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We discuss the motion of a binary system around a supermassive black hole. Using Fermi-Walker
transport, we construct a local inertial reference frame and set up a Newtonian binary system. Assuming a
circular geodesic observer around a Schwarzschild black hole, we write down the equations of motion of a
binary. Introducing a small acceleration of the observer, we remove the interaction terms between the center
of mass (CM) of a binary and its relative coordinates. The CM follows the observer’s orbit, but its motion
deviates from an exact circular geodesic. We first solve the relative motion of a binary system, and then find
the motion of the CM by the perturbation equations with the small acceleration. We show that von Zeipel-
Lidov-Kozai (vZLK) oscillations appear when a binary is compact and the initial inclination is larger than a
critical angle. In a hard binary system, vZLK oscillations are regular, whereas in a soft binary system,
oscillations are irregular both in period and in amplitude, although stable. We find an orbital flip when the
initial inclination is large. As for the motion of the CM, the radial deviations from a circular orbit become
stable oscillations with very small amplitude.
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I. INTRODUCTION

After the remarkable success of the LIGO-Virgo-
KAGRA Collaboration [1,2], the study of gravitational
wave (GW) emission has received a significant boost. The
analysis of data (obtained through the first three observa-
tional runs) produced over a hundred confident detections
[3,4] from binary black holes (BH), a binary neutron star
(NS), and BH-NS systems, with more to follow in the next
decade. The scientific insights emerging from the detec-
tions have significantly revolutionized our understanding of
the sources. For instance, some notable events revealed
heavier stellar-mass BHs [5], and their origin is still under
discussion. Using the electromagnetic counterpart, we
found that the speed of GWs is very close to the speed
of light as predicted by the general theory of relativity [6].
With the increase in detections, we can probe more
fundamental questions like testing theories of gravity in
strong field regimes, finding the redshift distribution of
BHs and their environment, and so on [7–11].
Unlocking the scientific potential of GWs depends on

our theoretical knowledge. In order to filter the GW signal
from the detector noise, it is necessary to model the
predicted waveform accurately. Current observations are
from isolated binary systems. It is possible, however, that
nature will provide us with more exotic sources. This paper
will examine a three-body system as one of the likely
sources. The environment near supermassive black holes

(SMBHs) in galactic nuclei comprises many stars and
compact objects. A binary system could emerge in these
surroundings, which composes a natural hierarchical triple
system [12–17]. Recent LIGO events suggest the hierar-
chical systems as a possible dynamical formation channel
of the heavy merging binary BHs [18–20].
In a hierarchical triple, the distance between two bodies

(forming an “inner” binary) is much less than the distance
to the third body. In 1910, von Zeipel explored the
dynamics of restricted hierarchical triples, revealing a
remarkable phenomenon [21], and in 1962, Kozai and
Lidov independently rediscovered the same one [22,23]
(known as von Zeipel-Lidov-Kozai [vZLK] resonance)—
when the two orbits are inclined relative to each other, there
is a periodic exchange between orbital eccentricity and
relative inclination in secular timescale [24]. The orbital
eccentricity can reach extreme values leading to large
emissions of GWs [25–27].
There has been extensive work on dynamics of such

systems based on Newtonian or post-Newtonian approxi-
mation [28–35]. Recently we also find many works
focusing on gravitational waves from such systems
[25–27,36–44]. It has been shown that vZLK resonance
leaves an imprint on the waveform and lies in the
detectable range of future space-based detectors like
LISA and DECIGO. Indirect observation of GW from a
triple system is also studied by analyzing the cumulative
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shift of periastron time of a binary pulsar undergoing
vZLK oscillations [45,46]. The presence of a heavier
tertiary has been considered in previous studies [47,48]
using double-averaged equations of motion to investigate
relativistic effects such as de-Sitter and Lens-Thirring
precessions. In particular, de Sitter precession of the inner
orbital plane was modeled via analogy with spin effects.
However, such a term occurs naturally in the derivation
of our approach. An additional study also investigated
3-body PN (3BpN) secular effects in a hierarachical
system with heavy third body using a multiple scale
method [49]. Also, they pointed out that 3BpN effects
affected the evolution of these triples, resulting in a wider
range of eccentricity and inclination.
In this paper, when we discuss on a binary system near

SMBH, we follow another approach, i.e., a binary system is
treated as perturbations of SMBH spacetime. In the case of
a single object in SMBH spacetime, it can be treated as a
test particle. But in the case of a binary system, this is not
the case because the self-gravitational mutual interaction is
much stronger than the gravitational tidal force by SMBH.
In order to analyze such a hierarchical system, we first
prepare a local inertial frame and set up a binary in this
frame. When a binary is tightly bounded but the mutual
gravitational interaction is not so strong, the binary motion
in this frame can be discussed using Newtonian gravita-
tional dynamics.
Using the Fermi normal coordinate system or Fermi-

Walker transport, we can construct a local inertial frame
[50–52]. Using such a technique, there are several
discussions on a tidal force acting on stars near SMBH
[53–56], but only a few works on a binary system have
been discussed [57–59]. In this paper, we analyze such a
system in detail. Assuming an observer is moving along a
circular geodesic around a Schwarzschild SMBH, we
construct a local inertial frame, and set up a binary
system. We then discuss the motion of a binary, showing
the existence of the vZLK oscillations when a binary is
compact and the initial inclination angle is larger than a
critical value.
The paper is organized as follows: We review how to

construct a local inertial proper reference frame by use of
Fermi-Walker transport in Sec. II A. In Sec. II B, we
perform post-Newtonian expansion for a test particle motion
in this frame. In Sec. III, we set up a self-gravitating system
in the proper reference frame and derive the Lagrangian in
the Newtonian limit. In Sec. IV, assuming an observer
moving along a circular geodesic in Schwarzschild black
hole, we derive the equations of motion for a binary system.
We also discuss the interaction terms between the center of
mass (CM) of a binary and its relative coordinates.
Introducing small acceleration of an observer, we remove
the interaction terms, finding the equations of motion for the
CM, which gives small deviations from a circular geodesic.
We then analyze twelve models numerically and show the

properties of binary motions such as the vZLK oscillations,
chaotic features, and orbital flips in Sec. V. We also discuss
motions of the CM of a binary. Concluding remarks follow
in Sec. VI. In the Appendix A, we provide some numerical
and analytic solutions in the coplanar case. We also present
the Lagrange planetary equations of the model and write
down the equations for the orbital parameters of a binary
taking averages over inner and outer binary cycles in
Appendix B. We show that this simplified method recovers
numerical results obtained by direct integration of the
equations of motion in the case of a hard binary. It also
provides the vZLK oscillation timescale and the maximum
and minimum values of eccentricity.
Notation used: Greek letters range from 0 to 3, while

Roman letters run from 1 to 3; hatted indices denote tetrad
components in a proper reference frame rotating along an
observer; bars over symbols correspond to quantities in a
static tetrad frame.

II. PROPER REFERENCE FRAME

A. Proper reference frame of an arbitrary observer in a
curved spacetime

We first discuss how to set up a local inertial frame in
a curved spacetime [50,57,60]. The spacetime metric is
given by

ds̄2 ¼ ḡμνdxμdxν: ð2:1Þ

We then consider an observer, whose orbit is given by a
world line γ described by

xμ ¼ zμðτÞ;

where τ is a proper time of the observer. The 4-velocity is
given by

uμðτÞ≡ dzμ

dτ
:

We now set up an orthonormal tetrad system feμα̂g along
the observer’s world line γ, which is defined by the
conditions such that

eα̂μeβ̂μ ¼ ηα̂ β̂; e0̂
μ ¼ uμ;

where ηα̂ β̂ is a Minkowski spacetime metric.
For a given 4-velocity uμ, this tetrad system is deter-

mined up to three-dimensional rotations. The tetrad eμα̂ is
transported along the observer’s world line γ as

Deî
μ

dτ
¼ −Ωμνeîν;

where
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Ωμν ≡ aμuν − uμaν þ uαωβϵ
αβμν:

Here,

aμ ≡Duμ

dτ
;

and

ωμ ≡ 1

2
uαϵαμρσΩρσ ¼ 1

2
ϵ
ð3Þ

μρσΩρσ;

are the acceleration of the observer and the angular velocity
of a rotating spatial basis vector eμðaÞ, respectively. A

nonrotating tetrad frame for which ωμ ¼ 0 is called the
Fermi-Walker transport. If the orbit is a geodesic (aμ ¼ 0

and ωk̂ ¼ 0), we find
Deμâ
dτ ¼ 0, which is just a parallel

transport.
Next, we construct a local coordinate system (the

observer’s proper reference system) near the world line
γ, which is described as

ðxμ̂Þ ¼ ðcτ; xâÞ;

where the spatial component xâ is measured from the point
at τ on the world line γ along the spatial hypersurface ΣðτÞ
perpendicular to γ.
We find that the metric form of this proper reference

frame up to the second order of xâ is given by

gμ̂ ν̂ ¼ ημ̂ ν̂ þ εμ̂ ν̂ þOðjxk̂j3Þ; ð2:2Þ

where

ε0̂ 0̂ ¼ −
1

c2

�
2ak̂x

k̂ þ ðc2R̄0̂ k̂ 0̂ l̂ −ωĵ k̂ω
ĵ
l̂Þxk̂xl̂ þ

ðak̂xk̂Þ2
c2

�
;

ð2:3Þ

ε0̂ ĵ ¼ −
1

c2

�
cωĵ k̂x

k̂ þ 2

3
c2R̄0̂ k̂ ĵ l̂x

k̂xl̂
�
; ð2:4Þ

εî ĵ ¼ −
1

c2

�
1

3
c2R̄î k̂ ĵ l̂x

k̂xl̂
�
. ð2:5Þ

R̄μ̂ ν̂ ρ̂ σ̂ is the tetrad component of the Riemann curvature of

a background spacetime and ωĵ k̂ ≡ ϵĵ k̂ l̂ω
l̂ [50,57,60].

The acceleration and angular frequency in the proper
reference frame are defined by

aĵ ≡ eĵμ
Duμ

dτ
;

ωĵ ≡ 1

2
ϵ
ð3Þĵ k̂ l̂

el̂μ
Dek̂

μ

dτ
:

For the Fermi-Walker transport, ωk̂ ¼ 0. If it is the
geodesic (aĵ ¼ 0 and ωk̂ ¼ 0), we recover the Fermi
normal coordinates. The tetrad is parallelly transformed
along the world line.

B. Test particle motion in a proper reference frame

First, we consider the motion of a test particle in the
above proper reference frame. The action for a test particle
with mass m in a given spacetime is given by

S ¼ −mc
Z ffiffiffiffiffiffiffiffiffiffi

−ds2
p

:

For a test particle in the proper reference frame, since the
world interval ds2 is given by the metric gμ̂ ν̂, we find the
action for a test particle to be

S ¼
Z

dτL;

where

L≡ −mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðημ̂ ν̂ þ εμ̂ ν̂Þ

dxμ̂

dτ
dxν̂

dτ

r
;

is Lagrangian of the test particle and εμ̂ ν̂ is a small deviation
from the Minkowski spacetime since jεμ̂ ν̂j ≪ 1.
Assuming that the test particle moves slowly in the

proper reference frame, we perform the post-Newtonian
expansion in terms of vĵ=c as follows: First, we expand the
square root term in the Lagrangian as

L ¼ −mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

v2

c2
− ε0̂ 0̂ − 2ε0̂ ĵ

vĵ

c
− εî ĵ

vîvĵ

c2

s

¼ −mc2
�
1 −

v2

2c2
−
ε0̂ 0̂
2

− ε0̂ ĵ
vĵ

c
−
1

2
εî ĵ

vîvĵ

c2

−
1

8

�
v2

c2
þ ε0̂ 0̂ þ 2ε0̂ ĵ

vĵ

c
þ εî ĵ

vîvĵ

c2

�2
þ � � �

�
:

Note that x0̂ ¼ cτ. Inserting Eqs. (2.3), (2.4), and (2.5),
and expanding the above Lagrangian in terms of vĵ=c,
we obtain

L ¼ L0 þ L1=2 þ L1;

where
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L0 ¼
1

2
mv2 −mak̂x

k̂ −
1

2
mωĵ k̂ω

ĵ
l̂x

k̂xl̂ −mωĵ k̂v
ĵxk̂ −

1

2
mc2R̄0̂ k̂ 0̂ l̂x

k̂xl̂;

L1=2 ¼ −
2

3
mc2R̄0̂ k̂ ĵ l̂x

k̂xl̂
vĵ

c
;

L1 ¼ −
m
2

ðak̂xk̂Þ2
c2

−
1

6
mc2R̄î k̂ ĵ l̂x

k̂xl̂
vîvĵ

c2
þ m
8c2

h
v2 − 2ak̂x

k̂ − ωĵ k̂ω
ĵ
l̂
xk̂xl̂ − 2ωĵ k̂x

k̂vĵ − c2R̄0̂ k̂ 0̂ l̂x
k̂xl̂
i
2
;

are Newtonian, 0.5 PN and 1PN Lagrangian, respectively.
In this expansion, we find the 0.5 PN term formally, but

it can be an apparent term which comes from a choice of
an observer’s coordinates. In fact, if we choose an
appropriate observer’s acceleration, which appears as a
0.5 PN term, we can remove the above L1=2. However, if
we have a multiparticle system as we will discuss later,
this adjustment can be used only for one particle or the
center of mass of the system (See Sec. III). Hence, we
keep the L1=2 term and discuss “Newtonian” dynamics
including such a term.

III. SELF-GRAVITATING NEWTONIAN SYSTEM
IN A CURVED SPACETIME

A. Self-gravitating N-body system

Now we discuss self-gravitating N-body system in a
fixed curved background spacetime, which is given by the
metric in Eq. (2.1) [57]. We are interested in the case where
Newtonian dynamics is valid in the observer’s proper
reference frame. The necessary condition is that the typical
scale lN-body of N-body system should satisfy

lN-body ≪ min

�
1

jaĵj ;
1

jωĵj ;lR̄

�
;

where lR̄ is the minimum curvature radius defined by

lR̄ ≡min
h
jR̄μ̂ ν̂ ρ̂ σ̂j−1

2; jR̄μ̂ ν̂ ρ̂ σ̂;α̂j−1
3; jR̄μ̂ ν̂ ρ̂ σ̂;α̂;β̂j−

1
4

i
:

In order to find the metric contributions from N-body
system, we first focus on the motion of the Ith particle,
which is gravitating with the other (N − 1) particles. The
metric contribution from the those (N − 1) particles is
given by

φI
0̂ 0̂

¼ −
2ΦI

c2
;

where ΦI is the Newtonian potential produced by the
(N − 1) particles, which is given by

ΦIðxîÞ ¼ −G
XN
J≠I

mJ

jxî − xîJj
:

We assume that the other components of φI
μ̂ ν̂ vanish

because we are interested in Newtonian dynamics in the
proper reference frame.
We then obtain the metric of the observer’s proper

reference frame for the Ith particle as

gIμ̂ ν̂ ¼ ημ̂ ν̂ þ hIμ̂ ν̂; ð3:1Þ

where

hIμ̂ ν̂ ¼ εμ̂ ν̂ þ φI
μ̂ ν̂: ð3:2Þ

The equation of motion for the Ith particle can be derived
by the variation of the action

SI ¼
Z

dτLI;

where

LI ≡ −mIc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gIμ̂ ν̂

dxμ̂I
dτ

dxν̂I
dτ

s
:

By use of the metric form (3.1), we can expand the above
Lagrangian up to 0.5 PN order as

LI ¼
1

2
mI

�
dxI
dτ

�
2

−mIΦðxIÞ −mIak̂x
k̂
I

−
1

2
mIωĵ k̂ω

ĵ
l̂
xk̂I x

l̂
I −mIωĵ k̂v

ĵ
Ix

k̂
I

−
1

2
mIc2R̄0̂ k̂ 0̂ l̂x

k̂
I x

l̂
I −

2

3
mIc2R̄0̂ k̂ ĵ l̂x

k̂
I x

l̂
I
vĵI
c
:

The total action of N-body system and its Lagrangian are
given by summing up each Lagrangian LI . We finally
obtain

SN-body ¼
Z

dτLN-body;

where
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LN-body ¼
1

2

X
I

mI

�
dxI
dτ

�
2

þ
XN
I

XN
J≠I

GmImJ

2jxîI − xîJj
þ La þ Lω þ LR̄;

with

La ¼ −
XN
I

mIak̂x
k̂
I ;

Lω ¼ −
1

2

XN
I

mI

h
ωĵ k̂ω

ĵ
l̂x

k̂
I x

l̂
I þ 2ωĵ k̂v

ĵ
Ix

k̂
I

i
;

LR̄ ¼ −
1

2

XN
I

mIc2R̄0̂ k̂ 0̂ l̂x
k̂
I x

l̂
I −

2

3

X
I

mIc2R̄0̂ k̂ ĵ l̂x
k̂
I x

l̂
I
vĵI
c
:

Note that La comes from the inertial force of the
accelerated observer, and Lω originates in the rotation of
the observer (the centrifugal force and the Coriolis force).
LR̄ describes the curvature effect of the third body (the
tidal force).

B. Binary system in a curved spacetime

Next, we discuss a binary system in a fixed curved
background. A binary consists of two point particles with
the masses m1 and m2. The Lagrangian up to 0.5 PN order
is given by

Lbinary ¼ LN þ L1=2; ð3:3Þ

where

LN ≡ 1

2

�
m1

�
dx1
dτ

�
2

þm2

�
dx2
dτ

�
2
�
þ Gm1m2

jx1 − x2j
þ La þ Lω þ LR̄; ð3:4Þ

with

La ¼ −
X2
I¼1

mIak̂x
k̂
I ;

Lω ¼ −
X2
I¼1

mI

�
ϵĵ k̂ l̂ω

l̂xk̂I
dxĵI
dτ

−
1

2
ðω2x2I − ðω · xIÞ2Þ

�
;

LR̄ ¼ −
1

2

X2
I¼1

mIR̄0̂ k̂ 0̂ l̂x
k̂
I x

l̂
I ;

and

L1=2 ≡ −
2

3

X2
I¼1

mIc2R̄0̂ k̂ ĵ l̂x
k̂
I x

l̂
I
vĵI
c
: ð3:5Þ

Introducing the center of mass coordinates and the
relative coordinates by

R ¼ m1x1 þm2x2
m1 þm2

;

r ¼ x2 − x1;

we find the Newtonian Lagrangian [Eq. (3.4)] in terms of R
and r as

LN ¼ LCMðR; _RÞ þ Lrelðr; _rÞ; ð3:6Þ

where

LCMðR; _RÞ ¼
1

2
ðm1 þm2Þ _R2 þ LCM-aðR; _RÞ

þ LCM-ωðR; _RÞ þ LCM-R̄ðR; _RÞ;

with

LCM-a ¼−ðm1þm2Þak̂xk̂I ;

LCM-ω ¼−ðm1þm2Þ
�
ϵĵ k̂ l̂ω

l̂Rk̂ _Rĵ−
1

2
ðω2R2− ðω ·RÞ2Þ

�
;

LCM-R̄ ¼−
1

2
ðm1þm2ÞR̄0̂ k̂ 0̂ l̂R

k̂Rl̂;

and

Lrelðr; _rÞ ¼
1

2
μ_r2 þ Gm1m2

r
þ Lrel-ωðr; _rÞ þ Lrel-R̄ðr; _rÞ;

with

Lrel-ω ¼ −μ
�
ϵĵ k̂ l̂ω

l̂rk̂ _rĵ −
1

2
ðω2r2 − ðω · rÞ2Þ

�
;

Lrel-R̄ ¼ −
1

2
μR̄0̂ k̂ 0̂ l̂r

k̂rl̂:

Here, μ ¼ m1m2=ðm1 þm2Þ is the reduced mass. When
we consider only LN, we can separate the variables R and r.
In particular, when the observer follows the geodesic
(a ¼ 0 and ω ¼ 0), the orbit of R ¼ 0 is a solution of
the equation for R. It means that the center of mass (CM)
follows the observer’s geodesic. We have only the equation
for the relative coordinate r. However, when we include the
0.5 PN term, it is not the case. The 0.5 PN Lagrangian L1=2

is rewritten by use of R and r as

L1=2 ¼ L1=2-CMðR; _RÞ þ L1=2-relðr; _rÞ þ L1=2-intðR; _R;r; _rÞ;
ð3:7Þ

where
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L1=2-CMðR; _RÞ ¼ −
2

3
ðm1þm2ÞR0̂ k̂ ĵ l̂R

k̂Rl̂ _Rĵ;

L1=2-relðr; _rÞ ¼ −
2

3
μ
ðm1 −m2Þ
ðm1þm2Þ

R0̂ k̂ ĵ l̂r
k̂rl̂ _rĵ;

L1=2-intðR; _R;r; _rÞ ¼ −
2

3
μR0̂ k̂ ĵ l̂

×
h
rk̂rl̂ _Rĵ þðRk̂rl̂ l̂ þ rk̂Rl̂Þ_rĵ

i
: ð3:8Þ

Due to the interaction term L1=2-int, the orbit of R ¼ 0 is
no longer a solution even if the acceleration vanishes. The
motion of the CM [RðτÞ] couples with the relative motion
ðrðτÞÞ. As a result, not only the orbit of a binary but also the
motion of the CM will become complicated even if the
observer’s orbit is a geodesic.
However, if we introduce an appropriate acceleration a in

0.5 PN order to cancel the interaction terms, R ¼ 0 will
become a solution, i.e., the CM can follow the observer’s
motion as follows: Integrating by parts the interaction term,
we find

L1=2-intðR; _R;r; _rÞ ¼ −
2

3
μR̄0̂ k̂ ĵ l̂

h
_Rĵrk̂rl̂ þ _rĵðRk̂rl̂ þ rk̂Rl̂Þ

i

≈ 2μ

�
1

3

dR̄0̂ k̂ ĵ l̂

dτ
rk̂rl̂ þ R̄0̂ k̂ ĵ l̂r

k̂ _rl̂
�
Rĵ

ðintegration by partÞ;
where the time derivative of the curvature is evaluated
along the observer’s orbit.
If we define the acceleration by

aĵ ¼
2μ

m1 þm2

�
1

3

dR̄0̂ k̂ ĵ l̂

dτ
rk̂rl̂ þ R̄0̂ k̂ ĵ l̂r

k̂ _rl̂
�
;

two terms L1=2-int and LCM-a cancel each other. As a result,
the Lagrangians for R and r are decoupled, and R ¼ 0
becomes an exact solution of the equation for R, which is
derived from the Lagrangian (LCM þ L1=2-CM). The CM
follows the observer’s orbit and therefore, we obtain the
decoupled equation for the relative coordinate r.
In order to obtain the proper observer’s orbit, which is

not a geodesic but close to the geodesic1, we have to solve
the equation of motion including small acceleration such
that

DuμCM
dτ

¼ aμ ¼ eμĵaĵ

¼ 2μ

m1þm2

eμĵ
�
1

3

dR̄0̂ k̂ ĵ l̂

dτ
rk̂rl̂þ R̄0̂ k̂ ĵ l̂r

k̂ _rl̂
�
: ð3:9Þ

Note that the second term in the acceleration corresponds
to the gravitomagnetic force given in [58].

As a result, we first solve the equation for the relative
coordinate r, which is obtained only by the Lagrangian
LrelðrÞ þ L1=2-relðrÞ. Note that when m1 ¼ m2, we have
only Newtonian Lagrangian Lrel because L1=2-rel ¼ 0 van-
ishes. After obtaining the solution of rðτÞ, we find the
motion for the CM (or the observer) in the background
spacetime by solving Eq. (3.9). Using the relative motion
rðτÞ with the solution of the CM motion [xμCMðτÞ], we will
obtain a binary motion in a given curved background
spacetime [xμ1ðτÞ; xμ2ðτÞ].

IV. A BINARY SYSTEM IN A SCHWARZSCHILD
SPACETIME

We consider a spherically symmetric supermassive
black hole. The background spacetime is given by the
Schwarzschild solution as

ds̄2 ¼ −fdt2 þ 1

f
dr2 þ r2dΩ2; ð4:1Þ

where

f ¼ 1 −
rg
r
: ð4:2Þ

The gravitational radius rg is given by

rg ≡ 2GM
c2

;

where M is a gravitational mass of the supermassive black
hole. In what follows, we set G ¼ 1 and c ¼ 1 for brevity
unless specified otherwise.

A. Proper reference frame

We first discuss Newtonian dynamics for which
Lagrangian LN is given by Eq. (3.4). In this case, the
CM of a binary system follows a geodesic observer. We
consider an observer, which moves along a circular geodesic
with the radius r ¼ r0. The orbit is assumed to be on the
equatorial plane without loss of generality. We introduce a
rotating tetrad system along this geodesic such that

e0̂
μ ≡ uμ ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

p
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p ; 0; 0;w0

�
;

e1̂
μ ¼ ð0;

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
; 0; 0Þ;

e2̂
μ ¼

�
r0w0ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p ; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

p
r0

�
;

e3̂
μ ¼

�
0; 0;−

1

r0
; 0
�
;

where the angular frequency w0 is defined by
1When initial deviation is small, this is confirmed by pertur-

bation analysis as shown later.
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w0 ¼ u3 ¼ dφ
dτ

¼ 1

r0ðr0=M − 3Þ1=2 : ð4:3Þ

We then calculate the angular velocity ωĵ of this rotating
tetrad system as

ωĵ ¼ 1

2
ϵ
ð3Þĵ k̂ l̂

el̂μ
Dek̂

μ

dτ
¼ wRδ

ĵ
3̂;

where

wR ¼ 1

r0ðr0=MÞ1=2 ; ð4:4Þ

is the angular frequency of the rotating tetrad frame (See
Fig. 1). Note that this angular frequency is different from
the observer’s angular frequency w0. The difference
between two angular frequencies w0 and wR, i.e.,

wdS ≡w0 −wR ð4:5Þ

describes the rotation of a nonrotating inertial frame
moving along a circular orbit, which may cause de Sitter
precession [61]. In fact, when r0 ≫ rg, we find

wdS ≈
3M3=2

2r5=20

;

which is the same as de Sitter frequency ΩðGRÞ
LinLout

given in
[48] in the limit of M ≫ m1; m2.
Next, we calculate the Riemann curvature in the above

tetrad system. In the static tetrad system feᾱμg with

e0̄0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
; er̄r ¼

1ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p ; eθ̄θ ¼ r0; eϕ̄ϕ ¼ r0;

the nontrivial components of the Riemann curvature of the
Schwarzschild spacetime are given by

R̄0̄ r̄ 0̄ r̄ ¼ −
rg
r30

; R̄0̄ θ̄ 0̄ θ̄ ¼ R̄0̄ ϕ̄ 0̄ ϕ̄ ¼ rg
2r30

;

R̄θ̄ ϕ̄ θ̄ ϕ̄ ¼ rg
r30

; R̄r̄ θ̄ r̄ θ̄ ¼ Rr̄ ϕ̄ r̄ ϕ̄ ¼ −
rg
2r30

:

We then introduce the Descartes coordinates ðx̄; ȳ; z̄Þ
such that x̄-direction is the same as the r-direction, but the ȳ
and z̄-directions are ϕ and −θ-directions, respectively, as
shown in Fig. 1. Since the tetrad system in this coordinate is
given by

e0̄0¼
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
; ex̄r ¼

1ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p ; eȳϕ ¼ r0; ez̄θ ¼−r0;

we find the curvature components in this tetrad system as

R̄0̄ x̄ 0̄ x̄ ¼ −
rg
r30

; R̄0̄ ȳ 0̄ ȳ ¼ R̄0̄ z̄ 0̄ z̄ ¼
rg
2r30

;

R̄ȳ z̄ ȳ z̄ ¼
rg
r30

; Rx̄ ȳ x̄ ȳ ¼ R̄z̄ x̄ z̄ x̄ ¼ −
rg
2r30

:

The transformation matrix between the observer’s tetrad
and static tetrad (x̄; ȳ; z̄) is given by

Λ0
ᾱ ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

q
; 0; r0w0; 0

�
;

Λ1̂
ᾱ ¼ ð0; 1; 0; 0Þ;

Λ2̂
ᾱ ¼

�
r0w0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

q
; 0

�
;

Λ3̂
ᾱ ¼ ð0; 0; 0; 1Þ:

It is just the Lorentz boost with velocity

v ¼ r0w0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

p ;

in 0-y plane.
FIG. 1. A local inertial tetrad system fex̂; eŷ; eẑg rotating with
angular frequency wR along a circular orbit.
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The components in the observer’s proper reference frame
are given by

R̄0̂ x̂ 0̂ x̂ ¼ −R̄ŷ ẑ ŷ ẑ ¼ −
�
1þ 3

2
r20w

2
0

�
rg
r30

;

R̄0̂ ŷ 0̂ ŷ ¼ −R̄ẑ x̂ ẑ x̂ ¼
1

2

rg
r30

;

R̄0̂ ẑ 0̂ ẑ ¼ −R̄x̂ ŷ x̂ ŷ ¼
�
1þ 3r20w

2
0

2

�
rg
r30

;

R̄0̂ x̂ ŷ x̂ ¼ −R̄0̂ ẑ ŷ ẑ ¼ −
3

2
ϵ1r0w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

q rg
r30

:

B. Equations of motion of a binary

Since the CM of a binary follows the observer’s
circular geodesic (R ¼ 0), we have to solve only the
equations of motion for the relative coordinate r. Using
x ¼ r1̂; y ¼ r2̂; z ¼ r3̂, the relative motion of a binary is
given by the Lagrangian

Lrelðr; _rÞ ¼
1

2
μ_r2 þGm1m2

r
þ Lrel-wðr; _rÞ þ Lrel-R̄ðr; _rÞ;

ð4:6Þ

with

Lrel-w ¼ −μ
�
w0ðx_y − y_xÞ −w2

0

2
ðx2 þ y2Þ

�
;

Lrel-R̄ ¼ −
μ

2
ðR̄0̂ x̂ 0̂ x̂x

2 þ R̄0̂ ŷ 0̂ ŷy
2 þ R̄0̂ ẑ 0̂ ẑz

2Þ

¼ −
μrg
4r30

h
y2 − 2x2 þ z2 þ 3r20w

2
0ð−x2 þ z2Þ

i
:

The first and second terms in rel-w describe the Coriolis
force and the centrifugal force, respectively. The first half
terms in Lrel-R̄ are the same as those in Newtonian
hierarchical triple system under quadrupole approximation,
while the last half terms are relativistic corrections. Note
that in the present approach (approximation up to the
second order of xâ), we cannot go beyond quadrupole
approximation.
In order to analyze the relative motion of a binary, it may

be better to go to a nonrotating initial reference frame.
Since the angular frequency of a rotating tetrad frame iswR,
the position ðx; y; zÞ in the rotating frame can be replaced
by the position ðx; y; zÞ in a nonrotating Descartes’
coordinate system by use of the following transformation:

x ¼ x cos wRτ − y sin wRτ;

y ¼ x sin wRτ þ y cos wRτ;

z ¼ z:

The Lagrangian Lrel in a nonrotating proper reference
frame is given by

Lrel ¼
1

2
μ

�
dr
dτ

�
2

þ Gm1m2

r
þ Lrel−dSðr; _rÞ þ Lrel-R̄ðr; τÞ;

ð4:7Þ

where

Lrel-dSðr; _rÞ ¼ μwdSð_xy − _yxÞ þ μ

2
w2

dSðx2 þ y2Þ;

Lrel-R̄ðr; τÞ ¼ −
μrg
4r30

h
x2 þ y2 þ z2 − 3ð1þ r20w

2
0Þ

ðx coswRτ − y sinwRτÞ2 þ 3r20w
2
0z

2
i
:

Since the momentum is defined by

px ≡ ∂L
∂_x

¼ μ_xþ μwdSy;

py ≡ ∂L
∂_y

¼ μ_y − μwdSx;

pz ≡ ∂L
∂_z

¼ μ_z;

we obtain the Hamiltonian as

Hrel ¼ H0 þH1; ð4:8Þ

where

H0 ¼
1

2μ
p2 −

Gm1m2

r
;

H1 ¼ H1-dS þH1-R̄;

with

H1-dS ¼ wdSðpyx − pxyÞ;
H1−R̄ ¼ μrg

4r30

h
x2 þ y2 þ z2 − 3ð1þ r20w

2
0Þ

ðx coswRτ − y sinwRτÞ2 þ 3r20w
2
0z

2
i
:

The termH1-dS gives the so-called de Sitter precession as
follows. Let us consider the model with H0 ¼ H0 þH1-dS.
The Hamilton equations are given as
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_x ¼ ∂H0

∂px
¼ px

μ
−wdSy;

_y ¼ ∂H0

∂py
¼ py

μ
þwdSx;

_z ¼ ∂H0

∂pz
¼ pz

μ
;

and

_px ¼ −
∂H0

∂x
¼ −

Gm1m2x
r3

−wdSpy;

_py ¼ −
∂H0

∂y
¼ −

Gm1m2y
r3

þwdSpx;

_pz ¼ −
∂H0

∂z
¼ −

Gm1m2z
r3

:

We then calculate the time evolution of the angular
momentum L ¼ ðLx; Ly; LzÞ. Using the equations of
motion, we find

_Lx ¼
d
dτ

ðypz − zpyÞ ¼ _ypz þ y _pz − _zpy − z _py ¼ −wdSLy;

_Ly ¼
d
dτ

ðzpx − xpzÞ ¼ _zpx þ z _px − _xpz − x _pz ¼ wdSLx;

_Lz ¼
d
dτ

ðxpy − ypxÞ ¼ _xpy þ x _py − _ypx − y _px ¼ 0:

From these equations, we find that the z-component of
the angular momentum is conserved, and ðLx; LyÞ rotates
around the z-axis with the constant angular frequency wdS
which is just the de Sitter precession. The full equations are
given as

_x ¼ ∂H
∂px

¼ px
μ
−wdSy; ð4:9Þ

_y ¼ ∂H
∂py

¼ py
μ
þwdSx; ð4:10Þ

_z ¼ ∂H
∂pz

¼ pz
μ
; ð4:11Þ

and

_px ¼ −
∂H
∂x

¼ −
Gm1m2

r3
x −wdSpy −

μrg
2r30

fx − 3ð1þ r20w
2
0Þðx coswRτ − y sinwRτÞ coswRτg; ð4:12Þ

_py ¼ −
∂H
∂y

¼ −
Gm1m2

r3
yþwdSpx −

μrg
2r30

fyþ 3ð1þ r20w
2
0Þðx coswRτ − y sinwRτÞ sinwRτg; ð4:13Þ

_pz ¼ −
∂H
∂z

¼ −
Gm1m2

r3
z −

μrg
2r30

ð1þ 3r20w
2
0Þz: ð4:14Þ

C. Motion with 0.5 PN correction term

Now we consider 0.5 PN terms. As discussed in Sec. III, we can assume R ¼ 0 by introduction of the acceleration given
by Eq. (3.9). We first solve the relative coordinates r, and then the motion of the observer (or the CM).

1. Equations of motion for relative coordinates

The equation of motion for relative coordinates r of a binary is now given by

L̃relðr; _rÞ ¼ Lrelðr; _rÞ þ L1=2-relðr; _rÞ;

where Lrel is given by Eq. (4.6), while

L1=2-relðr; _rÞ ¼ −μ
2ðm1 −m2Þ
3ðm1 þm2Þ

ðR̄0̂ x̂ ŷ x̂xðx_y − y_xÞ þ R̄0̂ ẑ ŷ ẑzðz_y − y_zÞÞ

¼ −μ
rg
r30

m1 −m2

m1 þm2

r0w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

q
ð−xðx_y − y_xÞ þ zðz_y − y_zÞÞ:
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In nonrotating Fermi-Walker coordinates, we find Lrel is given by Eq. (4.7), while

L1=2-relðr; _rÞ ¼ μ
rg
r30

m1 −m2

m1 þm2

r0w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

q n
coswRτ½xðx_y − y_xÞ þ zðy_z − z_yÞ þwRxðx2 þ y2 − z2Þ�

− sinwRτ½yðx_y − y_xÞ þ zðz_x − x_zÞ þwRyðx2 þ y2 − z2Þ�
o
:

The momentum is obtained from the Lagrangian L̃relðr; _rÞ as

px ¼ μ_xþ μwdSyþ μ
rg
r30

m1 −m2

m1 þm2

r0w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

q
ð−xy coswRτ þ ðy2 − z2Þ sinwRτÞ;

py ¼ μ_y − μwdSxþ μ
rg
r30

m1 −m2

m1 þm2

r0w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

q
ð−xy sinwRτ þ ðx2 − z2Þ coswRτÞ;

pz ¼ μ_zþ μ
rg
r30

m1 −m2

m1 þm2

r0w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

q
zðy coswRτ þ x sinwRτÞ:

The Hamiltonian is given by

H̃relðr;pÞ ¼ Hrelðr;pÞ þH1=2-relðr;pÞ;
where Hrelðr;pÞ is given by Eq. (4.8), while

H1=2-relðr;pÞ ¼ −
1

2
μ

�
rg
r30

�
2 ðm1 −m2Þ2
ðm1 þm2Þ2

r20w
2
0ð1þ r20w

2
0Þ
h
ð−xy coswRτ þ ðy2 − z2Þ sinwRτÞ2

þ ð−xy sinwRτ þ ðx2 − z2Þ coswRτÞ2 þ z2ðy coswRτ þ x sinwRτÞ2
i
:

This Hamiltonian is very complicated, but it should be ignored because it is beyond quadrupole approximation, although
momentum is modified. For an equal mass binary (m1 ¼ m2), the 0.5 PN correction term vanishes and the momentum is
also the same as the Newtonian one. As a result, the Newtonian solution is also a solution.

2. Motion of the CM of a binary and its stability

In order to study stability of the CM of a binary system, we analyze Eq. (3.9). Since R is measured by the circular
observer at r ¼ r0, we can split the 4-velocity uμ as

uμ ¼ uμð0Þ þ uμð1Þ;

where

uμð0Þ ¼
dxμð0Þ
dτ

¼ ðu0ð0Þ; 0; 0; u3ð0ÞÞ ¼
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

fðr0Þ

s
; 0; 0;w0

1
A;

uμð1Þ ¼
dxμð1Þ
dτ

;

with

xμð0Þ ¼
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

fðr0Þ

s
τ; r0;

π

2
;w0τ

1
A;

xμð1Þ ≡ eμl̂R
l̂:
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The acceleration aμ is given by the motion of a binary xμ̂ðτÞ in a rotating frame as

aμ ¼ −
3μ

m1 þm2

w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

q rg
r20

" 
δμ0

r0w0ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p þ δμ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

p
r0

!
ð_xx − _zzÞ − δμ1

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
_yx − δμ2

1

r0
_yz

#
:

Here we assume that the deviation from a circular orbit is small, i.e., xμð1Þ and uμð1Þ are small perturbations. Ignoring
nonlinear deviation terms in the equations of motion Duμ

dτ ¼ aμ, because the circular orbit xμð0ÞðτÞ is a geodesic, we obtain a

linear differential equation as

duμð1Þ
dτ

þ 2Γμ
ρσðr0Þuρð0Þuσð1Þ þ

∂Γμ
ρσ

∂xα
ðr0Þxαð1Þuρð0Þuσð0Þ ¼ aμ;

where aμ acts as an external force. Describing the deviation as

xμð1Þ ¼ ðtð1Þ; rð1Þ; θð1Þ;φð1ÞÞ;

we find

d2tð1Þ
dτ2

þ rg
r20fðr0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2

fðr0Þ

s
drð1Þ
dτ

¼ a0 ¼ −
3μ

m1 þm2

w2
0rg
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

fðr0Þ

s
ð_xx − _zzÞ; ð4:15Þ

d2rð1Þ
dτ2

−
3rg
2r30

ð1þ r20w
2
0Þrð1Þ þ

rg
r20

fðr0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2

fðr0Þ

s
dtð1Þ
dτ

− 2r0w0fðr0Þ
dφð1Þ
dτ

¼ a1 ¼ 3μ

m1 þm2

w0rg
r20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðr0Þð1þ r20w

2
0Þ

q
_yx; ð4:16Þ

d2θð1Þ
dτ2

þw2
0θð1Þ ¼ a2 ¼ 3μ

m1 þm2

w0rg
r30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

q
_yz; ð4:17Þ

d2φð1Þ
dτ2

þ 2
w0

r0

drð1Þ
dτ

¼ a3 ¼ −
3μ

m1 þm2

w0rg
r30

ð1þ r20w
2
0Þð_xx − _zzÞ: ð4:18Þ

Integrating Eqs. (4.15) and (4.18), we obtain

dtð1Þ
dτ

¼ −
rg

r20fðr0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

fðr0Þ

s
rð1Þ −

3μ

2ðm1 þm2Þ
w2

0rg
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r20w

2
0

fðr0Þ

s
ðx2 − z2Þ; ð4:19Þ

dφð1Þ
dτ

¼ −2
w0

r0
rð1Þ −

3μ

2ðm1 þm2Þ
w0rg
r30

ð1þ r20w
2
0Þðx2 − z2Þ; ð4:20Þ

where we set the integration constants at zero. Plugging Eqs. (4.19) and (4.20) into Eq. (4.16) with Eq. (4.3), we obtain the
perturbation equation for the radial coordinates rð1Þ as

d2rð1Þ
dτ2

þ k2rð1Þ þ Aðx2 − z2Þ þ B_yx ¼ 0; ð4:21Þ

where

k2 ¼ rgðr0 − 3rgÞ
r30ð2r0 − 3rgÞ

; ð4:22Þ
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A ¼ 3μ

m1 þm2

r2gðr0 − rgÞ
r50ð2r0 − 3rgÞ

ð4:23Þ

B ¼ −
3μ

m1 þm2

ffiffiffiffiffiffiffi
2r3g
r70

s
ðr0 − rgÞ
ð2r0 − 3rgÞ

: ð4:24Þ

We find that k2 > 0 when r0 > 3rg, while A > 0 and
B < 0 when r0 > 3rg=2. The condition for k2 > 0 is
consistent with the fact that the radius of the innermost
stable circular orbit (ISCO) is 3rg.
If the binary orbit is bounded [xðτÞ, yðτÞ, and zðτÞ are

finite], the orbit of the center of mass is also bounded
because k2 > 0. We expect that when r0 > 3rg (ISCO
radius), a binary system near SMBH is linearly stable
unless a binary is broken.

V. NUMERICAL ANALYSIS

A. Validity and stability

Before showing our numerical results, we discuss the
validity of the present approach. The minimum curvature
radius at the radius r0 is evaluated as

lR̄ ¼ min
h
jR̄μ̂ ν̂ ρ̂ σ̂j−1

2; jR̄μ̂ ν̂ ρ̂ σ̂;α̂j−1
3; jR̄μ̂ ν̂ ρ̂ σ̂;α̂;β̂j−

1
4

i

∼min

��
rg
r30

�
−1
2

;

�
rg
r40

�
−1
3

;

�
rg
r50

�
−1
4

�

∼ r0

�
r0
rg

�
1=4

≥ 3
ffiffiffi
3

4
p

rg ∼ 8 AU

�
M

108M⊙

�
:

The equality is held at the ISCO radius r0 ¼ 3rg.
When we put a binary at r ¼ r0, the binary size lbinary

should satisfy

lbinary ≪ lR̄:

As for stability of a binary, the mutual gravitational
interaction between a binary should be much larger than the
tidal force by a third body. The condition is given by

Gm1m2

r2
≫

μrg
r30

r;

which gives the constraint on a binary size lbinary as

lbinary ≪
�
m1 þm2

2M

�1
3

r0

≈ 4.64 × 10−3
�ðm1 þm2Þ

20M⊙

�1
3

�
M

108M⊙

�
−1
3

r0: ð5:1Þ

When we are interested in the orbit near the ISCO radius
r0 ¼ 3rg, we find

lbinary ≪ 3 × 10−2 AU

�ðm1 þm2Þ
20M⊙

�1
3

�
M

108M⊙

�2
3

:

We also have another criterion for stability. In order to
avoid a chaotic energy exchange instability, we may have to
impose the condition for the ratio of the circular radius r0 to
the binary size lbinary such that

r0
lbinary

≳ Cchaotic

�
M

m1 þm2

�
p

when M ≫ m1; m2. Two parameters in this inequality are
evaluated by N-body simulations of two groups [62,63] as

Cchaotic ∼ 2.8 and p ¼ 2

5
ðcriterion 1 by ½62�Þ

Cchaotic ∼ 5.2f
1
3 and p ¼ 1

3
ðcriterion 2 by ½63�Þ:

Although f is a complicated function of inner eccen-
tricity and inclination, it takes the value in the range of 0 to
2.25, but mostly between 0.6 and 1.0.
We should note that the above stability condition is only

obtained for stellar masses triples. Therefore, directN-body
integration is a reliable test of stability in such a setting.
Meanwhile, the relativistic effect in a binary becomes

important when

lbinary ≤
Gðm1 þm2Þ

c2

≈ 2 × 10−7 AU

�ðm1 þm2Þ
20M⊙

�
:

Hence, for a binary with the size of

2 × 10−7 AU

�ðm1 þm2Þ
20M⊙

�
≪ lbinary

≪ 3 × 10−2 AU
�ðm1 þm2Þ

20M⊙

�1
3

�
M

108M⊙

�2
3

;

we may apply the present Newtonian approach to the
ISCO radius.

B. Normalization and initial data

Here we show some numerical examples for an equal-
mass binary (m1 ¼ m2). Hence, we have to solve
Eqs. (4.9)–(4.14). In order to solve these basic equations,
we shall introduce dimensionless variables as follows: The
length scale of a binary is normalized by an initial semi-
major axis a0, while the timescale is normalized by an
initial binary mean motion n0, which is defined by
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n0 ≡
�
Gðm1 þm2Þ

a30

�
1=2

:

Note that the initial binary period is given by
Pin ¼ 2π=n0. Introducing

τ̃ ¼ n0τ;

x̃ ¼ x
a0

; ỹ ¼ y
a0

; z̃ ¼ z
a0

; r̃ ¼ r
a0

;

p̃x ¼
px

μa0n0
; p̃y ¼

py

μa0n0
; p̃z ¼

pz

μa0n0
;

we find the dimensionless equations of motion as

dx̃
dτ̃

¼ p̃x − w̃dSỹ; ð5:2Þ

dỹ
dτ̃

¼ p̃y þ w̃dSx̃; ð5:3Þ

dz̃
dτ̃

¼ p̃z; ð5:4Þ

and

dp̃x
dτ̃

¼ −
x̃
r̃3
− w̃dSp̃y −

rg
2r0

ϵ2fx̃ − 3ð1þ r20w
2
0Þ

× ðx̃ cos w̃Rτ̃ − ỹ sin w̃Rτ̃Þ cos w̃Rτ̃g; ð5:5Þ

dp̃y
dτ̃

¼ −
ỹ
r̃3
þ w̃dSp̃x −

rg
2r0

ϵ2fỹþ 3ð1þ r20w
2
0Þ

× ðx̃ cos w̃Rτ̃ − ỹ sin w̃Rτ̃Þ sin w̃Rτ̃g; ð5:6Þ

dp̃z
dτ̃

¼ −
z̃
r̃3
−

rg
2r0

ϵ2ð1þ 3r20w
2
0Þz̃; ð5:7Þ

where

w̃dS ≡wdS

n0
; w̃R ≡wR

n0
;

r20w
2
0 ¼

�
2r0
rg

− 3

�
−1
;

and

ϵ2 ≡ 1

r20n
2
0

¼
�
a0
r0

�
3
�
r0
rg

��
2M

m1 þm2

�
: ð5:8Þ

This ϵ corresponds to the initial semimajor axis a0 as

a0 ¼ ϵ
2
3r0

�
m1 þm2

2M

�
1=3
�
r0
rg

�
−1=3

:

Using ϵ, we find

w̃dS ¼ ϵ

��
rg

2r0 − 3rg

�1
2

−
�
rg
2r0

�1
2

�
;

w̃R ¼ ϵ

�
rg
2r0

�1
2

:

As we discuss in Sec. VA, the necessary conditions for a
stable “Newtonian” binary is given by the length scale of a
binary. If we set lbinary ∼ a0, we find the condition for ϵ as

m1 þm2

2M

�
r0
rg

�
−1

≪ ϵ≲
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r0
C3
chaoticrg

s �
m1 þm2

M

�ð3p−1Þ=2
:

When a binary is located near the ISCO radius, this
condition is

Oð10−7Þ ≪ ϵ ≤ ϵchaotic;

where ϵchaotic is evaluated as ϵchaotic ∼ 0.11 for the criterion
1 by [62] when m1 ¼ m2 ¼ 10M⊙;M ¼ 108M⊙, or
ϵchaotic ∼ 0.21f−1=2 with f ∼ 0.6–1.0 for the criterion 2
by [63].
In order to solve Eqs. (4.9)–(4.14), we first give masses

m1; m2;M the radius of the circular orbit r0, and ϵ, which
corresponds to the initial semimajor axis of a binary a0. We
then provide the initial data of a binary, i.e., x̃ð0Þ; ỹð0Þ; z̃ð0Þ,
and p̃xð0Þ; p̃yð0Þ; p̃zð0Þ.
Since the motion of a binary can be approximated by an

elliptic orbit, we shall fix the initial values by assuming an
elliptic orbit given by

r ¼ að1 − e2Þ
1þ e cos f

;

where a is a semimajor axis, e is the eccentricity, and f is
true anomaly. Since the orbital plane is not, in general,
z ¼ 0, we have to introduce three angular variables: the
argument of periapsis ω, the ascending node Ω, and the
inclination angle I.
We have the relations between the position r ¼ ðx; y; zÞ

of the component of a binary and the orbital parameters
ðω;Ω; a; e; I; fÞ as
0
B@

x

y

z

1
CA ¼ r

0
B@

cosΩ cosðωþ fÞ − sinΩ sinðωþ fÞ cos I
sinΩ cosðωþ fÞ þ cosΩ sinðωþ fÞ cos I

sinðωþ fÞ sin I

1
CA:

ð5:9Þ

The initial position of a binary can be fixed by the orbital
parameters. As for the initial velocity, we have the relation
between the mean anomaly l and the true anomaly f as
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dl ¼ ð1 − e2Þ32ð1þ e cos fÞ−2df: ð5:10Þ

In Newtonian dynamics, l ¼ nðτ − τ0Þ, where n is the
mean motion. Hence, in this approximation, the time
derivative (d=dτ) is given by the derivative with respect
to the true anomaly (d=df).
Assuming f ¼ 0 at τ ¼ 0, we find

x̃ð0Þ ¼ ð1 − e0Þ½cosΩ0 cosω0 − sinΩ0 sinω0 cos I0�;
ỹð0Þ ¼ ð1 − e0Þ½sinΩ0 cosω0 þ cosΩ0 sinω0 cos I0�;
z̃ð0Þ ¼ ð1 − e0Þ sinω0 sin I0;

and

dx̃
dτ̃

ð0Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e0
1 − e0

s
½cosΩ0 sinω0 þ sinΩ0 cosω0 cos I0�;

dỹ
dτ̃

ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e0
1 − e0

s
½− sinΩ0 sinω0 þ cosΩ0 cosω0 cos I0�;

dz̃
dτ̃

ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e0
1 − e0

s
cosω0 sin I0:

Hence, when we prepare the initial orbital parameters
(e0, I0, ω0, Ω0), we can provide the initial data for the
normalized evolution equations (4.9)–(4.14).

C. Binary motion near ISCO radius

In a hierarchical triple system, there are several important
features. One is the so-called von Zeipel-Lidov-Kozai
(vZLK) oscillations. If the system is inclined more than
some critical angle, there appears an oscillation between the
eccentricity and inclination angle. The second interesting
feature is an orbital flip, which may appear when the
inclination angle evolves into near 90°. The last one which
we show is a chaotic feature in the long-time evolution.
Here, we show our numerical results. In order to discuss

the properties of a binary orbit, it is more convenient to use
the orbital parameters assuming that the binary motion is
close to an elliptic orbit.
In order to extract the orbital parameters from the orbit

given by the Cartesian coordinates, one can use the
osculating orbit when the orbit is close to an ellipse.
However, one must be careful with the definitions of
orbital elements when using the osculating method. For
instance, the magnitude of the normalized Laplace-Runge-
Lenz vector, which is defined by

e≡ p̃ × ðr̃ × p̃Þ − r̃
r̃
; ð5:11Þ

is commonly used for a measure of orbital eccentricity, but
it is not always appropriate. It may show an “apparent” rise

in eccentricity or unphysical rapid oscillations especially
when the eccentricity is very small [64]. We take caution
and extract the elements’ information from physical orbit.
In that case, it may be better to define the eccentricity by the
averaged one over one cycle as

hei≡ rmax − rmin

rmax þ rmin
;

where rmax and rmin correspond to orbital separation at
adjacent turning points of an eccentric orbit.
The inclination angle I is defined as mutual inclination

between angular momenta of the inner and outer binary. In
the present case, since the outer binary is just a circular
motion on the equatorial plane, the inclination is given by

I ¼ cos−1
�
Lz

jLj
�
;

where L≡ r × p is the angular momentum of a binary.
The other two essential angles Ω and ω governing the

orientation of the orbital plane and the orbit are also
computed in the postprocess. The line that marks the
intersection of the orbital plane with the reference plane
(the equatorial plane in the present case) is called the node
line, and the point on the node line where the orbit passes
above the reference plane from below is called the
ascending node. The angle between the reference axis
(say x-axis) and node line vector N is the longitude of
ascending node Ω. First, node line is defined as

N ¼ ez × h;

where ez is normal to the reference plane (the unit vector in
the z direction) and h ¼ L=μ is specific angular momentum
vector of a binary. Thus, Ω is computed as

Ω ¼ cos−1ðNx=NÞ:
The argument of periapsis ω is the angle between node

line and periapsis measured in the direction of motion.
Therefore,

ω ¼ cos−1
�
N · e
Ne

�
:

When the orbit can be approximated well by the
osculating one, e is given by the normalized Laplace-
Runge-Lenz vector (5.11). Otherwise, we define the
averaged eccentricity vector by

hei≡ −
ðrmin þ rmaxÞ
ðrmin þ rmaxÞ

pointing towards the periapsis, where rmax and rmin are
numerical data of position vector. We have used both
definitions and found that most results agree well.
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1. Firmness of a binary and stability

As we discuss in Sec. VA, a binary near SMBH may be
broken when the tidal force by SMBH is stronger than the
mutual gravitational attractive force of a binary. We
introduce a firmness parameter of a binary f defined by

f≡ gravitational force
tidal force by SMBH

¼ Gm1m2=l2
binary

μrglbinary=r30

¼
�
m1 þm2

2M

��
r0

lbinary

�
3

≈
1

ϵ2

�
r0
rg

�
:

If the firmness parameter f is smaller than Oð1Þ, we
expect that the tidal force will break a binary. Hence, f > 1
is a necessary condition for stability of a binary. The
condition against chaotic instability is

f≳ C3
chaotic

2

�
M

m1 þm2

�ð3p−1Þ ≡ fchaotic:

We find fchaotic ∼ 240 for the criterion 1 with
m1 ¼ m2 ¼ 10M⊙;M ¼ 108M⊙, or fchaotic ∼ 69f for the
criterion 2. Hence we may expect a chaotic feature
for 1 < f≲ fchaotic.
When we are interested in a binary motion near SMBH,

the tidal stability condition gives ϵ ≤ Oð1Þ, while the
chaotic stability condition becomes ϵ ≤ a few tenths. We
can confirm numerically that our present system is really
unstable when ϵ ≥ 0.5. In what follows, we numerically
analyze a binary system under the conditions of ϵ ≤ 0.4.

2. von Zeipel-Lidov-Kozai oscillation

Here, we show some numerical examples, which show
the vZLK oscillations in the long-time evolution.
We expect the vZLK oscillations to occur when the

inclination angle is larger than the critical value. Under
the quadrupole approximation in a Newtonian hierarchical

system, the critical inclination angle is given by IðNÞcrit ¼
sin−1

ffiffiffiffiffiffiffiffi
2=5

p
≈ 39.23°. In the present model, it can be

obtained by the double-averaging analysis of the
Lagrange planetary equations, which shows that the critical
value is slightly larger as the radius r0 gets smaller, and it
increases to 41.6° near the ISCO radius (see Appendix B 2).
It seems hard to obtain the exact critical value by numerical
simulations, although we have found consistent results.
The typical timescale of the vZLK oscillations is given

by [24,45,65]

TvZLK ∼
P2
out

Pin
; ð5:12Þ

where Pin and Pout are the periods of an inner binary and of
an outer binary, respectively. For a hierarchical triple
system, since Pin ≪ Pout, TvZLK ≫ Pout, which means that
the vZLK oscillation is a secular effect.

In the first model (model Ic), we choose r0 ¼ 3.5rg and
ϵ ¼ 0.1. It corresponds to a0 ¼ 0.0023rg ≈ 0.0045 AU for
m1 ¼ m2 ¼ 10M⊙ and M ¼ 108M⊙. Since Gðm1 þm2Þ=
c2 ≈ 30 km ≪ a0, the binary motion can be described by a
Newtonian orbit in a local inertial frame. We then adopt the
initial conditions as the eccentricity e0 ¼ 0.01 and incli-
nation I0 ¼ 60°. The numerical results are given in
Figs. 2 and 3.

FIG. 2. This figure shows vZLK oscillation between orbital
eccentricity e (the red curve) and relative inclination I (the blue
curve). For this particular model (model Ic), we choose r0 ¼
3.5rg and ϵ ¼ 0.1. The initial data is e0 ¼ 0.01, I0 ¼ 60°,
ω0 ¼ 60°, and Ω0 ¼ 30°.

FIG. 3. Typical orbits in the same model as Fig. 2. The red,
blue, and magenta curves denote a few cycles near n0τ ¼ 2120,
4150, and 6385 respectively. The inclination angles of red, blue,
and magenta curves are I ≈ 38.5°, 61.1°, and 38.3°, while the
eccentricities of those curves are e ≈ 0.80, 0.0017, and 0.80,
respectively.
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The vZLK oscillation period is obtained numerically
as n0TvZLK ∼ 4000. Since n0Pin ∼ 2π and ω0Pout ∼ 2π,
we can evaluate it by Eq. (5.12) as n0P2

out=Pin∼
2πðn0=ω0Þ2 ∼ 2500, which is consistent with the above
numerical value.

3. Chaotic feature

One of the well-known features of three body system is a
chaotic behavior in a binary motion. The model given in the
previous subsection shows a stable vZLK oscillation. The
vZLK oscillation period is regular. The chaotic feature is
not seen. This is just because a binary is extremely compact
and very hard. The firmness parameter is f ∼ 350.
However, if a binary is not so highly compact, we find

some chaotic features. In Fig. 4, we show one example
(model IIc). The model parameters are given by ϵ ¼ 0.4
and r0 ¼ 3.5rg, and the initial parameters are chosen as
e0 ¼ 0.01, I0 ¼ 60°, ω0 ¼ 60°, and Ω0 ¼ 30°. The larger
value of ϵ corresponds to a larger-scale binary, i.e., the
initial semimajor axis is a0 ¼ 0.0058rg ≈ 0.0115 AU. We
can see clearly the vZLK oscillation, but the period is
not strictly regular. Since the firmness parameter is
f ∼ 22 > Oð1Þ, the system is still stable, but shows some
irregular behaviors in the vZLK oscillations. The maxi-
mum values of the eccentricity is also random as shown
in Fig. 4.

4. Orbital flip

Another interesting feature is an orbital flip, i.e., an
inclination angle goes beyond 90°. It may occur when the
initial inclination angle is near 90°.
In Fig. 5, we find that the orbital flip accompanying

vZLK oscillations occurs periodically. The model

parameters are given by ϵ ¼ 0.4 and r0 ¼ 3.5rg, and the
initial parameters are chosen as e0 ¼ 0.01, I0 ¼ 85°,
ω0 ¼ 60°, and Ω0 ¼ 30° (model IIa). The inclination blue
curve in Fig. 5 evolves beyond 90° several times, but the
time period is irregular.
One interesting observation is there exists a strong

correlation between an orbital flip and large eccentricity.
When an orbital flip occurs, the eccentricity becomes very
close to unity.

FIG. 5. Orbital flip in vZLK oscillation (model IIa). We choose
r0 ¼ 3.5rg and ϵ ¼ 0.4. The initial data is e0 ¼ 0.01, I0 ¼ 85°,
ω0 ¼ 60°, and Ω0 ¼ 30°. The red and blue curves denote the
eccentricity and the inclination. The inclination angle evolves
beyond 90° several times.

FIG. 4. Chaotic vZLK oscillation. The red and blue curves
denote the eccentricity and the inclination. For this model (model
IIc), we choose r0 ¼ 3.5rg and ϵ ¼ 0.4. The initial data is
e0 ¼ 0.01, I0 ¼ 60°, ω0 ¼ 60°, and Ω0 ¼ 30°.

FIG. 6. Time evolution of angular momentum. The parameters
and initial conditions are the same as those in Fig. 5. The red,
light red, orange, yellow, green, magenta, and blue curves denote
the angular momentum vectors in the periods n0τ ¼ 40–50;
50 − 60; 60 − 70; 70 − 80; 80 − 90; 90 − 100, and 100–110, re-
spectively. The z-components of L1, L2, and L3 become negative.
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In Fig. 6, we show the time evolution of the angular
momentum vector, which is defined by L ¼ r × p. The
z-component of the angular momentum becomes negative
near n0τ ≈ 60–62; 73 − 80, and 92–97. The corresponding
vectors are shown by the colored arrows L1, L2, and L3,
respectively.

5. Summary of various models

We summarize our numerical results in Table I. We have
simulated three types of models (I, II, and III). The
parameters of model I, model II, and model III are
(r0 ¼ 3.5rg, ϵ ¼ 0.1), (r0 ¼ 3.5rg, ϵ ¼ 0.4), and
(r0 ¼ 7rg, ϵ ¼ 0.1), respectively. For each model, we
choose the initial data as (a) e0 ¼ 0.01; I0 ¼ 85°,
(b) e0 ¼ 0.9; I0 ¼ 85°, (c) e0 ¼ 0.01; I0 ¼ 60°, and
(d) e0 ¼ 0.9; I0 ¼ 60°. The initial argument of periapsis
and ascending node are chosen as ω0 ¼ 60° and Ω0 ¼ 30°
for all models. We also performed the simulation with
different values of those two parameters; the results do not
vary much.
In model I, since the binary is very compact (the firmness

parameter f ∼ 350 > fchaotic), it is very stable. As shown in
Fig. 2, we find the regular vZLK oscillation, although the
oscillation period TvZLK is not strictly constant but slightly
disperse within 1–9%. When the initial eccentricity is large
(model Ib and Id), the oscillation period gets smaller and
minimum eccentricity becomes larger. Except for model Ic,
the vZLK oscillation type is the so-called libration, which
shows the oscillation of the argument of periapsis around
90°. In model Ic, the vZLK oscillation seems to be the
rotation type, which denotes the argument of periapsis
increases monotonically. However in the present model, it
does increase on average but not monotonically (sometimes
going back and forth).
For model II, the binary is slightly less compact

(the firmness parameter f ∼ 22 < fchaotic). It is still stable
but becomes irregular both in the oscillation period and
in the amplitude as shown in Fig. 4. There appears to be

dispersion in the maximum and minimum values of the
eccentricity and inclination, whose values are shown in
the bracket (). When the initial inclination angle is large
(models IIa and IIb), we find irregular orbital flips. The
vZLK oscillation is either libration type (models IIb
and IId), in which the maximum and minimum angles
of the argument of the periapsis disperse as shown by
the brackets (), or irregular rotation type (models IIa
and IIc), in which the inclination angle increases on
average but not monotonically (sometimes going back and
forth).
Model III is the case with a hard binary as model I, but its

location is a little far from SMBH (r0 ¼ 7rg). Hence the
relativistic effect as well as the tidal force are smaller than
those in model I. As a result, the vZLK oscillation becomes
more regular and stable. The vZLK oscillation timescale is
larger than that in model I because the outer orbital period
Pout is larger.

D. Motion of the CM of a binary

Next we show the motion of the CM of a binary. In order
to know how much the motion deviates from a circular
motion with the radius r0, we solve the radial perturbation
equation (4.21). Using the previous numerical solutions, we
integrate Eq. (4.21) with the initial conditions such that
rð1Þð0Þ ¼ 0 and _rð1Þð0Þ ¼ 0. Here, we discuss some typ-
ical cases.

1. Model Ia

In this case, we find stable and regular oscillations with
the period Tosc ≡ 2π=k ≈ 2.65Pout, where k is defined by
Eq. (4.22) and Pout ¼ 2π=w0 is the period of the circular
motion. The oscillation center is given by hr1i ≈ 1.60 ×
10−4r0 with the amplitude Δr1 ≈ 1.71 × 10−4r0, but the
center increases to 2.18 × 10−4r0 when the eccentricity
becomes close to unity, keeping the oscillation amplitude
Δr1 to be constant [see Fig. 7 (left)].

FIG. 7. The radial deviation rð1Þ normalized by the radius of the circular orbit r0 are shown by blue curves for model Ia (left) and model
IIa (right). The deviation from a circular orbit in model Ia is regular oscillation around hr1i, which is the mean of rð1Þ. Note that hr1i
increases when the eccentricity increases (red curve). While in model IIa, it results in irregular oscillations without correlation with the
eccentricity (the red curve).
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There exists a good correlation between the shift of the
oscillation center and the eccentricity. Since the oscillation
amplitude is very small compared with the circular radius
r0, the deviations from the circular motion can be treated as
perturbations, which confirms our approach.

2. Model IIa

In this case, the vZLK oscillation is stable but irregular.
As a result, we find irregular oscillations of the CM as
shown by a blue curve in Fig 7 (right). There is no
correlation with the eccentricity e. Although the oscillations
are irregular, the amplitude is very small and therefore the

deviation from the circular motion can be treated as stable
perturbations.

3. Other models

We summarize the results in Table II for the models
given in Table I. We find that models I and III give stable
and regular oscillations of the CM. It is just because those
binary motions also show stable and regular vZLK oscil-
lations. On the other hand, model II shows irregular
oscillations because of the irregular vZLK oscillations in
those binary motions.

TABLE I. The properties of the vZLK oscillations. The oscillations in models I and III are regular, although there are small amounts of
dispersion in the vZLK oscillation timescale. For model II, the oscillations are irregular and there appears to be dispersion in the
maximum and minimum values of the eccentricity and inclination, whose values are shown in the bracket (). L and R denote libration
and rotation types, respectively.R� means that the argument of periapsis does increase on average but not monotonically, and sometimes
going back and forth.

Model r0 ϵ a0 e0 I0 ω0 Ω0 vZLK oscillation type n0TvZLK emin=emax Imin=Imax Orbital flip

Ia 0.01 85° 60° 30° L ½36° ≤ ω ≤ 144°� 2396–2430 0.01=0.995 39.1°=85.5° No
Ib 0.9 85° 60° 30° L ½55° ≤ ω ≤ 125°� 580–600 0.672=0.998 54.8°=87.5° No
Ic 3.5rg 0.1 0.0046rg 0.01 60° 60° 30° R� 3600–4300 0.003=0.8 38.5°=60.5° No
Id 0.9 60° 60° 30° L ½56° ≤ ω ≤ 124°� 753–770 0.49=0.95 47.3°=74.3° No

IIa 0.01 85° 60° 30° R� 50–78 ð0.15 − 0.34Þ=
ð0.97 − 1.00Þ

ð33.6° − 42.0°Þ=
ð137.9° − 143.9°Þ

Yes
(irregular)

IIb 0.9 85° 60° 30° L ½ð50° − 53°Þ ≤
ω ≤ ð126° − 131°Þ�

39–44 ð0.533 − 0.589Þ=
ð0.978 − 0.999Þ

ð50.2° − 53.7°Þ=
ð126.4° − 128.6°Þ

Yes
(irregular)

IIc 3.5rg 0.4 0.0116rg 0.01 60° 60° 30° R� 116–250 ð0.04 − 0.08Þ=
ð0.82 − 0.90Þ

ð36.5° − 37.7°Þ=
ð59° − 65°Þ

No

IId 0.9 60° 60° 30° L ½ð50° − 56°Þ ≤
ω ≤ ð124° − 130°Þ�

54–60 ð0.41 − 0.49Þ=
ð0.92 − 0.97Þ

ð43° − 46°Þ=
ð69° − 75°Þ

No

IIIa 0.01 85° 60° 30° L ½38° ≤ ω ≤ 142°� 6776–6928 0.009=0.997 39.1°=85.2° No
IIIb 0.9 85° 60° 30° L ½56° ≤ ω ≤ 124°� 1585–1628 0.675=0.998 55.1°=87.2° No
IIIc 7rg 0.1 0.0073rg 0.01 60° 60° 30° L ½44° ≤ ω ≤ 136°� 9450–10600 0.004=0.792 38.3°=60.3° No
IIId 0.9 60° 60° 30° L ½56° ≤ ω ≤ 124°� 2045–2074 0.493=0.949 47.5=74.5 No

TABLE II. The oscillations of the CM, which are the radial deviations from a circular geodesic motion. hr1i denotes the center of the
oscillations, while Δr1 gives the amplitude of the oscillations (or dispersion for the irregular oscillations [model II]). The typical
oscillation period is given by Tosc ≡ 2π=k, where k is defined by Eq. (4.22).

Model r0 (AU) a0 (AU) ϵ f e0 I0 ½hr1i � Δr1�=r0 Tocs=Pout Oscillation property

Ia 0.01 85° ½ð1.60 − 2.18Þ � 1.71� × 10−4 Regular (good correlation with e)
Ib 0.9 85° ½0.18� 3.51� × 10−3 Regular
Ic 6.91 0.0091 0.1 350 0.01 60° ½ð7.01 − 7.37Þ � 7.04� × 10−4 2.65 Regular (good correlation with e)

Id 0.9 60° ½ð4.09 − 4.40Þ � 4.51� × 10−4 Regular (good correlation with e)
IIa 0.01 85° ½ð1.60 − 2.91Þ � 1.88� × 10−4 Irregular (no correlation with e)
IIb 0.9 85° ½ð2.89 − 3.18Þ � 2.85� × 10−4 Regular (no correlation with e)
IIc 6.91 0.0229 0.4 21.9 0.01 60° ½ð4.30 − 5.77Þ � 6.09� × 10−4 2.65 Irregular (no correlation with e)
IId 0.9 60° ½ð4.05 − 4.31Þ � 4.41� × 10−4 Irregular (no correlation with e)

IIIa 0.01 85° ½ð1.23 − 1.56Þ � 1.28� × 10−5 Regular (good correlation with e)
IIIb 0.9 85° ½ð1.22 − 1.43Þ � 1.35� × 10−5 Regular (good correlation with e)
IIIc 13.8 0.0144 0.1 700 0.01 60° ½ð5.78 − 5.98Þ � 5.83� × 10−5 1.32 Regular (good correlation with e)
IIId 0.9 60° ½ð3.14 − 3.33Þ � 3.38� × 10−5 Regular (good correlation with e)
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E. Comparison with double-averaging approach

In Appendix B, we present one of the standard approaches
on a hierarchical triple system, which involves the Lagrange
planetary equations for the orbital parameters. Since we are
interested in the long-time behavior such as the vZLK
mechanism, taking averages of the Hamiltonian over two
periods of the inner and outer binaries, we can analyze the
simplified doubly-averaged planetary equations.
Here, we compare our numerical results with those

obtained in the double-averaging (DA) approach. We show
the evolution of the eccentricity for models Ia, IIa and IIIa
in the left, center, and right panels of Fig. 8, respectively.
For model Ia, two results agree very well although the

oscillation period of the DA approach is slightly longer
than that of the direct integration (DI) method. For model
IIa, the DA approach gives regular periodic oscillations, but
the DI method shows irregular chaotic oscillations. The two
results do not agree well, although the maximum values of
the eccentricity are almost the same. For model IIIa, two
results agree almost completely. For other models, we also
find the similar results.
We conclude that the DA approach for models I and III

may give good results although the period of oscillations
deviates slightly. On the other hand, for model II, which
shows chaotic features in the vZLK oscillations, the DA
approach does not give correct results.

VI. CONCLUDING REMARKS

In this paper, we discuss the motion of a binary system
near SMBH. Using Fermi-normal coordinates, we set up a
Newtonian self-gravitating system in the local proper
reference frame. Assuming a circular geodesic observer
around a Schwarzschild SMBH, we write down the
equations of motion of a binary. To remove the interaction
terms between the CM of a binary and its relative
coordinates, we introduce a small acceleration of the
observer. As a result, the CM follows the observer’s orbit,

but its motion deviates from an exact geodesic. Since the
relative motion is decoupled from the system, we first solve
it, and then find the motion of the CM by the perturbation
equations with the small acceleration, which is given by the
relative motion.
We show that there appear to be vZLK oscillations when

a binary is compact enough and the inclination angle is
larger than the critical value. If the firmness parameter f is
larger than a few hundred, the oscillations are regular.
However when f is around a few tens, although we find the
stable vZLK oscillations, the oscillations become irregular
both in the oscillation period and in the amplitude.
Especially if the initial inclination is large, we find an
orbital flip.
One of the most interesting and important subjects of a

binary system near SMBH is the gravitational waves.
When the vZLK oscillations are found in a binary motion,
we expect a large amount of GW emissions because the
eccentricity becomes large. The large eccentricity also
provides much higher frequencies than that from a circular
binary [25,27,42]. Another interesting point on the GWs
from the vZLK oscillations is that the large amount of the
GW emissions repeats periodically with the vZLK oscil-
lation timescale. It is a good advantage in the observations
because we have a certain preparation time for next
observations.
There are two GW sources in a hierarchical triple

system: One GW source is from an inner binary and the
other is from the outer binary. The timescale of the
emission of gravitational waves from a circular binary is
evaluated as [66]

τGW ¼ 5

256

c5R4
0

G3m2μ
;

where m ¼ m1 þm2 and μ ¼ m1m2=ðm1 þm2Þ and R0 is
the initial distance. Hence, the ratio of the timescale of an
outer binary to that of an inner binary is

FIG. 8. The evolution of the eccentricity for models Ia (left), IIa (center), and IIIa (right). The red curves denote the results by the
double-averaging (DA) approach, while the blue ones by the direct integration (DI) method. For models Ia and IIIa, the two results agree
well, but for model IIa, they do not agree well.
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τouter
τinner

¼ m1m2

M2

�
r0

lbinary

�
4

:

In the present model, as we discuss in Sec. VA, we have
some constraints. From the stability condition of a binary
(5.1), we have

lbinary

r0
≲
�
m1 þm2

2M

�
1=3

;

while from the validity of Newtonian dynamics, we find

lbinary

r0
≳
�
m1 þm2

2M

�
rg
r0

:

If a binary exists near the ISCO radius (r0 ∼ 3rg), we
find

2 × 10−5 ≲ τouter
τinner

≲ 8 × 1016:

Hence, in most cases, gravitational waves from the outer
orbit are less effective compared with those from the inner
binary. However when the binary is close to instability
range, it is not the case. In fact, in our examples discussed
in this paper, if we assume a circular binary, we find

τouter
τinner

∼

8><
>:

3 × 10−3 ðmodel IÞ
8 × 10−5 ðmodel IIÞ
8 × 10−3 ðmodel IIIÞ

The GWs from the outer binary become much larger than
those from the inner binary. However if there exists the
vZLK oscillation, the emission timescale is reduced by the
factor [67]

FðeinÞ ≈
768

429
ð1 − e2inÞ7=2;

when ein ≈ 1. As a result, the GWs from the inner binary
may become larger that those from the outer binary.
In recent years, three-body systems and the emission

of GWs from them have received significant attention
[25–27,36–43]. Our future work will involve evaluating
the GWs from the present hierarchical triple setting using
the black hole perturbation approach, since near the ISCO
radius the quadrupole formula may not be valid [68].
In this paper, we assume that the CM of a binary moves

along a circular orbit, but an eccentric orbit is interesting to
be studied since the vZLK oscillation may be modulated on
a longer timescale [69–73]. However, for such a highly
eccentric orbit, the present proper reference frame expanded
up to the second order of the spatial coordinates xâ may not
be sufficient. We may need higher-order terms in the metric,
where the derivatives of the Riemann curvature appear

[51,52]. Although the basic equations are very complicated,
such an extension is straightforward.
Another natural direction would be an extension to a

rotating SMBH that may allow us to study the precession of
the binary orbit around the Kerr black hole. Such systems
can reveal the impact of spin on GWs emitted from a nearby
binary. Recent research [59] considers the secular dynamics
of the binary system distorted by a much larger Kerr black
hole’s tidal forces. This is done by deriving the magnetic
and electric tidal moment at quadrupole orders.
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APPENDIX A: COPLANAR BINARY

In this Appendix, we analyze the motion of a coplanar
binary, that is z ¼ 0; pz ¼ 0. It is an exact solution for
Eqs. (4.11) and (4.14).

1. Coplanar motion: Numerical results

In the case of coplanar motion of a binary, the relative
inclination angle I is always zero. We then have the
coupled equations (4.9), (4.10), (4.12), and (4.13) for x
and y. We first show numerical results for models I
(r0 ¼ 3.5rg; ϵ ¼ 0.1) and II (r0 ¼ 3.5rg; ϵ ¼ 0.4) in
Fig. 9. We choose the initial conditions as e0 ¼ 0.9 and
ω0 ¼ 60°. For model I, as shown in Fig. 9 (left), the orbit is
approximately elliptic, but the periapsis is rotating
because of relativistic effect and the shift is quite regular.
On the other hand, for model II, we find some irregular
behaviors in the orbit as shown in Fig. 9 (right). As
discussed in the text, this model is not tightly bounded
(the firmness parameter f ∼ 22 < fchaotic) and the effects of
the tidal force by SMBH is not so small. As a result, the
system shows some chaotic features. In the present
coplanar case, the orbital shape is deformed from an
ellipse.
It is further confirmed by the time evolution of the

eccentricity, which is given in Fig. 10. For model I, the
eccentricity is almost constant (e ∼ 0.9). On the other hand,
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for model II, it oscillates irregularly between e ∼ 0.7 and
0.9. Although the orbital shape is not well approximated by
an ellipse, we evaluate the eccentricity by the osculating
orbit. If we use the average eccentricity over one cycle, the
eccentricity oscillates between hei ∼ 0.75 and 0.87, which
is slightly different from the values in Fig. 10.

2. Circular motion

There exists an exact circular motion of a binary as
follows: Assuming a circular solution as

ζ ≡ xþ iy ¼ ρ0 exp ½iθðτÞ�; with θðτÞ ¼ θ̄ðτÞ þwdSτ;

where the radius ρ0 is constant, we find two equations
for θ̄ as

− _̄θ
2 þGðm1 þm2Þ

ρ30
−

rg
4r30

ð1þ 3r20w
2
0Þ

−
3rg
4r30

ð1þ r20w
2
0Þ cosð2ðθ̄ þ 2wRτÞÞ ¼ 0; ðA1Þ

̈θ̄ þ 3rg
4r30

ð1þ r20w
2
0Þ sinð2ðθ̄ þ 2wRτÞÞ ¼ 0: ðA2Þ

Since the derivative of Eq. (A1) with respect to τ gives
Eq. (A1) unless θ̄ ¼ 0, we first solve Eq. (A2). Setting
η≡ 2ðθ̄ þ 2wRτÞ, we find

η̈þ 3rg
2r30

ð1þ r20w
2
0Þ sin η ¼ 0;

which can be integrated as

_η2 −
3rg
r30

ð1þ r20w
2
0Þ cos η ¼ constant:

By use of this equation, we can eliminate the term with

cos η in Eq. (A1), resulting in _η and _̄θ to be constant. It
follows that cos η ¼ cosð2ðθ̄ þ 2wRτÞÞ is constant. We
then obtain a solution such that

θ̄ þ 2wRτ ¼
n
2
π;

where n is an integer. Equation (A1) becomes

FIG. 10. Time evolution of the eccentricity for model I (the blue
curve) and for model II (the red curve). The eccentricity for model
I is almost constant (e ≈ 0.9), while for model II it oscillates
irregularly between e ∼ 0.7 and 0.9.

FIG. 9. The coplanar orbits for model I (left) and for model II (right). We choose the initial eccentricity e0 ¼ 0.9. The orbits start from
the red point, and end at the blue point [(n0τ ¼ 200 (model I) and n0τ ¼ 50 (model II)].
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−4w2
R ¼ −

Gðm1 þm2Þ
ρ30

þ rg
4r30

ð1þ 3r20w
2
0Þ

þ 3rg
4r30

ð1þ r20w
2
0Þð−1Þn:

Since wR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rg=2r30

q
, we obtain two analytic solutions

as follows: When n is even,

ρ0 ¼ ρðþÞ
0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 þm2Þ

2Mð1þ r20w
2
0Þ

3

s
r0; ðA3Þ

θ ¼ θðþÞ ≡ θ̄ðþÞ þwdSτ ¼ ðwdS − 2wRÞτþmπ ðm ∈ ZÞ;
ðA4Þ

while when n is odd,

ρ0 ¼ ρð−Þ0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 þm2Þ

Mð1þ r20w
2
0Þ

3

s
r0; ðA5Þ

θ ¼ θð−Þ ≡ θ̄ð−Þ þwdSτ

¼ ðwdS − 2wRÞτ þ
�
mþ 1

2

�
π ðm ∈ ZÞ: ðA6Þ

Using these solutions, we can find the analytic solution
for the motion of the CM of a binary. The relative
coordinates ðx; y; zÞ of a binary in the rotating proper
frame are given by

x ¼ x cosðwRτÞ − y sinðwRτÞ
¼ ρð�Þ

0 cos½ðwdS −wRÞτ þ ϕð�Þ
0 �;

y ¼ x sinðwRτÞ þ y cosðwRτÞ
¼ ρð�Þ

0 sin½ðwdS −wRÞτ þ ϕð�Þ
0 �;

z ¼ z ¼ 0;

where ρð�Þ
0 are given by the previous solutions, and ϕðþÞ

0 ¼
mπ and ϕð−Þ

0 ¼ ðmþ 1
2
Þπ. We then find the perturbation

equation for rð1Þ as

d2rð1Þ
dτ2

þ k2rð1Þ þCð�Þcos2½ðwdS −wRÞτþϕðþÞ
0 � ¼ 0; ðA7Þ

where

Cð�Þ ≡ ½Aþ ðwdS −wRÞB�
	
ρðþÞ
0



2
:

Since two independent solutions of the homogeneous
equation are sin kτ and cos kτ, introducing two unknown
functions uðτÞ and vðτÞ, we set

rð1Þ ¼ uðτÞ sin kτ þ vðτÞ cos kτ:

Inserting this into Eq. (A7), we find

ü sin kτ þ v̈ cos kτ þ 2kð _u cos kτ − _v sin kτÞ
þ Cð�Þ cos2½ðwdS −wRÞτ þ ϕð�Þ

0 � ¼ 0:

We assume one constraint equation such that

_u sin kτ þ _v cos kτ ¼ 0; ðA8Þ

which yields

ü sin kτ þ v̈ cos kτ þ kð _u cos kτ − _v sin kτÞ ¼ 0:

We then find

kð _u coskτ − _v sinkτÞ þCð�Þ cos2½ðwdS −wRÞτþϕð�Þ
0 � ¼ 0:

ðA9Þ

From Eqs. (A8) and (A9), we obtain

_u ¼ −
Cð�Þ

k
cos kτ cos2½ðwdS −wRÞτ þ ϕð�Þ

0 �;

_v ¼ Cð�Þ

k
sin kτ cos2½ðwdS −wRÞτ þ ϕð�Þ

0 �:

We can integrate these equations as

u ¼ u0 −
Cð�Þ

2k

�
1

k
sin kτ þ 1

2

�
sin½ðkþ 2ðwdS −wRÞÞτ þ 2ϕð�Þ

0 �
kþ 2ðwdS −wRÞ

þ sin½ðk − 2ðwdS −wRÞÞτ − 2ϕð�Þ
0 �

k − 2ðwdS −wRÞ
��

;

v ¼ v0 −
Cð�Þ

2k

�
1

k
cos kτ þ 1

2

�
cos½ðkþ 2ðwdS −wRÞÞτ þ 2ϕð�Þ

0 �
kþ 2ðwdS −wRÞ

þ cos½ðk − 2ðwdS −wRÞÞτ − 2ϕð�Þ
0 �

k − 2ðwdS −wRÞ
��

;

where u0 and v0 are integration constants. As a result, we obtain the general solution as

rð1Þ ¼ −
Cð�Þ

2k2
þ u0 sin kτ þ v0 cos kτ −

Cð�Þ

2½k2 − 4ðwdS −wRÞ2�
cos ½2ðwdS −wRÞτ þ 2ϕð�Þ

0 �:
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The initial conditions determine the integration constants
u0 and v0. For example, if we assume rð1Þð0Þ ¼ 0 and
_rð1Þð0Þ ¼ 0, we find

rð1Þ ¼ −
Cð�Þ

k2
sin2

kτ
2
þ ð−1ÞnCð�Þ

k2 − 4ðwdS −wRÞ2

× sin

��
wdS −wR þ k

2

�
τ

�
sin

��
wdS −wR −

k
2

�
τ

�
;

ðA10Þ

where n ¼ 2m or 2mþ 1. As a result, rð1Þ oscillates around
zero. As for the other variables tð1Þ; θð1Þ;φð1Þ, although
some of them may diverge as τ → ∞, no singularity
appears in the evolution equations. Hence, we conclude
that the coplanar circular orbit is linearly stable.

APPENDIX B: PLANETARY EQUATIONS FOR A
BINARY SYSTEM IN NEWTONIAN LIMIT

In order to understand our numerical results, it may be
better to introduce the Lagrange planetary equations, which
give time evolution of the orbital parameters such as the
semimajor axis, eccentricity, and inclination. To derive the
planetary equations, we treat the proper Hamiltonian with
unit mass μ ¼ 1, which is given by

H̄ ¼ H̄0 þ H̄1;

where

H̄0 ¼
1

2
p̄2 −

Gðm1 þm2Þ
r

;

H̄1 ¼ H̄1-dS þ H̄1−R̄;

with

H̄1-dS ¼ wdSðp̄yx − p̄xyÞ;
H̄1-R̄ ¼ rg

4r30

h
x2 þ y2 þ z2 − 3ð1þ r20w

2
0Þ

ðx coswRτ − y sinwRτÞ2 þ 3r20w
2
0z

2
i
:

The position r ¼ ðx; y; zÞ of a binary should be described
in the nonrotating proper reference frame.
For the unperturbed Hamiltonian H̄0, it is just the same

as that of a binary in Newtonian dynamics. We find an
elliptic orbit, which is described by

r ¼ að1 − e2Þ
1þ e cos f

; ðB1Þ

where r; a; e, and f are the radial distance from the center of
mass, the semimajor axis, the eccentricity, and the true
anomaly. This orbital plane is inclined with the inclination

angle I from the equatorial plane in the proper refer-
ence frame.
Hence, the relative position r ¼ ðx; y; zÞ of a binary is

given by the orbital parameters ðω;Ω; a; e; I; fÞ as Eq. (5.9)
with Eq. (B1). Introducing the Delaunay variables as

8><
>:
l¼nðt− t0Þ
g¼ω

h¼Ω
and

8>><
>>:
L¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gðm1þm2Þa
p

G¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1þm2Það1−e2Þ

p
H¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1þm2Það1−e2Þ

p
cosI

;

where

n≡ 2π

P
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þm2Þ

a3

r
;

is the mean motion, we find the new unperturbed
Hamiltonian to be

˜̄H0 ¼ −
G2ðm1 þm2Þ2

2L2
:

Including the perturbations H̄1, we obtain the
Hamiltonian by the Delaunay variables as

˜̄H ¼ ˜̄H0 þ H̄1:

After some calculations, the Hamilton equations are
reduced to

_a ¼ −
2

na
∂H̄1

∂l
; ðB2Þ

_e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

na2e
∂H̄1

∂ω
−
1 − e2

na2e
∂H̄1

∂l
; ðB3Þ

_I ¼ 1

na2 sin I
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ∂H̄1

∂Ω
−

cos I

na2 sin I
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ∂H̄1

∂ω
; ðB4Þ

_l ¼ nþ 2

na
∂H̄1

∂a
þ 1 − e2

na2e
∂H̄1

∂e
; ðB5Þ

_ω ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

na2e
∂H̄1

∂e
þ cos I

na2 sin I
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ∂H̄1

∂I
; ðB6Þ

_Ω ¼ −
1

na2 sin I
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ∂H̄1

∂I
: ðB7Þ

The partial derivative ∂=∂l can be replaced by that of the
true anomaly as
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∂

∂l
¼ ð1 − e2Þ−3

2ð1þ e cos fÞ2 ∂

∂f
:

Hence, once we find the perturbation Hamiltoninan H̄1

in terms of the orbital parameters, we obtain the planetary
equations.
The proper Hamiltonian is described by the orbital

parameters by inserting the relation given in Eq. (5.9) with
Eq. (B1). We then find the perturbed Hamiltonian as

H̄1 ¼ H̄1-dS þ H̄1-R̄;

where

H̄1−dS ¼ wdSr2ða; e; fÞ
n
n cos Ið1 − e2Þ−3=2ð1þ e cos fÞ2

−wdS

	
cos2ðωþ fÞ þ sin2ðωþ fÞcos2I


o
ðB8Þ

H̄1−R̄ ¼ rg
4r30

r2ða; e; fÞ
n
1 − 3ð1þ r20w

2
0Þ½cosðΩþwRτÞ

× cosðωþ fÞ − sinðΩþwRτÞ sinðωþ fÞ cos I�2

þ 3r20w
2
0sin

2ðωþ fÞsin2I
o
: ðB9Þ

We then obtain the planetary equations for the present
hierarchical triple system from Eqs. (B2)–(B7).

1. Double-averaging approach

Here, instead of solving the Lagrange planetary equa-
tions themselves, which is equivalent to our numerical
methods in the text, we take the average of the perturbed
Hamiltonian over two periods, the inner and outer orbital
periods, and then analyze the simplified equations, because
we are interested in the long-time behavior of the present
system such as the vZLK mechanism.
The double-averaged Hamiltonian is defined by

⟪H̄1⟫≡ 1
2π

Z
2π

0
dlout

�
1
2π

Z
2π

0
dlH̄1

�
:

Since the outer orbit is circular, we find that lout ¼
fout ¼ w0τ. We also have

dl ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
�
r
a

�
2

df:

Inserting Eqs. (B8) and (B9) into the above integrals, we
find the doubly-averaged Hamiltonian as

⟪H̄1⟫ ¼ wdSna2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cos I −

a2

8

�
ð2þ 3e2Þ

�
w2

dSð3þ cos 2IÞ þ rg
8r30

ð1þ 3r20w
2
0Þð1þ 3 cos 2IÞ

�

þ 10e2sin2I cos 2ω
�
w2

dS þ
3rg
8r30

ð1þ 3r20w
2
0Þ
��

: ðB10Þ

Using the doubly-averaged Hamiltonian Eq. (B10), we obtain the Lagrange planetary equations as

_e ¼ 5

4

�
w2

dS þ
3rg
8r30

ð1þ 3r20w
2
0Þ
�
e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

n
ð1 − cos 2IÞ sinð2ωÞ; ðB11Þ

_I ¼ −
5

4

�
w2

dS þ
3rg
8r30

ð1þ 3r20w
2
0Þ
�

e2

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p sin 2I sinð2ωÞ; ðB12Þ

_ω ¼ 1

4n

�
w2

dS þ
3rg
8r30

ð1þ 3r20w
2
0Þ
�� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2
p

½3þ 5 cos 2I þ 5ð1 − cos 2IÞ cos 2ω� þ 5e2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ð1þ cos 2IÞð1 − cos 2ωÞ
�

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

n
w2

dS; ðB13Þ

_Ω ¼ wdS þ
cos I

2n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
�
w2

dS þ
3

8

rg
r30

ð1þ 3r20w
2
0Þ
�
½−ð2þ 3e2Þ þ 5e2 cosð2ωÞ�: ðB14Þ

The semimajor axis a is constant in the present approximation. Also, we can easily check from Eqs. (B11) and (B12) that

d
dτ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cos IÞ ¼ 0;
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which corresponds to conservation of the z-component of
the angular momentum.

2. vZLK oscillations

Introducing a “potential” by VS ≡ −⟪H̄1⟫, we rewrite
the above planetary equations as

_e ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

na2e
∂VS

∂ω
; ðB15Þ

_I ¼ cos I

na2 sin I
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ∂VS

∂ω
; ðB16Þ

_ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

na2e
∂VS

∂e
−

cos I

na2 sin I
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ∂VS

∂I
; ðB17Þ

_Ω ¼ 1

na2 sin I
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ∂VS

∂I
: ðB18Þ

We obtain the closed form of a set of the differential
equations for e, I, and ω by Eqs. (B15), (B16), and (B17). It
gives several properties of vZLK oscillations such as the
oscillation amplitude of the eccentricity and the oscillation
timescale as analyzed in the Newtonian and 1PN hierar-
chical triple system [46].
The potential is written by use of η≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2
p

and μI ≡
cos I as

VS ≡ −⟪H̄1⟫ ¼ a2rgð1þ 3r20w
2
0Þ

32r30
vSðη; μIÞ;

where

vSðη; μIÞ≡ 2ð−1þ 3μ2Iη
2Þð1þ αdSÞ

þ 12CKL þ 4αdS

�
2 −

3n
wdS

μIη

�
;

with

αdS ≡ 8w2
dSr

3
0

3rgð1þ 3r20w
2
0Þ
;

CKL ≡ ð1 − η2Þ
�
ð1þ 2αdSÞ −

5

2
ð1þ αdSÞð1 − μ2I Þsin2ω

�
:

Note that when αdS ¼ 0, we find the same equations for
the Newtonian hierarchical triple system with quadrupole
approximation. The terms with αdS give relativistic
corrections.
Introducing the normalized time τ̃, which is defined by

τ̃≡ τ

τvZLK
;

with the typical vZLK timescale

τvZLK ≡ 32nr30
rgð1þ 3r20w

2
0Þ
�
∼
P2
out

Pin

�
;

the above planetary equation is rewritten as

dη
dτ̃

¼ ∂vS
∂ω

;

1

μI

dμI
dτ̃

¼ −
1

η

∂vS
∂ω

;

dω
dτ̃

¼ −
∂vS
∂η

þ μI
η

∂vS
∂μI

:

From these equations, we can easily show that

dðμIηÞ
dτ̃

¼ 0;
dvS
dτ̃

¼ 0;

which means there exist two conserved quantities ϑ≡ μIη
and CKL just as the Newtonian and 1PN hierarchical triple
system under dipole approximation. Using these two
conserved quantities, we obtain a single equation for η as

dη2

dτ̃
¼ −24

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðη2Þgðη2Þ

q
;

with

fðη2Þ≡ ð1þ 2αdSÞð1 − η2Þ − CKL;

gðη2Þ≡ −5ð1þ αdSÞϑ2 þ ½5ð1þ αdSÞϑ2 þ 3þ αdS þ 2CKL�η2 − ð3þ αdSÞη4:

Setting ξ ¼ η2, we find

dξ
dτ̃

¼ −24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2αdSÞð3þ αdSÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ − ξ0Þðξ − ξþÞðξ − ξ−Þ

p
;

where
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ξ0 ¼ 1 −
CKL

1þ 2αdS
;

ξ� ¼ 1

2

2
4�1þ 5ð1þ αdSÞ

3þ αdS
ϑ2 þ 2

3þ αdS
CKL

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 5ð1þ αdSÞ

3þ αdS
ϑ2 þ 2

3þ αdS
CKL

�
2

−
20ð1þ αdSÞ
3þ αdS

ϑ2

s 3
5;

are the solutions of fðξÞ ¼ 0 and gðξÞ ¼ 0, respectively.
We can find the relativistic corrections with αdS, which is

evaluated as

αdS ¼
3r2g

r20

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3rg

2r0

q �
2
≤

1

3

�
1þ 1ffiffi

2
p
�

2
≈ 0.114382:

The equality is found in the case of the ISCO
radius (r0 ¼ 3rg).
Analyzing the above equation, we find that there exists

vZLK oscillation in this system just the same as in
Newtonian hierarchical triple system, and we can classify
the vZLK solutions by the sign of CKL into two cases:
(1) CKL > 0 (rotation) and (2) CKL < 0 (libration).

a. CKL > 0 (rotation)

In this case, 0 < ξ− < 1 < ξþ and 0 < ξ0 < 1. This is
possible if

0 < CKL < 1þ 2αdS:

Hence we find the maximum and minimum values of the
eccentricity as

emax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ−

p
; emin ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ0

p
:

The vZLK timescale is given by

TvZLK ¼ τvZLKT
ðrotÞ
vZLK; ðB19Þ

where

TðrotÞ
vZLK ≡ 1

12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2αdSÞð3þ αdSÞ

p
×
Z

ξ0

ξ−

dξ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξ − ξ0Þðξ − ξþÞðξ − ξ−Þ

p : ðB20Þ

b. CKL < 0 (libration)

Since 0 < ξ− < ξþ < 1 and ξ0 < 0 in this case, we find

emax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ−

p
; emin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξþ

p
:

It occurs when

−
3þ αdS

2
< CKL < 0; and ϑ <

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ αdS

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2CKL

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð1þ αdSÞ

p :

The vZLK timescale is given by

TvZLK ¼ τvZLKT
ðlibÞ
vZLK; ðB21Þ

where

TðlibÞ
vZLK ≡ 1

12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2αdSÞð3þ αdSÞ

p
×
Z

ξþ

ξ−

dξ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξ − ξ0Þðξ − ξþÞðξ − ξ−Þ

p : ðB22Þ

The maximum and minimum values of the eccentricity in
the vZLK oscillations are determined by two conserved
parameters, ϑ and CKL. We present one example in Fig. 11.
We choose ϑ ¼ 0.5 and show the maximum value, emax
(the red curve), and the minimum value, emin (the blue
curve), in terms of CKL. The solid curves denote the case of
αdS ¼ 0.0794 (model I), while the dotted curves is the case
of αdS ¼ 0. For model Ic, we find CKL ¼ −0.0000359,
which is consistent with our result in Table I. The
relativistic effect with αdS is small.

FIG. 11. The maximum and minimum values of the eccentricity
in vZLK oscillations. We choose ϑ ¼ 0.5. The red and blue
curves depict the maximum and minimum values, respectively.
The solid curves denote the case of αdS ¼ 0.0794 (model I). We
also show the case of αdS ¼ 0 by the dotted curves.
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The maximum eccentricity in vZLK oscillations is
important, especially when we discuss emission of GWs.
We plot the range of the initial conditions (e0 and I0) which
show the large maximum values of the eccentricity in
Fig. 12. The light blue, light red, and light green regions
correspond to 0.9 ≤ emax < 1.0, 0.8 ≤ emax < 0.9, and
0.7 ≤ emax < 0.8, respectively. The red dots denote models
a, b, c, and d. Note that this figure is valid for models I, II,
and III. Hence, when the initial inclination angle is large,
the maximum eccentricity may grow close to unity.

The timescale of the vZLK oscillations is important for
observation of the gravitational waves. From Eqs. (B20)
and (B22), assuming the integrals do not so much depend
on the relativistic parameters, we may roughly evaluate the
relativistic effect (including de Sitter precession), which is
given by

TvZLK

TðNÞ
vZLK

≈
1þ 3r20w

2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 2αdSÞð1þ αdS=3Þ

p ;

where TðNÞ
vZLK is the Newtonian value. This ratio changes

from 0.4427 to 1 as r0 increases from the ISCO radius to
infinity. Hence, the vZLK timescale near the ISCO radius
may become smaller than one half of the Newtonian value.
We can also evaluate a critical inclination angle, beyond

which the vZLK oscillation occurs even when the initial
eccentricity is very small. It is given by the condition for a
bifurcation point with CKL ¼ 0 with ω ¼ 90°. Setting

ð1þ 2αdSÞ −
5

2
ð1þ αdSÞ sin2 Icrit ¼ 0;

we obtain

Icrit ¼ sin−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2αdSÞ
5ð1þ αdSÞ

s
:

We find that the critical inclination angle changes from
41.6° to the Newtonian value IðNÞ

crit ¼ sin−1
ffiffiffiffiffiffiffiffi
2=5

p
≈ 39.2° as

r0 increases from the ISCO radius to infinity.
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