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We consider the effect of stochastic fluctuations of the gravitational coupling G on the evolution of
binary systems. We work at an elementary level, in the Newtonian limit, and focus mainly on laser ranging.
We show that, due to cumulative effects, observational data may be used to put bounds on the stochastic
fluctuations. We also reanalyze previous results on the implications of stochastic fluctuations of G on
cosmological models.
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I. INTRODUCTION

Revealing the quantum nature of gravity is a difficult
task that nowadays may be within experimental capabilities
[1]. General relativity can be thought of as the low energy
limit of a quantum field theory in which the background
spacetime metric is considered classical, and the fluctua-
tions around it are quantized perturbatively [2,3]. This
semiclassical theory of gravity is the quantum field theory
of gravitons in a curved spacetime [4,5], and the non-
renormalizability is harmless at low energies. The chal-
lenge is to find the appropriate experiments or astrophysical
observations that could demonstrate the existence of
gravitons.
Effective field theories have their paradigm in quantum

Brownian motion [6]. After integrating out the environ-
mental degrees of freedom, a heavy Brownian particle will
satisfy a Langevin equation, that is, the effective dynamics
will contain both dissipation and noise. While for gravity
in most cases the analysis has been circumscribed to
dissipative aspects, it is well known that both, dissipation
and noise, come together, and the resulting effective field
theory is known as stochastic semiclassical gravity [7].
Recently, it has been proposed that quantum aspects of

gravity could be revealed by interferometric observations:
the quantum effects on the geodesics are not only of
dissipative character, but should also include a noise
induced by the gravitons [8,9]. The magnitude of the effect
depends strongly on the quantum state assumed for the
gravitons. This proposal has triggered several works
devoted to the analysis of the impact of quantum noise

on geodesic deviation and tidal forces, as well as on the
impact of the different quantum states of the gravitational
waves on the interferometric signals [8–13]. The brand new
idea is to go beyond the previous works where the effects of
gravitons have been considered to estimate corrections to
the Newtonian potential and the geodesics of test masses
[14–16], now including the unavoidable stochastic conse-
quences of the fluctuations of the metric. Similar ideas have
been pursued before in cosmological scenarios [17,18].
Technically, the integration of the quantum fluctuations

of the metric produces a nonlocal Feynman-Vernon influ-
ence functional for the classical variables. Dissipative/noise
effects are encoded in the real/imaginary part of the
influence action, and are connected by the fluctuation-
dissipation relation [19]. In the absence of a full quantum
theory of gravity, several nonlocal effective actions have
been proposed “phenomenologically” to analyze the influ-
ence of quantum fluctuations of the metric on astrophysical
and cosmological effects [20]. Many works in this context
are intended to determine eventual observational conse-
quences which, in the quantum Brownian motion language,
are produced by the dissipative effects. The analysis of the
effects of the noise are more rare.
In the same vein, it has been speculated that integrating

out quantum gravitational degrees of freedom could induce
stochasticity in the macroscopic gravitational coupling
constant G, that is, a noise that enters multiplicatively in
the effective Einstein equations. In Ref. [21] a purely time-
dependent noisy contribution to G has been considered as a
toy model for such effects and its impact in the cosmo-
logical evolution has been studied phenomenologically.
It was pointed out there that a cosmological evolution
consistent with the observed current accelerated expansion
of the Universe is possible in this context without the need
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for a cosmological constant to be introduced in the action
by hand.
Such a possibility is very interesting. However as the

observable Universe represents only a single realization of
this stochastic process, it is difficult to assess its likelihood.
It is then important to study the effects of such stochastic
variations of the gravitational coupling in other smaller-
scale systems as a mean to assess the viability of such a
proposal by opening the possibility of a statistical study.
Beyond this cosmological motivation, it can be interesting
on its own to characterize the effects of a stochastically
varying gravitational coupling on other scenarios.
Binary systems are plentiful and their orbital parameters

have in many cases been measured with extreme precision
over long periods of time. This includes pulsar timing
measurements as well as solar-system planetary ephemeri-
des and the Lunar Laser Ranging (LLR) experiment [22].
These systems have long been used for the study of
gravitational physics to constrain possible deviations from
general relativity [23], as well as looking for expected
effects produced by the stochastic gravitational wave
background [24]. Characterizing the effect of other sources
of stochasticity is important for these efforts.
At this point it is interesting to remark that, although our

main motivation comes from quantum gravity and the
theory of quantum open systems, a closely related classical
situation is that of the Kepler problem with time-dependent
mass, the so-called Gylden’s problem [25,26], proposed
originally to describe the secular acceleration of the Moon’s
longitude. In general, this problem has been investigated
under deterministic time dependence. Our results will apply
to the case of stochastic variations of the mass.
In this paper we will consider as a toy model a purely

time-dependent G that varies stochastically. Following
Ref. [21], the gravitational coupling G is assumed to be
subject to stochastic fluctuations of the form

GðtÞ ¼ Ḡð1þ σξðtÞÞ; ð1Þ

where σ has dimensions of ½T�1=2 and gives a measure of
the intensity of these fluctuations, while ξðtÞ stands for the
noise and in our convention has dimensions ½T�−1=2. The
statistical properties of the noise are given by its mean
value,

hξðtÞi ¼ 0; ð2Þ

and its self-correlation function at different times,

hξðtÞξðt0Þi ¼ Rðt − t0Þ: ð3Þ

HereRðtÞ is an even function; it has dimensions of ½T�−1 and
should be understood as a distribution. A simple example is
the white-noise correlationRðt − t0Þ ¼ δðt − t0Þ, as assumed
in Ref. [21], though here we will keep it general for the time

being. Equations (2) and (3) imply that the gravitational
coupling

hGðtÞi ¼ Ḡ; ð4Þ

VarðGðtÞÞ ¼ σ2Ḡ2Rð0Þ; ð5Þ

meaning that in this model the value of the gravitational
coupling, though fluctuating, remains bounded over time as
long asRð0Þ is finite. This kind of behaviorwill not be picked
up by experiments looking for a cumulative effect like
GðtÞ ¼ G0 þ _Gðt − t0Þ. Instead, the stochastic fluctuations
of GðtÞ will need to be studied statistically over a large
number of observations of a single system, and/or over a large
number of systems that are sensitive to these effects.
The paper will be organized as follows. In Sec. II we

consider the cosmological scenario of Ref. [21], and study
the stochastic effects on the Hubble parameter by solving
perturbatively the Friedmann equations and computing its
mean value and variance. We support our results with
numerical simulations, and emphasize the strong depend-
ence of the results with the initial conditions. In Sec. III
we study the effects on binary systems. We work in a
Newtonian approach and, for simplicity, consider pertur-
bations around a circular orbit, which at linear level behave
as a harmonic oscillator with both stochastic frequency and
driver. We then compute, in Sec III A, the stochastic mean
value and variance of the perturbations using a stochastic
generalization of the multiple scale analysis (MSA) [27].
Later in Sec. III B we use numerical simulations to assess
the role of nonlinearities and to set bounds on the character-
istics of the noise. Finally, in Sec. IV we discuss our results,
paying particular attention to the eventual influence that
the bounds on the noise coming from LLR may have on the
cosmological scenarios with stochastic G. We also com-
ment about future prospects. The Appendix contains some
details of the MSA calculations.

II. STOCHASTIC EFFECTS ON THE
COSMOLOGICAL EVOLUTION

In order to study the effects of a stochastically varying
gravitational couplingG on the cosmological evolution, we
first need to look into the impact of a time-dependent one in
the Friedmann equations for a homogeneous and isotropic
universe. Here we are assuming variations only in time, not
in space. Then we can incorporate the effect of noise by
promoting G to a stochastic variable with a given mean
value and correlations, leading to Langevin-like equations.
In this first part we will follow closely Ref. [21].
We begin by considering the standard Friedmann equa-

tions with matter (with energy density ρ and vanishing
pressure p ¼ 0) plus a time-dependent cosmological
“constant” ΛðtÞ,
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H2 ¼ 8πG
3

ρþ Λ
3
¼ 8πG

3
ðρþ λÞ; ð6Þ

_H þH2 ¼ −
4π

3
Gρþ Λ

3
¼ −

4π

3
Gðρ − 2λÞ; ð7Þ

where H is the Hubble parameter, and in the second set of
equalities we have defined the vacuum energy λðtÞ through
ΛðtÞ ¼ 8πGðtÞλðtÞ. It is useful to subtract Eq. (6) from
Eq. (7), obtaining

_H ¼ −4πGρ; ð8Þ
which removes the explicit dependence on λðtÞ. Letting the
gravitational coupling be time-dependent GðtÞ, the usual
covariant conservation law takes the following form:

_ρþ
�
3H þ

_G
G

�
ρþ

_Λ
8πG

¼ 0: ð9Þ

This equation describes the eventual transfer of energy
between the matter and gravitational sectors. As discussed
in Ref. [28], there are many possibilities, the simplest one
being to assume the standard conservation for matter and a
dynamical interplay between the time dependence of G and
Λ. Other choices would require us to further specify a model
for the coupling between ordinary matter and the new
degrees of freedom responsible for this time dependence.
Here we make the assumption (or rather, we define) that

regular matter is independently conserved, i.e., it satisfies
the standard conservation equation:

_ρþ 3Hρ ¼ 0; ð10Þ

which, when combined with Eq. (9), gives

ðρþ λÞ _Gþ G_λ ¼ 0: ð11Þ

This implies that a time-dependent gravitational coupling
GðtÞ must be balanced by a time dependent vacuum
energy λðtÞ (or vice versa). The above equation is better
expressed as

ρ _Gþ d
dt

ðGλÞ ¼ 0; ð12Þ

which we can integrate to

GðtÞλðtÞ ¼ Giλi −
Z

t

ti

dt0ρðt0Þ _Gðt0Þ

¼ Giðρi þ λiÞ − ρðtÞGðtÞ −
Z

t

ti

dt0Gðt0Þ_ρðt0Þ;

ð13Þ
with the initial conditions denoted with the subindex i.
Inserting this expression back into Eq. (6) allows us to

obtain an expression for H2 in terms of only GðtÞ
and ρðtÞ,

H2 ¼ 8π

3

�
Giðρi þ λiÞ −

Z
t

ti

dt0Gðt0Þ_ρðt0Þ
�
: ð14Þ

Finally, notice that from this last equation and Eq. (10) it
follows that the initial conditions are not all independent,
but rather they must satisfy

H2
i ¼

8π

3
Giðρi þ λiÞ ≃

8π

3
Giρi; ð15Þ

where we are assuming in the last equality that λi ≪ ρi,
such that initially there is no vacuum energy.
We can now proceed to incorporate the stochastic effects

by considering that GðtÞ varies stochastically according to
Eq. (1), with the statistical properties of the noise given
by Eqs. (2) and (3). Replacing these into (8) and (10), we
obtain the corresponding Friedmann-Langevin equations,

_ρ ¼ −3Hρ; ð16aÞ

_H ¼ −4πḠρð1þ σξÞ: ð16bÞ

The first of these is actually the same as in the deterministic
case; however, the second equation ensures that H is now a
stochastic variable, and therefore this also permeates to ρ
via the first one.
Let us write H ¼ HD þ δH and ρ ¼ ρD þ δρ where the

subindex D denotes the deterministic solution of the above
equations. Consider a specific realization of the stochastic
process where H > HD (δH > 0), Eq. (16a) tells us that
ρ → 0 more quickly than ρD, and therefore, according to
Eq. (16b), _H → 0 faster than _HD, so it is expected in this
case that H decays slower than HD. For sufficiently large
fluctuations above the deterministic evolution, H has a
chance to “freeze” at a finite value rather than decrease to
zero at late times. This is the main result of Ref. [21]. The
converse is also true. If fluctuations driveH < HD, this will
induce a slower decay of the energy density which in turn
forces a fasterH → 0. Looking at specific realizations gives
an idea of the possible outcomes, but does not give
information of how likely each of them are. A proper
analysis is required.

A. Analysis of the Friedmann-Langevin equations

We now proceed to solve these equations with a
perturbative approach valid at early times. Our goal is to
have some analytic control to estimate the statistical
properties of the solutions of Eq. (16). We will validate
this approach later by means of numerical simulations.
First, let us consider the deterministic solutions of Eq. (16)
in the absence of noise,
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ρDðtÞ ¼
1

6πḠt2
; HDðtÞ ¼

2

3t
; ð17Þ

which correspond to the typical matter-dominated cosmo-
logical evolution. We use these to parametrize the stochas-
tic solutions in the presence of noise as follows:

ρ ¼ ρDð1þ xÞ; H ¼ HDð1þ yÞ; ð18Þ

where x≡ δρ=ρD and y≡ δH=HD are the relative devia-
tions from the deterministic solutions for the energy density
and Hubble parameter, respectively. When inserted back
into Eq. (16), and using the deterministic equations, we
arrive at the following equivalent Langevin equations for
the relative deviations:

_x ¼ −3HDyð1þ xÞ; ð19aÞ

_y ¼
_HD

HD
½x − yþ ð1þ xÞσξ�: ð19bÞ

Using the explicit form of HDðtÞ and reparametrizing the
time variable as u ¼ logðt=tiÞ, these can be recast as

dx
du

¼ −2yð1þ xÞ; ð20aÞ

dy
du

¼ −xþ y − ð1þ xÞσξ; ð20bÞ

which until now are fully equivalent to the original Eq. (16),
i.e., nonlinear, but we have factored out the inconvenient
power-law decay of the deterministic solutions.
At early times we can assume that the stochastic

solutions do not deviate too much from the deterministic
ones of Eq. (17), i.e., x, y ≪ 1. Expanding Eq. (20) linearly
in this regime gives

dx
du

¼ −2y; ð21aÞ

dy
du

¼ −xþ y − σξ: ð21bÞ

In terms of the original variables, the solutions to these
perturbative equations read

δρ≡ ρDx ¼ 2ρD
3

�
xðtiÞ

�
ti
t
þ t2

2t2i

�
þ yðtiÞ

�
ti
t
−
t2

t2i

�
−
σ

t

Z
t

ti

dt0ξðt0Þ þ σt2
Z

t

ti

dt0

t03
ξðt0Þ

�
; ð22aÞ

δH ≡HDy ¼ HD

3

�
xðtiÞ

�
ti
t
−
t2

t2i

�
þ yðtiÞ

�
ti
t
þ 2t2

t2i

�
−
σ

t

Z
t

ti

dt0ξðt0Þ − 2σt2
Z

t

ti

dt0

t03
ξðt0Þ

�
: ð22bÞ

In these perturbative solutions the stochastic contribution
always enters linearly in the noise ξðtÞ, which has a
cumulative effect as it appears inside integrals, weighted
against different power-law functions (constant and t0−3 in
this case).
In solving the Friedmann-Langevin equations perturba-

tively we have also allowed for initial nonvanishing values
for the perturbations which give a power-law behavior.
Under the consistency relation of Eq. (15), these non-
vanishing initial conditions actually require initial values
for the vacuum energy λi ≠ 0 and/or a gravitational
coupling Gi ≠ G, so one needs to be careful not to
reintroduce the cosmological constant here. Our purpose
in keeping these initial conditions for the fluctuations
generic is to endow them with a stochastic origin, which
we will discuss now.
Given the stochastic nature of the gravitational coupling

we are considering in this work, it is reasonable to expect
that even at time ti its value will stochastically differ from
its mean, that is Gi ¼ Ḡð1þ σξiÞ. Then, again from
Eq. (15) this implies the consistency relation between
the initial conditions is not sharp, but rather stochastic.

In other words, one cannot initially have both a sharp value
for the energy density and the Hubble parameter simulta-
neously, since both are related by Gi, which is in itself
stochastic. Here we take the viewpoint that ρi ¼ ρDðtiÞ
takes an initially sharp value, since it is related to the matter
content, and therefore it is the Hubble parameter which
instead is initially stochastic,

H2
i ¼

8π

3
Ḡð1þ σξiÞρi: ð23Þ

This is however just a convention and there is no loss of
generality, as there is always a free parameter. In terms of
the relative deviations x and y, the above means

xðtiÞ ¼ 0; ð24aÞ

yðtiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σξi

p
− 1 ≃

1

2
σξi −

1

8
σ2ξ2i þ…; ð24bÞ

where the Taylor expansion is just indicative of one way to
estimate the statistical properties of yðtiÞ in terms of those
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of ξi. Notice that the presence of the square root above
signals that for a normally distributed ξi, yðtiÞ is ill defined.
This is just the statement that, however unlikely, Gi < 0
values are possible. One way out is to assume that the initial
step ξi follows a half-normal distribution constraining it to
be positive [29], i.e., ξi > 0. For a discussion regarding this
point, see Ref. [21]. With this choice, the statistics of ξi
can be given in terms of a single dimensionful quantity,
which we can express in terms of the initial value of the

deterministic Hubble parameter HðiÞ
D and a dimensionless

coefficient α,

hξni i ¼ ð2αHðiÞ
D Þn=2 Γð

nþ1
2
Þ

Γð1
2
Þ : ð25Þ

The need to introduce a new parameter αHðiÞ
D is rooted in the

fact that the above quantities are statistical correlators of the
noise at coincident times t ¼ ti, which may be divergent,
as is the case for a white-noise correlation function,
hξðtÞξðtÞi ¼ Rð0Þ ¼ δð0Þ. This requires some kind of regu-
larization procedure to give meaning to such correlators.
When taking an effective field theory point of view,where the
noise is originated by integrating out degrees of freedom, it is
natural to choose a cutoff for the noise correlators associated
to the highest energy to which the macroscopic system is
sensitive. In the current setup, the reference energy scale for

the system is HðiÞ
D ≡HDðtiÞ ¼ 2

3ti
, which suggests we take

α ¼ 1. Here however we choose to remain agnostic and
instead vary α around this value in order to assess how the
results depend on the choice of regulator. Aswewill see later,
there is indeed a strong dependence.
The immediate consequence of the nonlinear relation

between yðtiÞ and ξi in Eq. (24b), which in itself follows a
half-normal distribution, is that the mean values of the
fluctuations in Eq. (22) do not both vanish,

hδρi ¼ 0; hδHi ¼ HD

3
hyðtiÞi

�
ti
t
þ 2t2

t2i

�
; ð26Þ

where we used Eq. (2), or in other words the mean value of
the Hubble parameter is not given by its deterministic
counterpart of Eq. (17), due to the influence of the non-
normally distributed initial conditions. Next we can com-
pute the variances and the cross-correlations from Eq. (22)
by using hξðtÞξðt0Þi ¼ Rðt − t0Þ and making the assumption
that the initial value of the noise ξi and the noise at a later
time ξðtÞ are uncorrelated, i.e. hξni ξðtÞi ¼ 0, or equiva-
lently hyðtiÞξðtÞi ¼ 0.
Let us consider for example the variance of the Hubble

parameter,

VarðHÞ ¼ hδH2i − hδHi2; ð27Þ

where we used Eq. (26). Then, from Eqs. (22b) and (26) we
obtain

VarðHÞ ¼ H2
D

9

�
VarðyðtiÞÞ

�
ti
t
þ 2t2

t2i

�
2

þ σ2

t2

Z
t

ti

dt0
Z

t

ti

dt00
�
1þ 2t3

t03

��
1þ 2t3

t003

�
Rðt0 − t00Þ

�
: ð28Þ

Note that the first term comes from the stochastic initial condition for H and it is nonvanishing at t ¼ ti.
In order to make further progress either analytically or numerically it is necessary to assume some form for the noise

correlation function Rðt − t0Þ. Let us consider a white-noise correlation function Rðt − t0Þ ¼ δðt − t0Þ. Immediately we can
perform both integrations in Eq. (28),

VarðHÞ ¼ 4

81

�
VarðyðtiÞÞ

�
t2i
4t4

þ 1

tti
þ t2

t4i

�
þ σ2

t4
ðt − tiÞ þ

4σ2

t

�
1

2t2i
−

1

2t2

�

þ 4σ2t2
�

1

5t5i
−

1

5t5

��
≃

4

81

�
VarðyðtiÞÞ

t4i
þ 4σ2

5t5i

�
t2: ð29Þ

While most terms decay, we can see that there are terms that are actually growing as ∼t2 [or t4 relative to HDðtÞ2]. These
results can be trusted up to the time t ∼ TNP at which δH becomes comparable withHD, a condition that we can estimate by

hδHi þ VarðδHÞ1=2 ∼HD; ð30Þ

which gives

HðiÞ
D TNP ≃

�
2hyðtiÞi þ

�
VarðyðtiÞÞ þ

6

5
σ2HðiÞ

D

�
1=2

�
−1=2

∼

(
σ−1=2ðHðiÞ

D Þ−1=4 α≲ 1;

σ−1=2ðαHðiÞ
D Þ−1=4 α ≫ 1:

ð31Þ
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In the last expression we have estimated hyðtiÞni ∼
σnðαHðiÞ

D Þn=2 and dropped Oð1Þ factors. Notice that TNP
is the characteristic time at which a typical stochastic
realization departs from the deterministic evolution HDðtÞ
by an Oð1Þ factor, a measure of when the stochastic effects
become dominant.
At this point we expect the nonlinearities to either curb or

enhance this growth. In Fig. 1 we show the time evolution

of the mean value and variance of the Hubble parameter H,
both from our perturbative approximation (dashed) and
numerical simulations (solid), for two very different choices
of α. While good agreement is observed within the regime of
validity of the perturbative treatment, i.e., Eq. (31), this can
bevery short for larger values ofα.More importantly, there is
an observed change in behavior as α varies. For small values
of α, the stochastic initial conditions have little spread and

FIG. 1. Top panels show a subsample of 100 numerical realizations of the stochastic process with parameters σ2 ¼ 0.1ðHðiÞ
D Þ−1, Ḡ ¼ 1.

These are nonrealistic values and were chosen as in Ref. [21] for the sake of comparison. Only the Hubble parameter H is shown. The
blue envelope encloses a region of width 2 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðHÞp

around the mean value hHi. Bottom panels show a comparison of the
perturbative expectations for the stochasticmeanvalue (dashed orange) and variance (dashed red) of the Hubble parameterH, against those
computed from the full set of N ¼ 105 numerical realizations (solid orange and red, respectively). The deterministic value for the Hubble
parameter HDðtÞ for a matter-dominated universe is also shown (dashed brown) for reference. Good agreement can be seen within the
regime of validity of the perturbative approximation (the vertical dashed gray line indicates the time TNP). White noise is assumed in all

cases. The left panels assume a small value for the regulator αHðiÞ
D , namely α ¼ 0.01, while the right panels instead assume a large value

α ¼ 31.62. A strong dependence on this value can be observed, as it dictates howmuch the initial values are spread towards larger values of
Hi (a positive half-normal distribution for the initial noise ξi is assumed). For a small spread (left panels), the time evolution of a given
realization forH can either go to a constant or to negativevalueswith similar probability. This is reflected on themeanvalue hHivery closely
following the deterministic predictionHDðtÞ. In contrast, for large spread (right panels) there is a larger probability of the realizations forH
staying constant, which is also observed on the mean value hHi decaying much more slowly than HDðtÞ.
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therefore the different realizations exhibit varied behaviors
over time. In this case, it is as likely for a given realization to
plunge to H < 0 values as it is for it to stay at roughly
constant ones. This changes dramatically as α increases,
especially since we are taking the initial noise ξi to follow a
positive half-normal distribution. This leads to a wide spread
of initial conditions biased towards larger values of Hi

compared to HðiÞ
D , leading to many more solutions that

resemble a cosmological constant than decaying ones.
To summarize, the analysis presented here shows that

stochastic fluctuations of G may produce a cosmological
evolution such that the Hubble parameter tends to a positive
constant at long times, in agreement with Ref. [21]. This,
however, is not a robust prediction of themodel as it strongly
depends on the assumption of stochastic, biased initial

conditions, in particular, on the value of the regulator αHðiÞ
D .

III. STOCHASTIC EFFECTS
ON BINARY SYSTEMS

Observational data from binary systems, and in particu-
lar from LLR, provide stringent bounds on modifications to
general relativity, including tests of the equivalence prin-
ciple, the inverse square Newton law, and eventual varia-
tions of the strength of gravity [30,31]. For example,
assuming a time dependence of the gravitational constant

GðtÞ ¼ Gi

�
1þ

_G
G
ðtiÞðt − tiÞ þ

1

2

G̈
G
ðtiÞðt − tiÞ2

�
; ð32Þ

thewhole set of data ofLLR implies the following limits [32]:

_G
G

¼ ð−5.0� 9.6Þ × 10−15 yr−1;

G̈
G

¼ ð1.6� 2.0Þ × 10−16 yr−2: ð33Þ

These values are obtained after a sophisticated analysis
that takes into account the effects of ocean tidal bulges, the
precession of the lunar orbit’s plane, etc., but the main idea
is elementary: the time dependence of the gravitational
coupling will induce changes in the radial size of the orbit r
and in the period of revolution P [33]:

_r
r
¼ −

_G
G

_P
P
¼ −2

_G
G
; ð34Þ

so that the Moon-Earth distance should change linearly
with time

rðtÞ ≃ rðtiÞ
�
1 −

_G
G
ðtiÞðt − tiÞ

�
: ð35Þ

We will now discuss, also at an elementary level, the
effects of a stochastic variation of G on the distance

between astronomical bodies in a Newtonian binary sys-
tem. We consider the effective one-body problem of a
binary system in Newtonian gravity. We can always reduce
this to an effective equation of motion for the radial
coordinate r by using conservation of angular momentum,

d2r
dt2

¼ −
GðtÞM
r2

þ l2

r3
; ð36Þ

where M is the total mass of the binary system and l the
orbital angular momentum per unit reduced mass. Here we
allow once again for a time dependence of the gravitational
couplingG of stochastic origin, given by Eq. (1), with noise
statistics given by Eqs. (2) and (3).
We consider for simplicity quasicircular motion and

expand r ¼ r̄0 þ δr around the deterministic circular
motion radius r̄0 ¼ l2=ḠM (̈r̄0 ¼ 0). The perturbation
δr ≪ r̄0 satisfies the following equation up to second order:

δ̈rþ Ω̄2
0ð1 − 2σξðtÞÞδr

¼ −r̄0Ω̄2
0σξðtÞ þ 3Ω̄2

0ð1 − σξðtÞÞ δr
2

r̄0
þOðδr3Þ; ð37Þ

where _≡ ∂t and Ω̄2
0 ¼ ḠM=r̄30 is the squared orbital

frequency of the circular motion. In what follows we will
study the linearized equation, but here we have kept the
quadratic terms in δr to emphasize that, having a positive
sign on the right-hand side of Eq. (37) they will tend to
push δr towards positive values when they become rel-
evant. Dropping these for now, we get for the linearized
equation a harmonic oscillator

δ̈rþ Ω2ðtÞδr ¼ fðtÞ; ð38Þ

with time-dependent stochastic squared frequency

Ω2ðtÞ ¼ Ω̄2
0ð1 − 2σξðtÞÞ; ð39Þ

and a stochastic additive noise

fðtÞ ¼ −r̄0Ω̄2
0σξðtÞ: ð40Þ

Similar stochastic equations have been studied thor-
oughly in the literature, in particular, results are well known
when either one of the additive or multiplicative noises are
present separately.
The case of multiplicative noise has been studied in

different contexts, in particular, in the analysis of wave
propagation in random media [34]. The solutions of the
stochastic equation Eq. (38) with fðtÞ ¼ 0 show an
exponential increase

hδr2imultipl ∝ e4σ
2Ω̄2

0
Re½Sð2Ω̄0Þ�t; ð41Þ
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where SðωÞ is the Fourier transform of the noise correlation
function, Eq. (3),

SðωÞ ¼
Z

∞

0

dtRðtÞeiωt: ð42Þ

The exponential growth is the stochastic counterpart of the
well-known phenomenon of parametric resonance.
The effect of the additive noise is more closely related to

the usual Brownian motion, and the growth of hδr2i is not
exponential but polynomial. For instance, assuming a
Gaussian colored noise with correlation function

Rðt − t0Þ ¼ 1

τc
e−jt−t0j=τc ; ð43Þ

in the large time limit the variance is given by [35]

hδr2iadd ¼
r̄20Ω2

0σ
2

ðτ2cΩ2
0 þ 1Þ t: ð44Þ

These two simplified cases with only a single type of
noise active at a time give us a hint of what to expect when
both effects are combined. On the one hand, the additive
noise ensures that any system will be kicked out of the
equilibrium and start to oscillate. The multiplicative noise
will then, over a longer timescale, induce an exponential
growth via stochastic parametric resonance. However
intuitive this picture may be, these effects are not so easily
combined analytically. In order to take them both into
account simultaneously in a rigorous way, we need to dive
into Eq. (38) with MSA methods [27,34]. In the next
subsection we will show how these methods can be used
to derive stochastic mean values and variances in such a
scenario. Readers not interested on the technical details can
skip ahead to Sec. III B, where the results are discussed in
the light of LLR observational constraints.

A. Stochastic multiple scale analysis

The basis of the MSA is the understanding that solutions
to equations like (38) exhibit distinct behaviors at different
time scales. As already shown by the known result in
Eq. (41) for multiplicative noise, we expect an exponential
growth that onsets on a timescale Tl ∼ ðσΩ̄0Þ−2 which is
much longer than the period of oscillation Ts ¼ 2πΩ̄−1

0 ,
provided σ2Ω̄0 ≪ 1. With this in mind, we define the
expansion parameter ϵ2 ≡ Ts=ð2πTlÞ ¼ σ2Ω̄0, and a new
slow time variable τ ¼ ϵ2t.
We start our discussion by rewriting Eq. (38) in terms of

the dimensionless variable z≡ δr=r̄0, replacing also σ in
favor of ϵ, and rescaling the noise to be dimensionless as
well, i.e., ϵηðtÞ ¼ −2σξðtÞ,

̈zþ ω2ð1þ ϵηðtÞÞz ¼ −ω2γϵηðtÞ: ð45Þ

Here we have also introduced γ ¼ −1=2 as a bookkeeping
parameter and wrote ω≡ Ω̄0 to alleviate the notation.
Expanding a solution zðtÞ of Eq. (45) in powers of ϵ as
follows:

zðtÞ ¼ Z0ðt; τÞ þ ϵZ1ðt; τÞ þ ϵ2Z2ðt; τÞ þOðϵ3Þ; ð46Þ

and then, introducing this expansion in (45) we get the set
of equations

8>><
>>:

∂
2
t Z0 þ ω2Z0 ¼ 0;

∂
2
t Z1 þ ω2Z1 þ ω2ηðtÞðZ0 þ γÞ ¼ 0;

∂
2
t Z2 þ ω2Z2 þ ω2ηðtÞZ1 þ 2∂2τtZ0 ¼ 0;

ð47Þ

where we are treating τ and t as independent variables. If
one ignores the dependence on the slow time τ, Eqs. (46)
and (47) are just a standard perturbative expansion in ϵ.
However, here the approach will be to first solve for the fast
time t, which expectedly will give rise to secularly growing
contributions for stochastic mean values. On a second
stage, these contributions are resummed by the τ depend-
ence of the otherwise constant coefficients coming out of
the first stage.
At zeroth order the solution Z0 to the first equation in

(47) is just that of a harmonic oscillator with frequency ω,

Z0ðt; τÞ ¼ AðτÞeiωt þ BðτÞe−iωt; ð48Þ

where AðτÞ and BðτÞ are to be determined later on. Moving
on to the first order, the harmonic oscillator is now subject
to a source term −ω2ηðtÞðZ0 þ γÞ, and therefore we can
formally solve for Z1 by using the corresponding retarded
Green’s function

Z1ðt; τÞ ¼ CðτÞeiωt þDðτÞe−iωt

− ω

Z
t

0

dt0 sin½ωðt − t0Þ�ηðt0Þ

×
h
AðτÞeiωt0 þ BðτÞe−iωt0 þ γ

i
: ð49Þ

Here CðτÞ and DðτÞ are arbitrary functions, fixed by the
initial conditions, that can be chosen to vanish without loss
of generality (i.e., imposing the initial conditions on Z0). In
the above equation, the integration on t0 does not affect the
τ dependence, as they are independent variables. At this
point we can compute the mean value of Z1 and trivially
obtain hZ1ðt; τÞi ¼ 0, which implies the absence of secular
terms at this order. It is then necessary to go to higher order
to find a condition on the coefficients AðτÞ and BðτÞ.
Solving similarly for Z2 we get
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Z2ðt; τÞ ¼ −2i
Z

t

0

dt0 sin½ωðt − t0Þ�
�
A0ðτÞeiωt0 − B0ðτÞe−iωt0

�

þ ω2

Z
t

0

dt0 sin½ωðt − t0Þ�ηðt0Þ
�Z

t0

0

dt00 sin½ωðt0 − t00Þ�ηðt00Þ
�
AðτÞeiωt00 þ BðτÞe−iωt00 þ γ

��
; ð50Þ

and therefore

hZ2ðt; τÞi ¼
Z

t

0

dt0 sin½ωðt − t0Þ�
�
−2i

�
A0ðτÞeiωt0 − B0ðτÞe−iωt0

�

þ 4ω

Z
t0

0

dt00 sin½ωðt0 − t00Þ�Rðt0 − t00Þ
�
AðτÞeiωt00 þ BðτÞe−iωt00 þ γ

��
: ð51Þ

The coefficients AðτÞ and BðτÞ are fixed in such a way that there are no secular terms in the mean value hZ2ðt; τÞi (this
procedure reproduces the results of Ref. [34] for the case of multiplicative noise, as described in Ref. [36]). Note that secular
terms do arise when there are contributions proportional to e�iωt0 inside the curly brackets under the integral over t0. As
shown in the Appendix, the coefficients AðτÞ and BðτÞ that avoid such contributions are

�
AðτÞ ¼ Að0Þe½S�ð2ωÞ−Sð0Þ�ωϵ2t;
BðτÞ ¼ Bð0Þe½Sð2ωÞ−Sð0Þ�ωϵ2t;

ð52Þ

where we have restored t in favor of τ. Plugging these results into the expansion (46) we obtain

zðtÞ ¼ e½Re½Sð2ωÞ�−Sð0Þ�ωϵ2t
�
Að0Þeið1−ϵ2Im½Sð2ωÞ�Þωt þ Bð0Þe−ið1−ϵ2Im½Sð2ωÞ�Þωt

�
þOðϵÞ: ð53Þ

An important feature of this result is that, although only valid at leading order in ϵ, since the OðϵÞ terms are linear in the
noise, the mean value actually enjoys next-to-leading order accuracy,

hzðtÞi ¼ e½Re½Sð2ωÞ�−Sð0Þ�ωϵ2t
�
Að0Þeið1−ϵ2Im½Sð2ωÞ�Þωt þ Bð0Þe−ið1−ϵ2Im½Sð2ωÞ�Þωt

�
þOðϵ2Þ: ð54Þ

With this result, we see that the stochastic mean value of
the evolution of linear perturbation, zðtÞ, generically
receive corrections with respect to its deterministic counter-
part in the form of an exponential factor and a shift in the
frequency. However, these effects can be important or not
depending on the noise correlation function Rðt − t0Þ. For
example, for a white-noise correlation function we have
that SðωÞ ¼ 1=2, and therefore we find that both these
effects are not present at the level of the mean value in our
MSA approach. It is also worth noting that, at this level,
there is no effect of the additive noise, as the absence of our
bookkeeping parameter γ evidences. This was to be
expected considering the vanishing mean of the noise,

Eq. (2). To properly assess the effect of the noise we need to
also compute the variance.
We now proceed to discuss the stochastic average of the

perturbation squared, hzðtÞ2i, needed for the computation
of the variance. Here the procedure is analogous to what
we have just done for the mean value. We compute the
stochastic averages up to second order in ϵ, search for the
secular terms, and fix the dependence of zeroth order
coefficients with the slow time τ in order to cancel them.
Importantly, these will be different from the ones found
above, Eq. (52), as the secular terms we need to resum here
will be different than those in hzðtÞi.

Using the same expansion as before, Eq. (46), we now have

zðtÞ2 ¼ Z0ðt; τÞ2 þ 2ϵZ0ðt; τÞZ1ðt; τÞ þ ϵ2ðZ1ðt; τÞ2 þ 2Z0ðt; τÞZ2ðt; τÞÞ þOðϵ3Þ; ð55Þ

and therefore
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hzðtÞ2i ¼ Z0ðt; τÞ2 þ 2ϵZ0ðt; τÞhZ1ðt; τÞi þ ϵ2½hZ1ðt; τÞ2i þ 2Z0ðt; τÞhZ2ðt; τÞi� þOðϵ3Þ; ð56Þ

where we have used that Z0ðt; τÞ is independent of the noise. As before, the term linear in ϵ becomes irrelevant in that it does
not contain secular terms, while it also important that now the structure of the zeroth order part is

Z0ðt; τÞ2 ¼ AðτÞ2e2iωt þ 2AðτÞBðτÞ þ BðτÞ2e−2iωt: ð57Þ

This means there are actually three independent coefficients to fix AðτÞ2, BðτÞ2, and 2AðτÞBðτÞ, which is consistent within
the stochastic MSA method.
The secular terms will be then found in the second order part

hZ1ðt; τÞ2i þ 2Z0ðt; τÞhZ2ðt; τÞi; ð58Þ

of which we already have a partial computation, i.e., the second term, by combining Eqs. (48) and (51). Then, we only need
to compute hZ1ðt; τÞ2i. This is done in the Appendix, where we show that

hZ1ðt; τÞ2i ¼ 8ω

Z
t

0

dt0 sin½ωðt − t0Þ�
�
AðτÞeiωt0 þ BðτÞe−iωt0 þ γ

�

×
Z

t0

0

dt00 sin½ωðt − t00Þ�Rðt0 − t00Þ
�
AðτÞeiωt00 þ BðτÞe−iωt00 þ γ

�
: ð59Þ

Inserting Eqs. (48), (51), and (59) into Eq. (58) we obtain the second order part of hzðtÞ2i. The calculation of the coefficients
that avoid the secular terms is described in the Appendix. They are given by

8>>><
>>>:

½AðτÞ�2 ¼ Að0Þ2e2½S�ð2ωÞ−2Sð0Þ�ωϵ2t;
½BðτÞ�2 ¼ Bð0Þ2e2½Sð2ωÞ−2Sð0Þ�ωϵ2t;
½2AðτÞBðτÞ� ¼ 2Að0ÞBð0Þe4ωRe½Sð2ωÞ�ϵ2t þ γ2 Re½SðωÞ�

Re½Sð2ωÞ� ðe4ωRe½Sð2ωÞ�ϵ
2t − 1Þ:

ð60Þ

Plugging these results back into Eq. (57) we obtain the main result of this subsection

hzðtÞ2i ¼ e2½Re½Sð2ωÞ�−2Sð0Þ�ωϵ2t
�
Að0Þ2e2ið1−ϵ2Im½Sð2ωÞ�Þωt þ Bð0Þ2e−2ið1−ϵ2Im½Sð2ωÞ�Þωt

�

þ 2Að0ÞBð0Þe4ωRe½Sð2ωÞ�ϵ2t þ γ2
Re½SðωÞ�
Re½Sð2ωÞ� ðe

4ωRe½Sð2ωÞ�ϵ2t − 1Þ: ð61Þ

As a partial check of our calculation, we can show that
these results reproduce those associated with the presence
of either multiplicative or additive noises in isolation. The
former is obtained in the limit γ → 0, and the results give
the typical exponential growth of parametric stochastic
resonance, [see Eq. (41)]. The latter is obtained in the limit
ϵ → 0; γϵ → const, as can be deduced from Eq. (45). In this
limit hzðtÞ2i grows linearly in time, as in the usual
Brownian motion. For the particular colored noise given
in Eq. (43), hzðtÞ2i reproduces the result in Eq. (44).
It is worth noting that the terms associated with multi-

plicative noise alone, i.e., first and second in Eq. (61), grow
exponentially with a rate that is only sensitive to the Fourier

transform of the noise correlation evaluated at two times the
natural frequency ω. This is typical of parametric reso-
nance. However, these terms have an amplitude that is
proportional to the initial conditions. In contrast, the third
term is associated with the combination of both multipli-
cative and additive noises. It also exhibits an exponential
growth with the same rate as the standard parametric
resonance effect, but it starts at linear order in t (due to
the −1 piece) with an overall amplitude proportional to γ2.
This is interesting because, in addition to being indepen-
dent of the initial condition for the perturbation, it will be,
in general, larger in amplitude (see below). In other words,
the presence of additive noise ensures that deviations from
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z ¼ 0 will always exist, and that they will be exponentially
enhanced by the parametric resonance effect induced by the
multiplicative noise.

B. Constraints on the amplitude of the noise from LLR

We now describe a concrete application of our results to
illustrate how observational data from LLR can provide a
constraint on the amplitude of the stochastic fluctuations of
the gravitational coupling. Indeed, the current agreement of
said data with the classical prediction for the Earth-Moon
motion implies that

hðrobs − rclÞ2i ≤ δ2LLR; ð62Þ

where robs ¼ r̄0 þ δr is the observed radial Earth-Moon
distance while rcl is the classical expectation in the absence
of noise and δLLR is the typical precision of the laser
ranging measurements.
We can express the above equivalently as

VarðδrÞ þ ðhδri − δrclÞ2 ≤ δ2LLR; ð63Þ

with δrcl ¼ rcl − r̄0. Using our previous results, valid in the
linear regime of Eq. (37), choosing as initial condition
Að0Þ ¼ Bð0Þ ¼ ð1=2Þδrð0Þ=r̄0, and reinstating the original
parameters (including γ ¼ −1=2), we obtain

hδrðtÞi ¼ δrð0Þe½Re½Sð2Ω̄0Þ�−Sð0Þ�Ω̄2
0
σ2t cos ½Ω̄0ð1 − Ω̄0σ

2Im½Sð2Ω̄0Þ�Þt� þOðΩ̄0σ
2Þ; ð64Þ

hδrðtÞ2i ¼ 1

2
δrð0Þ2e2½Re½Sð2Ω̄0Þ�−2Sð0Þ�Ω̄2

0
σ2t cos ½2Ω̄0ð1 − Ω̄0σ

2Im½Sð2Ω̄0Þ�Þt�

þ 1

2
δrð0Þ2e4Re½Sð2Ω̄0Þ�Ω̄2

0
σ2t þ r̄20

4

Re½SðΩ̄0Þ�
Re½Sð2Ω̄0Þ�

ðe4Re½Sð2Ω̄0Þ�Ω̄2
0
σ2t − 1Þ þOðΩ̄0σ

2Þ; ð65Þ

and

VarðδrðtÞÞ ¼ 1

2
δrð0Þ2e2½Re½Sð2Ω̄0Þ�−Sð0Þ�Ω̄2

0
σ2t
h
e−2Sð0ÞΩ̄2

0
σ2t − 1

i
cos ½2Ω̄0ð1 − Ω̄0σ

2Im½Sð2Ω̄0Þ�Þt�

þ 1

2
δrð0Þ2e4Re½Sð2Ω̄0Þ�Ω̄2

0
σ2t
h
1 − e−2½Re½Sð2Ω̄0Þ�þSð0Þ�Ω̄2

0
σ2t
i
þ r̄20

4

Re½SðΩ̄0Þ�
Re½Sð2Ω̄0Þ�

ðe4Re½Sð2Ω̄0Þ�Ω̄2
0
σ2t − 1Þ þOðΩ̄0σ

2Þ:

ð66Þ

These results show that, for orbits with small eccentricity
(e ≃ δrð0Þ=r̄0 ≪ 1), the classical solution δrcl (obtained in
the limit σ → 0) is modified in different ways due to the
presence of the noise. On the one hand, the multiplicative
noise induces a shift in the frequency of the classical
oscillations, proportional to the imaginary part of Sð2Ω̄0Þ.
The variance of the amplitude grows exponentially with a
rate proportional to the real part of Sð2Ω̄0Þ. On the other
hand, the third terms in Eqs. (65) and (66) represent a
concurrent effect of both multiplicative and additive noise,
and will be the dominant terms as long as δrð0Þ ≪ r̄0 [if we
assume that Re½SðΩ̄0Þ�=Re½Sð2Ω̄0Þ� ¼ Oð1Þ]. As expected,
the noise becomes relevant when the typical scale of
temporal stochastic variations is of order Ω̄−1

0 .

We stress that the above results are derived in the linear
approximation, assuming δr ≪ r0. Therefore, in the
exponential regime (when Re½Sð2Ω̄0Þ�Ω̄2

0σ
2t≳ 1), the last

term proportional to r̄20 would violate this assumption,
unless the noise spectrum is sufficiently peaked around
2Ω̄0. This would not be a limitation when applying
these results to linear systems, as those considered in
Refs. [8,9].
For the purpose of finding a bound on the amplitude of

the noise σ, we consider again a white-noise correlation
function Rðt − t0Þ ¼ δðt − t0Þ. Notice that in this case σ
drops from Eq. (64) (at leading order), and therefore
hδri ¼ δrcl þOðΩ̄0σ

2Þ. Moreover, our result, Eq. (66),
specializes to

VarðδrðtÞÞ ¼ 1

2
δrð0Þ2ðe−Ω̄2

0
σ2t − 1Þ cos ð2Ω̄0tÞ þ

1

2
δrð0Þ2e2Ω̄2

0
σ2tð1 − e−2Ω̄

2
0
σ2tÞ þ r̄20

4
ðe2Ω̄2

0
σ2t − 1Þ þOðΩ̄0σ

2Þ: ð67Þ

At short times, Ω̄2
0σ

2t ≪ 1, the bound expressed in Eqs. (62) and (63) can be written as
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½VarðδrðtÞÞ�1=2

≃ ½1þ e2ð2 − cos ð2Ω̄0tÞÞ�1=2r̄0Ω̄0σ

ffiffiffi
t
2

r
≤ δLLR; ð68Þ

where e ≃ δrð0Þ=r̄0 is the eccentricity of the orbit, which
in the case of the Moon is e ≃ 5%, and therefore for our
purposes of giving an order of magnitude estimate we can
drop the second term in the brackets. Considering that the
LLR experiment has achieved a few-millimeter range
precision [37], and assuming fifteen years of observation
with that precision, Eq. (68) translates into a bound in the
amplitude of the noise of order

σLLR ≲ 10−13 yr1=2: ð69Þ

This is a very small value that justifies the short-times
assumption above.
Note that, unlike for the case of nonstochastic time-

dependent G described by Eq. (32), in which the deviation
δr is linear in t [33], here the deviation is proportional toffiffi
t

p
. However, at longer times the effect is more dramatic.

Although the validity of this calculation is restricted
[because we neglected nonlinear terms in Eq. (37)], the
numerical simulations show that the nonlinear terms
enhance the variance even further, as exhibited in Fig. 2
for different values of σ. Eventual dissipative effects
associated with the fundamental origin of the stochastic
fluctuations may potentially curb this growth and mitigate
the observable effects. One could incorporate this phenom-
enologically by adding a term βδ_r to, for example, Eq. (38).
However, this would not be very illuminating without

FIG. 2. Mean (orange) and variance (red) of the relative deviation of the radial distance, δr=r0, for different values of σ chosen
nonrealistically to exaggerate the effect for visualization. The timescale is given by the orbital period Ts ¼ 2πΩ̄−1

0 . Solid lines are
computed over samples of numerical realizations with at least N ¼ 1.5 × 104, while dashed lines are the analytical expectations
computed from the linearized equations. The initial conditions have been set to δrð0Þ ¼ 0 and δ_rð0Þ ¼ 0 all around, which emphasizes
the role of the additive noise in pushing the system out of equilibrium.
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knowledge of the fundamental theory to properly connect
this new phenomenological parameter β with the noise
amplitude σ by means of a fluctuation-dissipation theorem.
While laser ranging is available for bodies orbiting the

Earth, like the Moon or artificial satellites, for other binary
systems the observed orbital elements are the period, the
eccentricity, the inclination, etc. A detailed analysis of the
influence of stochastic gravitational waves on the orbital
parameters, including resonant effects, has been presented
in Ref. [24]. A similar analysis could be performed for
the case in which the source of stochasticity is the time
dependence of the gravitational coupling discussed in this
paper. For instance, for the simplified approach considered
here one could relate the stochastic variations of rðtÞ with
those of the angular velocity and of the orbital period
through the conservation of angular momentum.

IV. DISCUSSION

In this paper we have studied the effects of a purely time-
dependent stochastic contribution to the gravitational cou-
pling G. Following Ref. [21] we have first considered the
cosmological implications by studying the Friedmann-
Langevin equations without a cosmological constant. We
have extended what was presented there by computing also
the stochastic mean value and variance of the Hubble
parameter in a perturbative approximation valid at early
times. We have compared our analytic results with numeri-
cal simulations in the case of white noise, showing good
agreement within the regime of validity of our approxi-
mation. Our results show that Oð1Þ deviations from the
deterministic matter-dominated evolution of the Hubble
parameter are to be expected after a characteristic time TNP
given in Eq. (31). In order to provide a resolution to the
cosmological constant problem this must happen, taking

HðiÞ
D ∼H0, i.e., the Hubble constant today, on a timescale

shorter than the age of the Universe. This condition
imposes a lower bound for the noise amplitude σ of

σcosmo ≳ 105 yr1=2
�
1 α ≲ 1;

α−1=2 α ≫ 1:
ð70Þ

Nevertheless, this does not guarantee that the Hubble
parameter will stabilize at a positive constant value. The
numerical simulations exhibit a strong dependence of the
results with the stochastic initial conditions assumed for
the Hubble parameter. For a sufficiently wide positive half-
normal distribution (α ≫ 1), the solutions at large times
look as though they are dominated by a positive cosmo-
logical constant, as described in Ref. [21].
Given the dependence with the initial conditions, the

scenario where stochastic variations of G produce an
effective evolution of the Hubble parameter similar to that
produced by a cosmological constant cannot be put to the
test. This is due to the stochastic nature of the process and

the fact that we can only observe one realization of it at
cosmological scales. The situation could be improved by
studying the effects of this scenario at shorter scales where
one can rely on statistical analysis over a large number of
systems. In the case of binary systems at astrophysical
scales, this would benefit from ongoing precision obser-
vations of pulsars and also within the Solar System.
We have then moved on to study the effects that this kind

of stochasticity in the gravitational coupling has on binary
systems. We have done so by looking at the effects of noise
on the perturbations around circular orbits, once again
computing their stochastic mean value and variance. We
have found a combined effect of multiplicative and additive
noise that is similar to parametric resonance, but that is
larger and independent of initial conditions. We have then
once again compared with numerical simulations in the
case of white noise. Our main result for binary systems can
be summarized as follows: at the linearized level, stochastic
fluctuations of G produce a cumulative effect on the
distance between bodies. At short times, the variance grows
as

ffiffi
t

p
. At larger times, numerical simulations suggest that

the growth of the variance is exponential.
Laser ranging can be used to put bounds on the

amplitude of the frequency spectrum of the noise,
Eq. (69), of order

σLLR ≲ 10−13 yr1=2;

which immediately seems in strong contradiction with the
cosmologically motivated value of Eq. (70), unless one
allows for unnaturally large stochastic initial fluctuations in
cosmology, i.e., α ≳ 1036 (which imply a cutoff still lower
than MP). As one might expect though, this approach can
only constrain specific ranges of the noise power spectrum
SðωÞ to which the studied binary systems are sensitive. This
can only be extrapolated to the infrared cosmological scales
under some assumption regarding the tilt of the spectrum.
Indeed, assuming a power-law scaling

SðωÞ ∼ ω−p; ð71Þ

it is possible to bridge the gap between the Solar System
and cosmological scales with p≳ 3.
Our results can be generalized in any number of ways. In

the context of the mergers of black holes and other compact
objects, this type of stochastic effect may impact not only
the binary dynamics but also the generation of gravitational
waves. This might be of interest in light of future next-
generation gravitational-wave observatories. In the context
of nonlocal gravity, it has been pointed out [38] that the
limit on _G=G from LLR can be used to rule out some
models not compatible with it. It would be interesting to
extend that analysis to the case in which G has stochastic
fluctuations and dissipation, since both effects are expected
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when the nonlocalities are induced by the integration of
quantum gravitational degrees of freedom.
Finally, we would like to stress that the MSA approach

described in this paper could also be used to analyze
eventual resonant effects in the studies of the stochastic
corrections induced by gravitons on geodesics deviation
and tidal forces which, up to now, have been addressed
perturbatively in the amplitude of the noise [8–13].
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APPENDIX

In this appendix we provide some details of the MSA of
the stochastic differential equation (45). As described in the
text, the functions AðτÞ and BðτÞ are determined by the
condition that hZ2ðt; τÞi does not have secular terms.
From Eq. (50) we obtain

hZ2ðt; τÞi ¼
Z

t

0

dt0 sin½ωðt − t0Þ�
n
−2i

h
A0ðτÞeiωt0 − B0ðτÞe−iωt0

i

þ 4ω

Z
t0

0

dt00 sin½ωðt0 − t00Þ�Rðt0 − t00Þ
h
AðτÞeiωt00 þ BðτÞe−iωt00 þ γ

io
; ðA1Þ

where we have used Eq. (3). Secular terms are those that
can grow as t, and in the previous expression we can see
that these can occur when there are contributions inside the
integral over t0 that can resonate with frequency ω, i.e.,
terms like eiωt

0
or e−iωt

0
. In order to identify these, we need

to massage the inner integral a little bit. After a change of
variables u ¼ t0 − t00, we find integrals of the form

Z
∞

0

du sinðωuÞRðuÞeiωu ¼ i
2
½Sð0Þ − Sð2ωÞ�; ðA2Þ

and its complex conjugate, where the integration has been
extended to infinity (t0 → ∞) since the secular effects are
associated to times much longer than ω−1 as discussed
before, allowing us to recast it in terms of the Fourier
transform SðωÞ of the correlation function, as defined in
Eq. (42).
At this stage we implement the resummation of the

secular terms by imposing that the quantity in curly

brackets in Eq. (A1) has no such resonant terms, which
will impose conditions on AðτÞ and BðτÞ in the form of a
pair of ordinary differential equations in τ,

�
A0ðτÞ þ ω½Sð0Þ − S�ð2ωÞ�AðτÞ ¼ 0;

B0ðτÞ þ ω½Sð0Þ − Sð2ωÞ�BðτÞ ¼ 0:
ðA3Þ

These are immediately solved as

�
AðτÞ ¼ Að0Þe½S�ð2ωÞ−Sð0Þ�ωτ;
BðτÞ ¼ Bð0Þe½Sð2ωÞ−Sð0Þ�ωτ:

ðA4Þ

From these equations it is easy to compute hzðtÞi.
We now consider the evaluation of hzðtÞ2i. We only need

to compute hZ1ðt; τÞ2i. Using Eq. (49), we obtain

hZ1ðt; τÞ2i ¼ ½CðτÞeiωt þDðτÞe−iωt�2 þ 4ω

Z
t

0

dt0 sin½ωðt − t0Þ�
Z

t

0

dt00 sin½ωðt − t00Þ�

× Rðt0 − t00Þ½AðτÞeiωt0 þ BðτÞe−iωt0 þ γ�½AðτÞeiωt00 þ BðτÞe−iωt00 þ γ�: ðA5Þ

In order to find the secular terms here and combine them with those coming from 2Z0ðt; τÞhZ2ðt; τÞi, we need to recast this
expression in a way that resembles Eq. (A1), that is, with two nested integrals. For this we use that, for any symmetric
function fðt0; t00Þ ¼ fðt00; t0Þ,

Z
t

0

dt0
Z

t

0

dt00fðt0; t00Þ ¼ 2

Z
t

0

dt0
Z

t0

0

dt00fðt0; t00Þ: ðA6Þ

Then, Eq. (A5) reads
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hZ1ðt; τÞ2i ¼ 8ω

Z
t

0

dt0 sin½ωðt − t0Þ�
�
AðτÞeiωt0 þ BðτÞe−iωt0 þ γ

�

×
Z

t0

0

dt00 sin½ωðt − t00Þ�Rðt0 − t00Þ
�
AðτÞeiωt00 þ BðτÞe−iωt00 þ γ

�
: ðA7Þ

Notice that this expression is similar to Eq. (A1) with an important difference, as the inner integral after a change of
variables is now of the form

Z
∞

0

du sin½ωðt − t0Þ þ ωu�RðuÞeiωu ¼ i
2

�
e−iωðt−t0ÞSð0Þ − eiωðt−t0ÞSð2ωÞ

�
; ðA8Þ

and its complex conjugate. Once again we have extended the limit of integration t0 → ∞.
Finally, combining Eqs. (48), (A1), and (A7) to form Eq. (58), and then following the same procedure to get from

Eq. (A1) to Eq. (A3), we now obtain instead that the secular terms vanish if8>><
>>:

½AðτÞ2�0 þ 2ω½2Sð0Þ − S�ð2ωÞ�AðτÞ2 ¼ 0;

½BðτÞ2�0 þ 2ω½2Sð0Þ − Sð2ωÞ�BðτÞ2 ¼ 0;

½2AðτÞBðτÞ�0 − 4ωRe½Sð2ωÞ�ð2AðτÞBðτÞÞ ¼ 4γ2ωRe½SðωÞ�;
ðA9Þ

which, as previously discussed, are to be solved independently for AðτÞ2, BðτÞ2, and 2AðτÞBðτÞ. The solutions for AðτÞ2,
BðτÞ2 are again very simple (

½AðτÞ�2 ¼ Að0Þ2e2½S�ð2ωÞ−2Sð0Þ�ωϵ2t;
½BðτÞ�2 ¼ Bð0Þ2e2½Sð2ωÞ−2Sð0Þ�ωϵ2t;

ðA10Þ

and are related to the oscillatory part of Eq. (57). On the other hand, for the nonoscillatory part, the third equation in (A9)
has a source term proportional to γ2. This is where we see the effect of the additive noise appearing. The solution has both a
homogeneous part and a particular part, and is given by

½2AðτÞBðτÞ� ¼ 2Að0ÞBð0Þe4ωRe½Sð2ωÞ�ϵ2t þ γ2
Re½SðωÞ�
Re½Sð2ωÞ� ðe

4ωRe½Sð2ωÞ�ϵ2t − 1Þ: ðA11Þ

Equations (A10) and (A11) are summarized in Eq. (60) of Sec. III A.
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