rBrSG4

p
ω; ð43Þ

V21 ¼
i

ffiffiffiffiffiffiffiffiffiffiffiffi
3rBrS

p
efS

2
ffiffiffiffiffiffi
G4

p
ωf1=4B r3

ðl − 1Þlðlþ 1Þðlþ 2Þ; ð44Þ

V22 ¼ fS

�
3rBrS
r4

þ lðlþ 1Þ
r2

�
: ð45Þ

The details of deriving the master equations (37) and (38)
are shown in Appendix.
Note that, when the magnetic charge Qm vanishes, or rB

approaches zero, the gravitational perturbation ψg and the
magnetic field perturbation ψm will decouple. Furthermore,
the potential V11 will reduce to the potential for the
gravitational perturbation of the Schwarzschild black hole.
Besides, the parameters e and G4 do not affect the
quasinormal modes. To see this, we can redefine

ψ̃m ≡
ffiffiffiffiffiffi
G4

p
e

ψm ð46Þ

to eliminate the parameters e and G4 in Eqs. (37) and (38).
The corresponding potentials are

Ṽ12 ¼ −
2ifSf

1=4
B

lðlþ 1Þr3
ffiffiffiffiffiffiffiffiffiffiffiffi
3rBrS

p
ω; ð47Þ

Ṽ21 ¼
i

ffiffiffiffiffiffiffiffiffiffiffiffi
3rBrS

p
fS

2ωf1=4B r3
ðl − 1Þlðlþ 1Þðlþ 2Þ: ð48Þ

In the following, we use the redefined quantities but omit
the tilde above them.

IV. QUASINORMAL MODES

In this section we will solve the master perturbation
equations (37) and (38) to obtain the frequencies of the

QNMs.We focus on the QNMs of the solution (19) because
it is free of the Gregory-Laflamme instability. We know
from Eq. (20) that the range of the magnetic charge Qm is

½0;
ffiffiffiffiffiffiffiffi
3
2
G4

q
M�. Compared with the range of the electric

charge of the RN black hole ½0; ffiffiffiffiffiffi
G4

p
M�, the range of

the magnetic charge is larger than that of the RN black hole
electric charge. Note that we only study the charged black
hole with scalar hair, that is, rB < rS. In this situation, the

range of the magnetic chargeQm is ½0; 2
ffiffiffiffi
G4

3

q
M�. This range

is still larger than that of the RN black hole electric charge.
The perturbation equations (37) and (38) are coupled and

can be rewritten into a compact form

d2Y
dr2�

þ ðω2 − VÞY ¼ 0; ð49Þ

where

Y ¼
�
ψg

ψm

�

and V is a 2 × 2 matrix with components (42), (45), (47),
and (48). The physical boundary conditions for the QNM
problem are pure ingoing waves at the event horizon

Yn ∼ bne−iωr� ; r� → −∞; ð50Þ

and pure outgoing waves at spatial infinity

Yn ∼ Bneiωr� ; r� → þ∞; ð51Þ

where Yn is the nth component of Y, and bn and Bn are
coefficients of the boundary conditions. With these boun-
dary conditions, solving the QNFs is an eigenvalue
problem.
The continued fraction method was first applied to

gravitational problems by Leaver [71], and it has been
used in a coupled system [72,73]. To get a recurrence
relation, we need a suitable ansatz of the eigenfunction.
Here, we assume that eigenfunctions of ψg and ψm are

ψg ¼ ðr − rSÞ−pðr − rS þ 1Þpeiðr−rSÞωðr − rS þ 1ÞiðrB=2þrSÞω
X
n

agnHðrÞn; ð52Þ

ψm ¼ðr − rSÞ−pðr − rS þ 1Þpeiðr−rSÞωðr − rS þ 1ÞiðrB=2þrSÞωfBðrÞ3=4
X
n

amn HðrÞn; ð53Þ

where p ¼ ir3=2S ωffiffiffiffiffiffiffiffiffi
rs−rB

p andHðrÞ ¼ r−rS
r−rB

. Inserting these into the master equations (37) and (38), we obtain seven-term recurrence

relations
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α0A1 þ β0A0 ¼ 0; ð54Þ

α1A2 þ β1A1 þ γ1A0 ¼ 0; ð55Þ

α2A3 þ β2A2 þ γ2A1 þ ρ2A0 ¼ 0; ð56Þ

α3A4 þ β3A3 þ γ3A2 þ ρ3A1 þ λ3A0 ¼ 0; ð57Þ

α4A5 þ β4A4 þ γ4A3 þ ρ4A2 þ λ4A1 þ σ4A0 ¼ 0; ð58Þ

αnAnþ1 þ βnAn þ γnAn−1 þ ρnAn−2 þ λnAn−3

þ σnAn−4 þ δnAn−5 ¼ 0; ð59Þ

where

An ¼
�
agn

amn

�

is the vectorial coefficient. The coefficient matrices of the
recurrence relations are very complicated, so we do not
show the explicit expressions [74]. Usually, a three-term
recurrence relation can be obtained through a matrix-valued
version of the Gaussian elimination [75,76]. Then a matrix-
valued continued fraction can be solved and can be used to
solve the QNFs. More details can be seen in Ref. [77].
However, it needs to solve the inverse of the coefficient
matrices of the recurrence relations again and again, which
is difficult. There is an equivalent way to solve the QNFs.
Equations (54)–(59) can be written as

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

β110 β120 α110 α120
β210 β220 α210 α220
γ111 γ121 β111 β121 α111 α121
γ211 γ221 β211 β221 α211 α221
ρ112 ρ122 γ112 γ122 β112 β122 α112 α122
ρ212 ρ222 γ212 γ222 β212 β222 α212 α222
λ113 λ123 ρ113 ρ123 γ113 γ123 β113 β123 α113 α123
λ213 λ223 ρ213 ρ223 γ213 γ223 β213 β223 α213 α223
σ114 σ124 λ114 λ124 ρ114 ρ124 γ114 γ124 β114 β124 α114 α124
σ214 σ224 λ214 λ224 ρ214 ρ224 γ214 γ224 β214 β224 α214 α224
δ115 δ125 σ115 σ125 λ115 λ125 ρ115 ρ125 γ115 γ125 β115 β125 α115 α125
δ215 δ225 σ215 σ225 λ215 λ225 ρ215 ρ225 γ215 γ225 β215 β225 α215 α225

. .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

.

δ11n δ12n σ11n σ12n λ11n λ12n ρ11n ρ12n γ11n γ12n β11n β12n α11n α12n

δ21n δ22n σ21n σ22n λ21n λ22n ρ21n ρ22n γ21n γ22n β21n β22n α21n α22n

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

ag0
am0
ag1
am1
ag2
am2
ag3
am3
ag4
am4
ag5
am5
agn

..

.

amn

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

¼ 0:

The QNFs are those that make the determinant of the
coefficient matrix zero. This method was first used to solve
the QNFs of the RN black holes by Leaver [75].
Except for the matrix-valued continued fraction method,

we also use the matrix-valued direct integration method to
solve the QNFs. More details can be seen in Ref. [77].
We solve the fundamental QNMs numerically, which

dominate the ringdown waveform at late time. The values
of the frequencies of fundamental QNMs for the gravita-
tional field ψg and the magnetic field ψm for different
values of the magnetic charge Qm with l ¼ 2 are shown in
Tables I and II. When Qm ¼ 0, the metric (15) reduces to
the Schwarzschild metric. The master equation (37)
reduces to the odd-parity gravitational perturbation of
the Schwarzschild black hole in general relativity. The

QNFs are also the same as the Schwarzschild black hole
case. This confirms that our numerical method is valid.
Besides, the QNFs solved by the matrix-valued direct
integration method and the matrix-valued continued frac-
tion method agree well each other, which can be seen in
Tables I and II. This strengthens the validity of our results.
Note that the charge of the charged black hole with scalar
hair can be seen as a dark charge. One of the effects of this
charge is to stabilize the spacetime. Besides, it is possible
that microscopic topology stars could be candidates for
dark matter. In this paper, we would like to compare our
results with that of the RN black hole. Comparing the
QNFs of the charged black hole with scalar hair and the RN
black hole, we can see that the differences of their
numerical values are very small. So we almost cannot

WEN-DI GUO, QIN TAN, and YU-XIAO LIU PHYS. REV. D 107, 124046 (2023)

124046-6



distinguish them from the gravitational wave data. Note
that, for the extreme RN black hole, the singular structure
of the perturbation equations is different from the non-
extreme ones. The QNMs for the maximally charged RN
black hole were studied in Ref. [78]. Our results for the RN
black hole withQ=M ¼ 0.9999 are taken from that paper. It
is valuable to compare the QNFs of the nearly extremal
charged black hole with that of the RN black hole.

However, we can only calculate the QNFs for Qm=M ¼
1.12 or, equivalently, Qm=M ¼ 0.96995 × ð2= ffiffiffi

3
p Þ. More

extremal cases need special concern.
The effects of the magnetic charge Qm of the charged

black hole with scalar hair and the electric charge Q of the
RN black hole on the fundamental QNMs are shown in
Figs. 1 and 2. From Figs. 1(a) and 1(b), it can be seen that
the real parts of the QNFs for both black holes increase with

TABLE I. The fundamental QNMs for the gravitational field ψg of the charged black hole with scalar hair [using the direct integration
(DI) method and using the continued fraction (CF) method] and the RN black hole for different values of the magnetic charge Qm and
electric charge Q, respectively. The angular number l is set to l ¼ 2.

Charged BH DI Charged BH CF RN BH

Qm=M ωRM ωIM ωRM ωIM Q=M ωRM ωIM

0 0.37367 −0.088962 0.37367 −0.088962 0 0.37367 −0.088962
0.2 0.37474 −0.089081 0.37480 −0.089095 0.2 0.37474 −0.089075
0.4 0.37848 −0.089429 0.37855 −0.089463 0.4 0.37844 −0.089398
0.6 0.38641 −0.089982 0.38649 −0.090086 0.6 0.38622 −0.089814
0.8 0.40163 −0.090500 0.40169 −0.090886 0.8 0.40122 −0.089643
1.12 0.47027 −0.084231 0.47153 −0.092731 0.9999 0.43134 [78] −0.083460 [78]

TABLE II. The fundamental QNMs for the magnetic field ψm of the charged black hole with scalar hair [using the direct integration
(DI) method and using the continued fraction (CF) method] and the electric field ψe of the RN black hole for different values of the
magnetic charge Qm and electric charge Q, respectively. The angular number l is set to l ¼ 2.

Charged BH DI Charged BH CF RN BH

Qm=M ωRM ωIM ωRM ωIM Q=M ωRM ωIM

0 0.45715 −0.094784 0.45715 −0.094784 0 0.45759 −0.095004
0.2 0.46295 −0.095377 0.46296 −0.095359 0.2 0.46297 −0.095373
0.4 0.47969 −0.096462 0.47969 −0.096441 0.4 0.47993 −0.096442
0.6 0.51053 −0.098155 0.51055 −0.098133 0.6 0.51201 −0.098017
0.8 0.56316 −0.10008 0.56320 −0.10002 0.8 0.57013 −0.099069
1.12 0.78258 −0.091135 0.79925 −0.098085 0.9999 0.70430 [78] −0.085973 [78]

FIG. 1. The effects of the magnetic chargeQm of the charged black hole with scalar hair and the electric chargeQ of the RN black hole
on the real parts of the fundamental QNFs. The solid and dashed lines correspond to the QNFs of the magnetic field ψm (or the electric
field ψ e) and the gravitational field ψg, respectively. The black, red, and blue lines correspond to the QNFs with l ¼ 2, l ¼ 4, and l ¼ 6,
respectively. (a) The real parts of the QNFs for the charged black hole with scalar hair. (b) The real parts of the QNFs for the RN
black hole.
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the magnetic charge Qm or the electric charge Q. The
imaginary parts of the QNFs for the RN black hole first
increase, then decrease as the electric charge Q increases,
which can be seen in Fig. 2(b). However, the situation for the
imaginary parts of the charged black hole with scalar hair is
different, which can be seen in Fig. 2. The imaginary part for
the gravitational fieldψg of the charged black holewith scalar
hair when l ¼ 2 [the black dashed line in Fig. 2(a)] increases
with the magnetic charge Qm. The imaginary part for the
gravitational field ψg when l > 2 and for the magnetic field
ψm when l ≥ 2 first increases, then decreases, and finally
increases as the magnetic charge Qm increases. We also
calculate the QNFs for l ¼ 7; 8; 9, and the results are shown
in the Supplemental Material [79].

V. CONCLUSIONS

In five-dimensional spacetime, based on the Einstein-
Maxwell action (1), Bah and Heidmann proposed a non-
singular black hole/topology star. This is similar to the
classical black hole in macrostate geometries; more impor-
tantly, it can be constructed from type-IIB string theory.
Integrating the extra dimension y, the five-dimensional
Einstein-Maxwell theory reduces to a four-dimensional
Einstein-Maxwell-dilaton theory, which supports a spheri-
cally static black hole/topological star solution with a
magnetic charge.
We investigated the QNMs of the charged black hole

with scalar hair by studying the linear perturbation of the
gravitational field and the electromagnetic field. Because of
the spherical symmetry of the background spacetime, the
radial parts of the perturbed fields can be decomposed from
the angular parts. The angular parts can be expanded by the
spherical harmonics. The background scalar field (12) and
metric field (15) are even parity under the space inversion;
however, the background magnetic field (13) is odd parity.
So the scalar perturbation and even-parity parts of the
metric perturbations couple to the odd-parity parts of the

electromagnetic perturbations to the linear order, and
the odd-parity parts of the metric perturbations couple
to the even-parity parts of the electromagnetic perturbations
to the linear order, which we named as type-I and type-II
couplings, respectively. For simplicity, we study the type-II
coupling perturbations. Finally, we obtained two coupled
perturbation equations (37) and (38). Although the extra
dimension radius Ry can be eliminated from the master
equations by a transformation of the electromagnetic field
ψm, it can also affect the QNM spectrum through the
gravitational constant.
Using the matrix-valued direct integration method and

the matrix-valued continued fraction method, we computed
the fundamental QNFs for both the gravitational perturba-
tion and the magnetic field perturbation, which will
dominate the ringdown wave at late time. The values of
the frequencies of the fundamental QNMs for the gravi-
tational field ψg and the magnetic field ψm for different
values of the magnetic charge Qm with l ¼ 2 are shown in
Tables I and II. The results obtained from the matrix-valued
direct integration method and the matrix-valued continued
fraction method agree well each other, which strengthens the
validity of our results. The differences of the frequencies of
the fundamental QNMs between the charged black hole with
scalar hair and the RN black hole are very small. So we
almost cannot distinguish them from the gravitational wave
data. The effect of the magnetic charge Qm of the charged
black hole with scalar hair on the fundamental QNFs are
shown in Figs. 1(a) and 2. The real parts of the QNFs
increase with the magnetic charge Qm, which is similar to
that of the RN black hole. However, the situation for the
imaginary parts of the QNFs of the charged black hole with
scalar hair is different, which can be seen in Fig. 2.
We only studied the type-II coupling perturbations,

where the scalar field does not couple to the other two
fields. So we expect that the type-I coupling perturbations
will give us more information about the charged black hole
with scalar hair, which will be studied in the future.

FIG. 2. The effects of the magnetic chargeQm of the charged black hole with scalar hair and the electric chargeQ of the RN black hole
on the imaginary parts of the fundamental QNFs. The solid and dashed lines correspond to the QNFs of the magnetic field ψm (or the
electric field ψ e) and the gravitational field ψg, respectively. The black, red, and blue lines correspond to the QNFs with l ¼ 2, l ¼ 4, and
l ¼ 6, respectively. (a) The imaginary parts of the QNFs for the charged black hole with scalar hair. (b) The imaginary parts of the QNFs
for the RN black hole.
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APPENDIX: EXPLICIT PERTURBATION
EQUATIONS

In this appendix we give the details for how to get the
master perturbation equations (37) and (38). The non-
vanishing parts of the perturbed Einstein equations are the
ðt;ϕÞ, ðr;ϕÞ, and ðθ;ϕÞ components

2e

�
4fB

rS
r
− fS

rB
r
−
fSr2B
fBr2

þ 4lðlþ 1Þ þ 10fS
rB
r
þ 8

rS
r
þ 12

rBrS
r2

�
h0 − 8efBfSr2h000

− 4iefSrωðrf0B þ 4fBÞh1 − 8iefBfSr2ωh01 ¼ −16a
ffiffiffiffiffiffi
G4

p ffiffiffiffiffiffi
fB

p
f02; ðA1Þ

8ef2Bðr4ω2 − fSðrSð2fB þ 3rBÞ − 2rfBrS þ ðlðlþ 1Þ − 2Þr2ÞÞh1 þ 4i
e
r
fBωð4fB þ rf0BÞh0

− 8ier4f2Bωh
0
0 ¼ 16a

ffiffiffiffiffiffi
G4

p
r2f5=2B fSf12; ðA2Þ

2fSh1fBf0S þ f2Sðh1f0B þ 2fBh01Þ þ 2ih0ω ¼ 0; ðA3Þ

where the constant a is defined as a≡ e
ffiffiffiffiffiffiffiffiffiffiffiffi
3rBrS

p
. And the nonvanishing parts of the perturbed Maxwell equations are the t,

r, and θ components

fSrðrf0B þ 4fBÞf01 þ 2fBfSr2f001 − 2lðlþ 1Þf02 ¼
a

fBr2
ffiffiffiffiffiffi
G4

p lðlþ 1Þh0; ðA4Þ

2iω
ffiffiffiffiffiffi
fB

p
r4f01 þ 2fS

ffiffiffiffiffiffi
fB

p
r2lðlþ 1Þf12 ¼ −

affiffiffiffiffiffi
G4

p fSlðlþ 1Þh1; ðA5Þ

2f3=2B fSκ4r3ðf12fSÞ0 þ
ffiffiffiffiffiffi
fB

p
r3ðf12f2Sf0B þ 2if02ωÞ ¼

affiffiffiffiffiffi
G4

p ð3fSh1 − fBfSðfSrh1Þ0 − ωrh0Þ: ðA6Þ

Actually, among the six perturbed equations only four of them are independent. Equation (A1) can be derived from
Eqs. (A2), (A3), and (A6) with the background Einstein equation (9). Similarly, Eq. (A6) can also be obtained by using
Eqs. (A5) and (A4). Therefore, we can use four independent equations (A2)–(A5) and an identity (36) to solve five
independent variables h0, h1, f01, f02, and f12.
The variable h0 can be solved from Eq. (A3) as

h0 ¼
i
2ω

fSðfSf0B þ 2fBf0SÞh1 þ 2f2SfBh
0
1: ðA7Þ

Using this formula and Eqs. (A4) and (A5), we can obtain f02 and f12 in terms of h1 and f01 as

f02 ¼
fSr

2lðlþ 1Þ ½2rfBf
0
01 þ ð4fB þ rf0BÞf01� −

iafS
4r2

ffiffiffiffiffiffi
G4

p
ω

ffiffiffiffiffiffi
fB

p ½2fBðh1fSÞ0 þ fSf0Bh1�; ðA8Þ

f12 ¼ −
iωr2

fSðlþ 1Þl f01 −
a

2
ffiffiffiffiffiffi
G4

p ffiffiffiffiffiffi
fB

p
r2
h1: ðA9Þ

Substituting Eqs. (A7)–(A9) into Eqs. (A2) and (36) we can obtain two second-order differential equations in which h1 and
f01 are coupled
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−
1

2

ffiffiffiffiffiffi
fB

p
fSh001 þ

� ffiffiffiffiffiffi
fB

p
2r2

ð2rfS − 3rSÞ −
rBfS

2r2
ffiffiffiffiffiffi
fB

p
�
h01 þ

�
r2BfS

8r4f3=2B

−
ω2

2
ffiffiffiffiffiffi
fB

p
fS

−
1

4r4
ffiffiffiffiffiffi
fB

p ðð3rBrS − 2ðl − 1Þðlþ 2Þr2Þ − 5rrBfSÞ þ
ffiffiffiffiffiffi
fB

p
2r4fS

ð4rrSfS − r2SÞ
�
h1 ¼

2iωa
ffiffiffiffiffiffi
G4

p
e2lðlþ 1ÞfS

f01; ðA10Þ

−
r2fSfB
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00
01 þ

2fBðrS þ 4rfSÞ − 3rBfS
2lðlþ 1Þ f001 þ

�
1 −

r2ω2

lðlþ 1ÞfS
þ f0Sð4rfB þ rBÞ

2lðlþ 1Þ −
fSð5rB þ 4rfBfSÞ

2lðlþ 1Þr
�
f01

¼ −
ia

ffiffiffiffiffiffi
fB

p
f2S

2r2ω
ffiffiffiffiffiffi
G4

p h001 −
iafS½rBfS þ fBð3rS − 2rfSÞ�

2r4ω
ffiffiffiffiffiffi
G4

p
fB

h01 −
iar2Bf

2
S

8r6ω
ffiffiffiffiffiffi
G4

p
f3=2B

h1

þ
�
iarS

ffiffiffiffiffiffi
fB

p ðrS − 3rfSÞ
2r6ω

ffiffiffiffiffiffi
G4

p −
iað3rrBf2S − 2r4ω2 − 3rBrSfSÞ

4r6ω
ffiffiffiffiffiffi
G4

p ffiffiffiffiffiffi
fB

p
�
h1: ðA11Þ

To get the Schrödinger-like form, we need to define the following master variables:

ψg ≡ f1=4B fS
1

r
h1; ðA12Þ

ψm ≡ ffiffiffiffiffiffi
fB

p
r2f01: ðA13Þ

In the tortoise coordinate r�, Eqs. (A10) and (A11) can be rewritten into the form of Eqs. (37) and (38).
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