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In massive scalar-tensor gravity, core-collapse supernovae are strong sources of scalar-polarized
gravitational waves. These can be detectable out to large distances. The dispersive nature of the
propagation of waves in the massive scalar field implies that the gravitational wave signals are long-
lived, and many such signals can overlap to form a stochastic background. Using different models for the
population of supernova events in the nearby universe, we compute predictions for the energy density in the
stochastic scalar-polarized gravitational wave background from core-collapse events in massive scalar-
tensor gravity for theory parameters that facilitate strong scalarization. The resulting energy density is
below the current constraints on a Gaussian stochastic gravitational wave background but large enough to
be detectable with the current generation of detectors when they reach design sensitivity, indicating that it
will soon be possible to place new constraints on the parameter space of massive scalar-tensor gravity.
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I. INTRODUCTION

Gravitational waves (GWs) offer new opportunities for
studying astrophysics and fundamental physics. Before the
first detection of a GW on 14 September 2015 by the two
LIGO interferometers [1], tests of general relativity (GR)
have been largely limited to the weak-field regime. The
LIGO [2] and Virgo [3] observatories provide the oppor-
tunity to extend these to the strong and dynamical regimes:
examples include the use of the first detection to test
gravity [4]; the first GW polarization tests using simulta-
neous observations from three interferometers [5]; setting
constraints on both the properties of nuclear matter [6] and
on the speed of GWs [7] from the first binary neutron star
merger; and the suite of tests performed with the most
recent GW catalog of detected signals from compact
binary coalescence events [8]. GWs provide us with a
new tool to use in examining possible beyond-GR theoreti-
cal frameworks.

Supernovae have long been considered as possible
sources of GWs [9] and, in spite of the lack of positive
detection as of now, they remain a target for modern GW
interferometers [10]. Birkhoff’s theorem guarantees that
spherical symmetry implies no GWs (in GR). Therefore,
studying GW emission from core collapse requires multi-
dimensional simulations. Notwithstanding the computa-
tional costs, it is now possible to obtain predictions for the
GW signal from full 3þ 1 dimensional simulations of core
collapse (see, for example, Refs. [11–13]). Using the results
from such simulations, previous work [14–16] has esti-
mated the magnitude of the stochastic GW background
(SGWB) due to supernovae; they found that the back-
ground is Gaussian for frequencies below 1 Hz and is small
but may be relevant for future space-based GW missions,
such as DECIGO [17].
Scalar-tensor (ST) theories of gravity have long been

considered as good candidates for modified gravity. Scalars
arise naturally in high-dimensional theories, including
string theory, and feature prominently in beyond-ΛCDM
cosmologies, for example, as drivers of inflation or as
candidates for dark energy. Furthermore, ST theories have a
well-posed Cauchy formulation [18–20]. ST theories date
back to the pioneering work of Brans and Dicke [21–23].
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More general Horndeski theories also give second order
equations of motion [24], but ST theories can mimic GR in
weak fields, thereby passing all solar system tests, never-
theless exhibiting large deviations in the strong-field
regime. Spontaneous scalarization of neutron stars is such
a possible signature of ST theories [25,26]. Because the
scalar field is nonminimally coupled to the metric, gravity
is now mediated by both tensor and scalar degrees of
freedom. GW emission can occur even in spherical sym-
metry in these theories, which in itself would be a
fundamental deviation from GR. Previous work has used
simulations in 1þ 1 dimensions of dynamical spontaneous
scalarization during spherically symmetric core collapse to
investigate possible GW signals in ST theories with a
massless scalar [27–29].
Through a conformal transformation of the physical

metric gμν ¼ ḡμν=FðφÞ, the theory can be written in the
so-called Einstein frame where it resembles GR minimally
coupled to a scalar field (see Sec. II A). This coupling
function represents 1 degree of freedom of the theory.
A common choice for this function consists in a series
expansion of logF in the scalar field variable φ. Here, we
employ such an expansion to second order,

logFðφÞ ¼ −2α0φ − β0φ
2: ð1Þ

This class of theories is sometimes referred to as Damour-
Esposito Farèse (DEF) theory [26].
For a zero mass of the scalar, the field φ is long ranged

(∼1=r), and the parameters α0 and β0 of the theory are
rather tightly constrained by observations. Specifically,
observations by the Cassini mission [30] are compatible
with massless ST theory only for α0 < 3.4 × 10−3, while
the best constraints on the quadratic term come from timing
of the binary pulsars PSR J1738þ 0333 [31] and PSR
J0348þ 0432 [32], which rule out values β0 ≲ −5; see also
Ref. [31] and Fig. 1 in Ref. [29]. For discussion of these
constraints, see [33] (in particular, Fig. 37). This is
problematic as it eliminates most of the parameter values
for which spontaneous scalarization occurs.
A natural extension of such theories is to give the scalar

field a mass, μ. Spontaneous scalarization still happens in
massive ST theories, and ST theories with scalar field
masses μ≳ 10−16 eV are essentially unconstrained [34]
due to the short-range (Yukawa-type ∼e−2πrμ=ℏ=r) falloff of
the scalar field [34–36]. The authors have previously
investigated the generation and propagation of GW signals
from core collapse in massive ST theories [36]. More
specifically, we have found that these signals can be (i) loud,
and hence detectable at a relatively high rate out to large
distances, and (ii) of long duration due to the dispersive
nature of the propagation of the massive GW mode. This
motivates our present work as the resulting GW signals
overlap and form a SGWB. Recent LIGO limits on SGWBs

with alternative polarizations [37] may help constrain these
theories.
In this paper we continue our analysis into the detection

possibilities offered by massive ST theories in the case of
core collapse. Using results from our previous papers, we
combine waveforms obtained from different initial stars, at
different points in time, to build a stochastic background. In
Sec. II we cover the formalism and numerics employed and
the propagation of GWs over cosmological distances. In
Sec. III we begin by reviewing the qualitative and quanti-
tative dependence of the results on the scalar parameter β0.
We further describe the six GW sets used in building the
stochastic backgrounds and the potential for detection in
LIGO-VIRGO data. Our conclusions are given in Sec. IV,
and we present more details of the calculations for the long-
distance GW propagation in the Appendix.

II. THEORY

A. ST action

In the Einstein frame, the action can be written in the
following form (natural units where G ¼ c ¼ 1 are used;
however, factors of ℏ are left explicit):

S ¼
Z

dx4
ffiffiffiffiffiffi
−ḡ

p
16π

½R̄ − 2ḡμν∂μφ∂νφ − 4VðφÞ� þ Sm; ð2Þ

where the matter action Sm is taken to be that of a perfect
(nuclear) fluid. As discussed in Ref. [36], this is a generic
action for ST theories with a single nonminimally coupled
scalar field. In Eq. (2) φ is the scalar field; ḡμν is the
conformal metric, which is related to the physical metric by
the coupling function in Eq. (1) via ḡμν ¼ FðφÞgμν; R̄ and ḡ
are the Ricci scalar and metric determinant associated with
the conformal metric; and VðφÞ is the scalar field potential,
which is taken to be a quadratic, VðφÞ ¼ ℏ−2μ2φ2=2, with
scalar mass μ. The matter action Sm is coupled to the
physical metric gμν and is taken to describe a perfect fluid
here. The equations of motion for this theory are given by
Eqs. (3) in [36].

B. Equation of state

It is necessary to further specify the equation of state
(EOS) for the nuclear fluid. In this work, we employ hybrid
EOSs that prescribe the pressure P of the fluid as a function
of the mass density and the internal energy (or temper-
ature). More specifically, we use an EOS first introduced in
Ref. [38] that qualitatively captures, in the form of a cold
pressure component, the stiffening of matter at nuclear
densities and includes a thermal term to model the response
of shocked material. This EOS is characterized by three
parameters: two adiabatic indices Γ1 and Γ2 for the cold
contribution at low and high densities, respectively, as well
as an adiabatic index Γth for the thermal pressure compo-
nent Pth. The full expressions, together with a more detailed

ROSCA-MEAD, AGATHOS, MOORE, and SPERHAKE PHYS. REV. D 107, 124040 (2023)

124040-2



discussion, are given in Sec. 3.1 of Ref. [29]. In the
remainder of this work, we focus on three choices for this
hybrid EOS given by the parameter combinations listed in
Table I; the resulting cold pressure components are plotted
in Fig. 1.

C. Numerics

We assume spherical symmetry and evolve the system of
equations using a version of the open source GR1D
code [39], which is built to simulate stellar core collapse
using finite differences and high-resolution shock captur-
ing. The code was modified to include the scalar field in
Ref. [29], and the potential term was included later in
Refs. [40,41]. We use a uniform inner grid up to r ¼ 40 km
and a logarithmic one outside, up to r ¼ 9 × 105 km. The
code shows between first and second order convergence
with a discretization error of 4% for the lowest resolution
employed: δr ¼ 250 m and N ¼ 10000 grid points for the
inner grid [36].
We initialize our data with spherically symmetric, non-

rotating, stellar profiles from the catalog of Woosley and

Heger [42] who evolve Newtonian stars up to the point of
iron core collapse. The resulting progenitor configurations
cover zero-age-main-sequence (ZAMS) masses ranging
from 11M⊙ to 75M⊙ and three metallicities: solar (Z⊙),
subsolar (10−4Z⊙), and primordial (zero); more details
about these initial data can be found in Ref. [42] and
Sec. 3.3 of Ref. [29].
We can already see in the resulting numerical evolutions

the main effects of the wave propagation that reappear in
more dramatic form in the passage of the signal across
astrophysical distances. This is illustrated in Fig. 2 where
we show the signal σ ∝ rφ [see Eq. (4)] in the time and
frequency domains for a 39M⊙ progenitor star with 10−4

solar metalicity, EOS1, and ST parameters μ ¼ 10−14 eV,
α0 ¼ 10−2, β0 ¼ −20 at different radii. As the GW prop-
agates outwards, it becomes increasingly oscillatory, and
low frequency contributions below ω� are further and
further suppressed. These features will be discussed in
more detail in the next subsection.

D. Wave propagation

For our calculation of the SGWB generated by super-
nova events in the local universe, we need to take into
account the cosmological expansion and its impact on the
propagation of the scalar radiation. For this purpose, we
consider the spatially flat Friedmann-Lemaître-Robertson-
Walker (FLRW) metric,

ds2 ¼ −dt2 þ aðtÞ2ðdr2 þ r2dΩ2Þ; ð3Þ

which is a good approximation for the background metric
in our cosmological neighborhood, i.e., for distances well
below the curvature length scale of the universe.
The wave equation for a spherically symmetric scalar

field on this background is most conveniently formulated in
terms of conformal time η and the radially rescaled scalar
field σ defined by

dη
dt

¼ 1

a
; σ ¼ arφ; ð4Þ

and it can be written as

∂
2
ησ − ∂

2
rσ − a2H2ð1 − qÞσ þ μ2a2σ ¼ 0: ð5Þ

Here, σ ¼ σðη; rÞ while a, H, and q are functions of
conformal time η only and denote the scale factor, the
Hubble parameter H ¼ _a=a, and the deceleration param-
eter q ¼ −aä= _a2, with _¼ d=dt, respectively. By compar-
ing Eq. (5) with its Minkowskian counterpart [cf. Eq. (36)
in Ref. [40]],

∂
2
t σ − ∂

2
rσ þ μ2σ ¼ 0; ð6Þ

FIG. 1. Pressure as a function of baryon density for the
nonthermal component of the three EOS models used in this
work. The values of the adiabatic exponents for the three models
are given in Table I. The overlaid shaded regions correspond to
the 90% (light) and 50% (dark) confidence bands given by the
LVC analysis of GW170817 using the spectral parametrization
for the EOS [6]. Vertical lines indicate density values of one and
six times the nuclear saturation density.

TABLE I. Parameter values describing the three EOSs used
throughout the remainder of this paper.

Γ1 Γ2 Γth

EOS1 1.30 2.5 1.35
EOS3 1.32 2.5 1.35
EOSa 1.28 3.0 1.50
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wenotice twokeydifferences: the extra term−a2H2ð1 − qÞσ
and the additional factor a2 in the mass term. An analytic
treatment analogous to the Minkowski case is still possible,
however, if we treat the emission as instantaneous and the
observation of thewave signal as another instantaneous event
relative to the timescale of cosmological expansion.1 We can
then treat a, H, and q as constants as we Fourier transform
Eq. (5) using the convention

f̃ðωÞ ¼
Z

∞

−∞
fðηÞeiωηdη;

fðηÞ ¼ 1

2π

Z
∞

−∞
f̃ðωÞe−iωηdω: ð7Þ

This results in the equation

∂
2
r σ̃ðω; rÞ ¼ −ðω2 − ω2�Þσ̃ðω; rÞ; with

ω� ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −H2ð1 − qÞ

q
; ð8Þ

which is solved by

σ̃ðω; rÞ ¼ f̃ðωÞeikðr−reÞ þ g̃ðωÞe−ikðr−reÞ;

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −ω2�

q
;

σðη; rÞ ¼ 1

2π

Z
∞

−∞
f̃ðωÞei½kðr−reÞ−ωη� þ g̃ðωÞe−i½kðr−reÞþωη�dω:

ð9Þ

The result for our specific case of a real signal propa-
gating outwards from re to r is obtained using the sta-
tionary phase approximation in complete analogy to the
Minkowski case described in detail in Sec. V of Ref. [40].
The result of this calculation is

σðη; rÞ ¼ Aðη; rÞeiϕðη;rÞ with

ϕðη; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − ω2�

q
ðr − reÞ −Ωηþ arg½σ̃ðΩ; reÞ� −

π

4
;

Aðη; rÞ ¼
ffiffiffi
2

π

r
ðΩ2 − ω2�Þ3=4
ω�

ffiffiffiffiffiffiffiffiffiffiffiffi
r − re

p jσ̃ðΩ; reÞj;

Ωðη; rÞ ¼ ω�ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − ðr − reÞ2

p ;

ω� ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −H2ð1 − qÞ

q
≈ aμ: ð10Þ

Here, the last approximation arises from converting the
Hubble parameter into units where ℏ ¼ c ¼ 1,

H ≈H0 ≈ 75 km s−1 Mpc−1 ≈ 1.6 × 10−32 eV;

which is well below the scalar field’s mass range 10−15 to
10−10 eV that we consider in this work. Note also that the
observed signal σðη; rÞ in Eq. (10) depends on the emitted
wave only through the presence of jσ̃ðΩ; reÞj and
arg½σ̃ðΩ; reÞ� in the amplitude A and phase ϕ.
Our final task is to relate the conformal time η and

the radial coordinate r to the time and distance measure-
ments used by an observer on Earth, namely, the observer’s
proper time τ and the source’s luminosity distance DL. To
this end, we first note that our coordinate system ðη; rÞ is
centered on the source with time chosen such that η ¼ 0
corresponds to the time of the collapse (which, we recall, is
treated as instantaneous on the cosmological timescale).

FIG. 2. Left panel: example scalar signal σðtÞ ¼ rφðtÞ obtained from the core-collapse simulation of a 39M⊙ star of 10−4 solar
metallicity and EOS1 when μ ¼ 10−14 eV, α0 ¼ 10−2, and β0 ¼ −20 . The signal was extracted at several different radii (5 × 109 cm,
1010 cm, and 2 × 1010 cm) and is plotted against retarded time. The drift observed in the case of rex ¼ 5 × 109 cm (red line) is
suppressed by the time the signal propagates outwards to the larger extraction radii; furthermore, as the signal travels outwards, it
becomes more oscillatory (see the discussion of dispersion and the explanation of the origin of the “inverse chirp” in [36]). Right panel:
power spectrum of the waveforms plotted in the frequency domain. The low frequencies are exponentially suppressed when the signal
propagates to large distances whereas the high frequencies propagate unimpeded.

1This is, of course, a common assumption in most astrophysi-
cal observations where the cosmological redshift of a source is
treated as constant over the duration of the observation. In our
case, the wave signals are generated by a collapse lasting seconds
and may disperse into long signals over months or years, both
clearly well below the timescale of changes in the scale factor a.
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The luminosity distance between the source and observer is
given by the areal radius so that, at the time ηo of
observation, DL ¼ aðηoÞr. Without loss of generality, we
set the scale factor at the time of emission to aðηeÞ ¼ 1 so
that aðηoÞ ¼ 1þ z with the standard redshift z. Likewise,
the observer measures the progression of her age by
dτ ¼ aðηoÞdη, with τ ¼ 0 defined as the time of arrival
of the electromagnetic signal from the supernova event.
Taking into account that η ¼ 0 marks the time of the
collapse and bearing in mind that2 re ≪ r, we find

r ¼ DL

ao
; η ¼ τ þDL

ao
: ð11Þ

These are readily inserted into Eq. (10) and yield the GW
signal of a core-collapse event at luminosity distance DL at
(proper) observer time τ elapsed since the identification of
the supernova event in electromagnetic radiation,

σðτ; DLÞ ¼ Aðτ; DLÞeiϕðτ;DLÞ with

ϕðτ; DLÞ ¼ −μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ þDLÞ2 −D2

L

q
þ arg½σ̃ðΩ; reÞ� −

π

4
;

Aðτ; DLÞ ¼
ffiffiffiffiffi
2μ

π

r
ð1þ zÞDL

½ðτ þDLÞ2 −D2
L�3=4

jσ̃ðΩ; reÞj;

Ωðτ; DLÞ ¼
ω�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð DL
τþDL

Þ2
q ; ω� ¼ ð1þ zÞμ: ð12Þ

Note that the last two equations should not be interpreted
as a blue shift of the signal. Rather, they demonstrate that a
mode reaching Earth at time τ requires a higher frequency,
i.e., larger group velocity, as compared to the nonexpanding
Minkowski case. In other words, the cosmological expan-
sion delays modes of lower frequency to a later arrival time,
just as we would intuitively expect.
A note on massive amnesia—Already in the early days of

modeling GW emission from supernovae, a mechanism of
GW production in the zero-frequency limit was discovered,
sourced by the outwards burst of relativistic neutri-
nos [43,44]. The presence of the resulting GW signal
was confirmed by numerical simulations in recent decades,
identified as a slowly increasing tail in the GW strain [45–
47]. This feature can be interpreted as a linear “memory
effect,” leaving a permanent relative displacement in the
test masses of an interferometer. Here, we observe a similar
effect when extracting the waveform at short distances from
the source (see Fig. 2), with the generation of the scalar
field. However, due to the massive dispersion relation, this
feature, dominating the low-frequency end of the spectrum,
does not propagate out to infinity and is therefore not
measurable from a distant GWobservatory. Hence, no such

observable feature is found in the scalar stochastic spectra
studied here.

III. RESULTS

A. Core collapse

A systematic exploration of the space of parameters that
characterize the progenitor star, the EOS, and the scalar
field has been performed in Ref. [40]. There, we observe a
pattern in the dynamics and remnants obtained, which leads
to a classification of the core-collapse events into five
different scenarios:
(1) Prompt collapse to a low-compactness, weakly

scalarized NS which produces scalar radiation with
an amplitudeOðα0Þ. We obtain this for less negative
β0 values for progenitors and EOSs which, in the GR
case, result in the formation of NSs.

(2) Prompt collapse to a high-compactness, strongly
scalarized NS which produces scalar radiation with
an amplitude Oð1Þ. This scenario is realized for
sufficiently negative values of β0, but independent of
the progenitor, EOS, and other scalar parameters.

(3) Multistage collapse to a strongly scalarized NS
which produces scalar radiation of magnitude
Oð1Þ. This occurs for an intermediate range of β0
values slightly less negative than those of case (2),
independent of the progenitor model or EOS.

(4) Two-stage collapse to a BH which produces scalar
radiation of magnitude Oðα0Þ. We obtain this out-
come for less negative β0 values and progenitors and
EOSs which, in the GR case, lead to BHs.

(5) Multistage collapse (with at least three stages) to a BH
which produces scalar radiation of amplitude Oð1Þ.
This occurs for progenitors and EOSs which lead to
BHs in the GR case and for an intermediate β0 range
between the values leading to a 2-stage BH formation
and those leading to multistage NS formation.

A more quantitative illustration of the β0 intervals
corresponding to these five main scenarios is displayed in
Fig. 3 of Ref. [40] for a progenitor star of MZAMS ¼ 39M⊙,
EOS3, and solar metallicity, and for a progenitor star of
MZAMS ¼ 39M⊙, EOS3, and primordial (zero) metallicity;
in theGR limit, these progenitormodels collapse to aNS and
a BH, respectively.
The main goal of this work is to assess how a large

number of core-collapse events of the type listed above
combines into generating a SGWB. The different progeni-
tors used as a starting point in our simulations are high-
lighted in Fig. 3. We mark the strength of the GWobtained
for each configuration by using filled symbols for strong
and empty symbols for weak radiation. We use this finite
grid of configurations as a basis to build our model for the
stochastic background of scalar GWs. As noted in
Ref. [40], there is no monotonic relation between the
progenitor mass and the threshold of strong scalarization.

2In practice, we extract the source’s GWs atOð1Þ light seconds
from the star’s center, which is negligible compared to the
astrophysical distances in the kpc or Mpc range.
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This is best exemplified in the middle right panel of Fig. 4:
for α ¼ 10−2, β0 ¼ −22, μ ¼ 10−14 eV, EOSa, and solar
metallicity, several intermediate progenitor masses result in
weak scalarization, whereas the rest are strongly scalarized.
The prompt high-compactness NS scenario of item (2) in

the above list is the simplest and, for our purposes, most
interesting case due to its universality: for any progenitor and
EOS and a sufficiently negative β0, we always obtain a
strongly scalarized neutron star and, hence, a high-amplitude
GW signal. We have therefore selected, for our first compu-
tation of a stochastic background, scalar-field parameters that
lead to this specific scenario: α0 ¼ 10−2, β0 ¼ −20, μ ¼
10−14 eV for EOS1 and EOS3 and α0 ¼ 10−2, β0 ¼ −30,
μ ¼ 10−14 eV for EOSa. The universality of the resulting
signals is demonstrated in Fig. 4 where we plot the resulting
power spectra (see the left three panels of the figure). They
show good agreement except for the low-amplitude contri-
butions at high frequency in the upper left and center left
panel,which are due to numerical inaccuracy, anddue to their
small amplitude, they do not contribute significantly to the
overall power.
In the right panels of Fig. 4, we highlight the behavior

near the threshold of strong scalarization. For this pur-
pose we consider β0 ¼ −20, −22, −23 for α ¼ 10−2,
μ ¼ 10−14 eV, EOSa. This is again best interpreted using
the power spectrum of the GWs:

(i) For β0 ¼ −20, all progenitors result in the prompt
formation of low-compactness NSs and GW signals
2 orders of magnitude weaker than for β0 ¼ −23
(see top right panel of Fig. 4).

(ii) For β0 ¼ −22, some simulations still produce weak
scalar radiation (mostly intermediate mass progeni-
tors), but several lead to strong scalarization (see
center right panel of Fig. 4). For this case, the power
spectrum for the waveforms is less smooth as
compared to the other scenarios displayed in the
left panels. This behavior arises from the multistage
character of the collapse to a NS and the corre-
spondingly more complex structure of the GW

signal in the time domain. A particularly strong
signal is obtained for the progenitor model with
mass 75M⊙ and 10−4 solar metallicity; the GW
signal from this highly massive progenitor exceeds
that of other strongly scalarized configurations by
about a factor of 2.

(iii) For β0 ¼ −23, all simulations produce strong GW
radiation (see bottom right panel of Fig. 4), but
again, some of their power spectra exhibit fluctua-
tions due to the multistage NS scenario.

B. Stochastic GW background

GW signals from core-collapse supernovae (CCSN) in
ST theory can be louder than in GR. Therefore, they are
detectable out to larger distances, increasing the rate of
detectable events. Additionally, in massive ST theories the
dispersive nature of the wave propagation over astrophysi-
cally large distances stretches the signals out in time,
perhaps by as much as several decades [36]. This dramati-
cally increases the signal duration and, coupled with the
higher event rate, increases the probability that multiple
signals will overlap in time. If many such signals overlap,
they can form a stochastic background of GWs. In this
section we present an order-of-magnitude estimate for the
energy density in such a background, based on a repre-
sentative subset of numerical simulations combined with
realistic astrophysical population assumptions, and we
consider the prospects for its detectability.
In ST theory the scalar field couples to the spacetime

metric; see Eq. (2). Oscillations in the scalar field are
detectable as GWs with a scalar polarization. The strain
amplitude of the GW signals is given by

h ¼ 2α0φ; ð13Þ

where α0 is the linear term in the coupling function; see
Eq. (1). Here, we neglect the slight suppression in the GW
strain amplitude at frequenciesω≳ ω� from the presence of
a longitudinally polarized GW in massive ST theory; see,
e.g., Ref. [41].
The formalism for computing the expected energy

density in a SGWB from a cosmological population of
discrete sources has been studied by several authors; see,
for example, Refs. [48,49], and Ref. [14] in the specific
context of supernovae. The SGWB is commonly described
in terms of its local energy density ρGW per logarithmic
frequency interval, normalized to the critical cosmological
density ρc ¼ ð3H2

0Þ=ð8πÞ:

ΩGW ¼ 1

ρc

dρGWðfÞ
d ln f

: ð14Þ

1. Astrophysical population statistics

Building a SGWB requires knowledge of the population
of events across the Universe and how this population

FIG. 3. Classification of scalarization based on the amplitude of
the central scalar field for sets of simulations spanning awide set of
progenitors (filled markers for strong and empty markers for weak
scalarization). The order of magnitude that these amplitudes reach
in five of the six sets of simulations is plotted in Fig. 4 of [40].
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evolves over cosmic time. We can parametrize this evolu-
tion by any cosmological distance parameter; here, we use
the redshift z. We estimate the rate RðzÞ of CCSN events
per unit comoving volume using three different models:
(i) the simple model described in Eq. (7) of Ref. [14], in
which the rate increases, as we look back in time, as a
power law in (1þ z) from its local value of
2 × 10−4 Mpc−3 yr−1, followed by an abrupt transition to
a constant for redshifts higher than z ¼ 1; (ii) a rate that is
directly proportional to the star-formation rate (SFR), as

RðzÞ ¼ λCCR�ðzÞ, where the proportionality constant λCC ≃
0.007M⊙ is estimated based on the Salpeter initial mass
function (IMF) [50] and the assumption that all stars above
a threshold mass of 8M⊙ will eventually collapse [16] [the
SFR function itself R�ðzÞ is set to the model proposed by
Springel and Hernquist, fit to observational data [51–53]];
(iii) a rate similar to the latter, but with the SFR model
changed to that of Madau and Dickinson [54].
Since we only consider massive stars for our population

(we set a universal threshold of MZAMS > 8M⊙), the

FIG. 4. Power spectra for each GWobtained using GR1D.We split the waveforms into six sets according to the EOS and β0 values (the
rest of the scalar parameters, μ ¼ 10−14 eV and α0 ¼ 10−2, are the same for all sets). The color of the line is parametrized by the mass of
the progenitor as measured inM⊙ (see color bar on top for reference). The metallicity is encapsulated in the line style as displayed in the
top right legend. In the top two panels on the left, some differences appear for high frequencies, which are caused by the distinct
resolution used in some of the simulations: higher resolution leads to minor improvements of the modeling of steep gradients in the time
domain, which results in slightly larger power at high frequencies. Note, however, the logarithmic scale, so the differences are small with
no significant effect on the overall signal power. The curves in the three left panels all correspond to scenario (2) of the list in Sec. III A,
i.e., prompt collapse to strongly scalarized compact NSs, and all signals look essentially identical. On the right-hand side, all curves fall
into two categories, low-amplitude signals for weakly scalarized remnants and high-amplitude signals (very much like those on the left)
for strongly scalarized collapse remnants.
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timescale of stellar evolution will be of the order of at most
a few Myr [55], much smaller than the timescale of SFR
variation. Thus, any time lag between the SFR curve and
the event-rate curve for core collapse of massive stars can
be safely neglected. The CCSN event rates predicted by the
three models are depicted in the curves of Fig. 5, shaded by
the (normalized) complementary-cumulative distribution
(CCD) of ΩGW (integrated from z to infinity). The shading
and accompanying tick marks denoting the CCD values on
the top of the plot are calculated based on the Springel and
Hernquist curve (solid green) but are practically identical
for all three models up to z ∼ 1. Evidently, the bulk of the
contribution to the stochastic scalar spectrum comes from
events at distances z < 1.
Astrophysical priors.—To simulate a realistic population

of stars, we sample the ZAMS mass from a power law
following the Salpeter IMF, pðmÞ ∝ m−2.35, and the met-
allicity from a prior uniform in log10 Z ∈ ½−6;−1�. We then
map our randomly sampled stellar parameters onto the
nonuniform discrete set of points corresponding to our
numerical simulations, by means of a Voronoi tessallation
of the MZAMS − logZ plane using the Manhattan dis-
tance, dðui; vjÞ ¼ P

i jui − vij.
The prior just described is separable; meaning that it is

not able to accommodate any correlation between ZAMS
mass and metallicity. Astrophysically, there appears to be
little correlation between stellar metallicity at different
star-forming environments and the IMF [56]. We should,
however, expect some level of correlation between ZAMS
mass and metallicity, and we should also expect that this
relation itself will vary across cosmic history as stars are

being formed in an increasingly metal-rich environment.
The accuracy of the prior and the effect of neglecting this
correlation have been checked by repeating the analysis
using the alternative mass-metallicity relationship of [57]
or [58]; we find that the effect of this redshift dependence
on the final scalar stochastic spectrum is minimal when
compared to the uncertainties due to the sparsity of our
simulations on the parameter space.

2. Energy spectrum from CCSN events

Building a SGWB also requires knowledge of the GW
signals produced by each supernovae source, as a function
of frequency in the observer’s frame.
The energy density in the GW background at any given

frequency f is given by the integral of all plane-wave
contributions from distance sources of GW radiation at that
frequency, in the observer’s frame. The contribution from
each type of event (of given mass and metallicity) comes
from its energy spectrum emitted in GW radiation,

dEGW

dfs
¼ c3ð2πfsÞ2

16πG

Z
hðh̃þÞ2 þ ðh̃×Þ2 þ ðh̃SÞ2idΩ

¼ c3π2f2s
G

hh̃SðfsÞ2i; ð15Þ

where in the last step we have assumed spherical symmetry.
Within a comoving volume dVCðzÞ enclosed within a

shell between cosmological redshifts ½z; zþ dz�, we have
dVCðzÞRðzÞ events of intrinsic radiated energy density
dEGW=dfs, whose aggregated signal is observed at a
luminosity distanceDLðzÞ and redshifted as f ¼ fsð1þ zÞ.
For a population of supernovae evolving throughout

cosmic time, the GW spectrum is then given by

ΩGWðfÞ ¼
Z

dz
1þ z

Z
dθ

4π

15ρc

dRðzÞ
dθ

dVC

dz
dt
dz

f3s jh̃Sðfs;θÞj2;

ð16Þ

where dRðzÞ
dθ is the rate of supernova events per comoving

volume as a density in the mass-metallicity plane and
h̃Sðf; θÞ is the scalar GW signal of an individual event, both
estimated for some stellar parameters θ ¼ fMZAMS; Zg and
at a redshift z. The effects of cosmology enter through the
observed event rate via dVCðzÞ and via the factor dt=dz. For
a spatially flat FLRW geometry (with negligible radiation
content) we have

dVc

dz
¼ 4π

1

HðzÞ
�Z

z

0

1

Hðz0Þdz
0
�

2

;
dt
dz

¼ 1

ð1þ zÞHðzÞ ;

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

q
: ð17Þ

For the cosmological parameters H0, Ωm, and ΩΛ, we use
the Planck 2018 values [59].

FIG. 5. Three models for the core-collapse event rate per unit
redshift, dRdz ¼ RðzÞ dVC

dz , as a function of redshift. The intensity of
the colored shading is proportional to the energy density con-
tribution of the stochastic spectrum down to a given redshift at
some fiducial frequency (here, 25 Hz). The bracket markers
indicate at what distances or redshifts the accumulated energy
density (integrated from the observer outwards) crosses the given
fractions of its total value.
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We first consider our baseline model case where the
parameters of the massive ST theory are μ ¼ 10−14 eV,
α0 ¼ 10−2, and β0 ¼ −20, and the equation of state is
EOS1; to the best of our knowledge, this theory is
compatible with existing astrophysical constraints. In this
case, the GW signal from the supernova does not depend
sensitively on the astrophysical parameters (e.g., stellar
mass and metallicity) of the progenitor star; this can be seen
in the center left panel of Fig. 4. Therefore, we can safely
assume that in their rest frames every supernova produces
an almost identical GW signal, while the superposition

from the population can be estimated by taking the average
of the curves in the center left panel of Fig. 4.
After evaluating the integral of Eq. (16), where, for each

of the four different configurations we keep the model h̃ðfÞ
constant across masses and metallicities (i.e., remove the θ
dependence), we arrive at predictions for the energy density
in the scalar-polarized GW background in our baseline
theory, which we plot in Fig. 6. As expected, the stochastic
GW spectra are practically identical, and the predominant
source of uncertainty comes from modeling the event rate.
We can therefore conclude that for our baseline model, the
CCSN-induced scalar SGWB peaks at ∼60 Hz, with a peak
energy density of

ΩGWðf ¼ 60 HzÞ ≈ 6 × 10−10: ð18Þ

The above universality does not hold for all choices of
theory parameters and EOSs, as can be clearly seen in the
right panels of Fig. 4, especially for the most interesting
cases where for some values of mass and metallicity, the
star undergoes strong scalarization while for others it does
not. In Fig. 7, we show the scalar SGWB spectra for each of
the six ST models considered here, after weighting the
entire set of simulated configurations with the appropriate
astrophysical priors and performing the full parameter-
dependent integral of Eq. (16). The left and right panels
correspond to the models in the left and right columns of
Fig. 4, respectively. We observe that, above the sharp low-
frequency cutoff at ω�, the stochastic spectrum tends to
rise slowly until ∼100 Hz and rapidly falls off beyond that
range. An exception with more erratic behavior is the case
of ðβ ¼ −20;EOSaÞ, with a much weaker spectrum. This is
to be expected since none of the simulated configurations in
that theory shows signs of strong scalarization (see Fig. 3).

FIG. 6. Energy density spectrum for the SGWB of the massive
scalar field, produced by an astrophysical population of stellar
core-collapse events. The theory parameters and EOS for our
baseline model shown here are given at the top of the figure. For
each of the four configurations considered (see color legend), we
estimate the spectrum for the three different models of the event
rate. Our model exhibits a sharp feature at ω�, the low-frequency
cutoff of our massive scalar spectrum.

FIG. 7. Energy density spectra of the scalar stochastic background from stellar core collapse, for a selection of massive scalar-tensor
theory parameters and EOSs. The sensitivity curves for HLV in O3, and one year of HLVat design sensitivity, A+, ET, and CE are shown
in gray; the gray shading extends the sensitivity to about two years of operation or, equivalently, a 1σ detection with one year of data (see
text for details). The error bands of the stochastic spectra represent the uncertainty in modeling the astrophysical event rates for CCSNe.
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Among the theories that produce strongly scalarized cores,
we find that ðβ ¼ −20;EOS3Þ gives the strongest stochas-
tic signal, peaking at∼60 Hz, with a peak energy density of

ΩGWðf ¼ 60 HzÞ ≈ 2 × 10−9; ð19Þ

and a slightly lower value at 25 Hz, where the (LIGO)
Hanford, (LIGO) Livingston, Virgo (HLV) network
reaches its best sensitivity. This value is smaller than current
constraints on aGaussian SGWB (see, e.g., Refs. [37,60,61])
but likely detectable with two years of the LIGO-Virgo-
KAGRA network at design sensitivity [62].
In Fig. 7, the sensitivity curves for a network of ground-

based interferometric detectors are plotted, for the detection
of a tensorial power-law spectrum at the 95% credible level
with one year of collected data. The gray regions extend to
the sensitivity of approximately two years of operation of
the same network, again at the 95% credible level (or,
equivalently, a 1σ detection with one year of data). The
corresponding sensitivities for a scalar signal may be
reduced by a factor of a few, depending on the frequency.
The empirical value range for this factor with the current
network of detectors can be seen by comparing the bounds
obtained for scalar-polarized and tensor-polarized SGWBs
with O1, O2, and O3 data [37,60,61,63]. For the theories
studied here, the expected scalar SGWB will be well
probed by the planned next generation of ground-based
detectors, namely, the Einstein Telescope [64] and the
Cosmic Explorer [65], down to Oð10−12Þ in the range of
tens of Hz, or even with a few years of data from LIGO Aþ
at design sensitivity [62,66,67]. A nondetection at that
sensitivity would be strong evidence against the massive ST
modified theory of gravity for a range of parameters that are
compatible with all existing astrophysical constraints. This
result implies that it might be possible within the next
decade to place new constraints on the parameter space of
massive ST gravity using upper limits on the stochastic
background of GWs with scalar polarizations.
We should note that the curves for the next-generation

network of detectors are shown as extrapolations, based on
the ones described above for the HLV network, on which
we perform a rescaling equal to the PSD ratio at each
frequency. These are only indicative order-of-magnitude
projections and not accurate estimates, as the actual power-
law sensitivity curve is estimated as the envelope of the
family of upper bounds for each value of the exponent [63]
(straight lines in a logarithmic plot), and therefore, the
resulting power-law sensitivity curve should always be
convex. Furthermore, the true power-law sensitivity esti-
mate requires exact knowledge of the network geometry, so
the overlap-reduction function (ORF) between detectors in
the network can be calculated (see Refs. [68–71] for the
nontensorial calculations). For instance, the triangular
collocated interferometers in the ET observatory (here
we use the ET-D noise curve [72]) will probe correlations

between their data down to much shorter wavelengths.
Thus, unlike the HLV network for which the ORFs are
quickly damped to zero at frequencies above ∼100 Hz,
the ET configuration will be described by an ORF that is
practically flat across the entire sensitivity band.
Some care should also be taken when comparing our

predicted energy density to these observational constraints.
These constraints are generally derived assuming the
background satisfies Gaussian statistics. For a background
formed from a finite number of discrete sources, this will
not be a good description. We have only calculated the
expected energy density in the background; we have not
considered the extent to which it is Gaussian.

IV. DISCUSSION AND CONCLUSIONS

The core-collapse and spontaneous scalarization proc-
esses in ST gravity are efficient sources of scalar GWs. If
the scalar is massless, then these are burst sources of GWs.
However, for massive scalars, the stretched signals are
continuous sources of GWs. In some regions of the ST
theories’ parameter space where hyperscalarization occurs,
signals can be detected out to cosmological distances where
the supernova rate is high enough to give many overlapping
sources, thereby forming a stochastic GW signal.
Therefore, ST theories can be constrained observationally
using results from the burst, continuous wave, and sto-
chastic GW analyses now being performed by the LIGO
and Virgo collaborations.
In this work, we focus on the SGWB arising from

supernovae. To this end, we have performed a large number
of 1þ 1 dimensional core-collapse simulations, covering a
range of astrophysical parameters and EOSs. For a large
part of the parameter space of these theories, the GWs
display a universal behavior.
With realistic estimates of the event rate and NR-based

models for the energy density spectrum, we have modeled
the stochastic background of scalar GWs fromCCSN events
out to cosmological distances. To this end, we have
generalized the modeling of the propagation of massive
signals in the framework of the stationary phase approxi-
mation to the case of k ¼ 0FLRWcosmological spacetimes.
The estimated values within the LIGO or Virgo sensi-

tivity range are smaller than current constraints; they will be
measurable when the detectors operate at design sensitivity
and for future generation detectors (ALIGO+, Einstein
Telescope, Cosmic Explorer), allowing us to probe the
theory’s parameter space even deeper.
Regardless of whether the scalar SGWB described in this

work is present or not, searches for a stochastic signal may
well return positive results in the not-too-distant future.
A prime example of such a plausible scenario is the detection
of the stochastic background coming from the population of
inspiraling compact binaries, whose frequency and esti-
mated amplitude largely overlap with the strong scalariza-
tion scenarios studied here (see, e.g., Fig. 23 of Ref. [73] for
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predictions using the latest binary population estimates). In
fact, searches with pulsar timing array (PTA) data in the nHz
range are already showing the first weak evidence for the
presence of a stochastic signal with gradually increasing
confidence [74,75]. Interestingly enough, there is little
evidence for compatibility with the Hellings-Downs curve
that defines the angular correlation of a tensorial transverse
signal; a scalar transverse signal seems to be preferred by an
odds ratio of at least 20∶1, if a stochastic signal is at all
present [76–79].
The stochastic GW signal presented here, due to scala-

rization of newly formed neutron stars in CCSN events,
can, in principle, be distinguished from other types of
stochastic backgrounds of astrophysical or cosmological
origin. This can be achieved by examining (i) its pure scalar
polarization content (GR does not permit GWs with scalar
polarization); (ii) its angular distribution across the sky,
which should follow the stellar density distribution at low
redshifts; and (iii) the presence of a sharp spectral feature in
the form of the characteristic low-frequency cutoff. The
frequency of this cutoff gives a direct measurement of the
mass of the scalar field.
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APPENDIX: DETAILS OF THE
WAVE PROPAGATION

In this appendix, we derive in more detail the expressions
(10) for the gravitational wave signal after propagation
across large distances in our cosmological neighborhood.
Our starting point for this calculation is the Klein-Gordon
equation (5) in the time domain for a scalar field on

a spatially flat Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetime given by the line element (3). Fourier
transforming the wave equation according to Eq. (7) gives

ω2σ̃ðω; rÞ þ
Z

∞

−∞
a2H2ð1 − qÞσeiωηdηþ ∂

2
r σ̃ðω; rÞ

¼
Z

∞

−∞
μ2a2σeiωηdη; ðA1Þ

where a, H, and q are functions of conformal time η.
We now assume that at any given radius, the duration of

the signal σ is short compared to the timescale of cosmo-
logical evolution. In that case, the scale factor aðηÞ and its
derivatives do not vary significantly during the passage of
the signal, and we can approximate a,H, and q as constants
in the integrals of Eq. (A1). This leads to the simplified
wave equation (8) with the general solution (9), which we
repeat here for convenience,

σ̃ðω; rÞ ¼ f̃ðωÞeikðr−reÞ þ g̃ðωÞe−ikðr−reÞ

with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ω2�

q
⇒ σðη; rÞ ¼ 1

2π

Z
∞

−∞
f̃ðωÞei½kðr−reÞ−ωη�

þ g̃ðωÞe−i½kðr−reÞþωη�dω:

Introducing the radial variable ϱ ≔ r − re, this solution
consists of the Fourier modes

f̃ðωÞeiðkϱ−ωηÞ; g̃ðωÞe−iðkϱþωηÞ: ðA2Þ

We now have three regimes for the frequency ω,

ω>ω�∶ k∈R; f̃ outgoing; g̃ ingoing;

−ω� <ω<ω�∶ ik∈R; f̃ðωÞeiðkϱ−ωηÞ ∝ e−jkjϱ;

g̃ðωÞe−iðkϱþωηÞ ∝ ejkjϱ;

ω<−ω�∶ k∈R; f̃ ingoing; g̃ outgoing: ðA3Þ

Imposing the requirement that our signal is real and
bounded, we find

for jωj > ω�∶ g̃�ð−ωÞ ¼ f̃ðωÞ;
for jωj < ω�∶ g̃ðωÞ ¼ 0 and f̃�ð−ωÞ ¼ f̃ðωÞ: ðA4Þ

Finally, we assume that the signal does not contain a
standing wave, so f̃ð�ω�Þ ¼ g̃ð�ω�Þ ¼ 0. With these
conditions, the time domain solution becomes

2πσðη; rÞ ¼
Z
Σ
f̃ðωÞeiðkϱ−ωηÞ þ g̃ðωÞe−iðkϱþωηÞdω

þ
Z
Σ̄
f̃ðωÞe−jkjϱe−iωηdω; ðA5Þ
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with the intervals Σ ≔ ð−∞;−ω�Þ ∪ ðω�;∞Þ and
Σ̄ ≔ ð−ω�;ω�Þ. Because of its exponential decay with ϱ,
the second integral becomes negligible at astrophysical
distances, leaving us with the integral over Σ. For its
evaluation, we first restore the integration domain to R by
formally setting f̃ðωÞ ¼ g̃ðωÞ ¼ 0 over ð−ω�;ω�Þ. Second,
we apply the stationary-phase approximation (SPA),
whereby for small ϵ, integrals of the form

IðϵÞ ≔
Z

∞

−∞
AðωÞeiϑðωÞ=ϵdω ðA6Þ

are dominated by frequencies Ω where ϑ0 ¼ 0. This allows
us to Taylor expand

ϑðωÞ ¼ ϑðΩÞ þ ϑ0ðΩÞ|fflffl{zfflffl}
¼0

ðω −ΩÞ þ 1

2
ϑ00ðΩÞðω − ΩÞ2 þ…;

AðωÞ ¼ AðΩÞ þ…; ðA7Þ

so that, using the substitution s ¼ ω −Ω,

IðϵÞ ≈ AðΩÞeiϑðΩÞ=ϵ
Z

∞

−∞
exp

�
iϑ00ðΩÞ
2ϵ

s2
�
ds: ðA8Þ

If our function ϑðωÞ has more than one extremum, we add
up the individual contributions. We next write the time-
domain wave signal (A5) in the form

2πσðt; rÞ ¼
Z

∞

−∞
½f̃ðωÞeiϑðωÞϱ þ g̃ðωÞeiθðωÞϱ�dω;

with ϑðωÞ ¼ k−ω
η

ϱ
; θðωÞ ¼ −k−ω

η

ϱ
;

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −ω2�

q
: ðA9Þ

Comparing with Eq. (A6), we identify ϵ ¼ 1=ϱ and,
introducing the velocity v ≔ ϱ=η, find

ϑ0ðωÞ ¼ 0 ⇒ v ¼
�
dk
dω

�
−1

⇒ ω ¼ signðvÞ ω�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

¼ signðvÞΩ for Ω ¼ ω�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ;

θ0ðωÞ ¼ 0 ⇒ v ¼ −
�
dk
dω

�
−1

⇒ ω ¼ −signðvÞΩ: ðA10Þ

Of course, v is the group velocity �dω=dk, which we thus
identify as a direct consequence of the SPA. Note that for
positive v, we have a contribution through ϑðωÞ at positive
frequencyΩ and through θðωÞ at negative frequency−Ω. The
reverse is true for negative velocity, in agreement with our
earlier interpretation of the in- or outgoing nature of f̃ and g̃.
From now on, we restrict ourselves to positive v, i.e.,

outgoing radiation, which is the scenario relevant for the

GW emission from core-collapse events. The correspond-
ing treatment of ingoing radiation proceeds in complete
analogy, differing only in some sign flips due to the
negative velocity. For v > 0, we distinguish two cases.
For v > 1, there exist no extrema of ϑðωÞ and θðωÞ, so σ
vanishes; unsurprisingly, there is no superluminal radiation.
For v < 1, we have two extrema, ϑ0ðΩÞ ¼ 0 and
θ0ð−ΩÞ ¼ 0, so Eq. (A9) with the SPA (A8) becomes

2πσðη; rÞ ¼ f̃ðΩÞeiϑðΩÞϱIf þ g̃ð−ΩÞeiθð−ΩÞϱIg ðA11Þ
with

If¼
Z

∞

−∞
e
iðω−ΩÞ2

ϵf dω¼
Z

∞

−∞
e
iω2
ϵf dω; ϵf¼

2

ϑ00ðΩÞϱ ;

Ig¼
Z

∞

−∞
e
iðωþΩÞ2

ϵg dω¼
Z

∞

−∞
e
iω2
ϵg dω; ϵg¼

2

θ00ð−ΩÞϱ : ðA12Þ

Using

ϑ00ðΩÞ¼−ω2�
k30

; θ00ð−ΩÞ¼ω2�
k30

; k0≔ kðΩÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2−ω2�

q
;

ðA13Þ
we find ϵf ¼ −ϵg < 0 and, with the Fresnel integral

Z
∞

−∞
eit

2=εdt ¼
ffiffiffiffiffiffiffiffi
πjεj
2

r
½1þ signðεÞ�; ðA14Þ

we obtain

If ¼
ffiffiffiffiffiffiffiffi
πk30
ϱω2�

s
ð1 − iÞ; Ig ¼

ffiffiffiffiffiffiffiffi
πk30
ϱω2�

s
ð1þ iÞ: ðA15Þ

Combining this result with Eq. (A11), using θð−ΩÞ ¼
−ϑðΩÞ, and recalling the conditions (A4), the time domain
signal at the observer becomes

2πσðη; rÞ ¼ 2Re

(
f̃ðΩÞeiϑðΩÞϱ

ffiffiffiffiffiffiffiffi
πk30
ϱω2�

s
ð1 − iÞ

)
: ðA16Þ

Note that the signal is now given exclusively in terms of
positive frequencies since Ω > 0 by definition. Finally, this
expression is converted straightforwardly into the form (10)
by using the relations

ϑðΩÞϱ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − ω2�

q
ϱ −Ωη;

1

π

ffiffiffiffiffiffiffiffi
πk30
ω2�ϱ

s
¼ 1ffiffiffi

π
p ðΩ2 − ω2�Þ3=4

ω�
ffiffiffi
ϱ

p ;

f̃ðΩÞ ¼ σ̃ðΩ; reÞ ¼ jσ̃ðΩ; reÞjei argðσ̃ðΩ;reÞÞ; ðA17Þ
where the last equation holds for a purely outgoing signal
emitted at re.
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