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In this paper, using the maximal embedding of SUð2Þ into SUðNÞ in the Euler angles parametrization,
we construct a novel family of exact solutions of the Einstein SUðNÞ-Skyrme model. First, we present a
hairy toroidal black hole in D ¼ 4 dimensions. This solution is asymptotically locally anti–de Sitter and is
characterized by discrete hair parameters. Then, we perform a dimensional extension of the black hole to
obtain black p-branes as solutions of the Einstein SUðNÞ-nonlinear sigma model in D ≥ 5 dimensions.
These are homogeneous and topologically protected. Finally we show that, through a Wick rotation of the
toroidal black hole, one can construct an exact self-gravitating instanton. The role that the flavor number N
plays in the geometry and thermodynamics of these configurations is also discussed.
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I. INTRODUCTION

The Skyrme model [1,2] is one of the most important
effective nonlinear field theories, since it is able to describe
baryons in the low energy limit of quantum chromody-
namics, where the usual perturbative methods cannot be
applied. In this model, baryons emerge as topological
solitons (called skyrmions) from the nonlinear interactions
between mesons, where the topological charge in this
model is the baryonic number [3,4]. This is achieved from
a purely bosonic action with isospin symmetry constructed
from a scalar field UðxÞ ∈ SUðNÞ, that generalizes the
nonlinear sigma model (NLSM).
When the Skyrme model is coupled to general relativity,

it allows describing (self-)gravitating configurations sup-
ported by baryonic or mesonic matter (depending on
whether the solutions are topologically trivial or not) such
as black holes, gravitating solitons, and compact objects
(Skyrme stars), among others. A relevant fact in this context
is that the first counterexample to the well-known black
hole no-hair conjecture was found in the Einstein SUð2Þ-
Skyrme model [5,6], where spherically symmetric black

hole solutions with nontrivial Skyrme fields were con-
structed numerically.1

In general, constructing solutions in the Skyrme model
(and, of course, in the Einstein-Skyrme model) is a
complicated task due to the high nonlinearity of the field
equations, together with the fact that the Skyrme-
Bogomolnyi–Prasad–Sommerfield (BPS) bound cannot
be saturated in generic cases.2 In consequence, most of
the known solutions have been found using numerical
methods (see [11–16] and references therein). However, in
recent years, the development of new techniques has
allowed a good number of analytical solutions, both in
flat space-time and in the (self-)gravitating case. Within
these, we can highlight the construction of crystals of
(superconducting) baryonic tubes and layers at finite
volume [17–19], pionic black holes with different geom-
etries of the event horizon [20,21] (see also [22–24]), self-
gravitating Skyrmions [25–28], and extended black objects
such as black strings [29–31].
It is important to note that almost all the solutions

mentioned above (both analytical and numerical) have been
constructed for the internal symmetry group SUð2Þ, that is,
the two flavors case. Finding solutions in the Skyrme model
for N > 2 has an important extra complexity (as can be
seen in Refs. [26,32–34]), since, in principle, it requires us
to solve a set of ðN2 − 1Þ coupled nonlinear field equations.
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1This black hole also turns out to be stable under spherical
linear perturbations [7].

2This is different from what happens in the Yang-Mills theory,
where the saturation of the BPS bound has allowed the con-
struction of several solutions (see [8–10]).
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Here we are mainly interested in the construction of
analytical black objects for arbitrary values of the flavor
number N—in particular, toroidal black holes and black
p-branes—and in the analysis of their geometric and
thermal properties. For this purpose, a good approach is
to consider some relatively simple embedding of SUðNÞ to
construct the matter fieldU, but that at the same time, it will
not be a trivial embedding of SUð2Þ into SUðNÞ. In
Refs. [35–37] an ansatz was introduced that fulfilled these
requirements; this is the maximal embedding of SUð2Þ into
SUðNÞ in the Euler angles parametrization. Recently, this
maximal embedding has shown to be very useful in the
construction of analytical solutions both in the Skyrme
model and in the Yang-Mills theory [30,38–40], so it will
be our starting point in this work.
In particular, black holes with flat horizons and negative

cosmological constant are an interesting class of solutions
which have attracted a lot of attention due to their
applications in holography [41,42]. This is due to the
possibility of using the AdS=CFT correspondence to
describe interesting field theories on the boundary of the
black hole space-time. For instance, the quark-gluon
plasma is modeled, via holography, by a field theory dual
to a thermal anti–de Sitter black hole. Since the quark-
gluon plasma exists in Minkowski space, one needs to use
black holes with topologically planar event horizons. On
the other hand, for black brane solutions [43] the thermo-
dynamics can be extended to hydrodynamics. Indeed, the
hydrodynamic regime is meaningful only for translation-
ally invariant horizon. From the holographic principle point
of view, a black brane corresponds to a certain finite-
temperature quantum field theory in fewer numbers of
space-time dimensions, and the hydrodynamic behavior of
a black brane horizon is identified with the hydrodynamic
behavior of the dual theory (see [44] for a review about the
connection, via the AdS=CFT correspondence, between
hydrodynamics and black hole physics). Then, the hairy
black holes and black branes solutions which will be
constructed in this work could have many interesting
applications in the holography context.
The paper is organized as follows: In Sec. II we give a

brief summary of the Einstein SUðNÞ-Skyrme model, and
we introduce our general ansatz for the Skyrme field. In
Sec. III we construct analytic hairy toroidal black holes,
and we study the thermodynamics of the solution, empha-
sizing the role played by the flavor number. In Sec. IV we
construct black p-branes and a self-gravitating instanton
solutions using the toroidal black hole as a starting point.
Section V is dedicated to the conclusions.

II. PRELIMINARIES

A. The Einstein SUðNÞ-Skyrme model

The Einstein SUðNÞ-Skyrme model in D ¼ 4 dimen-
sions is described by the following action:

I½g; U� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R − 2Λ
2κ

þ K
4
Tr½LμLμ�

þ Kλ

32
TrðGμνGμνÞ

�
: ð1Þ

The first part in Eq. (1) is the gravitational section, whereR is
the Ricci scalar, g is the determinant of themetric gμν, κ is the
gravitational constant, and Λ is the cosmological constant.
The second part of the action corresponds to the Skyrme
action, whereK and λ are positive coupling constants that are
experimentally determined.3 Here Lμ are the Maurer-Cartan
left-invariant form components, given by

Lμ ¼ U−1
∂μU ¼ Li

μti; ð2Þ

where UðxÞ ∈ SUðNÞ, where N is the flavor number. The
matrices ti are the generators of the SUðNÞ Lie group, with
i ¼ 1;…; ðN2 − 1Þ, and the Gμν tensor is defined as

Gμν ¼ ½Lμ; Lν�: ð3Þ

The energy-momentum tensor of the system is

Tμν ¼ −
K
2
Tr
�
LμLν −

1

2
gμνLαLα þ

λ

4

×

�
gαβGμαGνβ −

gμν
4

GσρGσρ

��
:

The Einstein SUðNÞ-Skyrme field equations are obtained
varying the action in Eq. (1) with respect to the fundamental
fields gμν and U, obtaining

∇μLμ þ λ

4
∇μ½Lν; Gμν� ¼ 0; ð4Þ

Rμν −
1

2
Rgμν þ Λgμν ¼ κTμν: ð5Þ

In the Skyrme theory, relevant properties of the solutions are
encoded in the topological charge, which is defined as

B ¼ 1

24π2

Z
ρB;

ρB ¼ εijkTrfðU−1
∂
iUÞðU−1

∂
jUÞðU−1

∂
kUÞg; ð6Þ

where fi; j; kg are spatial indices.

B. Skyrme field in the Euler parametrization

In order to construct analytical solutions of the Einstein
SUðNÞ-NLSM and Skyrme model, we will use for the

3The case λ → 0 corresponds to the Einstein SUðNÞ-NLSM
theory, which will be relevant in Sec. IV in the construction of
higher dimensional solutions.
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matter field U the so-called maximal embedding ansatz
[35–37]. As is well-known, there are many ways of
embedding SUð2Þ into SUðNÞ, but not all of these are
fruitful to build exact solutions. Here we choose the
“maximal one,” which gives rise to an irreducible spin-j
representation of SUð2Þ of spin j ¼ ðN − 1Þ=2.
The matter field UðxÞ ∈ SUðNÞ in the generalized Euler

angles parametrization reads

U ¼ eF1ðxμÞ·T3eF2ðxμÞ·T2eF3ðxμÞ·T3 ; ð7Þ

where Ti (with i ¼ 1, 2, 3) are three matrices of a
representation of the Lie algebra suðNÞ. The generators
of this three-dimensional subalgebra of suðNÞ satisfy the
following relations:

½Tj; Tk� ¼ ϵjkmTm;

TrðTjTkÞ ¼ −
NðN2 − 1Þ

12
δjk;

and they are explicitly given by

T1 ¼ −
i
2

XN
j¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj − 1ÞðN − jþ 1Þ

p
ðEj−1;j þ Ej;j−1Þ; ð8Þ

T2 ¼
1

2

XN
j¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj − 1ÞðN − jþ 1Þ

p
ðEj−1;j − Ej;j−1Þ; ð9Þ

T3 ¼ i
XN
j¼1

�
N þ 1

2
− j

�
Ej;j; ð10Þ

with ðEi;jÞmn ¼ δimδjn, where δij is the Kronecker delta.4

As the above matrices conform an irreducible representa-
tion of SUð2Þ, the solutions constructed in the next sections
using this formalism will be a nontrivial embedding of
SUð2Þ into SUðNÞ, and therefore the role of the flavor
number N can be explicitly showed.5

One way to see that the solutions constructed using this
formalism are not simply solutions for the usual case of two
flavors is by noting that

ðT⃗Þ2 ¼ ρðNÞ1; ρðNÞ ¼ −
N2 − 1

4
; ð11Þ

with 1 the N × N identity matrix. Then, choosing the
irreducible representation of SUð2Þ for all values of N

implies, that for every N, we are using a representation with
different spin. As a consequence of Eq. (11), it is expected
that the trace in the Skyrme action leads to the relevant
physical quantities of the solutions depending explicitly on
N. In fact, it is useful to define the following quantity:

aN ¼ NðN2 − 1Þ
6

; ð12Þ

which comes from the calculation of the trace of the
generators that will appear in all the solutions presented
below. We will see later that both the geometry and the
thermodynamics of the solutions depend strongly on N. It
is important to point out that this construction has recently
been used to find both gravitating and flat space-time
solutions in non-Abelian theories [30,38–40] (see [39] for a
nice review on applications to nuclear physics of this
formalism). The complete mathematical formulation of the
maximal embedding in the Euler angles parametrization
can be found in Refs. [35–37].
On the other hand, the functions Fi in Eq. (7) can depend

on all the coordinates, but they are chosen such that they
solve the Einstein SUðNÞ-Skyrme equations system. In par-
ticular, we will demand that F2 ¼ F2ðθÞ and F3 ¼ F3ðϕÞ,
where the angular coordinates fθ;ϕg have the ranges

0 ≤ θ < π; 0 ≤ ϕ < 2π: ð13Þ
From the above, and replacing Eq. (7) in Eq. (6), one can
check that the topological charge density goes as

ρB ∼ fsinðF2Þ∂θF2∂ϕF3F0
1gdF1 ∧ dF2 ∧ F3; ð14Þ

where the prime denotes derivative with respect to coordi-
nates other than θ and ϕ. Here we can see that necessary (but
not sufficient) conditions to have a nonzero topological
charge are

dF1 ∧ dF2 ∧ dF3 ≠ 0; and F0
1 ≠ 0: ð15Þ

III. ANALYTIC TOROIDAL BLACK HOLE

In this section we construct an analytical solution
describing a toroidal black hole with Skyrme hair and
arbitrary N in D ¼ 4 dimensions, and we show its main
physical properties. We provide the thermal analysis of the
solution and some comments about the role of the flavor
number N, as most of the thermodynamic variables depend
in a nontrivial way on it.

A. Constructing a hairy toroidal black hole
from the maximal embbeding

From Refs. [21,29,30] we know that a good ansatz for
the matter field in Eq. (7) that allows us to construct toroidal
black holes is the following:

F1ðxμÞ ¼ 0; F2ðxμÞ ¼ qθ; F3ðxμÞ ¼ vϕ; ð16Þ

4Note that the Ti matrices are anti-Hermitian. But, one can
easily recover a Hermitian set by multiplying the matrices by i. Of
course, in order to obtain the same solutions presented below we
need to multiply the Fi function also by i.

5The key point in this construction is that, actually, the map
between the Lie groups is not an embedding of SUð2Þ into
SUðNÞ, but just of S3 into SUðNÞ (see [35–37]).
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where q and v are integer numbers (according to the Euler
parametrization; see [35–37]) that we recognize as hair
parameters. The space-time is described by a static metric
with toroidal geometry

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dθ2 þ c2r2dϕ2; ð17Þ

where c is a constant to be found. It is a direct computation
to show that, with the above ansatz, the Skyrme field
equations are automatically satisfied for all values of N. On
the other hand, the Einstein equations are reduced to just
one integrable equation that can be directly solved,
obtaining

fðrÞ ¼ −b1 −
m
r
þ b2

r2
−
Λ
3
r2; ð18Þ

wherem is an integration constant, and the constants b1 and
b2 are fixed—in the terms of the couplings and the hair
parameters—as follows:

b1 ¼
Kκq2aN

4
; b2 ¼

Kκq4λaN
32

; ð19Þ

where aN has been defined in Eq. (12). Also, the constant c
in Eq. (17) turns out to be c2 ¼ v2

q2 according to the Einstein

equations.6

This configuration represents an asymptotically locally
(anti–)de Sitter toroidal black hole with Skyrme hair
allowing arbitrary values of the flavor number [as can be
seen from Eq. (19), where N appears explicitly through
aN]. This analytic solution is the generalization of the
toroidal black holes reported in Ref. [21] (see also [29,30])
that includes the Skyrme term as well as an arbitrary
number of flavors. Although the radius of the horizon can
be computed analytically from Eq. (18), the expression is
very complicated and is not needed for our purposes. The
case with λ ¼ 0 is particularly simple, and can be seen in
detail in Ref. [30].
It is important to note that this black hole solution has

zero topological charge because it does not satisfy the
requirements in Eq. (15). In the following section we will

show that black p-branes constructed from the toroidal
black hole presented above can satisfy this condition, and
lead to topologically nontrivial solutions of the Einstein
SUðNÞ-NLSM theory in D ≥ 5 dimensions.

B. Thermodynamics

Here we perform the thermal analysis of the toroidal
black hole constructed above using the Euclidean approach
[45]. The formulation is straightforward; upon replacing
t → iτ in the metric in Eq. (17) we obtain the Euclidean
black hole metric. The temperature is the inverse of the
Euclidean time period, which turns out to be

T ≡ β−1 ¼ 1

4π
f0ðrþÞ ¼ −

KκaNq2

16πrþ
−
KκaNλq4

128πr3þ
−
Λrþ
4π

;

ð20Þ

where rþ is the largest root of the equation fðrþÞ ¼ 0.
From the Euclidean action (see Appendix A) we can obtain
the free energy

F ¼ β−1IE ¼ −
vπrþ
32q

�
KκαNq2 −

4

3
Λr2þ −

3KκαNλq4

8r2þ

�
:

ð21Þ

In the grand canonical ensemble, the thermodynamic
quantities satisfy

F ¼ E − TS; ð22Þ

where E is the energy and S is the entropy. In particular, the
thermodynamic variables of the system satisfy

E ¼ ∂IE

∂β
; S ¼ β

∂IE

∂β
− IE;

where IE is the Euclidean action given in Eq. (A5).
Considering the above relations, we can show that the
thermodynamics variables are given as follows7:

E ¼ −
vπrþ
48q

�
3KκaNq2 þ 4Λr2þ −

3KκαNλq4

8r2þ

�
; ð23Þ

S ¼ π2vr2þ
2q

¼ Ah

4
; ð24Þ

where Ah denotes the area of the event horizon. Note that
the entropy does not depend on the flavor number, but it
depends on v and q. Therefore, phase transitions are
expected to occur varying the values of the hair parameters.

6Note that a conical singularity can exist in the metric due to
the presence of the constant c2 in front of the torus metric in
Eq. (17). Now, this conical singularity can be removed from the
metric considering that the parameters v and q are equal. This
leads to the elimination of one of the hair parameters in the
solution, but not both at the same time. In fact, from Eqs. (18) and
(19), it can be seen that the function f that characterizes the
toroidal black hole solution depends on only one of these
parameters, which therefore cannot be removed from the solution
by making v ¼ q. One can lead to the same conclusion by trying
to redefine the ϕ coordinate.

7Note that the energy computed from the Euclidean action
matches the one computed using the holographic method (see
Appendix B).
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As it is expected, using Eq. (20) and defining the mass as
M ¼ E, the first law of black hole thermodynamics is
satisfied, i.e.,

δM ¼ TδS; ð25Þ

where the cosmological constant Λ is treated as a fixed
parameter. It is well known that a general study of the
classical stability of hairy black holes is not straightforward
to approach. Here we will analyze the local thermodynamic
stability of the above solution with respect to thermal
fluctuations by computing the heat capacity and looking at
it as if it is positive. For the toroidal black hole with Skyrme
hair we found

C¼T

�
∂S
∂T

�
¼π2vr2þ

q

�
32Λr4þþ8KκaNq2r2þþKκaNλq4

32Λr4þ−8KκaNq2r2þ−3KκaNλq4

�
:

ð26Þ

Then, in order to have a positive C, the following constraint
must be satisfied:

rþ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aNKκq2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2NK

2κ2q4 − 2aNKκλΛq4
pq

2
ffiffiffi
2

p ffiffiffiffiffiffiffi
−Λ

p : ð27Þ

We can see that the above constraint is always satisfied if
the cosmological constant Λ takes negatives values, so that
the asymptotically locally anti–de Sitter black hole can be
thermally stable. In addition, as we will see below, Eq. (27)
is always satisfied and the heat capacity is always positive
when we demand to have a real solution to the equation
fðrþÞ ¼ 0. Naturally, all the thermodynamic quantities
previously defined reduce to those found in Ref. [30] when
we set λ ¼ 0.

C. On the role of N

In the previous subsection it has been seen that both the
thermal and geometric properties of the black hole strongly
depend on the number of flavors in the theory. For instance,
according to Eq. (23), the mass of the black hole depends in
a nontrivial way on N. We show this dependence in Fig. 1,
where we have plotted the mass asa function of the event
horizon of the black hole for different values of N. In the
analysis we have set λ ¼ 1, K ¼ 1, Λ ¼ −1, and κ ¼ 1=40.
Moreover, for simplicity, we set q ¼ v ¼ 1. From Fig. 1 [or
looking at Eq. (23)] we can see thatM is always positive for
N ≤ 5, while for N ≥ 6 there are sectors where the mass
can take negative values. However, if we consider the
extremal value rmin ¼ rminðNÞ allowing for a real solution
to the equation fðrþÞ ¼ 0, these negative values of the
mass are not permitted. This is depicted with dashed lines
in Fig. 1. We can also see that, for small radii of the event
horizon, the most massive configurations are those with the
largest number of flavors. This behavior reverses after a

critical point (which does not depend on N) for large event
horizon radii. As we have mentioned before, the entropy S
does not depend explicitly on the value of N, as we can see
from Eq. (24). Furthermore, its behavior is not affected by
the Skyrme term. On the other hand, the temperature of the
solution as a function of the event horizon for different
values of N is plotted in Fig. 2. For a fixed value of rþ, we
have that T decreases as we increase N. Regarding the free
energy computed in Eq. (21), it is possible to find an
analytical (but complicated) expression for it in terms of the
temperature. However, as it is not needed for our purposes,
we instead provide it with the graph FðTÞ for different
values ofN (see Fig. 3). From the plot we can see that as we
increase the temperature, transitions start to happen for
N ≤ 5. For N ≥ 6 there is no change of sign in the free
energy, independent of the value of the temperature. Unlike
the particular case λ ¼ 0 studied in Ref. [29], here we can
see that the presence of the Skyrme term allows us to have
transitions, at least for some values of N. Indeed, for the flat
black hole constructed in [29], there are no transitions and
the favored configuration is always the one with the higher

0.2 0.4 0.6 0.8 1.0 1.2 1.4
r+

–0.1

0.1

0.2

0.3

M

SU(2)

SU(3)

SU(5)

SU(6)

SU(7)

FIG. 1. MassM of the toroidal black hole with Skyrme hair as a
function of the event horizon for different values of the flavor
number. The dashed lines highlight the mass evaluated at event
horizon radii which are smaller than the minimum value it can
take in order to have real solutions.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
r+

–0.2

–0.1

0.1

0.2

T

SU(2)

SU(3)

SU(5)

SU(6)

SU(7)

FIG. 2. Temperature T of the toroidal black hole with Skyrme
hair as a function of its event horizon for different values of N. At
a certain horizon radius value depending on N, the temperature
becomes positive. The dashed lines indicate the values of T for
rþ < rmin. For a fixed rþ, T decreases as the value ofN increases.
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flavor number. We can also see that for high values of
temperature the free energy is lower as we increase N.
From Fig. 4 we see that the heat capacity for the toroidal

black hole solution is always positive for the values
allowing a real solution. Then, we can say that the toroidal
black hole solution is thermodynamically stable.
The analytic hairy toroidal black holes previously con-

structed could have interesting applications in the context of
holography. Indeed, black holes with flat horizon have
received great attention due to the celebrated AdS=CFT
conjecture, and the possibility of using it in the description of
field theories on the boundary of the black hole space-time
itself. In the next section, we extend our study to the
construction of homogeneous black p-branes and self-
gravitating instantons. For the former, we also include the
thermodynamic analysis. In particular, we provide with the
thermodynamic quantities and some comments about sta-
bility are mentioned.

IV. BLACK p-BRANES AND SELF-GRAVITATING
INSTANTONS FROM TOROIDAL BLACK HOLES

In this section we will show that solutions describing
homogeneous black p-branes with nontrivial topological

fluxes as well as self-gravitating instantons, can be con-
structed in a direct way from the toroidal black hole. In
particular, black p-branes are obtained through a dimen-
sional extension of the metric of the black hole adding
extended homogeneous directions and fields living on
those extra dimensions with a linear dependence on its
coordinates, while self-gravitating instantons emerge
through a Wick-like rotation of the space-time coordinates.

A. Homogeneous black p-branes
in the Einstein SUðNÞ-NLSM

Homogeneous black p-branes in the Einstein SUðNÞ-
NLSM model in D ≥ 5 space-time dimensions can be
constructed through a dimensional extension of the toroidal
black hole presented above, described by the metric in
Eq. (18), as follows. For the matter field we consider the
following ansatz:

F1ðxμÞ ¼
Xp
i¼1

cizi; F2ðxμÞ ¼ qθ; F3ðxμÞ ¼ vϕ;

ð28Þ

where ci are hair parameters and zi correspond to the
coordinates of the p-extended directions. On the other
hand, let us consider the following space-time metric in
D ¼ ð4þ pÞ dimensions:

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dθ2 þ v2

q2
r2dϕ2

þHp

Xp
i¼1

c2i dzidz
i; ð29Þ

which corresponds to the black hole ansatz in Eq. (17)
plus p extended homogeneous directions parametrized by
the zi coordinates, with Hp being a constant defined as
follows:

Hp ¼ ðpþ 2ÞKκaN
8ð−ΛÞ : ð30Þ

With the above, one can check that the Einstein SUðNÞ-
Skyrme field equations demand that

λ ¼ 0; ð31Þ
so that the solution we are looking for belongs to the
Einstein SUðNÞ-NLSM. In fact, considering the above
constraint, the D-dimensional Einstein equations are
solved by

fðrÞ ¼ −
Kκq2aN

4
þm

r
−

2Λ
3ðpþ 2Þ r

2; ð32Þ
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SU(7)

FIG. 3. Free energy F of the toroidal black hole with Skyrme
hair as a function of temperature for different values of N. As we
increase the temperature, transitions start to take place for N ≤ 5,
and for high enough values of T the free energy is lower as N
increases. The dashed lines represent the sectors which are not
allowed under the requirement of having a real solution.
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FIG. 4. Heat capacity C of the toroidal black hole with Skyrme
hair as a function of the event horizon for different values of N.
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with m an integration constant.8 From Eq. (30) is clear that for these solutions the cosmological constant must take negative
values, therefore, again we have asymptotically anti–de Sitter configurations. The event horizon of the solution is localized at

rþ ¼
aNκKΛðpþ 2Þq2 −

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ3ðpþ 2Þ2ða3Nκ3K3ðpþ 2Þq6 þ 144Λm2Þ

p
þ 12Λ2mðpþ 2Þ

�
2=3

2Λ

Λ3ðpþ 2Þ2ða3Nκ3K3ðpþ 2Þq6 þ 144Λm2Þ

p
þ 12Λ2mðpþ 2Þ3

q : ð33Þ

From the previous expression we see that, in order to
have a real square root, the integration constant m must
satisfy the following condition:

m >
q3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ 2Þa3Nκ3K3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
288ð−ΛÞp : ð34Þ

It is important to mention that, even when the matter field
depends explicitly on the extended coordinates zi, the energy
density for the solution is finite because it does not depend on
the extra dimensions. Additionally, one of the main charac-
teristics that the homogeneous black p-branes constructed
here possess is that they are topologically nontrivial. In fact,
the presence of the extra extended directions in Eq. (28), in
addition to the two angular coordinates in the matter field,
allows us to integrate the topological charge density defined
in Eq. (6) on a spacelike hypersurface to obtain a nonzero
value of B. A simple way to see this is by compactifying the
extended directions of the branes. For simplicity, let us
consider the case of the black string solution in D ¼ 5
dimensions (the case with p ¼ 1). As the conditions in
Eq. (15) are satisfied, one can integrate ρB at fixed t and fixed
r in the ranges in Eq. (13) for the angular coordinates, and
considering the following range:

0 ≤ z < 4π;

for the extended direction. Then, integrating the topological
charge density in Eq. (6) we obtain the topological charge

B ¼ vc1; ð35Þ

where we have demanded that q is an odd number. Thus,
Eq. (35) determines that the black string is topologically
protected (and the resulting charge is an integer number).9

The generalization to the black p-branes case is direct. The
existence of a topological charge is a very important point
because its existence is usually related to stability, suggesting
that the black p-branes constructed here could be stable. In
fact, black string and black p-branes solutions turn out to be
unstable under perturbations [50,51] (see also [52–54] and
references therein). Of course, classical stability of our
solutions requires an exhaustive perturbative analysis. We
hope to come back to this important issue in a future
publication.
For black p-branes it is possible to calculate the

thermodynamic quantities following the same steps as it
was for the case of the black hole presented in the previous
section.
The temperature for the black string p-branes reads

T ¼ −
aNKκq2

16πrþ
−

rþΛ
2ðpþ 2Þπ : ð36Þ

For this solution the temperature is always positive over
the range of allowed values of the event horizon in order to
have a real solution, which is given by restriction on
Eq. (34). Also, we see that the temperature T decreases as
the value of the flavor number increases; see Fig. 5. In this
section, for the plots, we have considered the simplest
case in the space of solutions, that is, a black string (the
p ¼ 1 case), and we have set the same values for the
couplings constants and the hair parameters as in the black
hole case.

8This construction is similar to the one reported in Ref. [46]
where the authors construct homogeneous black string in general
relativity with negative cosmological constant by considering
massless scalar fields that are linear in the extended directions
[47]. See also [48,49] for the extension to Einstein-Gauss-Bonnet
and Lovelock theories.

9However, this topological charge cannot be directly inter-
preted as the baryon number in the Skyrme model, since in this
case the integration on r must be performed. In this sense, B in
Eq. (35) must be thought as the value of the flux in the r direction
at constant time.
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FIG. 5. Temperature T of the black string, p ¼ 1, as a function
of the event horizon for different values of the flavor number.
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The entropy density for the black p-branes is given by

s ¼ S
Vp

¼ π2vr2þH
p=2
p

2q

�Yp
i¼1

c2i

�1=2

; ð37Þ

where Vp is the volume of the branes. From here we see
that unlike the toroidal black hole solution (which was used
as the basis for constructing this solution), the entropy of
the black p-branes depends on the flavor number due to the
presence of the factor Hp. Figure 6 shows the behavior of
the entropy density of the black string solution in terms of
the radius of the event horizon for different values of N.
Also, from Fig. 6 we see that the entropy density is always
positive and it increase as we increase the flavor number.
The mass density of the black p-branes is given by

m ¼ M
Vp

¼ −
πrþv

16qðpþ 2ÞH
p=2
p

�Yp
i¼1

c2i

�1=2

×

�
Kq2κaNðpþ 2Þ þ 8

3
r2þΛ

�
: ð38Þ

Figure 7 shows that, for real solutions [i.e., for solutions
whose event horizons satisfy the constraint in Eq. (34)], the
mass density is always positive, and for a fixed value of the
event horizon it increase aswe increase thenumber of flavors.
Although, as we have explained before, the study of the

perturbative stability of the black p-branes is outside the
goals of this work, a good approach that can provide clues
about the classical stability is the correlated stability
conjecture [55]. This conjecture establishes that the
dynamical stability of solutions with extended dimensions,

such as the black p-branes constructed here, can be related
to the local thermodynamic stability, the latter being
something that can be analyzed by means of the heat
capacity of the solution.
For this purpose we do not need to compactify the

extended directions of the black p-branes, so we can take
the ranges as

−ð2πÞLi ≤ zi ≤ ð2πÞLi; ð39Þ

where Li → ∞ corresponds to black p-branes of infinite
extension. It follows that the heat capacity is given by

C¼ T

�
∂S
∂T

�
¼−

r2þπ2vVpH
p=2
p ðKκq2aNðpþ 2Þþ 8r2þΛÞ

qðKκq2aNðpþ 2Þ− 8r2þΛÞ

×

�Yp
i¼1

c2i

�
1=2

: ð40Þ

In order to have a positive heat capacity, the radius of the
event horizon must satisfy

rþ >
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ 2ÞKκaN
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð−ΛÞp : ð41Þ

From Fig. 8 we see that the heat capacity for the black
string solution is always positive for the values of rþ that
allow to have a real solution, which indicates the thermo-
dynamic stability of the black string. Based on the
correlated stability conjecture, the local thermodynamic
stability for this solution indicates classical dynamic
stability.
The free energy of the black p-branes turns out to be

F
Vp

¼ m − Ts ¼ −
1

96

rþvπH
p=2
p ð3Kκq2aNðpþ 2Þ − 8r2þΛÞð

Qp
i¼1 c

2
i Þ1=2

qðpþ 2Þ : ð42Þ
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FIG. 7. Mass densitym ¼ M
Vp

of the black string as a function of
the event horizon for different values of the flavor number.
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FIG. 6. Entropy density s ¼ S
Vp

of the black string as a function
of the event horizon for different values of the flavor number.
The dotted lines represent the values of S for rþ outside the range
allowed us to have real solutions.
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It is possible to obtain the free energy as a function of the
temperature by inverting Eq. (36) and substituting it into
Eq. (42). From Fig. 9, one can see that the free energy has a
change of sign that becomes more drastic, increasing the
number of flavors. For low values of the temperature, the
higher value of the free energy is for the configuration with
the higher value of N. As we increase the temperature a
change of sign appears and the lower value of the free
energy is also for the higher value of N.

B. Self-gravitating instanton

A regular analytical solution of the Einstein SUðNÞ-
Skyrme system can be constructed performing a Wick
rotation on the toroidal black hole constructed above. First
of all, it is important to highlight the following fact. In
Refs. [56–58], using a double Wick rotation of the form,

t → iϕ; ϕ → it;

the authors were able to build soliton solutions from a
toroidal black hole metric (see also Ref. [59] for recent
applications). One of the key points in such a formalism is
that the matter field considered (in [57,59], the Maxwell
potential) does not depend explicitly on the angular
coordinate on which the Wick rotation is being performed.

This is different from the case we are considering here, as
can be seen from Eq. (16), where the pionic field depends
explicitly on the two angular coordinates. In fact, with the
usual double Wick rotation the matter field in Eq. (16)
ceases to be an element of SUðNÞ.10
However, a similar construction can be performed to

obtain a regular Euclidean solution of the field equations,
that is, a self-gravitating instanton. In fact, let us consider a
Wick-like rotation of the form

ϕ → t; t → iϕ: ð43Þ

Replacing Eq. (43) into Eqs. (16) and (17), the matter field
and the metric become, respectively,

F1ðxμÞ ¼ 0; F2ðxμÞ ¼ qθ; F3ðxμÞ ¼ pt; ð44Þ

ds2 ¼ c2r2dt2 þ 1

fðrÞ dr
2 þ r2dθ2 þ fðrÞdϕ2: ð45Þ

Then, the field equations are solved by

fðrÞ ¼ −
Kκq2aN

4
þm0

r
þ Kκq4λaN

32r2
−
Λ
3
r2; ð46Þ

where m is an integration constant which is related to the
mass of the instanton. To avoid the conical singularity in
the plane ðr;ϕÞ, we impose the following periodicity for the
angular coordinate ϕ:

η ¼ −
128πr30

Kκq2aNð8r0 þ q2λÞ þ 32r40Λ
; ð47Þ

where r0 is the radius of the instanton satisfying fðr0Þ ¼ 0.
The above guarantees that the solution in Eqs. (45) and (46)
is regular everywhere, and therefore describes a self-
gravitating instanton. Gravitational instantons are very
interesting solutions because these are used as ground
states for relevant solutions and could yield new insights
into the nature of quantum gravity.
The fact that this solution has been obtained from a

toroidal black hole through a rotation of the form in
Eq. (43) makes it different from other instanton-type
solutions present in the literature [60]. Therefore, it is
expected that the usual methods for computing the thermo-
dynamics may not apply in this case, and a more exhaustive
analysis must be carried out. From the reason presented
above, both the calculation of the thermodynamics and the
study of the relevance of this solution in the context of
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FIG. 8. Heat capacity C of the black string as a function of the
event horizon for different values of the flavor number.
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FIG. 9. Free energy F of the black string as a function of the
event horizon for different values of the flavor number.

10In order to obtain a regular Lorentzian solution one can try to
perform an additional “Wick rotation on the hair parameters,”
p → ip, so that U remains an element of SUðNÞ. However, the
field equations lead to a constraint between the parameters that
cannot be satisfied.
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quantum field theory will be explored in a forthcom-
ing paper.

V. CONCLUSIONS

In this paper we have constructed a family of new exact
solutions of the Skyrme model coupled to Einstein gravity
for an arbitrary number of flavors N on the matter field. For
this purpose, we have considered the so-called maximal
embedding of SUð2Þ into SUðNÞ in the Euler angles
parametrization. First, we have constructed analytical
solutions describing toroidal black holes with Skyrme hair
and arbitrary flavor number N. This solution is asymptoti-
cally locally anti–de Sitter and generalizes the flat black
hole constructed in Ref. [29] to the case of having non-
vanishing Skyrme hair. We have performed the thermal
analysis of the black hole, and we have provided the
thermodynamics quantities using the Euclidean approach.
We have shown that both the thermodynamics and the
geometry strongly depend on the number of flavors of
the theory. For a large fixed radius of the event horizon, the
most massive configurations are those with the smallest
number of flavors. Regarding the entropy S, it does not
depend explicitly on N. For the temperature, we showed
that for a fixed value of rþ, we have that T decreases as we
increase N. From the plot FðTÞ for different values of N we
saw that as we increase the temperature, transitions start to
happen for N ≤ 5. For N ≥ 6 there is no change of sign in
the free energy, independent of the value of the temper-
ature. Unlike the case λ ¼ 0 studied in Ref. [29], in the
present case we showed that the presence of the Skyrme
term allows us to have transitions, at least for some values
of N. Indeed, for the flat black hole constructed in [29],
there are no transitions and the favored configuration is
always the one with the higher flavor number.
The second solution that we present is an homogeneous

black p-brane solution that is constructed by performing a
dimensional extension of the toroidal black hole reported in
the third section. In order to construct this higher dimen-
sional solution, we need to consider fields that depend
linearly on the coordinates of the extended directions. Also,
from the field equations we see that the Skyrme coupling
must vanish, so, the black hole in the transverse section of
the string is the flat black hole solution of Einstein-NLSM
presented on [30]. Also, we see that in order to have a real
solution, the radius of the event horizon must have a
minimum value, and this restriction makes the mass,
entropy, and temperature of the solution always positive.
We also see that all of these quantities depend on the flavor
number. In particular, the mass and entropy density of the
solution increase as we increase the flavor number, but for
the temperature of the solution, the behavior is the opposite.
Finally, performing a Wick-like rotation on the black

hole solution we have constructed a self-gravitating instan-
ton solution. Relevant properties of this solution will be
explored in a forthcoming paper.

ACKNOWLEDGMENTS

The authors are grateful to Fabrizio Canfora and
Constanza Quijada for many enlightening comments.
A. V. is funded by FONDECYT postdoctoral Grant
No. 3200884. This work was partially funded by the
National Agency for Research and Development ANID—
SIA Grant No. SA77210097 and FONDECYT Grants
No. 11220328 and No. 11220486. P. C. and E. R. would
like to thank to the Dirección de Investigación and Vice-
rectoría de Investigación of the Universidad Católica de la
Santísima Concepción, Chile, for their constant support.

APPENDIX A: REGULARIZED
EUCLIDEAN ACTION

The regularized Euclidean action is given by the bulk
action supplemented with the Gibbons-Hawking term and
the counterterms:

IE ¼ Ibulk þ IGH þ Ict; ðA1Þ

where

Ibulk ¼ −
Z

d4x
ffiffiffi
g

p �
R − 2Λ

2κ
þ K

4
Tr½LμLμ�

þ Kλ

32
TrðGμνGμνÞ

�
; ðA2Þ

IGH ¼ −
1

κ

Z
∂M

d3x
ffiffiffi
h

p
Kρ; ðA3Þ

Ict ¼
1

κ

Z
∂M

d3x
ffiffiffi
h

p �
2

l
þ l

2
R
�
þ K

4

Z
∂M

d3x
ffiffiffi
h

p
lTr½LiLi�

þ Kλ

32

Z
∂M

d3x
ffiffiffi
h

p
lTrðGijGijÞ: ðA4Þ

Here, hij is the metric induced on the boundary ∂M at the
cutoff r ¼ ρ, Kρ is the trace of the extrinsic curvature
of the boundary as embedded in M, and l2 ¼ −3=Λ.
Additionally, to the well-known anti–de Sitter gravitational
surface terms in Ict, we add an appropriate generalized
counterterm action according to the matter content present
in the theory. Taking the limit ρ → þ∞, we find that the
regularized Euclidean action is

IE ¼ −
βvπrþ
32q

�
KκαNq2 −

4

3
Λr2þ −

3KκαNλq4

8r2þ

�
; ðA5Þ

where rþ is the largest root of the equation
fðrþÞ ¼ 0 ¼ −gtt.
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APPENDIX B: HOLOGRAPHIC MASS

Considering the Brown-York formalism [61] supple-
mented with counterterms, we can obtain the energy of
the hairy toroidal black hole. In our case, the regularized
stress tensor is given by

τij ¼ −
1

κ

�
Kij − hijK þ 2

l

�

− hijl
�
K
4
Tr½LiLi� þ

Kλ

32
TrðGijGijÞ

�
: ðB1Þ

Thus, the stress tensor time components are

τtt ¼
m
lκρ

þOρ−2: ðB2Þ

Following Brown and York, it is possible to show that the
mass, which is the conserved charge associated with time
translation, is given by

E ¼
Z

dθdϕ
ffiffiffi
σ

p
uiτijξj; ðB3Þ

where
ffiffiffi
σ

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffigθθgϕϕ
p , with σ being the determinant of the

induced metric of the surface t ¼ constant,

ds2 ¼ σijdxidxj; ðB4Þ

with the normal vector ui ¼ f−1=2ð∂tÞi. In (B3), ξi is the
timelike Killing vector. Then, from the stress tensor we
find that

E¼ 2π2v
qκ

m¼ −
vπrþ
48q

�
3KκaNq2 þ 4Λr2þ −

3KκαNλq4

8r2þ

�
;

ðB5Þ

where we have used κ ¼ 8π.
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