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We study the tidal deformability of horizonless exotic compact objects, with implications for area
quantized black holes. Since, any such horizonless compact object, including an area quantized black hole,
possesses a nonzero reflectivity, it follows that they inherit a nonzero tidal Love number which varies as a
function of the perturbing frequency. The reflectivity of the horizon for an area quantized black hole has a
distinct shape and unmistakable features, which are also present in the frequency-dependent tidal Love
numbers, and therefore is a smoking gun test for such quantum black holes. The existence of these features
also promotes the dynamical Love number to be a crucial observational tool to not only distinguish area
quantized black holes from other models of horizonless compact objects, but also to differentiate between
black holes with distinct schemes of area quantization. We further discuss implications of the same for the
present and the future gravitational wave detectors.
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I. INTRODUCTION

Gravitational wave measurements [1,2] have provided us
an opportunity to probe the near-horizon physics to an
unprecedented level and study the nature of the compact
objects sourcing these waves. In particular, we hope to test
the black hole hypothesis, which asserts the existence of a
one-way null surface, namely the event horizon.
As an alternative to the black hole hypothesis, various

models of horizonless compact objects are known in the
literature, like gravastars [3,4], boson stars [5–7], and
quantum black holes [8–11], all of which share the feature
of gravitational perturbations not being completely
absorbed by the horizon. Therefore, unlike a classical
black hole, they possess a nonzero reflectivity. The lack
of complete absorption can also be a consequence of
possible quantum modifications of the theory of gravity
near the horizon. As expected, the search for observational
signatures of such nonzero reflectivity is a domain of active
research [12–18]. Here we shall demonstrate the conse-
quences of such a nontrivial reflectivity on the tidal
deformability of the compact object, measured by the
so-called Love numbers.
The nonzero reflectivity may result from a horizonless

compact object with a surface reflecting the perturbation
outwards. Then, the perturbation in each frequency will be
reflected completely or partially. The details of the reflected
wave depends on the internal physics of the system. One of

the possibilities being, an area quantized black hole [8],
which absorbs only at selected frequencies, similar to an
atomic system. Further refinement of the area quantized
black holes can be found in the pioneering work by
Bekenstein and Mukhanov [9]. Then the black hole can
only undergo transitions to discrete mass/energy levels as it
interacts with external perturbations, similar to the atomic
transitions. Therefore, one expects nontrivial physics to
emerge from the quantum nature of the black hole, which
will manifest through a discrete reflectivity on the surface
r ¼ rþ þ ϵ, where rþ is the location of the horizon and ϵ is
expected to be OðlplÞ. Among various possible models of
such quantum black holes, describes the area quantized
black holes. The area quantization has many interesting
consequences on the emission spectrum of black holes,
namely on the profile of the Hawking radiation [9,19–22]
as well as on the quasinormal mode spectrum [17,23–28].
Though it has its origins as a phenomenological model,
area quantized black holes have also been constructed from
a first principle approach from certain calculations in loop
quantum gravity [29].
Any such modification of the boundary condition at the

horizon due to nonzero reflectivity is expected to affect the
system’s response to external tidal perturbations. Hence
determining the tidal deformability of such an exotic
compact object (ECO), characterized by the tidal Love
numbers, is of significant interest. Since the tidal defor-
mation of the classical black hole solutions of general
relativity vanishes identically [30–36], one would like to
know whether systems like quantum black holes can be
deformed by a perturbing tidal field which may manifest
as a nonzero tidal Love number for such systems.
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Furthermore, it is of interest to determine if these results
depend on the details of the nature of quantization.
In this work, we report the existence of a nonzero

frequency-dependent (dynamical) tidal Love number for
any exotic compact horizonless object, generalizing earlier
results in the literature [16]. In particular, if the reflec-
tivity is nonzero, we have the dynamical, i.e., frequency-
dependent tidal love numbers to be nonvanishing as well.
Further, we discuss its observational signature for specific
cases, e.g., in the context of area quantized black holes. Our
results provide a new tool to study the near-horizon physics
using gravitational wave observations, particularly the
nature of compact objects, in the dynamical situations.
The work is organized as follows: In Sec. II we provide a

brief review of various models of the area quantized black
holes, as a proxy for exotic compact objects. Then, in
Sec. III, we provide the definition of the tidal Love number
in the Newtonian context and subsequently generalized it to
the relativistic context in Sec. IV. Finally, the reflectivity of
an area quantized black hole has been presented in Sec. V,
using which the computation of the tidal Love number
has been performed in Sec. VI to study the observability of
these dynamical tidal Love numbers in the context of
gravitational wave measurements. Finally, we conclude
with a discussion of the results.
Notations and Conventions: Throughout the paper, we

have used the mostly positive signature convention, i.e., the
flat spacetime metric in the Cartesian coordinates look like,
ημν ¼ diag ð−1;þ1;þ1;þ1Þ. We have also set the funda-
mental constants G, ℏ, and c to unity.

II. AREA QUANTIZED BLACK HOLES
AS EXOTIC COMPACT OBJECTS

Before we go ahead with the discussion on the conse-
quence of the nonzero reflectivity of ECOs on the tidal love
numbers, let us first discuss a few of the models of ECOs,
with an emphasis on the area quantized black holes.
We may start with the gravastar, which is an ECO having

an interior de Sitter spacetime matched to a Schwarzschild
near the horizon [3,4]. This system has no horizon but a
matching timelike surface with nonzero reflectivity, which
depends on the details of the matching. Next, we have the
boson star [5–7], which arises as solutions to theories with
complex scalar fields like the Einstein-Klein-Gordon theory.
In these objects, most of the scalar field is contained within a
so-called effective radius. Again, the absence of a horizon
means that these objects can be treated as having a non-
vanishing reflectivity at some r, larger than the effective
radius.
There also exist objects called quantum black holes

[8–11], which are spacetimes with a discrete nonzero
reflectivity enforced at r ¼ rþ þ ϵ (ϵ ∼ lpl) as a result of
some quantum theory of gravity. Here, rþ is the location of
the outer-event horizon of the black hole spacetime. The
quantum black holes predicted by these theories of gravity

have a quantization rule, which depends on the specifics of
the problem. Instead of getting involved in the intricate
physics of quantumgravity,wemay follow the route taken by
Bekenstein and Mukhanov in [8,9], where they considered
the black hole area to be quantized in linear steps. This can be
motivated by considering the black hole area to be an excited
state of a bunch of harmonic oscillators generating the area,
such that (restoring c, G, and ℏ for the moment),

A ¼ αl2
pN: ð1Þ

Here, N is an integer, lp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c2

p
and α depends on the

specifics of the quantum gravity.
In Bekenstein’s original work [8], α is chosen to be 8π.

Whereas, using arguments based on corresponding prin-
ciple, a value α ¼ 4 ln 3 is proposed in [12]. Later, in [13],
considering both real and imaginary values of the black
hole quasinormal modes, α ¼ 8π is put forward. Also,
models involving the counting of microstates suggested
α ¼ 4 log k, k being an integer; with the lowest value being
4 log 2 [12]. In what follows, we keep α as an arbitrary
Oð1Þ constant and demonstrate our result for various
possible choices of α.
As a consequence of quantization, the black hole cannot

absorb all possible frequencies but will do so in discrete
steps. For a rotating area quantized black hole, the
frequency associated with the transition in the area from
N → ðN þ nÞ, corresponds to [17]

ωN;n ¼
�
ακ

8π

�
nþ 2Ωh þOðN−1Þ: ð2Þ

Here the angular momentum is also quantized as J ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

ℏ ≃ jℏ (assuming j ≫ 1) and the above fre-
quency corresponds to a transition in the angular momen-
tum, as j → jþ 2. Also, in the above expression, κ is the
surface gravity, and Ωh is the angular velocity of the
horizon for the Kerr spacetime. Note that the frequencies
depend explicitly on the details of the quantizations
through the parameter α and on the background spacetime
through κ and Ωh.
Since most of the quantum gravity models involve

subleading corrections to the entropy of the black hole,
which will be translated in the quantized area spectrum as
well, we expect it to be reflected in the area quantized black
hole absorption spectrum [27,37],

A ¼ αl2
pNð1þ CNνÞ: ð3Þ

Here, α, C, and ν are the parameters arising from the
underlying quantum theory of gravity. This would imply
that, when a transition from N to (N þ n) area level and
from j to (jþ 2) angular momentum level happens, the
black hole absorbs the following frequency [27,37],
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ωN;n ¼
�
ακ

8π

�
½1þ Cð1þ νÞNν�nþ 2Ωh þOðN−1Þ: ð4Þ

Note that in the limit of C → 0, i.e., when there are no
subleading corrections to the black hole entropy, we
recover Eq. (2), as expected. Thus, the black hole only
absorbs the incoming radiation in the above frequencies,
which depends on the details of the quantization scheme
and the nature of the background spacetime.

III. DYNAMICAL TIDAL LOVE NUMBERS IN
NEWTONIAN GRAVITY

The tidal Love number for any compact object is
essentially a measure of the deformation of the respective
object caused by an external tidal field E, whose spherical
harmonic decomposition is governed by the components
Elm [38,39]. These Love numbers are a faithful probe of the
internal structure of the tidally deformed compact objects.
In general, the tidal Love number λlm of a compact object is
given by the ratio of the induced moment Qlm associated
with the ðl; mÞ mode of the spherical harmonic decom-
position, with the external tidal field itself. From this
definition it is evident that λlm has the dimension of
ðmassÞ2lþ1 in units where the speed of light and
Newton’s constant have been chosen to be unity. It is
often advantageous to define the dimensionless tidal
Love number klm through the following relation:
klm ∼ ðλlm=R2lþ1Þ, where R is the length scale of the
compact object. Moreover, the tidal Love numbers, in
general, can be divided into electric and magnetic parts,
depending on their parity. We would like to mention that
even though the tidal Love numbers can be derived for all
the spherical harmonics ðl; mÞ. The most dominant con-
tribution comes from the electric part and for quadrupolar
deformation, corresponding to the choice l ¼ 2 and is the
one we will also concentrate on. In the general case, the
change in the multipole moment Qlm due to an external
time-varying tidal field Elm is expressed as [39]

δQlm ¼ −
ðl − 2Þ!
ð2l − 1Þ!!R

2lþ1ð2klmElm − τ0νlm _ElmÞ; ð5Þ

where, R is the length scale of the compact object and klm
are the tidal Love numbers, while τ0 and νlm’s are related to
the tidal absorption of the deformed object. The tidal Love
numbers klm can also be computed from the change in the
gravitational potential due to the deformation induced by a
time-dependent Elm and hence takes the form [39]:

δU ¼
X
lm

UlmYlmðθ;ϕÞ;

Ulm ¼ rlElm

lðl − 1Þ
�
1þ ð2klm þ iωτ0νlmÞ

�
R
r

�
2lþ1

�
: ð6Þ

Here, we have moved from the time domain to the
frequency domain and hence the time derivative of the
tidal field in Eq. (5) leads to a factor of −iω in the above
expression. Thus, if we can read off the perturbation to the
gravitational potential, then the coefficient of the decaying
term r−2l−1 captures the tidal effects, with the real part
giving rise to tidal Love number and the imaginary part gets
related to the tidal dissipation. In the next section we see
how this notion may be extended to relativistic objects.

IV. DYNAMICAL TIDAL LOVE NUMBERS

In order to generalize the notion of tidal effects in fully
relativistic context, we need to start from a coordinate
invariant formulation, or in other words we need a gauge
invariant formulation of the tidal Love number. In this
context, it is useful to consider the Weyl scalars, since these
faithfully captures the Newtonian potential in appropriate
limits, while remaining gauge invariant. Since the tidal
Love numbers are derived by constructing an asymptotic
expansion of the deformed potential sourced by an external
tidal field near infinity, we may use the Weyl scalar ψ4 for
our purpose [40,41]. The dynamics of the Weyl scalar ψ4,
associated with the perturbations of the Kerr geometry of
mass M and angular momentum a, can be separated into a
radial and an angular part, as [42–44]

ðr − ia cos θÞ4ψ4;lmðv; r; θ; ϕ̃;ωÞ
¼ e−iωveimϕ̃Slmðθ;ωÞRlmðr;ωÞ; ð7Þ

where, ðv; r; θ; ϕ̃Þ corresponds to the ingoing null coordi-
nates and the Weyl scalar ψ4 can be obtained by integrating
the above expression over ω and then summing over all
possible choices of l and m. The angular part Slm can be
solved to yield spin-weighted spheroidal harmonics, while
the radial part satisfies the following equation [42–44]:

�
Δ

d2

dr2
þ 2½ðsþ 1Þðr −MÞ − iK� d

dr

þ 2ð2s − 1Þiωr − λ

�
Rlmðr;ωÞ ¼ 0; ð8Þ

with K ¼ ðr2 þ a2Þω − am, λ ¼ E − 2amωþ a2ω2−
sðsþ 1Þ, s ¼ −2, and Δ ¼ r2 − 2aM þ a2, obtained using
theKinnersley’s tetrad. To get an analytic handle to the above
equation,wemay consider the low-frequency approximation
(Mω ≪ 1), such that the radial part Rlmðr;ωÞ of the
gravitational perturbation can be described by the following
differential equation [36]:

d2Rlmðξ;ωÞ
dξ2

þ
�ð2ip−1Þ

ξ
−
ð2ipþ1Þ
ðξþ1Þ

�
dRlmðξ;ωÞ

dξ

þ
�

4ip
ðξþ1Þ2−

4ip
ξ2

−
½lðlþ1Þ−2�

ξðξþ1Þ
�
Rlmðξ;ωÞ¼ 0: ð9Þ
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The dimensionless parameters ξ and p are defined as, ξ≡
ðr − rþÞ=ðrþ − r−Þ and p≡ ðam − 2MωrþÞ=ðrþ − r−Þ.
The above equation has two linearly independent solutions
in terms of the hypergeometric functions, such that the most
general solution is given by

Rlmðξ;ωÞ ¼ ARin
lmðξ;ωÞ þ BRout

lmðξ;ωÞ; ð10Þ
where, the two linearly independent solutionsRin

lmðξ;ωÞ and
Rout

lmðξ;ωÞ take the following forms:

Rin
lmðξ;ωÞ¼ ð1þξÞ2ξ22F1½2−l;3þl;3þ2ip;−ξ�; ð11Þ

Rout
lmðξ;ωÞ ¼ ð1þ ξÞ2ξ−2ip

× 2F1½−l − 2ip; 1þ l − 2ip;−1 − 2ip;−ξ�:
ð12Þ

The above functions are referred to as the ingoing and the
outgoing solutions, since in the near-horizon limit, Rin ∼
ðr − rþÞ2 and Rout ∼ ðr − rþÞ−2ip, providing exactly the
ingoing and the outgoing boundary conditions for ψ4,
respectively [44]. For a classical black hole spacetime, there
should not be any outgoing solution near the horizon, and
hence the coefficient B must vanish in Eq. (10), and ψ4 is
governed by RinðξÞ alone.
Since we are interested in horizonless ECOs, we cannot

set B ¼ 0, and we must have contributions from both Rin

andRout in the solution of the radial-perturbation equation.
The nonzero reflectivity of the compact object is then
defined as R≡ B=A. It will contain information about the
specific properties of the ECO. We emphasize that the
classical geometry remains valid till the reflective surface,
which is generically considered to be located very close to
the horizon, and all possible violations from classical black
hole paradigm is encoded within this reflectivity R. In
order to find the tidal Love number, the exact form of the
reflectivity would be necessary, and that will distinguish
between various models of ECO.
To arrive at the expression for the tidal Love number,

we first expand the general solution of the radial
function Rlmðξ;ωÞ in the tidal region [36], characterized
by the condition ξ ≫ 1, or, equivalently ðr=rþÞ ≫ 1,
leading to

Rlm ≃
Γð−2l − 1ÞΓð2ipþ 3Þ
Γð2 − lÞΓð2ip − lÞ ξ1−l

�
1þO

�
1

ξ

��

þ Γð2lþ 1ÞΓð2ipþ 3Þ
Γðlþ 3ÞΓðlþ 1þ 2ipÞ ξ

lþ2

�
1þO

�
1

ξ

��

þR
�
Γð−2l − 1ÞΓð−2ip − 1Þ
Γð−l − 2ÞΓð−l − 2ipÞ ξ1−l

�
1þO

�
1

ξ

��

þ Γð2lþ 1ÞΓð−2ip − 1Þ
Γðl − 1ÞΓðl − 2ipþ 1Þ ξ

lþ2

�
1þO

�
1

ξ

���
:

ð13Þ

In the above equation, it should beunderstood that the term
within the curly brackets arises because of the absence of a
horizon. The black hole limit is obtained by simply setting
R ¼ 0. Using the above behavior of Rlmðξ;ωÞ we may
compute ψ4;lmðωÞ in the tidal region using Eq. (7), and
we get

ψ4;lmðωÞ ∼ rl−2
�
½1þOðr−1Þ�

þ
�
R
r

�
2lþ1

ð2klm þ iωτ0νlmÞ½1þOðr−1Þ�
�
:

ð14Þ

The first term in the above expansion is the growing term
associated with the tidal source, while the second term
encodes the response of the compact object. Here, once
again, klm is the dimensionless tidal Love number and νlm
corresponds to the tidal dissipation [39]. The characteristic
length scale associated with the object can be taken to be
R ¼ rþ − r−, though for a compact object none of these radii
have any physical significance. In the case of a black hole it
was demonstrated in [36], that klm identically vanishes;
however, νlm is nonzero. In the present scenario, the ECOs
have nonzero reflectivity, thus we may expect a nonzero
Love number. To our expectation, it indeed turns out to have a
nontrivial expression, whenever the reflectivity is nonzero,
such that

klmðωÞ ¼
ðl − 2Þ!ðlþ 2Þ!
ð2lÞ!ð2lþ 1Þ!

× Re

�
ið2Mωrþ − amÞ

2ðrþ − r−Þ
�
1 −RγðωÞ
1þRγðωÞ

�

×
Yl
j¼1

�
j2 þ 4

ð2Mωrþ − amÞ2
ðrþ − r−Þ2

��
; ð15Þ

where, R is the reflectivity of the boundary of the compact
object. In particular, for a quantum black hole,R has a very
specific expression, which ensures that the object absorbs
only the characteristic frequencies and reflects all the other
frequencies. The above expression for the tidal Love number
depends on the quantity γðωÞ, which is given by

γðωÞ≡ Γðlþ 3ÞΓð−1 − 2ipÞΓðlþ 1þ 2ipÞ
Γðl − 1ÞΓð3þ 2ipÞΓðlþ 1 − 2ipÞ ; ð16Þ

where, the frequency dependence enters through the quantity
p, defined earlier as p≡ ðam − 2MωrþÞ=ðrþ − r−Þ.
Observe that the tidal Love number klm is a nontrivial
function of the frequency ω and also depends on the
reflectivity R of the surface of the ECO. As evident, the
exact formofklm is dependent onboth the real and imaginary
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parts of the reflectivity, as well as on the real and imaginary
parts of the complex and frequency-dependent quantity γðωÞ.
Thus, even if the reflectivity is a constant, the Love numbers
will still varywith the perturbation frequency.Note that in the
limit p → 0, the quantity γðωÞ diverges, but the expression
for the Love numbers remains finite. We can also express the
Love numbers klm in terms of the real and imaginary parts of
γðωÞ as

klmðωÞ ¼ −p
�ðl − 2Þ!ðlþ 2Þ!

ð2lÞ!ð2lþ 1Þ!
�Yl

j¼1

ðj2 þ 4p2Þ

×

�
γrðωÞRi þRrγiðωÞ

j1þRΓðωÞj2
�
: ð17Þ

Above we have used the decomposition of the reflectivity as
R ¼ Rr þ iRi and γðωÞ ¼ γrðωÞ þ iγiðωÞ. The explicit
form of γr and γi are given in Appendix A.
In the limit of a classical black hole, the reflectivity R

identically vanishes, and we observe that the tidal Love
number vanishes as well, thereby recovering the results of
[36]. On the other hand, in Eq. (17), there is an overall
factor of ð2Mωrþ − amÞ. Therefore, in the ω → 0 case, for
a nonrotating compact object, we have klmðωÞ → 0,
irrespective of the nature of the compact object. This seems
to contradict the nonzero static Love numbers obtained for
compact objects with nonrotating geometries in [16,45].
This apparent discrepancy can be attributed to the existence
of different branches of solutions of the hypergeometric
differential equation, as discussed in Appendix B. Thus, in
the presence of nonzero reflectivity, the Love numbers are
nonvanishing and frequency dependent. This is the main
result of our work. We emphasize that this fact is suffi-
ciently general and does not depend on the details of the
nature of the compact object.

V. MODELING THE REFLECTIVITY OF A
QUANTUM BLACK HOLE

So far, our analysis is completely general and applies to
any class of ECOs. In this section, as an illustration of the
application of Eq. (17), we consider the particular case of
an area quantized black hole. As described in Sec. II, the
absorption of an area quantized black hole takes place
only at the characteristic frequencies, ω ¼ ωN;n, fixed by
the quantization rule. These frequencies depend on the
details of the quantization scheme, and can be found in
Eq. (2) for uniform area quantization, while Eq. (4)
provides the result for nonuniform area quantization.
At these characteristic frequencies, the compact object
behaves as a classical black hole, and hence the reflec-
tivity will vanish, while for any other frequencies there
will be a nonzero reflectivity. Therefore, the reflectivity
of an area quantized black hole may be modeled as a sum
of Hann window functions centered at the characteristic
frequencies ωN;n, such that [26]

Rq ¼ e
iπMω
2

�
1 −

X
n

Pðω − ωN;n; D=2Þ
�
: ð18Þ

Here, P becomes unity at the characteristic frequencies
ωN;n (as we will see, some of these frequencies are indeed
within the LIGO/VIRGO frequency band [17]) and
hence, the reflectivity identically vanishes as it should.
In addition, we have introduced a width D, which
depends on the mass and spin of the black hole and is
determined from the fitting formula used in [26].1 Also,
the phase of the reflectivity Rq is expected to depend
on the dimensionless combination Mω. We emphasize
that the expression in Eq. (18) is based on reasonable
physical considerations, since a concrete microscopic
computation of the reflectivity of a area quantized black
hole does not exist. Given this reflectivity, one can
substitute the same in Eq. (15) and using the expressions
for γðωÞ from Appendix A, the frequency-dependent tidal
Love numbers can be computed. In the subsequent
section, we will explore the consequences of our Love
number expression for a reflecting compact object, in
particular for a quantum black hole in the context of its
observability in the present or future generations of the
gravitational wave detectors.

VI. IMPLICATIONS FOR GRAVITATIONAL
WAVE OBSERVATIONS

Having derived the general expression for the tidal Love
number, along with the reflectivity of an area quantized
black hole, we now compute2 the tidal Love number of the
most dominant ðl ¼ 2; m ¼ 2Þ mode, for frequencies
within the range of the LIGO/VIRGO Collaboration.
The tidal Love number k22 contains information regarding
the details of the compact object and the near horizon
physics through the reflectivity. We now demonstrate how
one may extract this information from the observations
using the area quantized black holes. In this case, the details
of the underlying quantum theory can be inferred through
the parameter α for the uniform area quantization and the
parameters ðα; C; νÞ for nonuniform area quantization. As
discussed in Sec. II, α is expected to lie somewhere
between 8π and 4 log 2, so in our discussion, we consider
these two values. To illustrate the effects of nonuniform
quantization, we have chosen parameters C ¼ −1.38; ν ¼
−0.01 so that there is no overlap between energy lines [27].
The corresponding results have been plotted in Fig. 1.
As evident from Fig. 1, in the case of uniform area

quantization, for α ¼ 8π, the Love number is a nontrivial

1Note that, in [26], the width was denoted by Γ.
2Remember that the computation of the tidal Love numbers,

following Eq. (17), is based on the small frequency assumption,
i.e., the expression is only applicable for those frequencies which
satisfy f ≪ ð1=2πÞðc3=GMÞ. For an object of mass 10M⊙, it
follows that Mω ∼Oð10−1Þ, around 700 Hz.
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function of frequency and has no sharp features in the
frequency range for which the calculations are valid. This
is because, for this value of α, there is no transition frequency
within 700 Hz. But when α ¼ 4 log 2, we see new features
with widthD starting to show up in the spectrum of the Love
numbers. This is because there are allowed transition
frequencies within the frequency range of f ¼ 700 Hz.

As expected, the Love number vanishes exactly at the
characteristic frequencies. Further, the width D for a
10M⊙ black hole is about 40 Hz and thus can be resolved
by the LIGO/VIRGO Collaboration. This means that by
studying the sharp features in the love number spectrum, one
can infer the details of the near horizon physics and also the
value of the parameters associated with the quantum black
hole. On the other hand, for nonuniform area quantization,
the features identified for uniformquantizationwith a givenα
will be displaced from their expected position in frequency
space, as demonstrated in Fig. 1. Therefore, the analysis of
the spectrum of the tidal Love number can not only provide
information about the quantum nature of black holes but will
also tell us about the nature of the underlying quantum
gravity through the specifics of the quantization mechanism.
We can also predict what the future gravitational wave

detectors, e.g., LISA, can say about the quantumnature of the
black holes from theLove number observations. The analysis
presented here will be more important for LISA than LIGO/
VIRGO, as the effect of the tidal Love number arises in the
waveform at the∼Oð2.5 PNÞ order, which is a much higher-
order correction, given the smallness of the tidal Love
number, as evident from Fig. 1. For LISA, with extreme-
mass-ratio objects, the inspiral happens over a much longer
duration; therefore, though a small effect, it can eventually
build up during the prolonged inspiral, making it observable
for LISA.For this purpose,weprovide an estimate of the tidal
Love numbers for a supermassive black hole. If we consider
the mass of the supermassive black hole to beM ¼ 104M⊙,
the small frequency approximation will be valid till
f ¼ 700 mHz, well within the proposed sensitivity level
of LISA. Thus, the story will effectively repeat itself for
LISA, but with better chances of being detected, due to the
prolonged inspiral phase of the extreme-mass-ratio objects.
The generalization of our results for quantum black holes of
different origin [10,11,46–48], and calculation of their love
numbers will follow an identical pattern.

VII. CONCLUSIONS

Classical black holes have vanishing Love numbers and
cannot be deformed by any external tidal perturbations.
Thus any departure of the tidal Love numbers from zero
would signify deviations from the classical black hole
paradigm. We have demonstrated that any horizon-less
ECO will have a frequency-dependent tidal Love number,
arrived using gauge invariant formalism, which may lead to
observational signatures in the gravitational wave spec-
trum. In order to probe such modifications in the tidal Love
number, we consider the case of an area quantized black
hole. Intriguingly, the variation of the tidal Love number
with frequency have distinct features, which can not only
distinguish quantum black holes from ECOs, but can also
distinguish between various models of quantum gravity. As
an example, for an object of mass 10M⊙, if it is a quantum
black hole, then the spectrum of the tidal Love number will

FIG. 1. The tidal Love number for the most dominant mode k22
has been presented as a function of ω for various area quantized
black holes with mass M ¼ 10M⊙ and χ ¼ a=M ¼ 0.3. The
orange line is for a classical Kerr black hole, which predicts zero
tidal Love number. The first two figures from the top describe
uniform quantization with α ¼ 8π and 4 log 2, respectively. The
last figure compares uniform (blue) and nonuniform (green).
Having α ¼ 4 log 2 and C ¼ −1.38; ν ¼ −0.01. Note that the
frequency where Pþ ¼ 0 should be excluded from these curves
because of the different branches of solutions, as discussed earlier.
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demonstrate sharp features, with the Love number vanish-
ing to zero for certain frequencies, in contrast with other
models of the ECOs, and all of these features are within the
frequency band of LIGO/VIRGO Collaboration. Similarly,
we can also distinguish between various models of quan-
tized black holes. If such sharp features are observed in the
frequency spectrum of the tidal Love number in the low-
frequency regime, they will favor the nonuniform area
quantized black hole model. In particular, the absence of
such sharp features suggests that the compact object is not
an area quantized black hole, or, is a uniform area quantized
black hole with a larger values of α. It would be interesting
to compute the love number spectrum for other quantum
black hole scenarios as well. Another interesting avenue
would be to study the tidal absorption of the ECOs and
hence of the area quantized black holes, whose relation to
the well-known phenomenon of tidal heating is still
unknown and remains an open question to ponder upon.
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APPENDIX A: EXPLICIT FORMS OF THE REAL
AND IMAGINARY PARTS OF γðωÞ

We have provided the expression of the quantity γðωÞ in
Eq. (16) of the main text. However, the Love number
computation depends explicitly on the real and imaginary
parts of the same. Here we provide the explicit forms of the
real and imaginary parts of γðωÞ, as

γðωÞ ¼ γrðωÞ þ iγiðωÞ; ðA1Þ
where the real part γr and the imaginary part γi have
the following expressions [the frequency dependence
enters through the definition of the quantity p ¼
ðam − 2MωrþÞ=ðrþ − r−Þ, as in earlier cases]:

γrðωÞ¼
ðl−1Þlðlþ1Þðlþ2Þ

4pð16p6þ24p4þ9p2þ1ÞQl
j¼1 ðj2þ4p2Þ

× ½pð4p2−5ÞðΣ2
r −Σ2

i Þ−2ð8p2−1ÞΣrΣi�; ðA2Þ

γiðωÞ¼
ðl−1Þlðlþ1Þðlþ2Þ

4pð16p6þ24p4þ9p2þ1ÞQl
j¼1 ðj2þ4p2Þ

× ½2pð4p2−5ÞΣrΣiþð8p2−1ÞðΣ2
r −Σ2

i Þ�; ðA3Þ

where

Σr ¼
� ð2ipÞl þ C2ð2ipÞl−2 þ C4ð2ipÞl−4 þ � � � þ Cl−2ð2ipÞ2 þ l!; l

2
∈ Z

C1ð2ipÞl−1 þ C3ð2ipÞl−3 þ C5ð2ipÞl−5 þ � � � þ Cl−2ð2ipÞ2 þ l!; l
2
∉ Z

ðA4Þ

Σi ¼
�
C1ð2pÞl−1il−2 þ C3ð2pÞl−3il−4 þ � � � þ Cl−3ð2pÞ3i2 þ Cl−1ð2pÞ; l

2
∈ Z

ð2pÞlil−1 þ C2ð2pÞl−2il−3 þ C4ð2pÞl−4il−5 þ � � � þ Cl−3ð2pÞ3i2 þ Cl−1ð2pÞ; l
2
∉ Z

ðA5Þ

The constants C1, C2, C3 and so on, appearing in the above
expression can be expressed as

C1 ¼ 1þ 2þ 3þ � � � þ ðl − 1Þ þ l; ðA6Þ
C2 ¼ 1.2þ 2.3þ 1.3þ 3.4þ 1.4þ � � �

þ ðl − 2Þðl − 1Þ þ ðl − 1Þl; ðA7Þ
C3 ¼ 1.2.3þ 2.3.4þ 1.3.4þ 3.4.5þ � � �

þ ðl − 2Þðl − 1Þ:1þ ðl − 2Þðl − 1Þl: ðA8Þ
The above expressions can be obtained by repeatedly

using the properties of the gamma function from Sec. 1.2 of
[49]. We have used these results, while computing the tidal
Love number of the area quantized black holes.

APPENDIX B: STATIC LIMIT OF THE
DYNAMICAL LOVE NUMBERS

For studying the static love numbers of a nonrotating
configuration, we need to consider the differential equa-
tion (9) with p ¼ 0, which yields

d2R
dξ2

−
�
1

ξ
þ 1

ðξþ 1Þ
�
dR
dξ

−
�
lðlþ 1Þ − 2

ξðξþ 1Þ
�
R ¼ 0: ðB1Þ

The general solution to the above differential equation is a
linear combination of the associated Legendre polynomials.
These are given by
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RðξÞ ¼ Aξðξþ 1ÞP2
lð2ξþ 1Þ þ Bξðξþ 1ÞQ2

lð2ξþ 1Þ
¼ ξðξþ 1ÞfAP2

lð2ξþ 1Þ þ BQ2
lð2ξþ 1Þg

¼ ξðξþ 1ÞH0ð2ξþ 1Þ: ðB2Þ

Where, in the last step, we have identified the object in
curly brackets as H0ðξÞ ¼ AP2

lð2ξþ 1Þ þ BQ2
lð2ξþ 1Þ.

One may notice that this H0 is exactly the function that
characterizes the polar perturbations of the gtt component
of the metric [14,45]. Thus, it follows that the Weyl scalar
ψ4 in the zero-frequency limit is simply given by ψ4 ∼
H0ð rM − 1Þ. Thus, the tidal Love number in the zero fre-
quency limit will be determined by the associated Legendre
polynomials and will be identical to the ones presented in
[14]. Therefore, if one takes the zero-frequency limit at the
level of the differential equation the tidal Love number
turns out to be consistent with earlier results.
However, if we start from Eq. (15) in the context of a

nonrotating compact object and then take the zero-
frequency limit, we obtain vanishing tidal Love numbers.
This apparent contradictory behavior is hidden in the
hypergeometric differential equations, which have different
branches, behaving differently in the zero-frequency limit.
To see precisely the cause of this behavior, we can convert

Eq. (9) into the more familiar form of a hypergeometric
differential equation by using the following change of
variable,RðξÞ ¼ ξ2ð1þ ξÞ2F ð−ξÞ, by which Eq. (9) takes
the form

− ξð1þ ξÞ d
2F ð−ξÞ
d2ð−ξÞ þ ð3þ 2ipþ 6ξÞ dF ð−ξÞ

dð−ξÞ
þ ½lðlþ 1Þ − 6�F ð−ξÞ ¼ 0; ðB3Þ

which is the hypergeometric differential equation for
F ð−ξÞ with the following choice of parameters: a ¼
3þ l, b ¼ 2 − l and c ¼ 3þ 2ip. It follows that the
hypergeometric differential equation has different branches
of solutions based on whether or not c is an integer. In the
present scenario as well, p ¼ 0 and p ≠ 0 correspond to
situations where c is an integer or not. Thus the solutions to
Eq. (9) correspond to different branches depending on
whether p is zero or not. This demonstrates that the branch
of the hypergeometric equation contributing in the dynami-
cal case is different from the one contributing to the static
case. As discussed before, we can get around this difficulty
by treating the dynamical and the static case separately,
reproducing the results of [16,45].
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